JP2003045829A - Abrasive and method of polishing substrate - Google Patents

Abrasive and method of polishing substrate

Info

Publication number
JP2003045829A
JP2003045829A JP2002162320A JP2002162320A JP2003045829A JP 2003045829 A JP2003045829 A JP 2003045829A JP 2002162320 A JP2002162320 A JP 2002162320A JP 2002162320 A JP2002162320 A JP 2002162320A JP 2003045829 A JP2003045829 A JP 2003045829A
Authority
JP
Japan
Prior art keywords
polishing
substrate
pressure
film
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002162320A
Other languages
Japanese (ja)
Inventor
Yasushi Kurata
靖 倉田
Hiroto Otsuki
裕人 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002162320A priority Critical patent/JP2003045829A/en
Publication of JP2003045829A publication Critical patent/JP2003045829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasive and a method of polishing a substrate, which can efficiently perform removal of an excessively formed film layer and planarization of a silicon oxide film and an embedded film of a metal or the like with high-level quality and with easy process control in a recess CMP technology such as for shallow trench isolation formation and for embedded metal wiring formation and in a planarization CMP technology for an interlayer insulation layer. SOLUTION: A substrate is polished with an abrasive containing abrasive grains and an additive that gives an inflection point in the polishing pressure dependence of the polishing rate, wherein the concentration of the additive in the abrasive slurry is adjusted to satisfy the relation P2>P'>P>P1, where P is the set polishing pressure, P1 is the effective polishing pressure for recessed parts of the substrate on which a pattern is formed, P2 is the effective polishing pressure for protruding parts, and P' is the pressure at which the inflection point appears in the polishing rate for a substrate on which no pattern is formed. Or, by setting the polishing weight so as to satisfy the relation P2>P'>P>P1, it is possible to realize a polishing characteristic in which the polishing is selectively progressed at the protruding parts to which a higher polishing pressure than the pressure at which the inflection point appears according to the pattern shape of the film to be polished is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子製造技
術に使用される研磨法に関し、基板表面の研磨工程、特
にシャロー・トレンチ素子分離、キャパシタ、金属配線
等の溝への埋め込み層の形成工程、層間絶縁膜の平坦化
工程等において使用される基板の研磨剤及び基板の研磨
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing method used in a semiconductor device manufacturing technique, and more particularly to a polishing process of a substrate surface, particularly a shallow trench device isolation process, a process of forming a buried layer in a groove such as a capacitor or a metal wiring. The present invention relates to a substrate polishing agent and a substrate polishing method used in a planarization process of an interlayer insulating film and the like.

【0002】[0002]

【従来の技術】現在のULSI半導体素子製造工程で
は、高密度・微細化のための加工技術が研究開発されて
いる。その一つであるCMP(ケミカルメカニカルポリ
ッシング)技術は、必須の技術となってきている。半導
体素子の製造工程におけるCMP技術には、素子分離形
成、メモリのキャパシタ形成、プラグ及び埋め込み金属
配線形成等において溝に埋め込んだ成膜層の余分な成膜
部分を除去するためのリセスCMP技術、及び層間絶縁
膜成膜後の平坦化CMP技術がある。集積回路内の素子
分離形成技術において、デザインルール0.5μm以上
の世代ではLOCOS(シリコン局所酸化)が用いられ
てきたが、加工寸法の更なる微細化に伴い、素子分離幅
のより小さいシャロー・トレンチ分離技術が採用されつ
つある。シャロー・トレンチ分離では、基板上に埋め込
んだ余分な酸化珪素膜を除くためにCMPが必須な技術
となる。金属配線形成技術においても、デザインルール
0.25μm以上の世代では、層間絶縁膜上のAl配線
やプラグにはW等が用いられていたが、加工寸法の微細
化に伴い要求される電気特性を満たすためにCuやCu
・Al合金が採用されつつある。CuやCu・Al合金
の配線技術ていしては、ダマシンやディアルダマシン等
の埋め込み配線技術が検討されており、基板上に埋め込
んだ余分な金属膜を除くためにCMPが必須な技術とな
る。メモリ素子のキャパシタ形成においても、トレンチ
構造や複雑なスタック型構造を実現するためには、酸化
窒化シリコンやタンタル酸化膜及びその他の強誘電体の
リセスCMP技術が必須な技術となる。
2. Description of the Related Art In the current ULSI semiconductor device manufacturing process, research and development are being carried out on processing techniques for high density and miniaturization. One of them, CMP (Chemical Mechanical Polishing) technology has become an indispensable technology. The CMP technique in the manufacturing process of a semiconductor device includes a recess CMP technique for removing an excessive film formation portion of a film formation layer embedded in a groove in element isolation formation, memory capacitor formation, plug and embedded metal wiring formation, and the like. There is also a flattening CMP technique after forming an interlayer insulating film. LOCOS (Silicon Local Oxidation) has been used in the generation of design rule 0.5 μm or more in the element isolation formation technology in integrated circuits. Trench isolation technology is being adopted. In shallow trench isolation, CMP is an indispensable technique for removing the excess silicon oxide film embedded on the substrate. Also in the metal wiring forming technology, W and the like were used for the Al wiring and the plug on the interlayer insulating film in the generation with the design rule of 0.25 μm or more. Cu or Cu to fill
-Al alloys are being adopted. As the wiring technology of Cu or Cu / Al alloy, a buried wiring technology such as damascene or dial damascene has been studied, and CMP is an essential technology for removing an extra metal film buried on a substrate. Also in forming a capacitor of a memory device, a recess CMP technique of silicon oxynitride, a tantalum oxide film, and other ferroelectrics is an essential technique in order to realize a trench structure or a complicated stack type structure.

【0003】従来、半導体素子の製造工程において、プ
ラズマ−CVD、低圧−CVD、スパッタ、電解メッキ
等の方法で形成される酸化珪素等絶縁膜、キャパシタ強
誘電体膜、配線用金属や金属合金等の平坦化及び埋め込
み層を形成するための化学機械研磨剤としてフュームド
シリカ、アルミナ系の研磨剤を使用して1回の工程で研
磨する方法が一般的に検討されている。しかしながら、
このような研磨法では、パターンの平坦性が悪く、埋め
込み膜の厚みばらつきやディッシングにより特性がばら
つくという技術課題がある。
Conventionally, in a semiconductor element manufacturing process, an insulating film such as silicon oxide formed by a method such as plasma-CVD, low-pressure-CVD, sputtering, and electrolytic plating, a ferroelectric film of a capacitor, a metal for wiring, a metal alloy, etc. A method of polishing in a single step using a fumed silica or alumina-based polishing agent as a chemical mechanical polishing agent for forming the planarization and burying layer is generally studied. However,
Such a polishing method has a technical problem that the flatness of the pattern is poor, and the characteristics vary due to variations in the thickness of the embedded film and dishing.

【0004】従来の平坦化及び埋め込み層を形成するた
めのCMP技術では、パターン密度差或いはサイズ差の
大小により凸部の研磨速度が大きく異なり、また凹部の
研磨も進行してしまうため、ウエハ面内全体での高いレ
ベルの平坦化を実現することができないという技術課題
がある。そこで、埋め込み層成膜後に凹部となる埋め込
み部分の研磨速度と埋め込み層成膜後に成膜層を除去す
る必要がある凸部の研磨速度の差を小さくして平坦性を
向上するために、あらかじめ凸部の被研磨膜を部分的に
エッチングにより除去するエッチバック工程を付加する
技術が広く採用されている。しかしながら、工程数が増
加するために製造コスト面で問題となっている。
In the conventional CMP technique for forming the flattening and burying layers, the polishing rate of the convex portions greatly differs depending on the difference in the pattern density or the size difference, and the polishing of the concave portions also progresses. There is a technical problem that a high level of flatness cannot be realized in the whole. Therefore, in order to improve the flatness by reducing the difference between the polishing rate of the embedded portion that becomes the concave portion after the embedded layer is formed and the polishing rate of the convex portion that needs to be removed after the embedded layer is formed, the flatness is improved. A technique of adding an etch-back step of partially removing the film to be polished on the convex portion by etching is widely adopted. However, since the number of steps increases, there is a problem in terms of manufacturing cost.

【0005】また、埋め込み層を形成するためのCMP
技術及び層間膜を平坦化するCMP技術では、研磨装置
による理想的な終点検出が困難であるために、研磨量の
制御を研磨時間で行うプロセス管理方法が一般的に行わ
れている。しかし、パターン段差形状の変化だけでな
く、研磨布の状態等でも、研磨速度が顕著に変化してし
まうため、プロセス管理が難しいという問題があった。
CMP for forming a buried layer
In the technique and the CMP technique for flattening the interlayer film, since it is difficult to detect an ideal end point by a polishing apparatus, a process management method in which a polishing amount is controlled by a polishing time is generally performed. However, there is a problem in that process control is difficult because not only the pattern step shape change but also the polishing cloth state and the like significantly change.

【0006】シャロー・トレンチ分離では、素子分離の
酸化珪素膜埋め込み部分以外にはマスク及びストッパー
として主に窒化珪素膜が形成され、安定な素子分離特性
を実現するためには、ウエハ内の窒化珪素の残膜厚ばら
つきをできるだけ小さくする必要がある。そのために
は、窒化珪素膜が露出した後は、研磨速度が低下するよ
うな特性が必要であり、酸化珪素膜と窒化珪素膜との研
磨速度比(酸化珪素膜の研磨速度/窒化珪素膜の研磨速
度)が大きいことが望ましい。しかし、従来のシリカ系
等の研磨剤を使用した1回の工程による研磨法では、研
磨速度比が2〜3程度しかなく、プロセスマージンが充
分に得られないという問題があった。金属の埋め込み配
線やキャパシタの形成においても、埋め込み溝を形成し
た成膜下地層が露出した時点で研磨を終了する必要があ
り、下地層露出後の研磨速度が低下するように、埋め込
み被研磨膜と下地膜との研磨速度比が大きい研磨剤が使
用される。しかし、一方で研磨速度比が大きい研磨剤を
使用した場合、埋め込み層のディッシングが大きくなる
という問題があった。
In the shallow trench isolation, a silicon nitride film is mainly formed as a mask and a stopper other than the portion where the silicon oxide film is embedded for element isolation, and in order to realize stable element isolation characteristics, silicon nitride in the wafer must be formed. It is necessary to minimize the remaining film thickness variation. For that purpose, a property that the polishing rate is lowered after the silicon nitride film is exposed is required, and a polishing rate ratio between the silicon oxide film and the silicon nitride film (polishing rate of silicon oxide film / silicon nitride film A high polishing rate) is desirable. However, the conventional one-step polishing method using a silica-based polishing agent has a problem that the polishing rate ratio is only about 2 to 3 and a sufficient process margin cannot be obtained. Even in the case of forming a buried wiring of metal or a capacitor, it is necessary to finish the polishing when the film-forming underlayer in which the buried groove is formed is exposed. An abrasive having a large polishing rate ratio between the underlayer and the underlayer is used. However, on the other hand, when an abrasive having a large polishing rate ratio is used, there is a problem that the dishing of the embedded layer becomes large.

【0007】シリカ系研磨剤に比べ、酸化珪素膜の高い
研磨速度が得られる酸化セリウム等を含む研磨剤も使用
されている。しかし、研磨速度が高すぎるためにプロセ
ス管理が難しい、研磨速度の基板上被研磨膜のパターン
依存性が大きい等の問題があった。その他に、一般に比
較的低い粒子濃度で使用されるために基板上の被研磨膜
パターンが微細化するほど凸部が削れにくく、その周辺
部の研磨だけが進行してしまうという問題もあった。ま
た、酸化セリウムを含む研磨剤は、シリカ系研磨剤の約
2倍の酸化珪素膜と窒化珪素膜の研磨速度比が得られる
が、それでも実用上充分とはいえない。
Abrasives containing cerium oxide or the like, which can obtain a higher polishing rate for silicon oxide films than silica-based abrasives, are also used. However, there are problems that process control is difficult because the polishing rate is too high, and that the patterning rate of the film to be polished on the substrate is highly dependent on the polishing rate. In addition, since the particles are generally used at a relatively low particle concentration, the finer the film-to-be-polished pattern on the substrate is, the more difficult it is to remove the convex portions, and only the peripheral portion thereof is polished. Further, the polishing agent containing cerium oxide can obtain a polishing rate ratio of the silicon oxide film and the silicon nitride film which is about twice that of the silica-based polishing agent, but it is still not practically sufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明は、シャロー・
トレンチ分離形成、金属埋め込み配線形成等のリセスC
MP技術及び層間絶縁膜の平坦化CMP技術において、
酸化珪素膜、金属等の埋め込み膜の余分な成膜層の除去
及び平坦化を効率的、高レベルに、かつプロセス管理も
容易に行うことができる研磨剤及び研磨方法を提供する
ものである。
SUMMARY OF THE INVENTION The present invention is a shallow
Recess C for trench isolation formation, metal buried wiring formation, etc.
In the MP technology and the CMP technology for planarizing the interlayer insulating film,
The present invention provides a polishing agent and a polishing method capable of efficiently removing and flattening a surplus film-forming layer of a buried film such as a silicon oxide film or a metal, and easily performing process control.

【0009】[0009]

【課題を解決するための手段】本発明の研磨剤は、基板
を砥粒、研磨速度に研磨圧力依存性の変曲点を与える添
加剤を含む研磨剤であって、設定研磨圧力がPの場合、
パターンの形成された基板の凹部の実効研磨圧力をP
1、凸部の実効研磨圧力をP2とすると、パターンのない
基板の研磨速度に変曲点が現れる圧力P'がP2>P'>
P>P1となるように添加剤の濃度を調整した研磨剤で
ある。その結果、層間絶縁膜の平坦化及びシャロー・ト
レンチ素子分離形成等の埋め込み膜の平坦化を効率的、
高レベルに行うことが可能である。上記の研磨剤で、パ
ターンのない基板の研磨速度に変曲点が現れる圧力が
P'になる添加量濃度の場合に、パターンの形成された
基板の凹部の実効研磨圧力をP1、凸部の実効研磨圧力
をP2とすると、設定研磨荷重PをP2>P'>P>P1と
なるように調整することによっても、同様の効果を実現
することができる。通常の研磨条件において、研磨速度
は研磨圧力に比例した特性を示すのが一般的である。本
発明において、研磨速度に研磨圧力依存性の変曲点を与
える添加剤とは、添加剤を加えない場合に比べ、添加剤
によりパターンのない基板の研磨速度がある研磨圧力ま
で充分小さく、変曲点となる圧力より大きい研磨圧力で
は変曲点以下の研磨圧力の研磨速度よりも充分大きい研
磨速度特性が得られる添加剤を意味し、添加量により変
曲点が現れる研磨圧力が変わる特性を示すものをいう。
研磨速度に研磨圧力依存性の変曲点を与える添加剤は、
有機高分子の陰イオン性界面活性剤、ノニオン性界面活
性剤等が好ましく使用される。特に陰イオン性界面活性
剤としては、共重合成分としてアクリル酸アンモニウム
塩を含むものが好ましく使用される。研磨定盤の研磨布
上に研磨剤を供給しながら、被研磨膜を有する基板を研
磨布に押圧した状態で研磨定盤と基板を相対的に動かす
ことによって被研磨膜を研磨する研磨方法において、被
研磨膜を有する基板の研磨布への押しつけ圧力が100
〜1000gf/cm2であることが好ましく、200
〜500gf/cm2であることがより好ましい。本発
明の研磨方法で、例えば少なくとも酸化珪素膜が形成さ
れた半導体チップ等の所定の基板を研磨することができ
る。
The abrasive of the present invention is an abrasive containing a substrate as an abrasive grain and an additive which gives an inflection point depending on the polishing pressure to the polishing rate, and the preset polishing pressure is P. If
The effective polishing pressure of the concave portion of the substrate on which the pattern is formed is P
1. If the effective polishing pressure of the convex portion is P2, the pressure P'at which an inflection point appears in the polishing rate of a substrate without a pattern is P2> P '>
It is an abrasive in which the concentration of the additive is adjusted so that P> P1. As a result, the flattening of the interlayer insulating film and the flattening of the buried film such as shallow trench element isolation formation can be efficiently performed.
It can be done at a high level. With the above-mentioned abrasives, when the pressure is such that the pressure at which an inflection point appears in the polishing rate of a substrate without a pattern becomes P ′, the effective polishing pressure of the concave portion of the patterned substrate is P1, and the effective polishing pressure of the convex portion is When the effective polishing pressure is P2, the same effect can be realized by adjusting the set polishing load P so that P2> P '>P> P1. Under normal polishing conditions, the polishing rate generally exhibits characteristics proportional to the polishing pressure. In the present invention, an additive that gives an inflection point depending on the polishing pressure to the polishing rate means that the polishing rate of a substrate having no pattern is sufficiently small up to a certain polishing pressure by the additive, as compared with the case where the additive is not added. A polishing pressure that is higher than the inflection point means an additive that gives a polishing rate characteristic that is sufficiently higher than the polishing rate below the inflection point. Refers to what is shown.
The additive that gives the polishing rate an inflection point depending on the polishing pressure is
Organic polymer anionic surfactants, nonionic surfactants and the like are preferably used. In particular, as the anionic surfactant, those containing ammonium acrylate as a copolymerization component are preferably used. In a polishing method for polishing a film to be polished by relatively moving a polishing platen and a substrate while a substrate having a film to be polished is pressed against the polishing cloth while supplying an abrasive onto the polishing cloth of the polishing platen. The pressing pressure of the substrate having the film to be polished against the polishing cloth is 100.
~ 1000 gf / cm2, preferably 200
More preferably, it is ˜500 gf / cm 2. With the polishing method of the present invention, for example, a predetermined substrate such as a semiconductor chip having at least a silicon oxide film formed thereon can be polished.

【0010】[0010]

【発明の実施の形態】基板を砥粒、研磨速度に研磨圧力
依存性の変曲点を与える添加剤を含む研磨剤であって、
設定研磨圧力がPの場合、パターンの形成された基板の
凹部の実効研磨圧力をP1、凸部の実効研磨圧力をP2と
すると、パターンのない基板の研磨速度に変曲点が現れ
る圧力P'がP2>P'>P>P1となるように添加剤の濃
度を調整した研磨剤により、被研磨膜のパターン形状に
応じて変曲点が現れる圧力よりも高い研磨圧力がかかる
凸部を選択的に研磨する特性を実現することができる。
また、平坦化された後の研磨速度は、変曲点が現れる圧
力よりも小さい設定研磨圧力の研磨速度になるために、
平坦化後の研磨がほとんど進行しなくなるので研磨時間
によるプロセス管理が容易になる。この添加剤による研
磨速度の研磨圧力依存性については、文献(IEDM96(Int
ernational Electronic Device Meeting)Proceedings)
(1996) p.349−352等)で報告されている。その結果、
高効率、高レベルに、パターン密度、サイズ依存性の少
ない平坦化を実現することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A polishing agent comprising a substrate as an abrasive grain and an additive which gives a polishing pressure dependent inflection point to a polishing rate,
When the set polishing pressure is P and the effective polishing pressure of the concave portion of the substrate on which the pattern is formed is P1 and the effective polishing pressure of the convex portion is P2, the pressure P'where the inflection point appears in the polishing rate of the substrate without the pattern Select a convex part that has a polishing pressure higher than the pressure at which the inflection point appears, depending on the pattern shape of the film to be polished, by adjusting the concentration of the additive so that P2> P '>P> P1 It is possible to realize the characteristic of polishing physically.
Further, since the polishing rate after being flattened is a polishing rate at a set polishing pressure smaller than the pressure at which the inflection point appears,
Since the polishing after the flattening hardly progresses, the process control by the polishing time becomes easy. For the polishing pressure dependence of the polishing rate by this additive, see the literature (IEDM96 (Int
ernational Electronic Device Meeting) Proceedings)
(1996) p.349-352). as a result,
It is possible to realize high efficiency and high level planarization with little pattern density and size dependence.

【0011】上記の研磨剤で、パターンのない基板の研
磨速度に変曲点が現れる圧力がP'になる添加量濃度の
場合に、パターンの形成された基板の凹部の実効研磨圧
力をP1、凸部の実効研磨圧力をP2とすると、設定研磨
荷重PをP2>P'>P>P1となるように調整すること
によっても、同様の効果を実現することができる。
With the above-mentioned polishing agent, when the pressure is such that the pressure at which an inflection point appears at the polishing rate of a substrate without a pattern becomes P ', the effective polishing pressure of the concave portion of the substrate on which the pattern is formed is P1, When the effective polishing pressure of the convex portion is P2, the same effect can be realized by adjusting the set polishing load P so that P2> P '>P> P1.

【0012】研磨定盤の研磨布上に研磨剤を供給しなが
ら、被研磨膜を有する基板を研磨布に押圧した状態で研
磨定盤と基板を相対的に動かすことによって被研磨膜を
研磨する研磨方法において、被研磨膜を有する基板の研
磨布への押しつけ圧力は、主に添加剤量によって決まる
研磨速度の圧力依存特性に応じて、パターン凹部に対し
凸部が選択的に研磨される範囲に設定される必要があ
る。研磨布への押しつけ圧力は、100〜1000gf
/cm2であることが好ましく、200〜500gf/
cm2であることがより好ましい。研磨速度のウエハ面
内均一性及びパターンの平坦性を満足するためには、2
00〜500gf/cm2であることがより好ましい。
研磨布への押しつけ圧力は、1000gf/cm2より
大きいと研磨キズが発生しやすくなり、100gf/c
m2未満では充分な研磨速度が得られない。
The film to be polished is polished by relatively moving the polishing platen and the substrate while pressing the substrate having the film to be polished against the polishing cloth while supplying the polishing agent onto the polishing cloth of the polishing platen. In the polishing method, the pressing pressure of the substrate having the film to be polished against the polishing cloth is the range in which the convex portions are selectively polished with respect to the pattern concave portions, depending on the pressure-dependent characteristics of the polishing rate that is mainly determined by the amount of the additive. Must be set to. Pressing pressure to the polishing cloth is 100-1000gf
/ Cm 2 is preferable, and 200 to 500 gf /
More preferably it is cm 2. To satisfy the in-plane uniformity of the polishing rate and the flatness of the pattern, 2 is required.
More preferably, it is from 00 to 500 gf / cm 2.
If the pressing pressure against the polishing cloth is greater than 1000 gf / cm 2, polishing scratches are likely to occur, and 100 gf / c
If it is less than m2, a sufficient polishing rate cannot be obtained.

【0013】本発明の研磨剤や研磨方法に使用される砥
粒は、酸化セリウム、酸化シリコン、酸化アルミニウム
等の無機酸化物粒子であり、酸化セリウム粒子が好まし
く使用される。ここで、砥粒の濃度に制限は無いが、懸
濁液の取り扱い易さから0.5〜15重量%の範囲が好
ましい。
Abrasive grains used in the polishing agent and polishing method of the present invention are inorganic oxide particles such as cerium oxide, silicon oxide and aluminum oxide, and cerium oxide particles are preferably used. Here, the concentration of the abrasive grains is not limited, but a range of 0.5 to 15% by weight is preferable from the viewpoint of easy handling of the suspension.

【0014】本発明において、研磨速度に研磨圧力依存
性の変曲点を与える添加剤は、金属イオン類を含まない
ものとして、アクリル酸重合体及びそのアンモニウム
塩、メタクリル酸重合体及びそのアンモニウム塩、ポリ
ビニルアルコール等の水溶性有機高分子類、ラウリル硫
酸アンモニウム、ポリオキシエチレンラウリルエーテル
硫酸アンモニウム等の水溶性陰イオン性界面活性剤、ポ
リオキシエチレンラウリルエーテル、ポリエチレングリ
コールモノステアレート等の水溶性非イオン性界面活性
剤、モノエタノールアミン、ジエタノールアミン等の水
溶性アミン類などが挙げられる。その中でも、陰イオン
性界面活性剤等が好ましく使用され、特に共重合成分と
してアンモニウム塩を含む高分子分散剤等の水溶性陰イ
オン性界面活性剤から選ばれた少なくとも1種類以上の
界面活性剤を使用する。また、その他に水溶性非イオン
性界面活性剤、水溶性陰イオン性界面活性剤、水溶性陽
イオン性界面活性剤等を併用してもよい。これらの界面
活性剤添加量は、スラリー100重量部に対して、0.
1重量部〜10重量部の範囲が好ましい。また、界面活
性剤の分子量は、100〜50000が好ましく、20
00〜20000がより好ましい。添加剤の添加方法と
しては、研磨直前に砥粒分散液に混合するのが好まし
い。研磨装置のスラリー供給配管内で充分混合するよう
な構造を施した場合には、砥粒分散液及び添加剤水溶液
の供給速度を個別に調整し、配管内で所定濃度になるよ
うに混合することも可能である。添加剤混合後に長時間
保存した場合、研磨剤の粒度分布が変化する場合がある
が、研磨速度及び研磨傷等の研磨特性には顕著な影響が
見られないため、界面活性剤の添加方法は制限するもの
ではない。
In the present invention, the additive that gives an inflection point to the polishing rate depending on the polishing pressure is an acrylic acid polymer and its ammonium salt, a methacrylic acid polymer and its ammonium salt, as long as it does not contain metal ions. , Water-soluble organic polymers such as polyvinyl alcohol, water-soluble anionic surfactants such as ammonium lauryl sulfate and ammonium polyoxyethylene lauryl ether sulfate, water-soluble nonionics such as polyoxyethylene lauryl ether and polyethylene glycol monostearate Examples thereof include surfactants and water-soluble amines such as monoethanolamine and diethanolamine. Among them, anionic surfactants and the like are preferably used, and in particular, at least one surfactant selected from water-soluble anionic surfactants such as polymer dispersants containing ammonium salt as a copolymerization component. To use. In addition, a water-soluble nonionic surfactant, a water-soluble anionic surfactant, a water-soluble cationic surfactant, etc. may be used in combination. The amount of these surfactants added was 0.
The range of 1 to 10 parts by weight is preferable. The molecular weight of the surfactant is preferably 100 to 50,000,
More preferably, it is 00 to 20000. As a method of adding the additive, it is preferable to mix it with the abrasive grain dispersion immediately before polishing. If the slurry supply pipe of the polishing machine is designed to be sufficiently mixed, the supply speed of the abrasive dispersion and the additive aqueous solution should be adjusted individually, and the mixture should be mixed to the specified concentration in the pipe. Is also possible. When stored for a long time after mixing the additives, the particle size distribution of the abrasive may change, but since no significant effect is seen on the polishing characteristics such as polishing rate and polishing scratches, the method of adding the surfactant is There is no limit.

【0015】本発明の研磨剤や研磨方法が適用される無
機絶縁膜の作製方法として、定圧CVD法、プラズマC
VD法等が挙げられる。定圧CVD法による酸化珪素絶
縁膜形成は、Si源としてモノシラン:SiH4、酸素
源として酸素:O2を用いる。このSiH4−O2系酸化
反応を400℃程度以下の低温で行わせることにより得
られる。高温リフローによる表面平坦化を図るためにリ
ン:Pをドープするときには、SiH4−O2−PH3系
反応ガスを用いることが好ましい。プラズマCVD法
は、通常の熱平衡下では高温を必要とする化学反応が低
温でできる利点を有する。プラズマ発生法には、容量結
合型と誘導結合型の2つが挙げられる。反応ガスとして
は、Si源としてSiH4、酸素源としてN2Oを用いた
SiH4−N2O系ガスとテトラエトキシシラン(TEO
S)をSi源に用いたTEOS−O2系ガス(TEOS
−プラズマCVD法)が挙げられる。基板温度は250
〜400℃、反応圧力は67〜400Paの範囲が好ま
しい。このように、本発明で使用する基板の酸化珪素絶
縁膜にはリン、ホウ素等の元素がド−プされていても良
い。同様に、低圧CVD法による窒化珪素膜形成は、S
i源としてジクロルシラン:SiH2Cl2、窒素源とし
てアンモニア:NH3を用いる。このSiH2Cl2−N
H3系酸化反応を900℃の高温で行わせることにより
得られる。プラズマCVD法は、Si源としてSiH
4、窒素源としてNH3を用いたSiH4−NH3系ガスが
挙げられる。基板温度は300〜400℃が好ましい。
As a method for producing an inorganic insulating film to which the polishing agent or polishing method of the present invention is applied, constant pressure CVD method or plasma C method is used.
VD method etc. are mentioned. The silicon oxide insulating film is formed by the constant pressure CVD method using monosilane: SiH4 as the Si source and oxygen: O2 as the oxygen source. It can be obtained by carrying out this SiH4—O2 system oxidation reaction at a low temperature of about 400 ° C. or lower. When phosphorus: P is doped to achieve surface flattening by high temperature reflow, it is preferable to use a SiH4—O2—PH3 based reaction gas. The plasma CVD method has an advantage that a chemical reaction that requires a high temperature under normal thermal equilibrium can be performed at a low temperature. There are two plasma generation methods, a capacitive coupling type and an inductive coupling type. As the reaction gas, SiH4 is used as a Si source, and SiH4-N2O-based gas using N2O as an oxygen source and tetraethoxysilane (TEO).
TEOS-O2-based gas (TEOS) using S as the Si source
-Plasma CVD method). Substrate temperature is 250
The reaction pressure is preferably in the range of to 400 ° C and the reaction pressure in the range of 67 to 400 Pa. Thus, the silicon oxide insulating film of the substrate used in the present invention may be doped with elements such as phosphorus and boron. Similarly, the silicon nitride film formation by the low pressure CVD method is
Dichlorosilane: SiH2Cl2 is used as the i source, and ammonia: NH3 is used as the nitrogen source. This SiH2Cl2-N
It is obtained by carrying out the H3 system oxidation reaction at a high temperature of 900 ° C. The plasma CVD method uses SiH as a Si source.
4. SiH4—NH3 based gas using NH3 as a nitrogen source can be mentioned. The substrate temperature is preferably 300 to 400 ° C.

【0016】所定の基板として、半導体基板すなわち回
路素子と配線パターンが形成された段階の半導体基板、
回路素子が形成された段階の半導体基板等の半導体基板
上に少なくとも酸化珪素膜が形成された基板が使用でき
る。このような半導体基板上に形成された酸化珪素膜層
を上記研磨剤及び研磨方法で研磨することによって、酸
化珪素膜層表面の凹凸を解消し、半導体基板全面に渡っ
て平滑な面とする。層間絶縁膜の平坦化工程に適用する
場合には、これで終了となるが、シャロー・トレンチ分
離の場合には、平坦化された酸化珪素膜を下地層の窒化
珪素層まで更に研磨することによって、素子分離部に埋
め込んだ酸化珪素膜のみを残す。この際、ストッパーと
なる窒化珪素との研磨速度比が大きければ、窒化膜露出
後の研磨速度が小さくなり、研磨のプロセスマージンが
大きくなる。また、シャロー・トレンチ分離に使用する
ためには、研磨時に傷発生が少ないことも必要である。
ここで、研磨する装置としては、半導体基板を保持する
ホルダーと研磨布(パッド)を貼り付けた(回転数が変
更可能なモータ等を取り付けてある)定盤を有する一般
的な研磨装置が使用できる。研磨布としては、一般的な
不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使
用でき、特に制限がない。また、研磨布には研磨剤が溜
まるような溝加工を施すことが好ましい。研磨条件には
制限はないが、定盤の回転速度は半導体が飛び出さない
ように100rpm以下の低回転が好ましい。被研磨膜
を有する半導体基板の研磨布への押しつけ圧力が100
〜1000gf/cm2であることが好ましく、研磨速
度のウエハ面内均一性及びパターンの平坦性を満足する
ためには、200〜500gf/cm2であることがよ
り好ましい。研磨している間、研磨布には研磨剤をポン
プ等で連続的に供給する。この供給量に制限はないが、
研磨布の表面が常に研磨剤で覆われていることが好まし
い。
As a predetermined substrate, a semiconductor substrate, that is, a semiconductor substrate at a stage where circuit elements and wiring patterns are formed,
A substrate in which at least a silicon oxide film is formed on a semiconductor substrate such as a semiconductor substrate in a stage where a circuit element is formed can be used. By polishing the silicon oxide film layer formed on such a semiconductor substrate with the above-described polishing agent and polishing method, unevenness on the surface of the silicon oxide film layer is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. This is the end when applied to the planarization process of the interlayer insulating film, but in the case of shallow trench isolation, the planarized silicon oxide film is further polished to the silicon nitride layer of the base layer. , Leaving only the silicon oxide film embedded in the element isolation portion. At this time, if the polishing rate ratio with respect to the silicon nitride serving as the stopper is large, the polishing rate after exposing the nitride film is small, and the polishing process margin is large. Further, in order to use for shallow / trench separation, it is also necessary that the number of scratches generated during polishing is small.
Here, as a polishing device, a general polishing device having a holder for holding a semiconductor substrate and a surface plate to which a polishing cloth (pad) is attached (a motor or the like whose rotation speed is changeable) is used is used. it can. As the polishing cloth, general non-woven cloth, foamed polyurethane, porous fluororesin, etc. can be used without any particular limitation. Further, it is preferable that the polishing cloth is grooved so that the polishing agent is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 100 rpm or less so that the semiconductor does not jump out. The pressing pressure of the semiconductor substrate having the film to be polished against the polishing cloth is 100.
It is preferably from 1000 to 1000 gf / cm @ 2, and more preferably from 200 to 500 gf / cm @ 2 in order to satisfy the in-plane uniformity of the polishing rate on the wafer and the flatness of the pattern. During polishing, an abrasive is continuously supplied to the polishing cloth with a pump or the like. There is no limit to this supply,
It is preferable that the surface of the polishing cloth is always covered with an abrasive.

【0017】研磨終了後の半導体基板は、流水中で良く
洗浄後、スピンドライヤ等を用いて半導体基板上に付着
した水滴を払い落としてから乾燥させることが好まし
い。このようにして、Si基板上にシャロー・トレンチ
分離を形成した後に絶縁層を形成し、或いは酸化珪素絶
縁膜層を平坦化した後、その上にアルミニウム配線を形
成し、その上に形成した酸化珪素膜を上記の方法により
平坦化する。平坦化された酸化珪素膜層の上に、上層の
アルミニウム配線を形成し、その配線間および配線上に
酸化珪素膜を形成後、本発明の研磨剤及び研磨方法によ
り研磨することによって、絶縁膜表面の凹凸を解消し、
半導体基板全面に渡って平滑な面とする。この工程を所
定数繰り返すことにより、所望の層数の半導体を製造す
る。または、Si基板上にシャロー・トレンチ分離を形
成したあと、層間絶縁膜層及びその表面に埋め込み配線
の溝を形成し、スパッタ法でTiNやTaN等のバリア
メタル層及び配線金属用シード層を形成し、電解メッキ
法等によりCu又はCu・Al合金を成膜する。この成
膜層に、本発明の研磨剤及び研磨法を適用することによ
り、配線溝部にのみ金属を埋め込むことができる。この
工程を所定数繰り返すことにより、所望の層数の半導体
を製造する。
It is preferable that the semiconductor substrate after the polishing is thoroughly washed in running water, and then water droplets adhering to the semiconductor substrate are removed by using a spin dryer or the like and then dried. In this way, after forming the shallow trench isolation on the Si substrate, the insulating layer is formed, or after the silicon oxide insulating film layer is flattened, the aluminum wiring is formed on the insulating layer, and the oxidation film formed on the aluminum wiring is formed. The silicon film is flattened by the above method. By forming an upper aluminum wiring on the flattened silicon oxide film layer, forming a silicon oxide film between the wirings and on the wiring, and then polishing with a polishing agent and a polishing method of the present invention, an insulating film is obtained. Eliminates surface irregularities,
The entire surface of the semiconductor substrate is made smooth. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured. Alternatively, after forming a shallow trench isolation on a Si substrate, a groove of an embedded wiring is formed in an interlayer insulating film layer and its surface, and a barrier metal layer such as TiN or TaN and a seed layer for wiring metal are formed by a sputtering method. Then, Cu or a Cu / Al alloy is formed into a film by an electrolytic plating method or the like. By applying the polishing agent and the polishing method of the present invention to this film forming layer, the metal can be embedded only in the wiring groove portion. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.

【0018】その他に、メモリ素子のキャパシタの形成
工程において、トレンチ型セル構造では、ポリシリコン
や酸化窒化シリコン等の埋め込み構造を形成する際に、
スタック型セル構造でも、複雑な構造を形成するために
埋め込み工程が採用される可能性があり、酸化珪素シリ
コンやタンタル酸化膜の他にSTOやBST等の強誘電
体材料にも本発明の研磨剤及び研磨方法が適用される。
In addition, in the process of forming the capacitor of the memory device, in the trench type cell structure, when the buried structure of polysilicon or silicon oxynitride is formed,
Even in the stack type cell structure, the embedding process may be adopted to form a complicated structure, and the present invention can be applied to ferroelectric materials such as STO and BST as well as silicon oxide silicon and tantalum oxide films. Agents and polishing methods are applied.

【0019】本発明の研磨剤や研磨方法は、半導体基板
に形成された酸化珪素膜や窒化珪素膜、Cu、Cu・A
l合金等の金属膜、及び強誘電体膜だけでなく、所定の
配線を有する配線板に形成された酸化珪素膜、ガラス、
窒化珪素等の無機絶縁膜、金属膜、フォトマスク・レン
ズ・プリズムなどの光学ガラス、ITO等の無機導電
膜、ガラス及び結晶質材料で構成される光集積回路・光
スイッチング素子・光導波路、光ファイバ−の端面、シ
ンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色
レ−ザ用LEDサファイア基板、SiC、GaP、Ga
As等の半導体単結晶、磁気ディスク用ガラス基板、磁
気ヘッド等の研磨方法としても使用される。
The polishing agent and polishing method of the present invention are applied to a silicon oxide film or a silicon nitride film formed on a semiconductor substrate, Cu, Cu · A.
not only a metal film such as an l-alloy and a ferroelectric film, but also a silicon oxide film formed on a wiring board having predetermined wiring, glass,
Inorganic insulating film such as silicon nitride, metal film, optical glass such as photomask, lens, prism, etc., inorganic conductive film such as ITO, optical integrated circuit, optical switching element, optical waveguide, optical composed of glass and crystalline material End face of fiber, single crystal for optics such as scintillator, solid laser single crystal, LED sapphire substrate for blue laser, SiC, GaP, Ga
It is also used as a polishing method for semiconductor single crystals of As and the like, glass substrates for magnetic disks, magnetic heads and the like.

【0020】[0020]

【実施例】(実施例1) (スラリーの作製)炭酸セリウム水和物を800℃で2
時間空気中で焼成し、ジェットミルを用いて乾式粉砕し
て酸化セリウム粒子を作製した。酸化セリウム粒子1K
gと分散剤としてポリアクリル酸アンモニウム塩水溶液
(40重量%)23gと脱イオン水8977gを混合
し、攪拌しながら超音波分散を10分間施した。得られ
たスラリーを1ミクロンフィルターでろ過をし、さらに
脱イオン水を加えることにより5重量%スラリーを得
た。スラリーpHは8.3であった。上記の酸化セリウ
ムスラリー(固形分:5重量%)600gと添加剤とし
てpH6.5で分子量5000のポリアクリル酸(10
0%)アンモニウム塩水溶液(40重量%)180gと
脱イオン水2220gを混合して、界面活性剤を添加し
た酸化セリウム研磨剤(酸化セリウム固形分:1重量
%)を作製した。
(Example) (Example 1) (Preparation of slurry) Cerium carbonate hydrate at 800 ° C for 2 hours
Cerium oxide particles were prepared by firing in air for a period of time and dry pulverizing with a jet mill. Cerium oxide particles 1K
g, 23 g of a polyacrylic acid ammonium salt aqueous solution (40% by weight) as a dispersant, and 8977 g of deionized water were mixed, and ultrasonic dispersion was performed for 10 minutes while stirring. The obtained slurry was filtered with a 1-micron filter, and deionized water was further added to obtain a 5 wt% slurry. The slurry pH was 8.3. 600 g of the above cerium oxide slurry (solid content: 5% by weight) and polyacrylic acid having a molecular weight of 5000 (pH 6.5) as an additive (10
180% of 0%) ammonium salt aqueous solution (40% by weight) and 2220 g of deionized water were mixed to prepare a cerium oxide abrasive (cerium oxide solid content: 1% by weight) to which a surfactant was added.

【0021】(ブランケットウエハの研磨1)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハを作製した。保持する基板取り付
け用の吸着パッドを貼り付けたホルダーに上記パターン
ウエハをセットし、多孔質ウレタン樹脂製の研磨パッド
を貼り付けた直径600mmの定盤上に絶縁膜面を下に
してホルダーを載せ、さらに加工圧力を100gf/c
m2に設定して、定盤上に上記の酸化セリウム研磨剤
(固形分:1重量%)を200cc/minの速度で滴
下しながら、定盤及びウエハを50rpmで1分間回転
させ、酸化珪素膜を研磨した。同様に加工圧力を200
〜800gf/cm2の範囲で100gf/cm2おきに
設定して別のウエハを研磨した。研磨後のウエハを洗浄
して乾燥し、干渉膜厚計によって膜厚を測定し、研磨前
後の膜厚変化を算出した。その結果、圧力100gf/
cm2の研磨速度は24nm/min、圧力200gf
/cm2の研磨速度は41nm/min、圧力300g
f/cm2の研磨速度は65nm/min、圧力400
gf/cm2の研磨速度は85nm/min、圧力50
0gf/cm2の研磨速度は105nm/min、圧力
600gf/cm2の研磨速度は123nm/min、
圧力700gf/cm2の研磨速度は146nm/mi
n、圧力800gf/cm2の研磨速度は302nm/
minであり、加工圧力700gf/cm2で研磨速度
の変曲点が得られた。
(Blanket Wafer Polishing 1) Diameter 20
A blanket wafer in which a 1000 nm silicon oxide film was formed on a 0 mm Si substrate was produced. Set the above pattern wafer on the holder to which the suction pad for mounting the substrate to be attached is attached, and place the holder with the insulating film surface facing down on the surface plate of 600 mm in diameter to which the polishing pad made of porous urethane resin is attached. , Further processing pressure 100gf / c
The silicon oxide film was set to m 2 and the cerium oxide abrasive (solid content: 1% by weight) was dropped onto the surface plate at a rate of 200 cc / min while rotating the surface plate and the wafer at 50 rpm for 1 minute. Was polished. Similarly, the processing pressure is 200
Another wafer was polished by setting every 100 gf / cm 2 in the range of up to 800 gf / cm 2. The wafer after polishing was washed and dried, the film thickness was measured by an interference film thickness meter, and the change in film thickness before and after polishing was calculated. As a result, the pressure is 100 gf /
Polishing rate of cm2 is 24 nm / min, pressure is 200 gf
/ Cm2 polishing rate 41nm / min, pressure 300g
Polishing rate at f / cm2 is 65 nm / min, pressure is 400
Polishing rate of gf / cm2 is 85 nm / min, pressure is 50
The polishing rate at 0 gf / cm 2 is 105 nm / min, the polishing rate at a pressure of 600 gf / cm 2 is 123 nm / min,
Polishing rate at a pressure of 700 gf / cm2 is 146 nm / mi
n, pressure 800 gf / cm 2 polishing rate is 302 nm /
min, and an inflection point of the polishing rate was obtained at a processing pressure of 700 gf / cm 2.

【0022】(ブランケットウエハの研磨2)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハ及び100nmの窒化珪素膜を成
膜したブランケットウエハをそれぞれ作製した。保持す
る基板取り付け用の吸着パッドを貼り付けたホルダーに
上記パターンウエハをセットし、多孔質ウレタン樹脂製
の研磨パッドを貼り付けた直径600mmの定盤上に絶
縁膜面を下にしてホルダーを載せ、さらに加工圧力を3
00gf/cm2に設定して、定盤上に上記の酸化セリ
ウム研磨剤(固形分:1重量%)を200cc/min
の速度で滴下しながら、定盤及びウエハを50rpmで
1分間回転させ、酸化珪素膜を研磨した。同様に加工圧
力を300gf/cm2に設定して窒化珪素膜を研磨し
た。研磨後のウエハを洗浄して乾燥し、干渉膜厚計によ
って膜厚を測定し、研磨前後の膜厚変化を算出した。そ
の結果、酸化珪素膜の研磨速度が65nm/min、窒
化珪素膜の研磨速度が6nm/minであり、研磨速度
比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)は11
であった。
(Blanket Wafer Polishing 2) Diameter 20
A blanket wafer in which a 1000 nm silicon oxide film was formed on a 0 mm Si substrate and a blanket wafer in which a 100 nm silicon nitride film was formed were prepared. Set the above pattern wafer on the holder to which the suction pad for mounting the substrate to be attached is attached, and place the holder with the insulating film surface facing down on the surface plate of 600 mm in diameter to which the polishing pad made of porous urethane resin is attached. , Further processing pressure 3
The cerium oxide abrasive (solid content: 1% by weight) was set to 00 gf / cm 2 and 200 cc / min on the surface plate.
The surface plate and the wafer were rotated at 50 rpm for 1 minute while dropping the silicon oxide film to polish the silicon oxide film. Similarly, the processing pressure was set to 300 gf / cm @ 2 and the silicon nitride film was polished. The wafer after polishing was washed and dried, the film thickness was measured by an interference film thickness meter, and the change in film thickness before and after polishing was calculated. As a result, the polishing rate of the silicon oxide film was 65 nm / min, the polishing rate of the silicon nitride film was 6 nm / min, and the polishing rate ratio (silicon oxide film polishing rate / silicon nitride film polishing rate) was 11
Met.

【0023】(パターンウエハの研磨)直径200mm
Si基板上に100nmの窒化珪素膜を成膜後、フォト
レジストを塗布し100×100μm2の窒化珪素膜の
ドットを158μmピッチでマスク材として残し、エッ
チングによりSi基板に400nmのトレンチを形成し
た。続いて、薄い熱酸化膜を形成後、低圧CVD法によ
り酸化珪素膜を680nm成膜し、窒化珪素膜厚を含め
ると500nmのトレンチに酸化珪素膜を埋め込んだパ
ターンウエハを作製した。保持する基板取り付け用の吸
着パッドを貼り付けたホルダーに上記パターンウエハを
セットし、多孔質ウレタン樹脂製の研磨パッドを貼り付
けた直径600mmの定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工圧力を300gf/cm2に設
定した。このウエハのパターン凸部の面積比率は約35
%であったので、研磨開始時のパターン凸部の実効研磨
圧力P2は最大860gf/cm2程度であり変曲点圧力
700gf/cm2よりも大きく、パターン凹部の実効
研磨圧力P1は設定圧力300gf/cm2よりも小さい
ことになる。定盤上に上記の酸化セリウム研磨剤(固形
分:1重量%)を200cc/minの速度で滴下しな
がら、定盤及びウエハを50rpmで3分間回転させ、
酸化珪素膜を研磨した。同様の条件で、研磨時間を4分
及び5分にして研磨を行った。ウエハを洗浄、乾燥した
後に、干渉膜厚計により窒化珪素膜上及びトレンチ部の
酸化珪素膜の膜厚を測定し、触針式段差計により境界部
の段差を測定した。3分間研磨後のウエハの測定結果
は、窒化珪素膜上の酸化珪素膜の膜厚が158nmであ
り、トレンチ部の酸化珪素膜の膜厚は650nmであ
り、残段差が少なくとも<10nm以下になり平坦化が
終了していることがわかった。4分間研磨後のウエハの
測定結果は、窒化珪素膜上の酸化珪素膜の膜厚が102
nm、トレンチ部の酸化珪素膜の膜厚は597nmであ
り、5分間研磨後のウエハの測定結果は、窒化珪素膜上
の酸化珪素膜の膜厚が48nm、トレンチ部の酸化珪素
膜の膜厚は545nmであり、3分以降研磨がほとんど
進行していないことがわかった。実際のシャロートレン
チ分離の形成では、凸部を窒化珪素膜まで研磨すること
が必要であるが、酸化珪素層間膜の平坦化CMPに適用
した場合には、これは非常に良い特性であることがわか
る。
(Polishing of patterned wafer) Diameter 200 mm
After forming a 100 nm silicon nitride film on a Si substrate, a photoresist was applied to leave dots of a 100 × 100 μm 2 silicon nitride film at a pitch of 158 μm as a mask material, and a 400 nm trench was formed in the Si substrate by etching. Then, after forming a thin thermal oxide film, a silicon oxide film was formed to a thickness of 680 nm by a low pressure CVD method, and a pattern wafer was prepared in which a silicon oxide film was embedded in a trench of 500 nm including the silicon nitride film thickness. Set the above pattern wafer on the holder to which the suction pad for mounting the substrate to be attached is attached, and place the holder with the insulating film surface facing down on the surface plate of 600 mm in diameter to which the polishing pad made of porous urethane resin is attached. Further, the processing pressure was set to 300 gf / cm 2. The area ratio of the pattern protrusions on this wafer is about 35.
%, The effective polishing pressure P2 of the convex portion of the pattern at the start of polishing is about 860 gf / cm2 at the maximum, which is larger than the inflection point pressure of 700 gf / cm2, and the effective polishing pressure P1 of the concave portion of the pattern is set to 300 gf / cm2. Will be smaller than. While dropping the above cerium oxide abrasive (solid content: 1% by weight) on the surface plate at a speed of 200 cc / min, rotate the surface plate and the wafer at 50 rpm for 3 minutes,
The silicon oxide film was polished. Polishing was performed under the same conditions with the polishing time of 4 minutes and 5 minutes. After the wafer was washed and dried, the film thickness of the silicon oxide film on the silicon nitride film and the trench portion was measured by an interference film thickness meter, and the level difference at the boundary was measured by a stylus type step meter. The measurement result of the wafer after polishing for 3 minutes shows that the film thickness of the silicon oxide film on the silicon nitride film is 158 nm, the film thickness of the silicon oxide film in the trench portion is 650 nm, and the residual step is at least <10 nm or less. It was found that the flattening was completed. The measurement result of the wafer after polishing for 4 minutes shows that the film thickness of the silicon oxide film on the silicon nitride film is 102.
nm, the thickness of the silicon oxide film in the trench portion is 597 nm, and the measurement result of the wafer after polishing for 5 minutes shows that the thickness of the silicon oxide film on the silicon nitride film is 48 nm and the thickness of the silicon oxide film in the trench portion. Was 545 nm, and it was found that polishing hardly progressed after 3 minutes. In the actual formation of the shallow trench isolation, it is necessary to polish the convex portion up to the silicon nitride film, but when applied to the planarization CMP of the silicon oxide interlayer film, this is a very good characteristic. Recognize.

【0024】(実施例2) (スラリーの作製)炭酸セリウム水和物を800℃で2
時間空気中で焼成し、ジェットミルを用いて乾式粉砕し
て酸化セリウム粒子を作製した。酸化セリウム粒子1K
gと分散剤としてポリアクリル酸アンモニウム塩水溶液
(40重量%)23gと脱イオン水8977gを混合
し、攪拌しながら超音波分散を10分間施した。得られ
たスラリーを1ミクロンフィルターでろ過をし、さらに
脱イオン水を加えることにより5重量%スラリーを得
た。スラリーpHは8.3であった。上記の酸化セリウ
ムスラリー(固形分:5重量%)600gと添加剤とし
てpH6.5で分子量5000のポリアクリル酸(10
0%)アンモニウム塩水溶液(40重量%)135gと
脱イオン水2265gを混合して、界面活性剤を添加し
た酸化セリウム研磨剤(酸化セリウム固形分:1重量
%)を作製した。
Example 2 (Preparation of Slurry) Cerium carbonate hydrate was added at 800 ° C. for 2 hours.
Cerium oxide particles were prepared by firing in air for a period of time and dry pulverizing with a jet mill. Cerium oxide particles 1K
g, 23 g of a polyacrylic acid ammonium salt aqueous solution (40% by weight) as a dispersant, and 8977 g of deionized water were mixed, and ultrasonic dispersion was performed for 10 minutes while stirring. The obtained slurry was filtered with a 1-micron filter, and deionized water was further added to obtain a 5 wt% slurry. The slurry pH was 8.3. 600 g of the above cerium oxide slurry (solid content: 5% by weight) and polyacrylic acid having a molecular weight of 5000 (pH 6.5) as an additive (10
135 g of 0%) ammonium salt aqueous solution (40 wt%) and 2265 g of deionized water were mixed to prepare a cerium oxide abrasive (cerium oxide solid content: 1 wt%) to which a surfactant was added.

【0025】(ブランケットウエハの研磨1)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハを作製した。保持する基板取り付
け用の吸着パッドを貼り付けたホルダーに上記パターン
ウエハをセットし、多孔質ウレタン樹脂製の研磨パッド
を貼り付けた直径600mmの定盤上に絶縁膜面を下に
してホルダーを載せ、さらに加工圧力を100gf/c
m2に設定して、定盤上に上記の酸化セリウム研磨剤
(固形分:1重量%)を200cc/minの速度で滴
下しながら、定盤及びウエハを50rpmで1分間回転
させ、酸化珪素膜を研磨した。同様に加工圧力を200
〜800gf/cm2の範囲で100gf/cm2おきに
設定して別のウエハを研磨した。研磨後のウエハを洗浄
して乾燥し、干渉膜厚計によって膜厚を測定し、研磨前
後の膜厚変化を算出した。その結果、圧力100gf/
cm2の研磨速度は35nm/min、圧力200gf
/cm2の研磨速度は76nm/min、圧力300g
f/cm2の研磨速度は105nm/min、圧力40
0gf/cm2の研磨速度は128nm/min、圧力
500gf/cm2の研磨速度は155nm/min、
圧力600gf/cm2の研磨速度は286nm/mi
n、圧力700gf/cm2の研磨速度は401nm/
min、圧力800gf/cm2の研磨速度は520n
m/minであり、加工圧力500gf/cm2で研磨
速度の変曲点が得られた。
(Blanket Wafer Polishing 1) Diameter 20
A blanket wafer in which a 1000 nm silicon oxide film was formed on a 0 mm Si substrate was produced. Set the above pattern wafer on the holder to which the suction pad for mounting the substrate to be attached is attached, and place the holder with the insulating film surface facing down on the surface plate of 600 mm in diameter to which the polishing pad made of porous urethane resin is attached. , Further processing pressure 100gf / c
The silicon oxide film was set to m 2 and the cerium oxide abrasive (solid content: 1% by weight) was dropped onto the surface plate at a rate of 200 cc / min while rotating the surface plate and the wafer at 50 rpm for 1 minute. Was polished. Similarly, the processing pressure is 200
Another wafer was polished by setting every 100 gf / cm 2 in the range of up to 800 gf / cm 2. The wafer after polishing was washed and dried, the film thickness was measured by an interference film thickness meter, and the change in film thickness before and after polishing was calculated. As a result, the pressure is 100 gf /
Polishing rate of cm2 is 35 nm / min, pressure of 200 gf
/ Cm2 polishing rate is 76nm / min, pressure 300g
Polishing rate at f / cm2 is 105 nm / min, pressure is 40
The polishing rate at 0 gf / cm2 is 128 nm / min, the polishing rate at a pressure of 500 gf / cm2 is 155 nm / min,
Polishing rate at a pressure of 600 gf / cm2 is 286 nm / mi
n, pressure 700 gf / cm @ 2 polishing rate is 401 nm /
Polishing rate of 520 n at a pressure of 800 gf / cm 2
m / min, and an inflection point of the polishing rate was obtained at a processing pressure of 500 gf / cm 2.

【0026】(ブランケットウエハの研磨2)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハ及び100nmの窒化珪素膜を成
膜したブランケットウエハをそれぞれ作製した。保持す
る基板取り付け用の吸着パッドを貼り付けたホルダーに
上記パターンウエハをセットし、多孔質ウレタン樹脂製
の研磨パッドを貼り付けた直径600mmの定盤上に絶
縁膜面を下にしてホルダーを載せ、さらに加工圧力を3
00gf/cm2に設定して、定盤上に上記の酸化セリ
ウム研磨剤(固形分:1重量%)を200cc/min
の速度で滴下しながら、定盤及びウエハを50rpmで
1分間回転させ、酸化珪素膜を研磨した。同様に加工圧
力を300gf/cm2に設定して窒化珪素膜を研磨し
た。研磨後のウエハを洗浄して乾燥し、干渉膜厚計によ
って膜厚を測定し、研磨前後の膜厚変化を算出した。そ
の結果、酸化珪素膜の研磨速度が106nm/min、
窒化珪素膜の研磨速度が7nm/minであり、研磨速
度比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)は1
5であった。
(Blanket Wafer Polishing 2) Diameter 20
A blanket wafer in which a 1000 nm silicon oxide film was formed on a 0 mm Si substrate and a blanket wafer in which a 100 nm silicon nitride film was formed were prepared. Set the above pattern wafer on the holder to which the suction pad for mounting the substrate to be attached is attached, and place the holder with the insulating film surface facing down on the surface plate of 600 mm in diameter to which the polishing pad made of porous urethane resin is attached. , Further processing pressure 3
The cerium oxide abrasive (solid content: 1% by weight) was set to 00 gf / cm 2 and 200 cc / min on the surface plate.
The surface plate and the wafer were rotated at 50 rpm for 1 minute while dropping the silicon oxide film to polish the silicon oxide film. Similarly, the processing pressure was set to 300 gf / cm @ 2 and the silicon nitride film was polished. The wafer after polishing was washed and dried, the film thickness was measured by an interference film thickness meter, and the change in film thickness before and after polishing was calculated. As a result, the polishing rate of the silicon oxide film was 106 nm / min,
The polishing rate of the silicon nitride film is 7 nm / min, and the polishing rate ratio (silicon oxide film polishing rate / silicon nitride film polishing rate) is 1
It was 5.

【0027】(パターンウエハの研磨)直径200mm
Si基板上に100nmの窒化珪素膜を成膜後、フォト
レジストを塗布し100×100μm2の窒化珪素膜の
ドットを158μmピッチでマスク材として残し、エッ
チングによりSi基板に400nmのトレンチを形成し
た。続いて、薄い熱酸化膜を形成後、低圧CVD法によ
り酸化珪素膜を680nm成膜し、窒化珪素膜厚を含め
ると500nmのトレンチに酸化珪素膜を埋め込んだパ
ターンウエハを作製する。保持する基板取り付け用の吸
着パッドを貼り付けたホルダーに上記パターンウエハを
セットし、多孔質ウレタン樹脂製の研磨パッドを貼り付
けた直径600mmの定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工圧力を300gf/cm2に設
定した。このウエハのパターン凸部の面積比率は約35
%であったので、研磨開始時のパターン凸部の実効研磨
圧力P2は最大860gf/cm2程度であり変曲点圧力
500gf/cm2よりも大きく、パターン凹部の実効
研磨圧力P1は設定圧力300gf/cm2よりも小さい
ことになる。定盤上に上記の酸化セリウム研磨剤(固形
分:1重量%)を200cc/minの速度で滴下しな
がら、定盤及びウエハを50rpmで3分間回転させ、
酸化珪素膜を研磨した。同様に、研磨時間4分及び5分
でも研磨を行った。ウエハを洗浄、乾燥した後に、干渉
膜厚計により窒化珪素膜上及びトレンチ部の酸化珪素膜
の膜厚を測定し、触針式段差計により境界部の段差を測
定した。3分間研磨後のウエハの測定結果は、窒化珪素
膜上の酸化珪素膜はなくなっており、窒化珪素膜の膜厚
が87nmであり、トレンチ部の酸化珪素膜の膜厚は4
80nmであった。段差が少なくとも<10nm以下に
なり平坦化が終了していることがわかった。4分間研磨
後のウエハの測定結果は、窒化珪素膜の膜厚が80n
m、トレンチ部の酸化珪素膜の膜厚は465nmであ
り、5分間研磨後のウエハの測定結果は、窒化珪素膜の
膜厚が73nm、トレンチ部の酸化珪素膜の膜厚は44
8nmであった。3分以降は、研磨がほとんど進行して
おらず、残段差も少なくとも<30nmと非常に良好な
結果であることがわかる。このように、添加剤量の調整
により、シャロートレンチ構造形成のためのCMPに適
用することが可能である。
(Polishing of patterned wafer) Diameter 200 mm
After forming a 100 nm silicon nitride film on a Si substrate, a photoresist was applied to leave dots of a 100 × 100 μm 2 silicon nitride film at a pitch of 158 μm as a mask material, and a 400 nm trench was formed in the Si substrate by etching. Subsequently, after forming a thin thermal oxide film, a silicon oxide film is formed by a low pressure CVD method to a thickness of 680 nm, and a silicon wafer film is formed in a trench of 500 nm including the silicon nitride film thickness to form a patterned wafer. Set the above pattern wafer on the holder to which the suction pad for mounting the substrate to be attached is attached, and place the holder with the insulating film surface facing down on the surface plate of 600 mm in diameter to which the polishing pad made of porous urethane resin is attached. Further, the processing pressure was set to 300 gf / cm 2. The area ratio of the pattern protrusions on this wafer is about 35.
%, The effective polishing pressure P2 of the convex portion of the pattern at the start of polishing is about 860 gf / cm2 at the maximum, which is higher than the inflection point pressure of 500 gf / cm2, and the effective polishing pressure P1 of the pattern concave portion is set to 300 gf / cm2. Will be smaller than. While dropping the above cerium oxide abrasive (solid content: 1% by weight) on the surface plate at a speed of 200 cc / min, rotate the surface plate and the wafer at 50 rpm for 3 minutes,
The silicon oxide film was polished. Similarly, polishing was performed for polishing time of 4 minutes and 5 minutes. After the wafer was washed and dried, the film thickness of the silicon oxide film on the silicon nitride film and the trench portion was measured by an interference film thickness meter, and the level difference at the boundary was measured by a stylus type step meter. The measurement result of the wafer after polishing for 3 minutes shows that the silicon oxide film on the silicon nitride film has disappeared, the thickness of the silicon nitride film is 87 nm, and the thickness of the silicon oxide film in the trench portion is 4 nm.
It was 80 nm. It was found that the step was at least <10 nm or less and the flattening was completed. The measurement result of the wafer after polishing for 4 minutes shows that the film thickness of the silicon nitride film is 80 n.
m, the thickness of the silicon oxide film in the trench portion is 465 nm, and the measurement result of the wafer after polishing for 5 minutes shows that the thickness of the silicon nitride film is 73 nm and the thickness of the silicon oxide film in the trench portion is 44 nm.
It was 8 nm. It can be seen that after 3 minutes, the polishing hardly progressed and the residual level difference was at least <30 nm, which is a very good result. As described above, it is possible to apply to CMP for forming the shallow trench structure by adjusting the amount of the additive.

【0028】(比較例1) (ブランケットウエハの研磨)直径200mmSi基板
上に1000nmの酸化珪素膜を成膜したブランケット
ウエハ及び100nmの窒化珪素膜を成膜したブランケ
ットウエハをそれぞれ作製した。保持する基板取り付け
用の吸着パッドを貼り付けたホルダーに上記パターンウ
エハをセットし、多孔質ウレタン樹脂製の研磨パッドを
貼り付けた直径600mmの定盤上に絶縁膜面を下にし
てホルダーを載せ、さらに加工圧力を300gf/cm
2に設定して、定盤上に市販シリカスラリーを用いて
(固形分:12.5重量%)を200cc/minの速
度で滴下しながら、定盤及びウエハを50rpmで1分
間回転させ、酸化珪素膜を研磨した。同様に加工圧力を
300gf/cm2に設定して窒化珪素膜を研磨した。
研磨後のウエハを洗浄して乾燥し、干渉膜厚計によって
膜厚を測定し、研磨前後の膜厚変化を算出した。その結
果、酸化珪素膜の研磨速度が175nm/min、窒化
珪素膜の研磨速度が70nm/minであり、研磨速度
比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)は2.
5であった。
Comparative Example 1 (Blanket Wafer Polishing) A blanket wafer having a silicon oxide film of 1000 nm formed on a Si substrate having a diameter of 200 mm and a blanket wafer having a silicon nitride film formed of 100 nm were prepared. Set the above pattern wafer on the holder to which the suction pad for mounting the substrate to be attached is attached, and place the holder with the insulating film surface facing down on the surface plate of 600 mm in diameter to which the polishing pad made of porous urethane resin is attached. , Further processing pressure 300gf / cm
Setting to 2, while using a commercially available silica slurry on the surface plate (solid content: 12.5% by weight) at a rate of 200 cc / min, rotate the surface plate and the wafer at 50 rpm for 1 minute to oxidize. The silicon film was polished. Similarly, the processing pressure was set to 300 gf / cm @ 2 and the silicon nitride film was polished.
The wafer after polishing was washed and dried, the film thickness was measured by an interference film thickness meter, and the change in film thickness before and after polishing was calculated. As a result, the polishing rate of the silicon oxide film was 175 nm / min, the polishing rate of the silicon nitride film was 70 nm / min, and the polishing rate ratio (silicon oxide film polishing rate / silicon nitride film polishing rate) was 2.
It was 5.

【0029】(パターンウエハの研磨)直径200mm
Si基板上に100nmの窒化珪素膜を成膜後、フォト
レジストを塗布し100×100μm2の窒化珪素膜の
ドットを158μmピッチでマスク材として残し、エッ
チングによりSi基板に400nmのトレンチを形成し
た。続いて、薄い熱酸化膜を形成後、低圧CVD法によ
り酸化珪素膜を680nm成膜し、窒化珪素膜厚を含め
ると500nmのトレンチに酸化珪素膜を埋め込んだパ
ターンウエハを作製した。保持する基板取り付け用の吸
着パッドを貼り付けたホルダーに上記パターンウエハを
セットし、多孔質ウレタン樹脂製の研磨パッドを貼り付
けた直径600mmの定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工圧力を300gf/cm2に設
定した。定盤上に市販のシリカスラリー(固形分:1
2.5重量%)を200cc/minの速度で滴下しな
がら、定盤及びウエハを50rpmで2分間回転させ、
酸化珪素膜を研磨した。同様に、研磨時間3分及び4分
でも研磨を行った。ウエハを洗浄、乾燥した後に、干渉
膜厚計により窒化珪素膜上及びトレンチ部の酸化珪素膜
の膜厚を測定し、触針式段差計により境界部の段差を測
定した。2分間研磨後のウエハの測定結果は、窒化珪素
膜上の酸化珪素膜の膜厚が112nmであり、トレンチ
部の酸化珪素膜の膜厚は524nmであり、残段差は9
0nm程度であった。3分間研磨後のウエハの測定結果
は、窒化珪素膜上の酸化珪素膜はなくなっており、窒化
珪素膜の膜厚が62nm、トレンチ部の酸化珪素膜の膜
厚は329nmであり、残段差は130nm程度であっ
た。4分間研磨後のウエハの測定結果は、窒化珪素膜が
なくなってしましSi基板が露出してしまった。研磨時
間3分で窒化珪素膜の目標位置まで研磨することができ
たが、残段差も>100nmと大きく、窒化珪素膜が露
出してからの研磨速度もあまり低下しないために、1回
の研磨では、研磨時間の設定が難しい。
(Pattern wafer polishing) Diameter 200 mm
After forming a 100 nm silicon nitride film on a Si substrate, a photoresist was applied to leave dots of a 100 × 100 μm 2 silicon nitride film at a pitch of 158 μm as a mask material, and a 400 nm trench was formed in the Si substrate by etching. Then, after forming a thin thermal oxide film, a silicon oxide film was formed to a thickness of 680 nm by a low pressure CVD method, and a pattern wafer was prepared in which a silicon oxide film was embedded in a trench of 500 nm including the silicon nitride film thickness. Set the above pattern wafer on the holder to which the suction pad for mounting the substrate to be attached is attached, and place the holder with the insulating film surface facing down on the surface plate of 600 mm in diameter to which the polishing pad made of porous urethane resin is attached. Further, the processing pressure was set to 300 gf / cm 2. Commercially available silica slurry (solid content: 1
2.5% by weight) at a rate of 200 cc / min while rotating the platen and the wafer at 50 rpm for 2 minutes,
The silicon oxide film was polished. Similarly, polishing was performed for polishing time of 3 minutes and 4 minutes. After the wafer was washed and dried, the film thickness of the silicon oxide film on the silicon nitride film and the trench portion was measured by an interference film thickness meter, and the level difference at the boundary was measured by a stylus type step meter. The measurement result of the wafer after polishing for 2 minutes shows that the film thickness of the silicon oxide film on the silicon nitride film is 112 nm, the film thickness of the silicon oxide film in the trench portion is 524 nm, and the residual step difference is 9 nm.
It was about 0 nm. The measurement result of the wafer after polishing for 3 minutes shows that the silicon oxide film on the silicon nitride film disappeared, the film thickness of the silicon nitride film was 62 nm, the film thickness of the silicon oxide film in the trench portion was 329 nm, and the residual step difference was It was about 130 nm. As a result of measuring the wafer after polishing for 4 minutes, the silicon nitride film disappeared and the Si substrate was exposed. It was possible to polish to the target position of the silicon nitride film in 3 minutes of polishing time, but the remaining step difference was as large as> 100 nm, and the polishing rate after the silicon nitride film was exposed did not decrease so much. Then, it is difficult to set the polishing time.

【0030】[0030]

【発明の効果】本発明の研磨剤及び研磨方法により、シ
ャロー・トレンチ分離形成、金属埋め込み配線形成等の
リセスCMP技術及び層間絶縁膜の平坦化CMP技術に
おいて、酸化珪素膜、金属等の埋め込み膜の余分な成膜
層の除去及び平坦化を効率的、高レベルに、かつプロセ
ス管理も容易に行うことができる。
According to the polishing agent and the polishing method of the present invention, in the recess CMP technique such as shallow trench isolation formation and metal buried wiring formation and the flattening CMP technique of the interlayer insulating film, a silicon oxide film, a buried film of metal or the like is formed. It is possible to remove excess film-forming layer and planarize it efficiently, at a high level, and easily in process control.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板を砥粒、研磨速度に研磨圧力依存性
の変曲点を与える添加剤を含む研磨剤であって、設定研
磨圧力がPの場合、パターンの形成された基板の凹部の
実効研磨圧力をP1、凸部の実効研磨圧力をP2とする
と、パターンのない基板の研磨速度に変曲点が現れる圧
力P'がP2>P'>P>P1となるように添加剤の濃度を
調整した研磨剤。
1. An abrasive containing a substrate as an abrasive grain, and an additive containing an inflection point that gives a polishing rate-dependent inflection point to a polishing rate, and when the set polishing pressure is P, the concave portion of the substrate on which a pattern is formed is formed. Assuming that the effective polishing pressure is P1 and the effective polishing pressure of the convex portion is P2, the concentration of the additive is such that the pressure P'at which an inflection point appears in the polishing rate of the substrate without the pattern is P2> P '>P> P1. Adjusted abrasive.
【請求項2】 上記の研磨剤で、パターンのない基板の
研磨速度に変曲点が現れる圧力がP'になる添加量濃度
の場合に、パターンの形成された基板の凹部の実効研磨
圧力をP1、凸部の実効研磨圧力をP2とすると、設定研
磨荷重PをP2>P'>P>P1となるように調整するこ
とを特徴とする基板の研磨方法。
2. The effective polishing pressure of the concave portion of the substrate on which the pattern is formed, when the polishing agent has an addition amount concentration at which the pressure at which the inflection point appears in the polishing rate of the substrate without the pattern becomes P ′. A method of polishing a substrate, wherein P1 and an effective polishing pressure of the convex portion are P2, and a set polishing load P is adjusted to satisfy P2> P '>P> P1.
【請求項3】 請求項2に記載の基板の研磨方法で、少
なくとも酸化珪素膜が形成された半導体チップを研磨す
る基板の研磨方法。
3. The method for polishing a substrate according to claim 2, wherein the semiconductor chip on which at least a silicon oxide film is formed is polished.
【請求項4】 研磨定盤の研磨布上に研磨剤を供給しな
がら、被研磨膜を有する基板を研磨布に押圧した状態で
研磨定盤と基板を相対的に動かすことによって被研磨膜
を研磨する工程において、被研磨膜を有する基板の研磨
布への押しつけ圧力が100〜1000gf/cm2で
ある請求項2または請求項3に記載の基板の研磨方法。
4. The film to be polished is moved by relatively moving the polishing platen and the substrate while the substrate having the film to be polished is pressed against the polishing cloth while supplying the polishing agent onto the polishing cloth of the polishing plate. The substrate polishing method according to claim 2 or 3, wherein in the polishing step, the pressure of the substrate having the film to be polished against the polishing cloth is 100 to 1000 gf / cm 2.
JP2002162320A 2002-06-04 2002-06-04 Abrasive and method of polishing substrate Pending JP2003045829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162320A JP2003045829A (en) 2002-06-04 2002-06-04 Abrasive and method of polishing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162320A JP2003045829A (en) 2002-06-04 2002-06-04 Abrasive and method of polishing substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23141499A Division JP3496586B2 (en) 1999-08-18 1999-08-18 Abrasive and substrate polishing method

Publications (1)

Publication Number Publication Date
JP2003045829A true JP2003045829A (en) 2003-02-14

Family

ID=19194986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162320A Pending JP2003045829A (en) 2002-06-04 2002-06-04 Abrasive and method of polishing substrate

Country Status (1)

Country Link
JP (1) JP2003045829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation

Similar Documents

Publication Publication Date Title
JP4537010B2 (en) Chemical mechanical polishing slurry and chemical mechanical polishing method using the same
JP2008112990A (en) Polishing agent and method for polishing substrate
US20080182413A1 (en) Selective chemistry for fixed abrasive cmp
JP3725357B2 (en) Element isolation formation method
JP3496585B2 (en) Substrate polishing method
JP2001057352A (en) Method of polishing substrate
JPH10102040A (en) Cerium oxide abrasive and grinding of substrate
JP2006191134A (en) Abrasive powder and polishing method of substrate
JP3496586B2 (en) Abrasive and substrate polishing method
JPH10106987A (en) Cerium oxide abrasive agent and polishing method of substrate
JP4301305B2 (en) Substrate polishing method and semiconductor device manufacturing method
JP3496551B2 (en) Substrate polishing method
JP2003037092A (en) Method for polishing substrate
JP2003045829A (en) Abrasive and method of polishing substrate
US7833908B2 (en) Slurry composition for chemical-mechanical polishing capable of compensating nanotopography effect and method for planarizing surface of semiconductor device using the same
JP2000160136A (en) Polishing agent and polishing process using the same
JP2000160137A (en) Polishing agent and polishing process using the same
JP2001055560A (en) Polishing agent and method for polishing substrate by using the same
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
JP2004134751A6 (en) Polishing agent and substrate polishing method
JP2004134751A (en) Abrasive and polishing method for substrate
JPH10102038A (en) Cerium oxide abrasive and grinding of substrate
JP2003037091A (en) Method for polishing substrate
JP2004006966A (en) Method of polishing substrate
JP2004006965A (en) Method of polishing substrate