JP2001052688A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JP2001052688A
JP2001052688A JP22715299A JP22715299A JP2001052688A JP 2001052688 A JP2001052688 A JP 2001052688A JP 22715299 A JP22715299 A JP 22715299A JP 22715299 A JP22715299 A JP 22715299A JP 2001052688 A JP2001052688 A JP 2001052688A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
gel
battery
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22715299A
Other languages
Japanese (ja)
Inventor
Machi Ohashi
真智 大橋
Yuichi Kikuma
祐一 菊間
Hideyuki Ogata
秀之 小方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP22715299A priority Critical patent/JP2001052688A/en
Publication of JP2001052688A publication Critical patent/JP2001052688A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To enhance the discharging characteristic by heightening the filling accuracy of an alkaline battery with a gel-form zinc negative electrode. SOLUTION: An alkaline battery is filled with a gel-form zinc negative electrode (zinc + electrolytic solution + gelation agent) through such a process that (1) a specified quantity of zinc and a specified quantity of mixture of electrolytic solution and gelation agent are weighed separately and mixed together to turn into gel form, or (2) a specified quantity of electrolytic solution and a specified quantity of mixture of zinc and gelation agent are weighed separately and mixed together to turn into gel form, or (3) a specified quantity of mixture of zinc and gelation agent and a specified quantity of mixture of electrolytic solution and gelation agent are weighed separately and mixed together to turn into gel form, and the obtained gel-form negative electrode 4 is put fully in the battery. The gel-form electrode 4 filled in this manner has a high filling accuracy to result in enhancement of the discharging characteristics of battery. Also a high anti-leakage characteristic is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲル化した負極亜
鉛の充填精度を従来のゲル充填方式よりも向上させるこ
とにより、放電特性を向上させることを目的とする。
The present invention has an object to improve discharge characteristics by improving the filling accuracy of gelled negative electrode zinc as compared with the conventional gel filling method.

【0002】[0002]

【従来の技術】負極に亜鉛を使用し、電解液として水酸
化カリウムまたは水酸化ナトリウム等のアルカリ性水溶
液を使用するアルカリ電池の製造にあたっては、その負
極亜鉛の充填工程として、(1)亜鉛と電解液とゲル化
剤との三者をあらかじめ混合し、次いでこの混合物を秤
量し、次いで電池内に充填する「ゲル充填方式」と、
(2)亜鉛とゲル化剤との混合物および電解液を別々に
秤量し、次いで電池内にそれぞれを別々に充填して電池
内でゲル化する「パウダー方式」、の2種類の方式が一
般的に行われている。
2. Description of the Related Art In the manufacture of an alkaline battery using zinc as a negative electrode and an alkaline aqueous solution such as potassium hydroxide or sodium hydroxide as an electrolytic solution, the following steps must be taken. A `` gel filling method '' in which a liquid and a gelling agent are preliminarily mixed, the mixture is weighed, and then charged into a battery.
(2) Two types of methods are generally used: a "powder method" in which a mixture of zinc and a gelling agent and an electrolytic solution are separately weighed, and then separately charged into a battery and gelled in the battery. It has been done.

【0003】また、その充填量の上限値については、電
池内容積や正極とのバランスによって決定し、充填量の
中心値は、それぞれ充填方法によるバラツキを考慮し
て、決定するのが一般的である。
In general, the upper limit of the filling amount is determined based on the internal volume of the battery and the balance with the positive electrode, and the center value of the filling amount is generally determined in consideration of the variation depending on the filling method. is there.

【0004】しかしながら、「ゲル充填方式」の場合、
充填すべきゲルの粘度にバラツキがあって、十分な充填
精度が得られず、このバラツキ分だけ、負極充填量の中
心値を小さくして電池を製造する必要があった。
However, in the case of the "gel filling method",
Since the viscosity of the gel to be filled varies, sufficient filling accuracy cannot be obtained, and it is necessary to manufacture a battery by reducing the central value of the negative electrode filling amount by the variation.

【0005】一方、「パウダー方式」では、電池製造に
おいては十分な充填精度を得ることができて、負極充填
量の中心値を上限値近くに設定して充填することができ
るが、亜鉛と電解液が電池内でゲル化し終わるまでに電
解液の一部が遊離の状態で存在するので、この遊離電解
液が負極集電体を這い上がって、結果として高温高湿貯
蔵における耐漏液特性を低下させる原因となっていた。
On the other hand, in the “powder method”, sufficient filling accuracy can be obtained in battery production, and the filling can be performed with the center value of the negative electrode filling amount set near the upper limit. Since part of the electrolyte is free before the solution has gelled in the battery, this free electrolyte crawls up the negative electrode current collector, resulting in a decrease in leakage resistance during high-temperature and high-humidity storage. Was causing it.

【0006】さらに「パウダー方式」では、負極亜鉛に
含まれる水銀量を低減させたところ、その原因は不明で
あるが、「ゲル充填方式」に比較して、亜鉛の利用率が
大きく低下して、放電特性が低下するという問題が発生
することがわかった。
Further, in the "powder method", when the amount of mercury contained in the negative electrode zinc is reduced, the cause is unknown, but the zinc utilization rate is greatly reduced as compared with the "gel filling method". It has been found that a problem that the discharge characteristics are deteriorated occurs.

【0007】[0007]

【発明が解決しようとする課題】このように、亜鉛負極
の充填に関しては、従来から2つの方式が用いられてい
るが、総じて「ゲル充填方式」の方が電池特性が良好で
ある。しかしながら、この方式を用いた場合には、上記
したように負極亜鉛の充填精度のバラツキが大きいた
め、放電特性上最適な充填量まで負極亜鉛を充填するこ
とができなかった。
As described above, two methods have conventionally been used for filling a zinc negative electrode, but the "gel filling method" generally has better battery characteristics. However, in the case of using this method, the filling accuracy of the negative electrode zinc is large as described above, so that the negative electrode zinc could not be filled to an optimum filling amount in terms of discharge characteristics.

【0008】本発明は上記情況に対処してなされたもの
で、アルカリ電池において従来の「ゲル充填方式」にお
ける負極亜鉛の充填精度のバラツキを防止して、「パウ
ダー方式」と同等レベルまで充填精度を向上させ、それ
によって放電特性を従来の「ゲル充填方式」より向上さ
せることを目的とする。
The present invention has been made in view of the above-described circumstances, and it is intended to prevent a variation in the filling accuracy of the negative electrode zinc in the conventional “gel filling method” in an alkaline battery, and to improve the filling accuracy to the same level as the “powder method”. It is an object of the present invention to improve the discharge characteristics, thereby improving the discharge characteristics as compared with the conventional “gel filling method”.

【0009】[0009]

【課題を解決するための手段】本発明は、負極作用物質
としての亜鉛と、電解液としてのアルカリ性水溶液と、
ゲル化剤とを含むゲル状負極を用いたアルカリ電池にお
いて、亜鉛の所定量と、電解液とゲル化剤との混合物
の所定量とを別々に秤量した後、これらを混合してゲル
状とし、次いで電池内へ充填したゲル状負極を有する
か、電解液の所定量と、亜鉛とゲル化剤との混合物の
所定量とを別々に秤量した後、これらを混合してゲル状
とし、次いで電池内へ充填したゲル状負極を有するか、
亜鉛とゲル化剤との混合物の所定量と、電解液とゲル
化剤との混合物の所定量とを別々に秤量した後、これら
を混合してゲル状とし、次いで電池内へ充填したゲル状
負極を有することを特徴とする。
According to the present invention, zinc is used as a negative electrode active material, an alkaline aqueous solution is used as an electrolyte,
In an alkaline battery using a gelled negative electrode containing a gelling agent, a predetermined amount of zinc and a predetermined amount of a mixture of an electrolytic solution and a gelling agent are separately weighed and then mixed to form a gel. Then, after having a gelled negative electrode filled in the battery, or a predetermined amount of the electrolytic solution and a predetermined amount of a mixture of zinc and a gelling agent are separately weighed, these are mixed to form a gel, and then Having a gelled negative electrode filled into the battery,
After separately weighing a predetermined amount of a mixture of zinc and a gelling agent and a predetermined amount of a mixture of an electrolytic solution and a gelling agent, mixing them to form a gel, and then filling the battery with a gel It has a negative electrode.

【0010】本発明では、上記の、、いずれの場
合も、電池内に収納されたゲル状負極は、予めゲル化す
る前に各成分が秤量されているので、従来のゲル充填方
式に比べて充填量の精度が高くなる。また従来のパウダ
ー方式に比べた場合には、各成分を混合してゲル化して
から充填するので、電池内で電解液が遊離の状態で存在
することがなく、従来のパウダー方式のように耐漏液特
性を低下させることがない。
According to the present invention, in each case, the components of the gelled negative electrode housed in the battery are weighed before gelling in advance. The accuracy of the filling amount is increased. In addition, when compared with the conventional powder system, each component is mixed and gelled before filling, so that the electrolyte does not exist in a free state in the battery, and leak-proof as in the conventional powder system. Does not degrade liquid properties.

【0011】[0011]

【発明の実施の形態】本発明のアルカリ電池の代表的な
ものとして、ボタン型空気亜鉛電池のPR48(直径
7.8mm、総高5.4mm)を図1に示す。図1に示
すように、このアルカリ電池は、正極として大気中の酸
素を取り込むための正極触媒層群3をもち、負極として
亜鉛粉と電解液(水酸化カリウム水溶液)との混合物を
ゲル化した負極ゲル4をもつ。正極触媒層群3は、空気
孔2を有する正極缶1に図の如く設置されており、負極
ゲル4は負極集電体を兼ねる負極容器5内に収納されて
いて、正極缶1と負極容器5は絶縁パッキング6を介し
てかしめにより密封口されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a button-type air zinc battery PR48 (7.8 mm in diameter, 5.4 mm in total height) as a typical example of the alkaline battery of the present invention. As shown in FIG. 1, this alkaline battery has a positive electrode catalyst layer group 3 for taking in oxygen in the air as a positive electrode, and a mixture of zinc powder and an electrolytic solution (aqueous potassium hydroxide solution) was gelled as a negative electrode. It has a negative electrode gel 4. The positive electrode catalyst layer group 3 is installed in a positive electrode can 1 having an air hole 2 as shown in the figure, and a negative electrode gel 4 is contained in a negative electrode container 5 also serving as a negative electrode current collector. 5 is hermetically sealed by caulking through an insulating packing 6.

【0012】(実施例1)負極として6%汞化亜鉛、電
解液として35%水酸化カリウム水溶液、およびゲル化
剤としてポリアクリル酸ソーダを、重量比で100:3
0:1の割合で用いた。本実施例では、6%汞化亜鉛と
ゲル化剤とを上記割合で混合したものと、35%水酸化
カリウム水溶液とを、それぞれ上記割合になるように予
め秤量し、次にこれらを混合してゲル状負極とし、電池
内へ充填した。
(Example 1) 6% zinc zinc oxide as a negative electrode, 35% aqueous potassium hydroxide solution as an electrolytic solution, and sodium polyacrylate as a gelling agent in a weight ratio of 100: 3.
Used at a ratio of 0: 1. In the present embodiment, a mixture of 6% of zinc calomel and the gelling agent in the above ratio and a 35% aqueous solution of potassium hydroxide are weighed in advance so as to have the above ratio, respectively, and then these are mixed. This was used as a gelled negative electrode to fill the battery.

【0013】一般に空気電池では、放電により亜鉛が酸
化亜鉛に変わり、負極体積が膨張する。したがって、負
極容器の容積に対して放電後の負極体積が100%を超
えないように負極を充填する必要があり、これを負極充
填量の上限値としている。ところで、前記の放電後の負
極体積とは、充填する亜鉛がすべて酸化亜鉛に変化した
として計算し、それに電解液とゲル化剤の各体積を単純
加算した値であり、負極仕様(例えば、配合、電解液濃
度、汞化率)によって異なるので、各仕様毎に計算す
る。
Generally, in an air battery, zinc is changed to zinc oxide by discharge, and the volume of the negative electrode expands. Therefore, it is necessary to fill the negative electrode so that the volume of the negative electrode after discharge does not exceed 100% of the volume of the negative electrode container, and this is set as the upper limit of the negative electrode filling amount. By the way, the negative electrode volume after the discharge is a value obtained by calculating assuming that all of the filled zinc has changed to zinc oxide, and simply adding the respective volumes of the electrolytic solution and the gelling agent to the negative electrode specification (for example, , Electrolyte concentration, and rate of calcining), so it is calculated for each specification.

【0014】本実施例においては上記の充填プロセスに
したがって上記のゲル状負極を充填し、100個の試作
品を製作した。ゲル充填量のバラツキを考慮して、負極
ゲルを100回充填したときの分散σの値を計算し、4
σを上記の充填上限値から引いた値を平均充填量とし
た。
In this embodiment, the gelled negative electrode was filled according to the above filling process, and 100 prototypes were manufactured. The value of the dispersion σ when the negative electrode gel was filled 100 times was calculated in consideration of the variation of the gel filling amount, and 4
The value obtained by subtracting σ from the above filling upper limit was defined as the average filling amount.

【0015】なお、別個に従来のゲル充填方式による充
填を行なって従来例とした。これは、6%汞化亜鉛、3
5%水酸化カリウム水溶液およびポリアクリル酸ソーダ
を、重量比で100:30:1の割合で混合して負極ゲ
ルを調製し、これを充填機を用いて秤量して電池内に充
填した。平均充填量はゲル充填量のバラツキを考慮し
て、負極ゲルを100回充填したときの分散σの値を計
算し、上記実施例と同様に4σを上記の充填上限値から
引いた値を平均充填量とした。
[0015] Separately, a conventional gel filling method was used to perform filling to obtain a conventional example. This is a 6% zinc calomelide, 3
A 5% aqueous solution of potassium hydroxide and sodium polyacrylate were mixed at a weight ratio of 100: 30: 1 to prepare a negative electrode gel, which was weighed using a filling machine and filled into the battery. The average filling amount is calculated by taking into account the dispersion of the gel filling amount, calculating the value of the dispersion σ when the negative electrode gel is filled 100 times, and averaging the value obtained by subtracting 4σ from the above filling upper limit value in the same manner as in the above example. The filling amount was used.

【0016】(実施例2)6%汞化亜鉛を秤量し、ゲル
化剤と電解液の混合物を秤量し、次にこれらを混合して
ゲル状負極とし、電池内へ充填した。これ以外は実施例
1と同じとした。
(Example 2) 6% of zinc calomel was weighed, a mixture of a gelling agent and an electrolytic solution was weighed, and then these were mixed to form a gelled negative electrode, which was filled into a battery. Except for this, it was the same as Example 1.

【0017】(実施例3)汞化亜鉛の汞化率を3%と
し、その他は実施例1と同じとした。
(Example 3) The rate of calcining of zinc-melted zinc was 3%, and the other conditions were the same as in Example 1.

【0018】(実施例4)汞化亜鉛の汞化率を1%と
し、その他は実施例1と同じとした。
(Example 4) The rate of calcining of zinc-melted zinc was 1%, and the other conditions were the same as in Example 1.

【0019】(実施例5)亜鉛に無汞化亜鉛を用い、そ
の他は実施例1と同じとした。
(Example 5) The same zinc-free zinc was used as in Example 1 except that zinc was used.

【0020】(比較例1)充填方法をゲル充填方式とし
て、その他は実施例3と同じとした。
Comparative Example 1 The filling method was the gel filling method, and the other conditions were the same as in Example 3.

【0021】(比較例2)充填方法をゲル充填方式とし
て、その他は実施例4と同じとした。
(Comparative Example 2) The filling method was the gel filling method, and the other conditions were the same as in Example 4.

【0022】(比較例3)充填方法をゲル充填方式とし
て、その他は実施例5と同じとした。
Comparative Example 3 The filling method was the gel filling method, and the other conditions were the same as in Example 5.

【0023】(比較例4)充填方法をパウダー方式とし
て、その他は従来例と同じとした。
(Comparative Example 4) The filling method was the powder method, and the other conditions were the same as the conventional example.

【0024】(比較例5)充填方法をパウダー方式とし
て、その他は実施例3と同じとした。
(Comparative Example 5) The filling method was the powder method, and the other conditions were the same as in Example 3.

【0025】(比較例6)充填方法をパウダー方式とし
て、その他は実施例4と同じとした。
(Comparative Example 6) The filling method was the powder method, and the other conditions were the same as in Example 4.

【0026】(比較例7)充填方法をパウダー方式とし
て、その他は実施例5と同じとした。
(Comparative Example 7) The filling method was the powder method, and the other conditions were the same as in Example 5.

【0027】以上の各実施例、比較例および従来例につ
いて、放電特性と耐漏液特性を比較した。放電特性は、
試作した電池10個を20℃60%RHの環境で620
Ωで連続放電し、その平均持続時間を特性値とした。耐
漏液特性は試作した電池50個を60℃93%RHの環
境で1か月貯蔵し、何個の電池が漏液しているかを数
え、その漏液発生率を特性値とした。これらを表1に示
す。
The discharge characteristics and leakage resistance characteristics of each of the above Examples, Comparative Examples and Conventional Examples were compared. The discharge characteristics are
10 prototyped batteries were stored in an environment of 20 ° C and 60% RH for 620
Continuous discharge was performed at Ω, and the average duration was taken as a characteristic value. The leak-proof characteristic was obtained by storing 50 prototype batteries for one month in an environment of 60 ° C. and 93% RH, counting how many batteries leaked, and setting the leak occurrence rate as a characteristic value. These are shown in Table 1.

【0028】また、各例における平均充填量とσについ
ても、まとめて表1に示す。平均値とσのサンプル数は
100個である。
Table 1 also shows the average filling amount and σ in each example. The average value and the number of samples of σ are 100.

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果から、各実施例では、従来例や
各比較例に比べ、放電特性が向上しており、耐漏液特性
は従来例と同程度で、各比較例よりも向上していること
が分かる。また、亜鉛中の水銀を低減もしくは削除して
も、本方式の充填方法によれば、従来のパウダー方式に
比較して、放電特性の低下を抑制することができること
も分かる。
From the results shown in Table 1, in each of the examples, the discharge characteristics were improved as compared with the conventional example and each of the comparative examples, and the liquid leakage resistance was almost the same as that of the conventional example, and was improved as compared with each of the comparative examples. You can see that there is. Also, it can be seen that even if the mercury in zinc is reduced or eliminated, the filling method of the present method can suppress a decrease in discharge characteristics as compared with the conventional powder method.

【0031】[0031]

【発明の効果】以上説明したように、本発明のアルカリ
電池は、ゲル状負極亜鉛の充填精度が従来のゲル充填方
式よりも向上して放電特性が向上し、しかも従来のパウ
ダー方式に比べて耐漏液特性が向上する。
As described above, in the alkaline battery of the present invention, the filling accuracy of the gelled negative electrode zinc is improved as compared with the conventional gel filling system, the discharge characteristics are improved, and moreover, compared with the conventional powder system. Improved liquid leakage resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である空気亜鉛電池の要部断
面図。
FIG. 1 is a sectional view of a main part of a zinc-air battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…正極缶、2…空気孔、3…正極触媒層群、4…負極
ゲル、5…負極集電体、6…絶縁パッキング。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Air hole, 3 ... Positive electrode catalyst layer group, 4 ... Negative electrode gel, 5 ... Negative electrode current collector, 6 ... Insulating packing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小方 秀之 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H015 AA02 BB07 BB09 CC01 DD01 EE15 HH01 5H024 AA14 BB07 BB08 CC03 FF07 FF31 GG01 HH01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hideyuki Ogata 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H015 AA02 BB07 BB09 CC01 DD01 EE15 HH01 5H024 AA14 BB07 BB08 CC03 FF07 FF31 GG01 HH01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 負極作用物質としての亜鉛と、電解液と
してのアルカリ性水溶液と、ゲル化剤とを含むゲル状負
極を用いたアルカリ電池において、亜鉛の所定量と、電
解液とゲル化剤との混合物の所定量とを別々に秤量した
後、これらを混合してゲル状とし、次いで電池内へ充填
したゲル状負極を有することを特徴とするアルカリ電
池。
In an alkaline battery using a gelled negative electrode containing zinc as a negative electrode active substance, an alkaline aqueous solution as an electrolytic solution, and a gelling agent, a predetermined amount of zinc, an electrolytic solution and a gelling agent are used. An alkaline battery having a gelled negative electrode, which is separately weighed with a predetermined amount of the mixture of the above, and then mixed to form a gel, and then filled into the battery.
【請求項2】 負極亜鉛が水銀含有率3%以下の低水銀
亜鉛もしくは無汞化亜鉛である請求項1記載のアルカリ
電池。
2. The alkaline battery according to claim 1, wherein the negative electrode zinc is a low-mercury zinc having a mercury content of 3% or less or a non-melting zinc.
【請求項3】 負極作用物質としての亜鉛と、電解液と
してのアルカリ性水溶液と、ゲル化剤とを含むゲル状負
極を用いたアルカリ電池において、電解液の所定量と、
亜鉛とゲル化剤との混合物の所定量とを別々に秤量した
後、これらを混合してゲル状とし、次いで電池内へ充填
したゲル状負極を有することを特徴とするアルカリ電
池。
3. An alkaline battery using a gelled negative electrode containing zinc as a negative electrode active substance, an aqueous alkaline solution as an electrolytic solution, and a gelling agent, wherein a predetermined amount of the electrolytic solution is
An alkaline battery having a gelled negative electrode in which a predetermined amount of a mixture of zinc and a gelling agent is separately weighed and then mixed to form a gel, and then filled into the battery.
【請求項4】 負極亜鉛が水銀含有率3%以下の低水銀
亜鉛もしくは無汞化亜鉛である請求項3記載のアルカリ
電池。
4. The alkaline battery according to claim 3, wherein the negative electrode zinc is a low-mercury zinc having a mercury content of 3% or less or a non-molten zinc.
【請求項5】 負極作用物質としての亜鉛と、電解液と
してのアルカリ性水溶液と、ゲル化剤とを含むゲル状負
極を用いたアルカリ電池において、亜鉛とゲル化剤との
混合物の所定量と、電解液とゲル化剤との混合物の所定
量とを別々に秤量した後、これらを混合してゲル状と
し、次いで電池内へ充填したゲル状負極を有することを
特徴とするアルカリ電池。
5. In an alkaline battery using a gelled negative electrode containing zinc as a negative electrode active substance, an alkaline aqueous solution as an electrolytic solution, and a gelling agent, a predetermined amount of a mixture of zinc and a gelling agent; An alkaline battery having a gelled negative electrode, wherein a predetermined amount of a mixture of an electrolytic solution and a gelling agent is separately weighed, mixed to form a gel, and then filled into the battery.
【請求項6】 負極亜鉛が水銀含有率3%以下の低水銀
亜鉛もしくは無汞化亜鉛である請求項5記載のアルカリ
電池。
6. The alkaline battery according to claim 5, wherein the negative electrode zinc is a low-mercury zinc having a mercury content of 3% or less or a non-melon-free zinc.
JP22715299A 1999-08-11 1999-08-11 Alkaline battery Pending JP2001052688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22715299A JP2001052688A (en) 1999-08-11 1999-08-11 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22715299A JP2001052688A (en) 1999-08-11 1999-08-11 Alkaline battery

Publications (1)

Publication Number Publication Date
JP2001052688A true JP2001052688A (en) 2001-02-23

Family

ID=16856322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22715299A Pending JP2001052688A (en) 1999-08-11 1999-08-11 Alkaline battery

Country Status (1)

Country Link
JP (1) JP2001052688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136464A (en) * 1979-04-10 1980-10-24 Toshiba Battery Co Ltd Manufacturing method of gell-like negative electrode
JPH07114914A (en) * 1993-10-18 1995-05-02 Matsushita Electric Ind Co Ltd Manufacture of alkaline zinc battery
JPH09270254A (en) * 1996-04-02 1997-10-14 Toshiba Battery Co Ltd Zinc alkaline battery
JPH10208754A (en) * 1997-01-24 1998-08-07 Toshiba Battery Co Ltd Mercury-free alkaline battery and production of gel-state zinc therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136464A (en) * 1979-04-10 1980-10-24 Toshiba Battery Co Ltd Manufacturing method of gell-like negative electrode
JPH07114914A (en) * 1993-10-18 1995-05-02 Matsushita Electric Ind Co Ltd Manufacture of alkaline zinc battery
JPH09270254A (en) * 1996-04-02 1997-10-14 Toshiba Battery Co Ltd Zinc alkaline battery
JPH10208754A (en) * 1997-01-24 1998-08-07 Toshiba Battery Co Ltd Mercury-free alkaline battery and production of gel-state zinc therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Similar Documents

Publication Publication Date Title
AU685708B2 (en) Alkaline battery
US4015056A (en) Method of manufacturing a stable divalent silver oxide depolarizer mix
JP3215448B2 (en) Zinc alkaline battery
JPH03219557A (en) Electrochemical battery
JPH07254406A (en) Unamalgamated zinc alkaline battery
JP2001052688A (en) Alkaline battery
US4782584A (en) Alkaline cell manufacturing method
JPS61156639A (en) Enclosed type alkaline storage battery
JPH0696793A (en) Manufacture of sealed lead-acid battery
JPH07240202A (en) Alkaline battery
JP3315530B2 (en) Alkaline battery
JP3188651B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JPH1173949A (en) Air zinc battery
JPS61273862A (en) Button type alkaline battery
JP2000311722A (en) Button type air zinc battery
JPH0443387B2 (en)
JPH0317182B2 (en)
JPS5873958A (en) Manufacture of alkaline battery
JPH08279355A (en) Button type alkaline battery
JP3188652B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JPH0410708B2 (en)
JPH03230476A (en) Negative electrode active material for alkaline battery
JP2008123790A (en) Zinc alkaline battery, and manufacturing method of its gelatinous zinc negative electrode
JPS5854557A (en) Manufacture of alkaline battery
JPH07114914A (en) Manufacture of alkaline zinc battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060809

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A02 Decision of refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A02