JP2001052724A - Fuel cell battery having layered product of flat cell - Google Patents

Fuel cell battery having layered product of flat cell

Info

Publication number
JP2001052724A
JP2001052724A JP2000157998A JP2000157998A JP2001052724A JP 2001052724 A JP2001052724 A JP 2001052724A JP 2000157998 A JP2000157998 A JP 2000157998A JP 2000157998 A JP2000157998 A JP 2000157998A JP 2001052724 A JP2001052724 A JP 2001052724A
Authority
JP
Japan
Prior art keywords
fuel cell
fluid
pen
interconnector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000157998A
Other languages
Japanese (ja)
Other versions
JP4728467B2 (en
Inventor
Bruno Doggwiler
ドッグヴィラー ブルーノ
Emad Dr Batawi
バタヴィ エマド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hexis AG
Original Assignee
Hexis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hexis AG filed Critical Hexis AG
Publication of JP2001052724A publication Critical patent/JP2001052724A/en
Application granted granted Critical
Publication of JP4728467B2 publication Critical patent/JP4728467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/025Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form semicylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a cost in manufacturing a fuel cell battery. SOLUTION: In a fuel cell battery 1 having a layered product 2 of flat cells 3, 4 with a PEN (positive electrode) as an electrochemical active plate 3 and an inter-connector 4 alternately disposed, the inter-connector 4 having profiling structured so that two kinds of fluid 11, 12 flow while always making contact with the PEN is formed on one layer, a direction converting region 24 to reverse the flow direction of second fluid 12 is provided, and a cell dimension is determined so that an undesirable value of thermal stress is not exceeded in the PEN when it is actuated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平面状セルの積層
体を有する燃料セル電池及びその使用に関する。
The present invention relates to a fuel cell having a stack of planar cells and its use.

【0002】[0002]

【従来の技術】中心に対して対称である燃料セル電池は
欧州特許公開公報第EP−A−0473540号から知
られる。この燃料セル電池のインターコネクタは特殊な
温度平衡化体として構成されている。こうした平衡化体
は熱交換体であり、これにより、供給された空気が、燃
料セルの電気化学的活性要素であるPEN(PEN:陽
極(Positive electrode),固体電
解質(solid Electrolyte),陰極
(Negative electrode))に接触す
る前に反応熱が空気に伝達される。この熱交換体はプレ
ート状の中空体であり、その内部空間において空気への
熱伝達が行われる。インターコネクタの2つの外側面に
はプロファイリングがなされていて、これによりPEN
の電極への電気的接触が生じる一方でインターコネクタ
と反応成分(空気、燃料ガス)の電極との間の間隙状の
電極空間が形成される。
2. Description of the Related Art A fuel cell which is symmetrical about its center is known from EP-A-0473540. The interconnect of this fuel cell is constructed as a special temperature-balancing body. Such an equilibrium body is a heat exchanger, whereby the supplied air is used to convert PEN (Positive Electrode), a solid electrolyte (Solid Electrolyte), a cathode (Negative), which is an electrochemically active element of the fuel cell. reaction) is transferred to the air before contacting the air. This heat exchanger is a plate-shaped hollow body, and heat is transferred to air in the internal space. The two outer surfaces of the interconnect are profiled, which allows PEN
While the electrical contact to the electrodes occurs, a gap-like electrode space is formed between the interconnector and the electrodes of the reaction components (air, fuel gas).

【0003】電池が動作する際、PENにおいて径方向
に温度勾配が生じる。この勾配は比較的小さく、熱応力
によってPENの感受性固体電解質に特に亀裂などの損
傷が与えられることはない。
[0003] When a battery operates, a temperature gradient occurs in the PEN in the radial direction. This gradient is relatively small and thermal stress does not damage the sensitive solid electrolyte of PEN, especially cracks or the like.

【0004】[0004]

【発明が解決しようとする課題】ところが熱交換体とし
て構成されたインターコネクタは高価であり、燃料セル
電池の製造コストに占める比重が非常に大きい。コスト
の低減を目的としたインターコネクタの製造のための提
案が既にいくつかなされている。例として欧州特許公開
公報第EP−A−0936688号では、熱交換体とし
て構成されたインターコネクタについて述べられてい
る。その製造においては1乃至2の焼結体を用いるが、
この焼結体は、粉体混合物を完成部品の形状に押し固
め、その後に焼結することにより予備形成されている。
However, an interconnector configured as a heat exchanger is expensive, and has a very large weight in the production cost of a fuel cell. Some proposals have already been made for the manufacture of interconnectors for the purpose of cost reduction. By way of example, EP-A-0 936 688 describes an interconnector configured as a heat exchanger. In its manufacture, one or two sintered bodies are used,
This sintered body is preformed by compacting the powder mixture into the shape of the finished part and then sintering.

【0005】上記の課題点を鑑み、本発明の目的は、更
なる製造コストの低減を可能とする燃料セル電池を提供
することにある。
[0005] In view of the above problems, it is an object of the present invention to provide a fuel cell cell which can further reduce the manufacturing cost.

【0006】[0006]

【課題を解決するための手段】上記の課題は請求項1に
記載の発明によってその解決を図ることが可能である。
The above object can be solved by the present invention.

【0007】すなわち、請求項1に記載される、本発明
に基づく平面状セルの積層体を有する燃料セル電池は以
下の特徴を有する。 a)電気化学的活性プレートとしてのPEN及びインタ
ーコネクタが交互に配される。
That is, the fuel cell having the planar cell stack according to the present invention has the following features. a) PEN as an electrochemically active plate and interconnectors are alternately arranged.

【0008】b)PEN及びインターコネクタはそれぞ
れ第1の辺縁と第2の辺縁とを備え、第1の辺縁と第2
の辺縁との間にはほぼ一定の幅を有する直線状または湾
曲した領域が延びる。
B) The PEN and the interconnect have a first edge and a second edge, respectively, and the first edge and the second edge
A straight or curved region having a substantially constant width extends between the edge and the edge of the line.

【0009】c)この領域は小区画に分割され、小区画
を通じて前記2つの辺縁が連結される。 d)インターコネクタがプロファイリングを有すること
により2種類の流体がセルを通じて別々に流れることが
可能である。
C) This area is divided into small sections, and the two edges are connected through the small sections. d) The profiling of the interconnect allows the two fluids to flow separately through the cell.

【0010】e)各小区画には、第1の辺縁において第
1の流体のための流入点、第2の辺縁において第2の流
体のための流入点、及び両方の流体のための流出点が設
けられる。
E) Each sub-compartment has an entry point for a first fluid at a first edge, an entry point for a second fluid at a second edge, and an entry point for both fluids. An outflow point is provided.

【0011】f)流出点は全体の共通の通路内に開口す
る。 g)動作時にPENにおいて開放される反応熱のための
熱担体媒体として第2の流体が供給される。
F) The outlet point opens into the entire common passage. g) A second fluid is provided as a heat carrier medium for the heat of reaction released in the PEN during operation.

【0012】(h)本発明に基づき、インターコネクタ
は1層に形成され、そのプロファイリングは両方の流体
が常にPENに接触して流れるようにそれぞれ構成され
る。 (i)第1の辺縁には第2の流体の流れの方向を反転さ
せるための方向転換領域が設けられる。
(H) In accordance with the present invention, the interconnector is formed in one layer and its profiling is each configured such that both fluids always flow in contact with PEN. (I) A direction change area for reversing the flow direction of the second fluid is provided at the first edge.

【0013】(j)更に、動作時にPENにおいて望ま
しくない熱応力の値を上回ることがないようにセルの寸
法が取られる。 本発明は以下の考察に関連する認識に基づくものであ
る。その結果が欧州特許公開公報第EP−A−0473
540号に示されるモデル計算によって、PENにおい
て開放された反応熱は、主として熱放射によってインタ
ーコネクタに伝達されることが示された。空気で満たさ
れた電極空間を通じた熱伝導による熱の輸送は事実上無
視することが可能である。インターコネクタの壁は各点
において、PEN上の対応する点の温度と数ケルビンし
か違わない温度を有する。すなわちこの温度は空間内で
加熱されるべき空気の温度に大きくは依存していない。
この理由は壁と空気との間の熱流量が比較的小さいため
である。
(J) Furthermore, the dimensions of the cell are such that during operation, the value of the undesired thermal stress in the PEN is not exceeded. The present invention is based on the recognition relating to the following considerations. The result is EP-A-0473.
Model calculations shown in No. 540 showed that the heat of reaction released in the PEN was primarily transferred to the interconnect by thermal radiation. The transport of heat by heat conduction through the electrode space filled with air can be virtually neglected. The interconnect wall has at each point a temperature that differs by only a few Kelvin from the temperature of the corresponding point on the PEN. That is, this temperature does not largely depend on the temperature of the air to be heated in the space.
The reason for this is that the heat flow between the wall and the air is relatively small.

【0014】こうした条件がインターコネクタにおける
熱輸送において存在することはモデル計算の開示された
結果では明らかではない。こうした条件に気付くことが
できるならば、欧州特許公開公報第EP−A−0473
540号に述べられる方法によって中空体として構成さ
れたインターコネクタが反応熱を取り除くうえで実際に
必要であるかとの疑問を抱くことが可能である。これを
異なる方法によって行い得るという答えは本発明に基づ
く解決策によって与えられる。空気(第2の流体)を流
入点において既にPENに接触させることにより、イン
ターコネクタを2層中空体(2つの壁、1つの空間を有
する)としてではなく、より経済的な1層に構成するこ
とが可能である。加熱を要する空気によりPEN内に更
なる温度勾配が生じる。接線方向(方位角方向)に沿っ
たこうした勾配は、公知のセルにおいて生じる径方向の
温度勾配と同程度の大きさを有する。したがって、1層
インターコネクタの使用において熱応力が実質的に大き
な値になることはないものと予想される。この温度勾配
の更なる要素を比較的低く保つことが可能な手段を設け
ることも可能である。
It is not clear from the disclosed results of the model calculations that these conditions exist in the heat transport in the interconnect. If such conditions can be noticed, European Patent Publication No. EP-A-0473
It is possible to question whether an interconnector constructed as a hollow body by the method described in US Pat. No. 540 is actually necessary to remove the heat of reaction. The answer that this can be done in different ways is given by the solution according to the invention. By having the air (second fluid) already in contact with the PEN at the point of entry, the interconnect is configured as a more economical single layer rather than as a two-layer hollow body (two walls, one space). It is possible. The air that needs to be heated creates a further temperature gradient in the PEN. Such a gradient along the tangential direction (azimuthal direction) has a magnitude comparable to the radial temperature gradient that occurs in known cells. Therefore, it is expected that the thermal stress will not be substantially large in the use of the single-layer interconnector. It is also possible to provide means by which further elements of this temperature gradient can be kept relatively low.

【0015】上述の従来技術は中心に対して対称な燃料
セル電池に関連するものであるが、本発明に基づく解決
策は、例として、一側面において燃料ガス(第1の流
体)が、反対側の側面において空気(第2の流体)が供
給される長方形のセルを備える電池に適用することも可
能である。更に、第1の流体として、燃焼可能な成分を
有する任意のガス組成が使用され、第2の気体が酸素を
含有するガスである場合、仮定上、これらのガスによ
り、電流を供給する発熱反応をPENにおいて行うこと
が可能である。
[0015] Although the prior art described above relates to a fuel cell cell that is symmetric about a center, the solution according to the invention is, for example, in one aspect where the fuel gas (first fluid) is opposite to the fuel gas (first fluid). It is also possible to apply to a battery including a rectangular cell to which air (second fluid) is supplied on the side surface. Furthermore, if any gas composition having a combustible component is used as the first fluid and the second gas is a gas containing oxygen, it is assumed that these gases provide an exothermic reaction to supply current. Can be performed in PEN.

【0016】本発明に基づく燃料セル電池のインターコ
ネクタは1層に構成されることにより以下の更なる利点
を与える。すなわち、a)電池の質量が公知の電池の質
量よりも小さく、b)構造的なサイズも小さくなってい
る点である。したがって本発明に基づく電池は、例とし
て、自動車や使用される場所に迅速に運搬することが可
能な緊急電力アグレゲートにおいて電流を供給する要素
として、移動用途において容易に使用することが可能で
ある。
The fuel cell cell interconnector according to the present invention provides the following further advantages by being constructed in one layer. That is, a) the mass of the battery is smaller than the mass of a known battery, and b) the structural size is also smaller. Thus, the battery according to the invention can easily be used in mobile applications, for example, as an element for supplying current in emergency power aggregates, which can be quickly transported to vehicles or places of use.

【0017】従属請求項2乃至9は本発明の有利な実施
形態に関するものであり、請求項10の主題は移動用途
における使用である。すなわち、請求項2に記載の燃料
セル電池は、個々のインターコネクタが予備形成かつ焼
結した要素であるかまたはこれから製造されることを特
徴とする。
Dependent claims 2 to 9 relate to advantageous embodiments of the invention, the subject of claim 10 being the use in mobile applications. Thus, the fuel cell according to claim 2 is characterized in that the individual interconnectors are preformed and sintered elements or are manufactured therefrom.

【0018】請求項3に記載の燃料セル電池は、インタ
ーコネクタのプロファイリングがPENへの電気的接点
を与えるノブ状の隆起を有することを特徴とする。請求
項4に記載の燃料セル電池は、流体を流すためのインタ
ーコネクタのプロファイリングが特に第2の流体側にお
いて櫛状の隆起を有することと、これらの隆起がPEN
への電気的接点を与えることとを特徴とする。
[0018] A fuel cell according to claim 3 is characterized in that the profiling of the interconnector has a knob-like ridge providing an electrical contact to the PEN. The fuel cell according to claim 4, wherein the profiling of the interconnector for flowing the fluid has comb-like ridges, especially on the second fluid side, and the ridges are PEN.
And providing an electrical contact to the device.

【0019】請求項5に記載の燃料セル電池は、櫛状隆
起の少なくとも一部がラセン形状を有するか、あるい
は、直線にて形成されるとともに径方向に向けられるこ
とを特徴とする。
The fuel cell according to the fifth aspect is characterized in that at least a part of the comb-shaped ridge has a helical shape or is formed in a straight line and is directed in a radial direction.

【0020】請求項6に記載の燃料セル電池は、各小区
画に方向転換領域に向かう通路が設けられ、該通路の断
面はPENに直交する方向に沿って、残りのプロファイ
リングの対応する深さと比較してより大きな深さを有す
ることを特徴とする。
[0020] In the fuel cell according to claim 6, a passage is provided in each of the small sections toward the turning area, and a cross section of the passage extends along a direction perpendicular to the PEN with a corresponding depth of the remaining profiling. It is characterized by having a greater depth in comparison.

【0021】請求項7に記載の燃料セル電池は、電池の
動作時において、PEN反応において生じる廃熱の少な
くとも1/3が放射によりセル積層体から放出されるよ
うにセルが寸法取りされることを特徴とする。
[0021] The fuel cell according to claim 7, wherein the cell is dimensioned such that at the time of operation of the cell, at least 1/3 of the waste heat generated in the PEN reaction is emitted from the cell stack by radiation. It is characterized by.

【0022】請求項8に記載の燃料セル電池は、少なく
ともほぼ中心に対して対称となるようにセルが構成さ
れ、軸方向に延びる中央通路を介して第1の流体を供給
することが可能であり、好ましくはこの通路に第1の流
体を処理するためのリフォーマが配され、共通の通路は
流出点においてアウターバーナー室として設けられ、セ
ル積層体の周囲の積層体が透過性を有するように構成さ
れることにより、放射された反応熱が第2の流体がセル
内に流入する際に吸収されることを特徴とする。
In the fuel cell according to the eighth aspect, the cells are configured so as to be at least substantially symmetrical with respect to the center, and the first fluid can be supplied through a central passage extending in the axial direction. Yes, preferably a reformer for treating the first fluid is arranged in this passage, the common passage being provided as an outer burner chamber at the outlet point, so that the stack around the cell stack is permeable. With this configuration, the emitted reaction heat is absorbed when the second fluid flows into the cell.

【0023】請求項9に記載の燃料セル電池は、小区画
のサイズが等しく、その数は4〜10個であることを特
徴とする。請求項10に記載の発明は、例として自動車
または緊急電力アグレゲートにおける電流供給要素とし
て、本発明に基づく燃料セル電池を移動用途において使
用することを特徴とする。
The fuel cell according to the ninth aspect is characterized in that the small sections have the same size and the number thereof is 4 to 10. The invention according to claim 10 is characterized in that the fuel cell cell according to the invention is used in mobile applications, for example, as a current supply element in a motor vehicle or an emergency power aggregate.

【0024】[0024]

【発明の実施の形態】本発明の実施の形態を図1〜図8
に基づき以下に詳細に説明する。図1に概略的に示され
る燃料セル電池1は、それぞれPEN3及びインターコ
ネクタ4からなる平面状セルの積層体2を備える(平面
図にて示されている)。PEN3及びインターコネクタ
4は交互に配されている。PEN3及びインターコネク
タ4は、それぞれ第1の辺縁21及び第2の辺縁22を
有する。辺縁21と辺縁22との間には領域20が延び
る。領域20はこの図では直線状のものが示されている
が、湾曲した構成も可能である。領域20はほぼ一定の
幅を有し、2つの辺縁21と22とをつなぐ側線23a
及び23bを有する小区画23に分割される。インター
コネクタ4は図2に示されるようなプロファイリングを
有し、これにより2種類の流体11及び12がセルを通
じて別々に流れる。各小区画には、第1の辺縁において
第1の流体11の流入点211が、第2の辺縁において
第2の流体の流入点212が、更には両方の流体のため
の流出点213が設けられている。流出点213は、積
層体2に沿って延びる、第1の流体中に依然存在して依
然反応可能な成分を燃焼させるための、アフターバーナ
ー室として用いられる共通の通路5内に開口する。第2
の流体12はPEN3上で解放される反応熱のための熱
担体媒体として与えられる。
1 to 8 show an embodiment of the present invention.
This will be described in detail below. The fuel cell cell 1 shown schematically in FIG. 1 comprises a stack 2 of planar cells each consisting of a PEN 3 and an interconnector 4 (shown in plan view). The PENs 3 and the interconnectors 4 are arranged alternately. The PEN 3 and the interconnector 4 have a first edge 21 and a second edge 22, respectively. A region 20 extends between the rim 21 and the rim 22. Although the region 20 is shown as being linear in this figure, a curved configuration is also possible. The region 20 has a substantially constant width, and a side line 23a connecting the two edges 21 and 22.
And 23b. The interconnector 4 has profiling as shown in FIG. 2, whereby the two fluids 11 and 12 flow separately through the cell. Each subsection has an inflow point 211 for the first fluid 11 at a first edge, an inflow point 212 for a second fluid at a second edge, and an outflow point 213 for both fluids. Is provided. The outlet point 213 opens into a common passage 5 used as an afterburner chamber, which extends along the stack 2 and burns the components still present and reactive in the first fluid. Second
Of fluid 12 is provided as a heat carrier medium for the heat of reaction released on PEN3.

【0025】本発明に基づけば、インターコネクタ4は
1層に構成される。インターコネクタ4のプロファイリ
ングのそれぞれは、流体11及び12がいずれも常にP
EN3に接触して流れるように構成される。第1の辺縁
211には方向転換領域24が設けられ、これにより第
2の流体12の流れの方向が反転される。電池1は動作
時にPEN3において熱応力が望ましくない値を上回る
ことのないような寸法に構成されている。この寸法の取
り方はインターコネクタ4の厚さ、そのプロファイリン
グ、及びその幅(=領域30の幅)に関連する。空気因
子(化学量論的な空気過剰量を特定する因子)もこの寸
法取り、及び、積層体2によって放射6として周辺に放
出される熱量において一定の役割を果たす。
According to the present invention, the interconnector 4 is formed in one layer. Each of the profiling of the interconnector 4 is such that both fluids 11 and 12
It is configured to flow in contact with EN3. A turning area 24 is provided at the first edge 211, whereby the direction of flow of the second fluid 12 is reversed. Battery 1 is dimensioned such that thermal stresses in PEN 3 during operation do not exceed undesired values. The dimensions are related to the thickness of the interconnect 4, its profiling, and its width (= the width of the region 30). The air factor (the factor that specifies the stoichiometric excess of air) also plays a role in this dimensioning and in the amount of heat released by the laminate 2 to the surroundings as radiation 6.

【0026】周辺には、セル積層体2、またはその周囲
においてスリーブ10が配される。セル積層体2が透過
性を有することにより、放射熱6を第2の流体12のセ
ル積層体2への流入時に流体によって吸収することが可
能である。PEN反応において発生する熱のかなりの割
合(少なくとも約1/3)が放射6によってセル積層体
2から運び出される点は有利である。すなわち、第2の
流体12はセル積層体2内に比較的高温の状態で流入す
ることが可能であるため、流体12との直接的接触によ
りPEN3において生じる更なる熱応力は比較的小さ
い。第1の辺縁21側にリフォーマを配することによ
り、吸熱反応によって燃料がPEN反応に好適な形態に
変換されるため有利である。したがって放射6をこの吸
熱反応の熱源として用いることが可能である。1層イン
ターコネクタ4は有利に予備形成かつ焼結した構成部品
であるか、またはこうした材料にて形成される。製造に
用いられる材料はクロミウムを含有するため、焼結した
部品にも適当な保護層を設けなければならない。
In the periphery, a sleeve 10 is disposed at or around the cell stack 2. Since the cell stack 2 has transparency, the radiant heat 6 can be absorbed by the fluid when the second fluid 12 flows into the cell stack 2. Advantageously, a significant proportion (at least about one third) of the heat generated in the PEN reaction is carried away from the cell stack 2 by the radiation 6. That is, since the second fluid 12 can flow into the cell stack 2 at a relatively high temperature, further thermal stress generated in the PEN 3 due to direct contact with the fluid 12 is relatively small. By arranging the reformer on the first edge 21 side, the fuel is advantageously converted by the endothermic reaction into a form suitable for the PEN reaction. Thus, radiation 6 can be used as a heat source for this endothermic reaction. The single-layer interconnect 4 is preferably a preformed and sintered component or is formed from such a material. Since the materials used for the production contain chromium, the sintered parts must also be provided with a suitable protective layer.

【0027】図2に示されるインターコネクタ4は隔壁
40上にレリーフ状構造を形成するプロファイリングを
有する。これらのプロファイリングはノブ状の隆起41
及び櫛状の隆起42を有する。これらの隆起41及び4
2はPEN3への電気的接点を与える一方、櫛状隆起4
2は、流体11及び12を、特に、辺縁22からの流れ
12aとして流れる第2の流体12側において(図
1)、方向転換領域24(矢印12’’)に流し、流れ
12bとして逆方向に向ける機能を有する。
The interconnector 4 shown in FIG. 2 has a profiling for forming a relief-like structure on a partition wall 40. These profilings have knob-like bumps 41
And a comb-shaped bump 42. These bumps 41 and 4
2 provides an electrical contact to PEN 3 while comb-like bumps 4
2 causes the fluids 11 and 12 to flow, especially on the side of the second fluid 12 flowing as a flow 12a from the rim 22 (FIG. 1), to a turning area 24 (arrow 12 '') and to flow in the opposite direction as a flow 12b It has the function of pointing to

【0028】燃料セル電池1は中心に対して対称となる
ように有利に構成される。図3では、小区画23に対応
する領域20の部分が示されている。この構成では辺縁
21は中央通路の表面上に位置し、これを介して第1の
流体11をセル積層体2内に供給することが可能であ
る。長尺かつ円筒状のリフォーマはこの通路内に有利に
配される。
The fuel cell 1 is advantageously configured to be symmetric about the center. FIG. 3 shows a portion of the area 20 corresponding to the small section 23. In this configuration, the rim 21 is located on the surface of the central passage, through which the first fluid 11 can be supplied into the cell stack 2. An elongate and cylindrical reformer is advantageously arranged in this passage.

【0029】図4は空気側から見たプロファイリングを
有するインターコネクタ4を示したものである。第2の
流体12の空気の流れが矢印にて示されている。櫛状隆
起42は螺旋形状を有する(図1〜4に基づく小区画
は、図には示されていないが、対応する螺旋形状を有す
る。小区画は6個ある。)。第2の流体12(矢印1
2’)は流入点212から櫛状隆起42によって形成さ
れる通路43を通じて方向転換領域24(矢印12a)
へと流れる。方向転換領域24において第2の流体の流
れの方向は逆転し(矢印12”)、流体12は逆方向に
向かって辺縁22へと流れる(矢印12b)。流体12
が逆方向に流れる通路43の間の領域では、プロファイ
リングは×印41’を有する範囲として部分概略的に示
されるノブ状隆起41からなる。流出点213において
流体12は通路状のアフターバーナー室5に流入する。
FIG. 4 shows the interconnector 4 having profiling viewed from the air side. The air flow of the second fluid 12 is indicated by arrows. The comb ridges 42 have a helical shape (the subsections according to FIGS. 1 to 4 have a corresponding helical shape, not shown, but there are six subsections). Second fluid 12 (arrow 1
2 ') is the turning area 24 (arrow 12a) from the inflow point 212 through the passage 43 formed by the comb-shaped ridge 42.
Flows to In the turning area 24, the direction of the flow of the second fluid is reversed (arrow 12 ") and the fluid 12 flows in the opposite direction to the edge 22 (arrow 12b).
In the area between the passages 43 flowing in the opposite direction, the profiling consists of knob-like ridges 41, shown partially schematically as areas with crosses 41 '. At the outflow point 213, the fluid 12 flows into the passage-like afterburner chamber 5.

【0030】通路43は螺旋形状の代りに直線により構
成してもよく、インターコネクタ4の中心へと径方向に
向けられる。インターコネクタ4のプロファイリングは
6個の小区画23の代りにこれよりも少ないかあるいは
多い、有利には4乃至10個の小区画23を有すること
も可能である。
The passage 43 may be formed by a straight line instead of a spiral shape, and is directed radially toward the center of the interconnector 4. The profiling of the interconnector 4 can have fewer or more, preferably 4 to 10, subsections 23 instead of 6 subsections 23.

【0031】図5は、図4の1層インターコネクタ4の
裏面を示したものである。この面では、第1の流体11
は中央通路(辺縁211内)から、ノブ状隆起41’の
間を通り、櫛状隆起42によって外側の辺縁212の流
出点213へと流れる。
FIG. 5 shows the back surface of the single-layer interconnector 4 of FIG. In this aspect, the first fluid 11
Flows from the central passage (within the margin 211) between the knob-like ridges 41 'and by the comb-like ridges 42 to the outflow point 213 of the outer margin 212.

【0032】図6は、図4及び5のインターコネクタ4
を図4のVI−VI線に沿って切った断面図である。セ
ル3,4における熱輸送を図の平面内の矢印にて示して
ある。通路43の断面はPEN3に直交する方向に残り
のプロファイリングの深さと比較してより大きな深さを
有する。通路の断面積が比較的大きいことにより、PE
N4の越流領域343からの熱抽出が最小である流体1
2(矢印12a)の流れが生ずる。この領域343の中
央では電流を発生する反応は事実上起きない。熱はイン
ターコネクタ4から領域343に流体11側の櫛状隆起
42を介して供給される。
FIG. 6 illustrates the interconnector 4 of FIGS.
FIG. 6 is a sectional view taken along the line VI-VI in FIG. 4. The heat transport in cells 3 and 4 is indicated by arrows in the plane of the figure. The cross section of the passage 43 has a greater depth in a direction perpendicular to the PEN 3 compared to the remaining profiling depth. Due to the relatively large cross-sectional area of the passage, PE
Fluid 1 with minimal heat extraction from N4 overflow area 343
2 (arrow 12a) occurs. At the center of this region 343, virtually no current generating reaction occurs. Heat is supplied from the interconnector 4 to the region 343 via the comb-like protrusion 42 on the fluid 11 side.

【0033】インターコネクタ4の空気側の側面は、第
2の流体12(矢印12’,12a)が供給される際に
ノブ状隆起41を有するプロファイリングを通じて流れ
るように構成することが可能である(図6)。電流発生
反応はこの供給領域においても同様に生じる。
The air side of the interconnector 4 can be configured to flow through a profiling with knob-like ridges 41 when the second fluid 12 (arrows 12 ', 12a) is supplied (see FIG. 1). (Fig. 6). The current generating reaction occurs in this supply region as well.

【0034】図8に基づくインターコネクタ4を備えた
更なる例示的実施形態では、図6及び7に基づく2つの
実施形態から与えられる供給通路43の特徴が組み合わ
されている。通路43のノブ状隆起41のため、電流を
供給するPEN反応が、幾分低い程度ではあるもののこ
こでもやはり同様に生じる。
In a further exemplary embodiment with an interconnector 4 according to FIG. 8, the features of the supply passage 43 provided from the two embodiments according to FIGS. 6 and 7 are combined. Due to the knob-like ridge 41 of the passage 43, the PEN reaction supplying the current occurs here, albeit to a lesser extent, as well.

【0035】[0035]

【発明の効果】本発明により、燃料セル電池の製造にお
いて更なるコストの低減を図ることが可能である。
According to the present invention, it is possible to further reduce costs in manufacturing a fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく燃料セル電池を示す概略図。FIG. 1 is a schematic diagram showing a fuel cell cell according to the present invention.

【図2】特定のセル及び隣接する第2のPENの断面
図。
FIG. 2 is a cross-sectional view of a specific cell and an adjacent second PEN.

【図3】燃料セル電池の通常の基本的形態の特定領域を
示す平面図。
FIG. 3 is a plan view showing a specific region of a normal basic form of a fuel cell battery.

【図4】空気側から見たプロファイリングを有するイン
ターコネクタを示す概略図。
FIG. 4 is a schematic diagram showing an interconnect having profiling viewed from the air side.

【図5】図4のインターコネクタの裏面を示す概略図。FIG. 5 is a schematic view showing the back surface of the interconnector of FIG. 4;

【図6】セル積層体の一部の断面図。FIG. 6 is a cross-sectional view of a part of the cell stack.

【図7】図4のインターコネクタの一変形例を示す概略
図。
FIG. 7 is a schematic view showing a modification of the interconnector of FIG. 4;

【図8】更なる別のインターコネクタの断面図。FIG. 8 is a sectional view of still another interconnector.

【符号の説明】[Explanation of symbols]

1…燃料セル電池、2…積層体、3…PEN、4…イン
ターコネクタ、5…共通通路、11…第1の流体(燃料
ガス)、12…第2の流体(空気)、24…方向転換領
域、41…プロファイリング(ノブ状隆起)、42…プ
ロファイリング(櫛状隆起)。
DESCRIPTION OF SYMBOLS 1 ... Fuel cell battery, 2 ... Laminated body, 3 ... PEN, 4 ... Interconnector, 5 ... Common passage, 11 ... First fluid (fuel gas), 12 ... Second fluid (air), 24 ... Direction change Areas 41 profiling (knob-shaped ridges), 42 profiling (comb-shaped ridges).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 エマド バタヴィ スイス国 CH−8400 ヴィンターツール シュタインベルクガッセ 20 Fターム(参考) 5H026 AA06 BB01 CC04 CC08 CV01 CV10 HH00 HH03 HH05  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Emad Batavi CH-8400 Winter tool Steinberggasse 20 F-term (reference) 5H026 AA06 BB01 CC04 CC08 CV01 CV10 HH00 HH03 HH05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 平面状セル(3,4)の積層体(2)を
有する燃料セル電池(1)であって、 a)電気化学的活性プレート(3)としてのPEN及び
インターコネクタ(4)が交互に配され、 b)前記PEN及びインターコネクタはそれぞれ第1の
辺縁(21)と第2の辺縁(22)とを備え、第1の辺
縁(21)と第2の辺縁(22)との間にはほぼ一定の
幅を有する直線状または湾曲した領域(20)が延び、 c)この領域は小区画(23)に分割され、該小区画
(23)を通じて前記2つの辺縁(21,22)が連結
され、 d)インターコネクタがプロファイリング(41,4
2)を有することにより2種類の流体(11,12)が
セルを通じて別々に流れることが可能であり、 e)各小区画には、第1の辺縁(21)において第1の
流体(11)のための流入点(211)、第2の辺縁
(22)において第2の流体のための流入点(21
2)、及び両方の流体(11,12)のための流出点
(213)が設けられ、 f)前記流出点(213)はセル積層体(2)全体の共
通の通路(5)内に開口し、 g)動作時にPENにおいて開放される反応熱のための
熱担体媒体として前記第2の流体(12)が供給される
燃料セル電池(1)において、 インターコネクタ(4)は1層に形成され、そのプロフ
ァイリングは両方の流体が常にPENに接触して流れる
ようにそれぞれ構成されることと、第1の辺縁(21)
には第2の流体(12)の流れの方向を反転させるため
の方向転換領域(24)が設けられることと、動作時に
PENにおいて望ましくない熱応力の値を上回ることが
ないようにセルの寸法が取られていることとを特徴とす
る燃料セル電池。
1. A fuel cell (1) comprising a stack (2) of planar cells (3, 4), comprising: a) PEN as an electrochemically active plate (3) and an interconnector (4). B) the PEN and the interconnector each have a first edge (21) and a second edge (22), the first edge (21) and the second edge A straight or curved area (20) having a substantially constant width extending between the two areas (22); c) this area is divided into small sections (23) through which the two areas are divided; Edges (21,22) are connected; d) Interconnector is profiled (41,4)
2) allows the two fluids (11, 12) to flow separately through the cell; e) each sub-compartment has a first fluid (11) at a first margin (21). ), The inflow point (21) for the second fluid at the second margin (22).
2) and an outlet point (213) for both fluids (11, 12) is provided; f) said outlet point (213) is open in a common passage (5) of the whole cell stack (2). G) In the fuel cell (1) supplied with said second fluid (12) as a heat carrier medium for reaction heat released in the PEN during operation, the interconnector (4) is formed in one layer The profiling is such that both fluids always flow in contact with the PEN respectively, and that the first edge (21)
Is provided with a diverting area (24) for reversing the direction of flow of the second fluid (12) and the dimensions of the cell so as not to exceed undesired thermal stress values in the PEN during operation. And a fuel cell battery.
【請求項2】 個々のインターコネクタ(4)は予備形
成かつ焼結した要素であるかまたはこれから製造される
ことを特徴とする請求項1に記載の燃料セル電池。
2. The fuel cell according to claim 1, wherein the individual interconnectors are preformed and sintered elements or are manufactured therefrom.
【請求項3】 インターコネクタ(4)のプロファイリ
ングはPEN(3)への電気的接点を与えるノブ状の隆
起(41)を有することを特徴とする請求項1または2
に記載の燃料セル電池。
3. The profiling of the interconnector (4) has a knob-like ridge (41) providing an electrical contact to the PEN (3).
3. The fuel cell battery according to claim 1.
【請求項4】 流体(11,12)を流すためのインタ
ーコネクタ(4)のプロファイリングは特に第2の流体
(12)側において櫛状の隆起(42)を有すること
と、これらの隆起はPEN(3)への電気的接点を与え
ることとを特徴とする請求項1乃至3のいずれか1項に
記載の燃料セル電池。
4. The profiling of the interconnector (4) for flowing the fluids (11, 12) has in particular a comb-like ridge (42) on the side of the second fluid (12), and these ridges are PEN The fuel cell according to any one of claims 1 to 3, wherein an electrical contact to (3) is provided.
【請求項5】 前記櫛状隆起(42)の少なくとも一部
はラセン形状を有するか、あるいは、直線にて形成され
るとともに径方向に向けられることを特徴とする請求項
4に記載の燃料セル電池。
5. The fuel cell according to claim 4, wherein at least a part of the comb-like protrusion has a helical shape or is formed in a straight line and is directed in a radial direction. battery.
【請求項6】 各小区画(23)には方向転換領域(2
4)に向かう通路(43)が設けられ、該通路(43)
の断面はPEN(3)に直交する方向に沿って、残りの
プロファイリングの対応する深さと比較してより大きな
深さを有することを特徴とする請求項1乃至5のいずれ
か1項に記載の燃料セル電池。
6. Each of the small sections (23) has a turning area (2).
And a passage (43) directed to 4) is provided.
6. The cross-section of claim 1 having a greater depth along a direction perpendicular to the PEN (3) compared to the corresponding depth of the remaining profiling. Fuel cell battery.
【請求項7】 電池(1)の動作時において、PEN反
応において生じる廃熱の少なくとも1/3が放射(6)
によりセル積層体(2)から放出されるようにセルが寸
法取りされることを特徴とする請求項1乃至6のいずれ
か1項に記載の燃料セル電池。
In operation of the battery (1), at least one third of the waste heat generated in the PEN reaction is radiated (6).
7. The fuel cell according to claim 1, wherein the cells are dimensioned such that they are released from the cell stack (2).
【請求項8】 少なくともほぼ中心に対して対称となる
ようにセルは構成され、軸方向に延びる中央通路を介し
て第1の流体(11)を供給することが可能であり、好
ましくはこの通路に第1の流体(11)を処理するため
のリフォーマが配され、共通の通路は流出点においてア
ウターバーナー室として設けられ、セル積層体(2)の
周囲の積層体(2)が透過性を有するように構成される
ことにより、放射された反応熱は第2の流体がセル内に
流入する際に吸収されることを特徴とする請求項1乃至
7のいずれか1項に記載の燃料セル電池。
8. The cell is configured to be at least approximately symmetrical about a center, and is capable of supplying the first fluid (11) via a central passage extending in the axial direction, preferably this passage. A reformer for treating the first fluid (11) is provided, a common passage is provided as an outer burner chamber at the outlet point, and the stack (2) around the cell stack (2) is permeable. The fuel cell according to any one of claims 1 to 7, wherein the reaction fluid is absorbed when the second fluid flows into the cell. battery.
【請求項9】 前記小区画(23)はサイズが等しく、
その数は4〜10個であることを特徴とする請求項8に
記載の燃料セル電池。
9. The sub-partitions (23) are equal in size,
9. The fuel cell battery according to claim 8, wherein the number is 4 to 10.
【請求項10】例として自動車または緊急電力アグレゲ
ートにおける電流供給要素としての、移動用途における
請求項1乃至9のいずれか1項に記載の燃料セル電池の
使用。
10. The use of a fuel cell according to claim 1 in a mobile application, as a current supply element in a motor vehicle or emergency power aggregate, as an example.
JP2000157998A 1999-07-28 2000-05-29 Fuel cell battery and method of using the same Expired - Fee Related JP4728467B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99810680 1999-07-28
EP99810680-1 1999-07-28

Publications (2)

Publication Number Publication Date
JP2001052724A true JP2001052724A (en) 2001-02-23
JP4728467B2 JP4728467B2 (en) 2011-07-20

Family

ID=8242946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157998A Expired - Fee Related JP4728467B2 (en) 1999-07-28 2000-05-29 Fuel cell battery and method of using the same

Country Status (9)

Country Link
US (1) US6569554B1 (en)
EP (1) EP1075033B1 (en)
JP (1) JP4728467B2 (en)
KR (1) KR20010015067A (en)
CN (1) CN1197185C (en)
AT (1) ATE224103T1 (en)
AU (1) AU771489B2 (en)
DE (1) DE50000473D1 (en)
DK (1) DK1075033T3 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1276162A1 (en) * 2001-06-27 2003-01-15 Delphi Technologies, Inc. Fluid distribution surface for solid fuel cells
US6569554B1 (en) * 1999-07-28 2003-05-27 Sulzer Hexis Ag Fuel cell battery with a stack of planar cells
JP2006185803A (en) * 2004-12-28 2006-07-13 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2006527906A (en) * 2003-06-18 2006-12-07 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー Flow field plate geometry
JP2007179926A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2007179899A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2008282808A (en) * 2007-05-09 2008-11-20 Hexis Ag Method for manufacturing contact between electrochemically active disc and interconnector in high-temperature fuel cell, and fuel cell having such contact
JP2013501319A (en) * 2009-08-06 2013-01-10 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. Solid oxide fuel cell system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1264360B1 (en) * 2001-02-12 2006-06-07 The Morgan Crucible Company Plc Flow field plate geometries
DE50204776D1 (en) * 2001-03-17 2005-12-08 Bayerische Motoren Werke Ag FUEL CELL WITH INTEGRATED HEAT EXCHANGER
JPWO2003009411A1 (en) * 2001-07-18 2004-11-11 株式会社東芝 Polymer electrolyte fuel cell stack
US6780536B2 (en) 2001-09-17 2004-08-24 3M Innovative Properties Company Flow field
GB2387476B (en) * 2002-06-24 2004-03-17 Morgan Crucible Co Flow field plate geometries
JP4324347B2 (en) * 2002-06-28 2009-09-02 本田技研工業株式会社 Fuel cell
JP4324348B2 (en) * 2002-06-28 2009-09-02 本田技研工業株式会社 Fuel cell
JP4324409B2 (en) * 2002-08-28 2009-09-02 本田技研工業株式会社 Fuel cell
JP2004146345A (en) * 2002-08-28 2004-05-20 Honda Motor Co Ltd Fuel cell
WO2004114446A1 (en) * 2003-06-18 2004-12-29 The Morgan Crucible Company Plc Flow field plate geometries
JP4617711B2 (en) 2004-04-30 2011-01-26 日産自動車株式会社 Fuel cell
EP1724864A1 (en) * 2005-05-18 2006-11-22 Sulzer Hexis AG Interconnector for flat high temperature fuel cell
US8158294B2 (en) * 2006-01-13 2012-04-17 Panasonic Corporation Fuel cell system and method of operating fuel cell system
CN101479876B (en) * 2006-04-11 2013-01-02 myFC股份公司 Improved electrochemical device
EP3376575B1 (en) 2017-03-16 2020-04-29 Hexis AG Method for producing a metallic interconnector for a fuel cell stack, and metallic interconnector made using the method
KR102027764B1 (en) 2018-03-30 2019-10-04 한국과학기술연구원 A separator for a fuel cell and a fuel cell stack comprising the same
CN114361502B (en) * 2022-01-06 2023-10-10 江苏大学 She Maiyan-based bionic proton exchange membrane fuel cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306568A (en) * 1990-08-27 1992-10-29 Gebr Sulzer Ag Method for dissipating heat from fuel cell and temperature balancing member
US5186806A (en) * 1990-12-31 1993-02-16 California Institute Of Technology Ceramic distribution members for solid state electrolyte cells and method of producing
WO1993006627A1 (en) * 1991-09-26 1993-04-01 Ballard Power Systems Inc. Coolant flow field plate for electrochemical fuel cells
EP0714147A1 (en) * 1994-11-23 1996-05-29 Sulzer Innotec Ag High-temperature fuel cell with chromium-containing connecting elements between the electrochemical active plates
US5691075A (en) * 1995-06-13 1997-11-25 Sulzer Innotec Ag High temperature fuel cell
WO1998035398A1 (en) * 1997-02-11 1998-08-13 Bossel Ulf G Fuel cell stack with solid electrolytes and their arrangement
US5981098A (en) * 1997-08-28 1999-11-09 Plug Power, L.L.C. Fluid flow plate for decreased density of fuel cell assembly
US6015633A (en) * 1998-10-07 2000-01-18 Plug Power, L.L.C. Fluid flow plate for water management, method for fabricating same, and fuel cell employing same
JP2000268842A (en) * 1999-03-17 2000-09-29 Sulzer Hexis Ag Fuel cell to make after-burning at peripheral edge of cell stack
JP2002510851A (en) * 1998-04-03 2002-04-09 プラグ パワー インコーポレイテッド PEM fuel cell assembly having a plurality of parallel fuel cell substacks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569554B1 (en) * 1999-07-28 2003-05-27 Sulzer Hexis Ag Fuel cell battery with a stack of planar cells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306568A (en) * 1990-08-27 1992-10-29 Gebr Sulzer Ag Method for dissipating heat from fuel cell and temperature balancing member
US5186806A (en) * 1990-12-31 1993-02-16 California Institute Of Technology Ceramic distribution members for solid state electrolyte cells and method of producing
WO1993006627A1 (en) * 1991-09-26 1993-04-01 Ballard Power Systems Inc. Coolant flow field plate for electrochemical fuel cells
EP0714147A1 (en) * 1994-11-23 1996-05-29 Sulzer Innotec Ag High-temperature fuel cell with chromium-containing connecting elements between the electrochemical active plates
US5691075A (en) * 1995-06-13 1997-11-25 Sulzer Innotec Ag High temperature fuel cell
WO1998035398A1 (en) * 1997-02-11 1998-08-13 Bossel Ulf G Fuel cell stack with solid electrolytes and their arrangement
US5981098A (en) * 1997-08-28 1999-11-09 Plug Power, L.L.C. Fluid flow plate for decreased density of fuel cell assembly
JP2002510851A (en) * 1998-04-03 2002-04-09 プラグ パワー インコーポレイテッド PEM fuel cell assembly having a plurality of parallel fuel cell substacks
US6015633A (en) * 1998-10-07 2000-01-18 Plug Power, L.L.C. Fluid flow plate for water management, method for fabricating same, and fuel cell employing same
JP2000268842A (en) * 1999-03-17 2000-09-29 Sulzer Hexis Ag Fuel cell to make after-burning at peripheral edge of cell stack

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569554B1 (en) * 1999-07-28 2003-05-27 Sulzer Hexis Ag Fuel cell battery with a stack of planar cells
US6773845B2 (en) 2001-06-27 2004-08-10 Delphi Technologies, Inc. Fluid distribution surface for solid oxide fuel cells
EP1276162A1 (en) * 2001-06-27 2003-01-15 Delphi Technologies, Inc. Fluid distribution surface for solid fuel cells
JP2006527906A (en) * 2003-06-18 2006-12-07 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー Flow field plate geometry
JP4598514B2 (en) * 2004-12-28 2010-12-15 本田技研工業株式会社 Fuel cell and fuel cell stack
JP2006185803A (en) * 2004-12-28 2006-07-13 Honda Motor Co Ltd Fuel cell and fuel cell stack
US8110318B2 (en) 2004-12-28 2012-02-07 Honda Motor Co., Ltd. Solid oxide fuel cell with reforming chamber integrated within separator plates
JP2007179899A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP4611196B2 (en) * 2005-12-28 2011-01-12 本田技研工業株式会社 Fuel cell and fuel cell stack
JP4611194B2 (en) * 2005-12-28 2011-01-12 本田技研工業株式会社 Fuel cell and fuel cell stack
JP2007179926A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2008282808A (en) * 2007-05-09 2008-11-20 Hexis Ag Method for manufacturing contact between electrochemically active disc and interconnector in high-temperature fuel cell, and fuel cell having such contact
JP2013501319A (en) * 2009-08-06 2013-01-10 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. Solid oxide fuel cell system

Also Published As

Publication number Publication date
CN1197185C (en) 2005-04-13
EP1075033B1 (en) 2002-09-11
AU4884600A (en) 2001-02-01
DK1075033T3 (en) 2002-10-14
KR20010015067A (en) 2001-02-26
CN1283878A (en) 2001-02-14
ATE224103T1 (en) 2002-09-15
DE50000473D1 (en) 2002-10-17
JP4728467B2 (en) 2011-07-20
AU771489B2 (en) 2004-03-25
US6569554B1 (en) 2003-05-27
EP1075033A1 (en) 2001-02-07

Similar Documents

Publication Publication Date Title
JP2001052724A (en) Fuel cell battery having layered product of flat cell
AU774871B2 (en) Fuel cell battery with afterburning at the periphery of a cell stack
AU701250B2 (en) High temperature fuel cell
US7718295B2 (en) Method for preparing an interconnect
US4499663A (en) Method of fabricating a monolithic core for a solid oxide fuel cell
JPH10308227A (en) Solid high molecular electrolyte type fuel cell
JP2009266732A (en) Fuel cell
JP5613392B2 (en) Fuel cell stack
JP5238340B2 (en) Fuel cell
AU1730599A (en) Interconnector for high temperature fuel cells
JPH0443566A (en) Solid electrolyte type fuel cell
JP5341599B2 (en) Fuel cell
JP2004014449A (en) Solid electrolyte fuel cell
JPS59217955A (en) Phosphoric-acid-type fuel cell
JP2000315507A (en) Solid highpolymer fuel cell
JP2011060511A (en) Fuel cell
JP2000058087A (en) Cylindrical cell type solid electrolyte fuel cell
JPS63168972A (en) Fuel cell
JP3327673B2 (en) Module structure of solid oxide fuel cell
JPH0635373Y2 (en) Fuel cell device
JPS6343263A (en) Fuel cell
JPS6351058A (en) Fuel cell
JPH06140058A (en) Fused carbonate type fuel cell
JP2022114816A (en) Heating structure and heating system
JPH09293524A (en) Fuel cell power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Ref document number: 4728467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees