JP2001053203A - Heat radiating plate - Google Patents

Heat radiating plate

Info

Publication number
JP2001053203A
JP2001053203A JP11228176A JP22817699A JP2001053203A JP 2001053203 A JP2001053203 A JP 2001053203A JP 11228176 A JP11228176 A JP 11228176A JP 22817699 A JP22817699 A JP 22817699A JP 2001053203 A JP2001053203 A JP 2001053203A
Authority
JP
Japan
Prior art keywords
plate
heat
silicon
ceramic substrate
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11228176A
Other languages
Japanese (ja)
Inventor
Keizo Tsukamoto
恵三 塚本
Hiroyuki Tsuto
宏之 津戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP11228176A priority Critical patent/JP2001053203A/en
Publication of JP2001053203A publication Critical patent/JP2001053203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat radiating plate wherein, efficiently radiating the heat accumulated at a module, a deformation of a substrate caused by the difference in thermal expansion from a ceramic substrate is reduced even when directly jointed to the ceramic substrate. SOLUTION: Silicon carbide powder is mixed with phenol resin, which is compression-molded into a plate and then carbonized in vacuum (about 900 deg.C), and baked in vacuum at 1500-1700 deg.C. Or, silicon carbide powder is mixed with carbon powder, which is molded into a plate and then baked at 1500-1700 deg.C in vacuum so that a porous performs in formed. The perform contacts the ingot of high-purity metal silicon and is thermally processed at 1500-1700 deg.C in argon so that a molten metal silicon penetrates into the preform for reactive sintering with the phenol resin or carbon powder to form a silicon carbide. At the same time the voids in the preform is filled with the molten metal silicon to provide a tight heat radiation plate. The porosity of the heat radiation plate is preferred to be 10% or less for a sufficient heat conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業の属する技術分野】本発明は、回路基板、とりわ
けICを多用したセラミックス基板の、高温化を抑制す
るための放熱板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating plate for suppressing a high temperature of a circuit board, especially a ceramic substrate using many ICs.

【0002】[0002]

【従来の技術】従来、大電流パワーモジュールなどの高
電流モジュールでは、僅かな配線抵抗に多量の電流が流
されることからモジュール自体が発熱する。その結果、
搭載されたICが熱暴走したり、ひどい時にはIC自体
が破損する問題がある。そのため、モジュールには耐熱
性に優れたセラミックス基板を用いると共に、発生する
熱を効率よく放熱するためにCuやAlなどの金属製の
放熱板が具備されている。
2. Description of the Related Art Conventionally, in a high-current module such as a large-current power module, a large amount of current flows through a small wiring resistance, so that the module itself generates heat. as a result,
There is a problem that the mounted IC runs away from heat or the IC itself is damaged in severe cases. Therefore, a ceramic substrate having excellent heat resistance is used for the module, and a heat radiating plate made of metal such as Cu or Al is provided to efficiently radiate generated heat.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このモ
ジュールは、セラミックス基板と金属製放熱板との間に
熱膨張に差があることから、セラミックス基板と放熱板
とを直接接合した場合、繰り返し使用することで、繰り
返し発熱してそりなどの変形を起こす問題があった。そ
のため、セラミックス基板と金属製放熱板とは、機械的
に接合する方法が採られており、温度の上昇により発生
する膨張差を逃げを設けることにより対応していた。そ
の結果、両者の接点が限られて全面での接合ができな
く、それがために両者の接触面積が少なくなり、放熱板
の特性を十分活かせない問題があった。
However, since this module has a difference in thermal expansion between the ceramic substrate and the metal radiator plate, it is used repeatedly when the ceramic substrate and the radiator plate are directly joined. As a result, there has been a problem that heat is repeatedly generated and deformation such as warpage is caused. For this reason, a method of mechanically joining the ceramic substrate and the metal radiator plate has been adopted, which has been dealt with by providing a relief for a difference in expansion caused by a rise in temperature. As a result, there is a problem that the contact between the two is limited and the entire surface cannot be joined, thereby reducing the contact area between the two and making it impossible to fully utilize the characteristics of the heat sink.

【0004】本発明は、上述したモジュールが有する課
題に鑑みなされたものであって、その目的は、モジュー
ルに発生する熱を効率よく放熱し、かつ、セラミックス
基板に直接接合されても、セラミックス基板との間の熱
膨張の差により発生する基板の変形を小さくする放熱板
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the module, and has as its object to efficiently radiate heat generated in the module and to directly connect the ceramic substrate to the ceramic substrate. Another object of the present invention is to provide a heat radiating plate for reducing deformation of a substrate caused by a difference in thermal expansion between the heat radiating plate and the heat radiating plate.

【0005】[0005]

【問題を解決するための手段】そこで、本発明者等は、
上記目的を達成するため鋭意研究した結果、放熱板とし
てセラミックス粉末と金属との複合材料を用いれば、モ
ジュールに発生する熱を効率よく放熱し、かつ、セラミ
ックス基板に直接接合されても、セラミックス基板との
間の熱膨張の差により発生する基板の変形を小さくする
ことが出来るとの知見を得て本発明を完成するに至っ
た。
[Means to solve the problem] Therefore, the present inventors,
As a result of diligent research to achieve the above objective, the use of a composite material of ceramic powder and metal as a heat radiating plate efficiently dissipates the heat generated in the module and ensures that even if the module is directly bonded to the ceramic substrate, The present inventors have found that the deformation of the substrate caused by the difference in thermal expansion between them can be reduced, and have completed the present invention.

【0006】即ち本発明は、炭化けい素粉末にけい素を
浸透させた複合材料を放熱板とすることにある。炭化け
い素粉末と金属けい素とを複合させることで、使用され
るセラミックス基板の熱膨張に近似させることが出来る
と共に、高い熱伝導性も付与できることから、優れた放
熱板とすることが出来ることになる。
That is, the present invention resides in using a composite material in which silicon carbide is impregnated with silicon carbide powder as a heat sink. By combining silicon carbide powder and metallic silicon, it is possible to approximate the thermal expansion of the ceramic substrate used and to provide high thermal conductivity, making it an excellent heat sink. become.

【0007】通常、セラミックス基板としては、アルミ
ナ(Al2O3)、窒化アルミニウム(AlN)、ベリリ
ア(BeO)などが用いられる。どの基板においても本
発明の放熱板は使用可能であるが、とりわけ、窒化アル
ミニウムは本発明の放熱板との熱膨張差を非常に近く出
来、残留応力が貯まりにくく最も適した基板である。
Usually, alumina (Al2O3), aluminum nitride (AlN), beryllia (BeO), etc. are used as the ceramic substrate. The radiator plate of the present invention can be used for any substrate. In particular, aluminum nitride is the most suitable substrate because the difference in thermal expansion between the radiator plate and the radiator plate of the present invention can be made very close and residual stress is hardly accumulated.

【0008】[0008]

【発明の実施の形態】本発明の放熱板の作製方法は特に
限定されるものではないが、例えば、以下のような方法
で作製される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of manufacturing a heat sink of the present invention is not particularly limited, but is manufactured by the following method, for example.

【0009】先ず炭化けい素粉末とフェノール樹脂とを
混合し、プレス成形により板状に成形後、真空中で炭化
処理(約900℃)した後、真空中で1500〜170
0℃で焼成することで、あるいは炭化けい素粉末とカー
ボン粉末とを混合し、それを板状に成形後、真空中15
00〜1700℃で焼成することでポーラスなプリフォ
ームを形成する。得られたプリフォームに高純度金属け
い素のインゴットを接触させ、アルゴン中1500〜1
700℃で熱処理することで溶融金属けい素がプリフォ
ーム中に浸透しフェノール樹脂あるいはカーボン粉末と
反応焼結して炭化けい素が生成すると共に、プリフォー
ム中の空隙を溶融金属けい素が埋め緻密な放熱板が得ら
れることとなる。
First, a silicon carbide powder and a phenol resin are mixed, molded into a plate by press molding, carbonized in a vacuum (about 900 ° C.), and then 1500 to 170 vacuum.
By sintering at 0 ° C. or by mixing silicon carbide powder and carbon powder, forming it into a plate,
By firing at 00 to 1700 ° C., a porous preform is formed. An ingot of high-purity metallic silicon was brought into contact with the obtained preform,
Heat treatment at 700 ° C allows molten metal silicon to penetrate into the preform and react and sinter with the phenolic resin or carbon powder to form silicon carbide, and the voids in the preform are filled with molten metal silicon and dense. Thus, a good heat sink can be obtained.

【0010】その放熱板として十分な熱伝導性を得るた
めには、放熱板の気孔率は10%以下が望ましく、気孔
率が低い方が望ましいので、5%以下がより望ましい。
In order to obtain sufficient heat conductivity as the heat radiating plate, the porosity of the heat radiating plate is desirably 10% or less, and the porosity is desirably low. Therefore, the porosity is desirably 5% or less.

【0011】セラミックス基板と放熱板との接合は、活
性金属による方法やハンダによる方法などで接合しても
よいし、セラミックス基板の上に前記したプリフォーム
を配置し、そのプリフォームに溶融金属けい素を浸透さ
せると同時にその浸透した溶融金属けい素とセラミック
ス基板とを融着させて放熱板とセラミックス基板とを接
合させても差し支えない。要は放熱板の特性を十分活か
せるようセラミックス基板と放熱板とを全面で接合する
ことができればよく、そうすればセラミックス基板から
の熱を効率的に放熱板に伝導することができることにな
る。
The ceramic substrate and the heat sink may be joined by a method using an active metal, a method using solder, or the like. Alternatively, the preform described above may be arranged on a ceramic substrate, and the molten metal silicon may be attached to the preform. At the same time, the radiating plate and the ceramic substrate may be joined by fusing the molten metal silicon and the ceramic substrate that have been infiltrated with the silicon. The point is that it is sufficient that the ceramic substrate and the heat radiating plate can be joined on the entire surface so that the characteristics of the heat radiating plate can be fully utilized, so that heat from the ceramic substrate can be efficiently transmitted to the heat radiating plate.

【0012】[0012]

【実施例】以下、本発明の実施例を比較例と共に具体的
に挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.

【0013】(1)実施例1 炭化けい素(GC#180、信濃電気精錬社製)100
重量部とフェノール樹脂(BRL−101、昭和高分子
社製)10重量部を混合し、60mm□×4mmtに成
形後、真空中1600℃で3時間焼成して相対密度65
%のプリフォームを形成した。次いで金属けい素のイン
ゴット上に得られたプリフォームを配置後、アルゴン中
1600℃で金属けい素を溶融してプリフォーム中に溶
融金属けい素を浸透させ、冷却してそれを加工し、50
mm□×2mmtの放熱板を作製した。得られた放熱板
の気孔率は2%、熱伝導率は150W/K・mであった。
また、活性金属を用いて銅プレートを表面に貼り付けた
40mm□×1.5mmtの窒化アルミニウム基板をハン
ダを用いて放熱板に接合し、シリコンチップを実装しな
い模擬モジュールを作製した。
(1) Example 1 Silicon Carbide (GC # 180, manufactured by Shinano Electric Refining Co., Ltd.) 100
Parts by weight and 10 parts by weight of a phenol resin (BRL-101, manufactured by Showa Polymer Co., Ltd.) are mixed, molded into a size of 60 mm × 4 mmt, and baked at 1600 ° C. for 3 hours in a vacuum to obtain a relative density of 65%.
% Of the preform was formed. Then, after placing the obtained preform on the silicon metal ingot, the metal silicon is melted at 1600 ° C. in argon to infiltrate the molten metal silicon into the preform, and then cooled to process it.
A heat sink of mm × 2 mmt was prepared. The resulting heat sink had a porosity of 2% and a thermal conductivity of 150 W / K · m.
Also, a 40 mm square 1.5 mmt aluminum nitride substrate having a copper plate attached to the surface thereof using an active metal was bonded to a heat sink using solder to produce a simulated module without mounting a silicon chip.

【0014】(2)実施例2 実施例1と同様に作製した放熱板に銅プレートを貼り付
けたアルミナ基板を実施例1と同様に接合して、シリコ
ンチップを実装しない模擬モジュールを作製した。
(2) Example 2 An simulated module without mounting a silicon chip was manufactured by bonding an alumina substrate having a copper plate attached to a radiator plate manufactured in the same manner as in Example 1 in the same manner as in Example 1.

【0015】(3)実施例3 実施例1と同様に作製したプリフォームの上に40mm□
×1.5mmtの窒化アルミニウム基板を配置し、プリフ
ォームの下面に金属けい素インゴットを配置した状態
で、アルゴン中1600℃で金属けい素を溶融してプリ
フォームに溶融金属けい素を浸透させて放熱板を作製す
ると同時に、その放熱板を窒化アルミニウム基板と接合
した後、窒化アルミニウム基板上面に活性金属を用いて
銅プレートを貼り付け、シリコンチップを実装しない模
擬モジュールを作製した。
(3) Example 3 A 40 mm square was placed on a preform manufactured in the same manner as in Example 1.
With a 1.5 mmt aluminum nitride substrate placed and a metal silicon ingot placed under the preform, the silicon metal is melted at 1600 ° C. in argon to infiltrate the preform with the molten metal silicon. Simultaneously with the production of the radiator plate, the radiator plate was joined to the aluminum nitride substrate, and then a copper plate was attached to the upper surface of the aluminum nitride substrate using an active metal, thereby producing a simulated module without mounting a silicon chip.

【0016】(4)比較例1 活性金属を用いて銅プレートを貼り付けた40mm□×
1.5mmtの窒化アルミニウム基板をハンダを用いて5
0mm□×2mmtの銅製放熱板に接合して、シリコンチッ
プを実装しない模擬モジュールを作製した。
(4) Comparative Example 1 A 40 mm square with a copper plate attached using an active metal
1.5mmt aluminum nitride substrate was soldered to 5
A simulated module without a silicon chip mounted thereon was fabricated by bonding to a copper radiator plate of 0 mm square x 2 mm t .

【0017】評価方法は、上記模擬モジュールに対し、
ESPEC製のTHERMAL SHOCK CHAMB
ERを用い、−40℃〜+125℃の間で16℃/se
cで昇降温させ、両温度での保持時間5分の温度サイク
ルを50サイクル負荷し、負荷前後の基板の平面度を表
面粗さ計(東京精密社製、surfcom 205C)
を用いてJIS B0601で測定し、負荷前後の最大
高さ(Rmax)の差を平面度の変化とし、温度変化によ
る基板の変形度合いの指標とした。得られた結果を表1
に示す。
The evaluation method is as follows:
THERMAL SHOCK CHAMB made by ESPEC
Using ER, 16 ° C./sec between −40 ° C. and + 125 ° C.
The temperature was raised and lowered by c, and 50 cycles of a temperature cycle of 5 minutes holding time at both temperatures were loaded, and the flatness of the substrate before and after loading was measured by a surface roughness meter (Surfcom 205C, manufactured by Tokyo Seimitsu Co., Ltd.).
Was measured in accordance with JIS B0601, and the difference in maximum height (Rmax) before and after the load was defined as a change in flatness, and was used as an index of the degree of deformation of the substrate due to a change in temperature. Table 1 shows the obtained results.
Shown in

【0018】表1から明らかなように、本発明の放熱板
では、比較例に比べ熱における変形が小さく、熱応力歪
みが小さい結果となった。
As is evident from Table 1, the heat sink of the present invention showed less heat deformation and smaller thermal stress distortion than the comparative example.

【0019】[0019]

【発明の効果】以上の通り、本発明の放熱板を電子回路
用放熱板(いわゆるヒートシンク)として用いることに
より、シリコンチップ駆動による発熱を効率的に放熱で
き、モジュール自体の熱による(熱サイクルにおける)
熱応力歪みに伴う変形が小さく、延いては、駆動用電子
回路基板と放熱板との剥離が抑制され、より信頼性の高
い電子回路モジュールとすることができる。
As described above, by using the heat sink of the present invention as a heat sink for electronic circuits (so-called heat sink), the heat generated by driving the silicon chip can be efficiently dissipated, and the heat generated by the module itself (in the heat cycle) )
Deformation due to thermal stress distortion is small, and thus, separation between the driving electronic circuit board and the heat sink is suppressed, and a more reliable electronic circuit module can be obtained.

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化けい素粉末中にけい素を浸透させた
複合材料からなることを特徴とする放熱板。
1. A radiator plate comprising a composite material in which silicon carbide is impregnated into silicon carbide powder.
【請求項2】 気孔率が10%以下であることを特徴と
する請求項1記載の放熱板。
2. The heat sink according to claim 1, wherein the porosity is 10% or less.
JP11228176A 1999-08-12 1999-08-12 Heat radiating plate Pending JP2001053203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11228176A JP2001053203A (en) 1999-08-12 1999-08-12 Heat radiating plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228176A JP2001053203A (en) 1999-08-12 1999-08-12 Heat radiating plate

Publications (1)

Publication Number Publication Date
JP2001053203A true JP2001053203A (en) 2001-02-23

Family

ID=16872420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228176A Pending JP2001053203A (en) 1999-08-12 1999-08-12 Heat radiating plate

Country Status (1)

Country Link
JP (1) JP2001053203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141309B2 (en) 2003-03-18 2006-11-28 Ngk Insulators, Ltd. High thermal conductive material having high thermal conductivity and process for producing the same
EP2301905A1 (en) * 2009-09-28 2011-03-30 ABC Taiwan Electronics Corp. Porous ceramic preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141309B2 (en) 2003-03-18 2006-11-28 Ngk Insulators, Ltd. High thermal conductive material having high thermal conductivity and process for producing the same
EP2301905A1 (en) * 2009-09-28 2011-03-30 ABC Taiwan Electronics Corp. Porous ceramic preparation method

Similar Documents

Publication Publication Date Title
KR20080065988A (en) Heat sink module and process for producing the same
KR20010079642A (en) Composite Material and Semiconductor Device Using the Same
JP2003163315A (en) Module
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP3793562B2 (en) Ceramic circuit board
JP5481725B2 (en) Manufacturing method of ceramic-insulated substrate integrated metal-ceramic composite heat sink
JP2002231850A (en) Semiconductor device storing wiring board
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP2000277953A (en) Ceramic circuit board
JP2001053203A (en) Heat radiating plate
JP2005005528A (en) Module for mounting semiconductor element
JP2004022964A (en) Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JP4407858B2 (en) Module structure
Occhionero et al. AlSiC for optoelectronic thermal management and packaging designs
CN113809016A (en) Composite substrate
JP2003283063A (en) Ceramic circuit board
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP2001217364A (en) Al-SiC COMPOSITE
JP2004087927A (en) Ceramic substrate
JP2001284509A (en) Al-SiC COMPOSITE BODY
JP2003318316A (en) Ceramic circuit substrate
JP2967065B2 (en) Semiconductor module
JP2005019875A (en) Heat radiating plate, heat radiating module, semiconductor mounted module, and semiconductor device
JPH0748180A (en) Ceramic-metal conjugate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710