JP2001052537A - Non-halogen flame retardant shield cable - Google Patents

Non-halogen flame retardant shield cable

Info

Publication number
JP2001052537A
JP2001052537A JP11224747A JP22474799A JP2001052537A JP 2001052537 A JP2001052537 A JP 2001052537A JP 11224747 A JP11224747 A JP 11224747A JP 22474799 A JP22474799 A JP 22474799A JP 2001052537 A JP2001052537 A JP 2001052537A
Authority
JP
Japan
Prior art keywords
resin composition
foam
flame retardant
flame
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11224747A
Other languages
Japanese (ja)
Other versions
JP2001052537A5 (en
Inventor
Hiroshi Hayami
宏 早味
Kiyoaki Moriuchi
清晃 森内
Masayo Uenoyama
眞代 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11224747A priority Critical patent/JP2001052537A/en
Publication of JP2001052537A publication Critical patent/JP2001052537A/en
Publication of JP2001052537A5 publication Critical patent/JP2001052537A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce conversion dielectric constant to a specified value or less to obtain high flame resistance by covering a center conductor with a foam of a resin composition added with a non-halogen-based flame retardant material to a base polymer of a mixture of polyolefin and polyphenylene ether of a specified ratio, and sequentially forming an outer conductor layer and a jacket layer on the foamed body. SOLUTION: A center conductor is covered with the foam of a flame retardant resin composition, and an outer conductor layer and a jacket layer are sequentially formed on the foam to constitute a shield cable. The foam is made of a flame retardant resin composition prepared by adding a non-halogen-based flame retardant material to the base polymer of a mixture of polyolefin and polyphenylene ether having a weight ratio of 90/10-20/80. A non-halogen flame retardant shield cable is obtained with conversion dielectric constant of the formed insulator <=2.3, and the foamed insulating cable excluding the jacket layer and the outer conductor layer satisfying the VW-1 vertical firing test of the UL standard.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の内部配
線に用いられる非ハロゲン難燃性シールド電線に関する
ものである。
The present invention relates to a non-halogen flame-retardant shielded electric wire used for internal wiring of electronic equipment.

【0002】[0002]

【従来の技術】電子機器の内部配線に用いる絶縁電線や
シールド電線は機器の発火事故に際して、電線を伝って
火が広がらぬように、難燃性であることが求められてい
る。内部配線材の難燃性の基準は、例えば米国のUL規格
(Underwriters Laboratoriesinc.)等で定められてお
り、VW−1試験と呼ばれる垂直燃焼試験で評価され
る。そこで従来から、上記分野の絶縁電線の被覆材には
ポリ塩化ビニル(PVC)等の難燃性ポリマーや、ポリ
エチレン等のポリオレフィン樹脂に塩素系や臭素系の難
燃剤を配合して難燃化したポリオレフィン系樹脂組成物
が適用されてきた。しかし、近年、環境問題への対応か
らハロゲン系物質を含まない非ハロゲン系難燃樹脂組成
物を被覆材に適用した電線の開発が望まれるようになっ
てきた。
2. Description of the Related Art Insulated wires and shielded wires used for internal wiring of electronic devices are required to be flame-retardant so that fire does not spread along the wires in the event of a device accident. The standard for the flame retardancy of the internal wiring material is defined by, for example, the UL standard (Underwriters Laboratories Inc.) of the United States, and is evaluated by a vertical combustion test called a VW-1 test. Therefore, a flame retardant polymer such as polyvinyl chloride (PVC) or a chlorine-based or bromine-based flame retardant has been blended with a polyolefin resin such as polyethylene for the covering material of the insulated wire in the above field. Polyolefin-based resin compositions have been applied. However, in recent years, it has been desired to develop an electric wire in which a non-halogen-based flame-retardant resin composition containing no halogen-based substance is applied to a coating material in response to environmental problems.

【0003】一方、電子機器の高性能化に伴い、情報量
も増大し、配線の高密度化も進んでおり、絶縁電線が受
ける外来ノイズによる影響の低減や、絶縁電線に伝送さ
れる高周波電流から輻射する電磁波の量を低減するた
め、絶縁体の外周に編組導体層や横巻き導体層等の外部
導体層を設け、さらにその外周をジャケットで被覆した
シールド電線が使用されるケースが増加している。前記
の通り、これらのシールド電線に対しても難燃性が要求
されるが、難燃性の要求レベルには次の2種類があり、
機器に要求される難燃性のレベルや用途に応じて使い分
けられている。 (1)シールド電線がVW−1試験に合格すればよく、
絶縁体には難燃性が要求されないもの。 (2)シールド電線がVW−1試験に合格するだけでな
く、絶縁体にも難燃性が要求され、ジャケットと外部導
電層を取り去った状態の試料(中心導体と絶縁体だけの
状態)についてもVW−1試験に合格することが要求さ
れるもの。
[0003] On the other hand, as the performance of electronic equipment has become higher, the amount of information has increased and the density of wiring has been increasing, and the influence of external noise on insulated wires has been reduced, and high-frequency current transmitted to insulated wires has been reduced. In order to reduce the amount of electromagnetic waves radiated from the outside, an outer conductor layer such as a braided conductor layer or a horizontally wound conductor layer is provided on the outer periphery of the insulator, and the use of a shielded wire whose outer periphery is covered with a jacket is increasing. ing. As described above, these shielded wires are also required to have flame retardancy, but there are two types of required flame retardancy,
They are used differently according to the level of flame retardancy required for the equipment and the application. (1) The shielded wire only needs to pass the VW-1 test,
Non-flammable insulator is not required. (2) Not only does the shielded wire pass the VW-1 test, but the insulator also requires flame retardancy, and the sample with the jacket and outer conductive layer removed (only the center conductor and insulator) Are also required to pass the VW-1 test.

【0004】シールド電線においては、信号の伝送速度
のアップや伝送損失の低減のため、絶縁体に誘電率(比
誘電率)、誘電損失の小さい材料を用いる必要がある。
そのため、難燃性の要求レベルが(1)の場合には、絶
縁体には、ポリエチレンや発泡ポリエチレンが用いら
れ、難燃性は、シースにより確保されてきた。一方、難
燃性の要求レベルが(2)の場合は、絶縁体にポリエチ
レンや発泡ポリエチレンをそのまま適用すると、難燃性
不合格となるため、ポリエチレンに塩素系あるいは臭素
系等のハロゲン系難燃剤を添加することで、VW−1試
験に合格する難燃性を確保するとともに、発泡体とする
ことによって、実用上問題のないレベルにまで誘電率や
誘電損失を小さくしたものが絶縁体として用いられてき
た。
In a shielded electric wire, it is necessary to use a material having a small dielectric constant (dielectric constant) and a small dielectric loss for an insulator in order to increase a signal transmission speed and reduce a transmission loss.
Therefore, when the required level of flame retardancy is (1), polyethylene or foamed polyethylene is used for the insulator, and the flame retardancy has been ensured by the sheath. On the other hand, when the required level of flame retardancy is (2), if polyethylene or foamed polyethylene is applied as it is to the insulator, the flame retardancy will be rejected. Is added, the flame retardancy that passes the VW-1 test is ensured, and the foam is used to reduce the dielectric constant and dielectric loss to practically acceptable levels. I have been.

【0005】上記の発泡絶縁層の形成方法としては、加
熱することによって窒素ガス等を発生するアゾビスカル
ボンアミド等の化学発泡剤を難燃性ポリエチレン等の樹
脂中に分散せしめた樹脂組成物を溶融押出機等を用い
て、導体上に押出ながら発泡させる化学発泡押出法や、
難燃性ポリエチレン等の樹脂をガス発泡押出機を用い
て、溶融樹脂中に高圧窒素ガスを注入し、導体に被覆す
ると同時に溶存窒素ガスを発泡させるガス発泡押出法が
ある。
As a method for forming the foamed insulating layer, a resin composition in which a chemical foaming agent such as azobiscarbonamide which generates nitrogen gas or the like by heating is dispersed in a resin such as flame-retardant polyethylene is used. Using a melt extruder, etc., a chemical foaming extrusion method of foaming while extruding on a conductor,
There is a gas foaming extrusion method in which a resin such as flame-retardant polyethylene is injected into a molten resin with a high-pressure nitrogen gas using a gas foaming extruder to coat a conductor and simultaneously foam a dissolved nitrogen gas.

【0006】[0006]

【発明が解決しようとする課題】ところで、最近、前述
の如く、環境問題への対応からハロゲン系物質を含まな
い被覆材料を用いた電線の開発が望まれるようになって
きており、シ―ルド電線もその例にもれない。ハロゲン
系物質を含まない、いわゆる非ハロゲン系の難燃樹脂組
成物としては、ポリエチレン等のポリオレフィン系樹脂
に水酸化アルミニウムや水酸化マグネシウム等の金属水
酸化物系の難燃剤やリン酸エステル系化合物等のリン系
難燃剤を配合した樹脂組成物が知られている。これらの
非ハロゲン系の難燃樹脂組成物に化学発泡押出法やガス
発泡押出法を適用して導体上に発泡体を形成して、低誘
電率化することにより、難燃性と電気的特性とが両立す
る難燃性シールド電線が得られるのであれば問題はな
い。しかしながら、上記の非ハロゲンの難燃樹脂組成物
は、化学発泡押出法やガス発泡押出法を適用しようとし
ても押出中の発泡度が安定しないという問題があって、
発泡度を高めることが難しい。そして、上記の非ハロゲ
ンの難燃樹脂組成物は、発泡させないと、誘電率が3〜
5と、比較的大きい。そのため、誘電率を、安定した状
態で、シールド線として実用上問題のない2.3以下と
いったレベルにまで小さくすることが困難であり、難燃
性と電気的特性を両立させた非ハロゲン系の難燃性シー
ルド電線は得られなかった。
Recently, as described above, it has been desired to develop an electric wire using a coating material that does not contain a halogen-based material in response to environmental problems. Electric wires are not an example. Non-halogen flame-retardant resin compositions containing no halogen-based substances include polyolefin resins such as polyethylene and metal hydroxide-based flame retardants such as aluminum hydroxide and magnesium hydroxide, and phosphate ester compounds. Resin compositions containing a phosphorus-based flame retardant such as described above are known. By applying a chemical foaming extrusion method or a gas foaming extrusion method to these non-halogen flame-retardant resin compositions to form a foam on a conductor and lowering the dielectric constant, flame retardancy and electrical properties are obtained. There is no problem as long as a flame-retardant shielded wire compatible with the above is obtained. However, the non-halogen flame-retardant resin composition has a problem that the foaming degree during the extrusion is not stable even when the chemical foaming extrusion method or the gas foaming extrusion method is applied.
It is difficult to increase the degree of foaming. And, if the non-halogen flame-retardant resin composition is not foamed, the dielectric constant is 3 to
5 which is relatively large. For this reason, it is difficult to reduce the dielectric constant to a level of 2.3 or less, which is practically no problem as a shielded wire, in a stable state, and it is a non-halogen type having both flame retardancy and electrical characteristics. No flame-retardant shielded wires were obtained.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記の問題
について鋭意検討した結果、ポリオレフィン系樹脂とポ
リフェニレンエーテルの混合物をベースポリマーとし、
これに水酸化マグネシウム等の非ハロゲン系の難燃剤を
添加した樹脂組成物を用いれば、化学発泡押出法やガス
発泡押出法によって安定性よく発泡押出を行うことがで
き、シールド電線として用いたときに、実用上問題のな
い2.3以下といったレベルにまで誘電率を小さくした
発泡体を安定して得ることができるとともに、ジャケッ
ト層と外部導電層を取り去った発泡絶縁電線の状態でV
W−1試験に合格する高い難燃性も得られることを見出
し、本発明を完成した。
Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors have made a mixture of a polyolefin resin and polyphenylene ether a base polymer,
If a resin composition to which a non-halogen flame retardant such as magnesium hydroxide is added is used, foam extrusion can be performed with good stability by chemical foaming extrusion or gas foaming extrusion. In addition, it is possible to stably obtain a foam having a dielectric constant reduced to a level of 2.3 or less, which has no practical problem, and to obtain a foamed insulated wire in which the jacket layer and the outer conductive layer have been removed.
The present inventors have found that high flame retardancy that passes the W-1 test can be obtained, and have completed the present invention.

【0008】[0008]

【発明の実施の態様】本発明で用いるポリオレフィン系
樹脂としては、ポリプロピレン、高密度ポリエチレン、
直鎖状低密度ポリエチレン、低密度ポリエチレン、超低
密度ポリエチレン、エチレン酢酸ビニル共重合体、エチ
レンアクリル酸エチル共重合体、エチレンメタクリル酸
メチル共重合体、エチレンアクリル酸メチル等の既知の
プロピレン、エチレン系ポリマーが例示できる。また、
本発明に於いて、ポリフェニレンエーテルとしては、ポ
リフェニレンエーテル単体だけでなく、ポリフェニレン
エーテルを主成分とする混合物、例えば、ポリフェニレ
ンエーテルとポリスチレンの混合物、ポリフェニレンエ
ーテルとポリアミド樹脂の混合物、ポリフェニレンエー
テルとPBT樹脂の混合物、無水マレイン化変性ポリフ
ェニレンエーテル等を含むものとする。本発明に於いて
は、上記のポリオレフィン系樹脂とポリフェニレンエー
テルとの混合物をベースポリマーとして使用するが、ポ
リオレフィン樹脂とポリフェニレンエーテルの混合比は
化学発泡押出やガス発泡押出における安定性や到達発泡
度の点から重量比で90/10〜20/80が好まし
く、より好ましくは70/30〜20/80の範囲が推
奨される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Polyolefin resins used in the present invention include polypropylene, high density polyethylene,
Known propylene and ethylene such as linear low density polyethylene, low density polyethylene, ultra low density polyethylene, ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, ethylene methyl methacrylate copolymer, ethylene methyl acrylate A system polymer can be illustrated. Also,
In the present invention, as the polyphenylene ether, not only polyphenylene ether alone, but also a mixture containing polyphenylene ether as a main component, for example, a mixture of polyphenylene ether and polystyrene, a mixture of polyphenylene ether and polyamide resin, and a mixture of polyphenylene ether and PBT resin The mixture contains maleic anhydride-modified polyphenylene ether and the like. In the present invention, a mixture of the above-mentioned polyolefin resin and polyphenylene ether is used as a base polymer, and the mixing ratio of the polyolefin resin and the polyphenylene ether is controlled by chemical foaming extrusion or gas foaming extrusion. From the viewpoint, a weight ratio of 90/10 to 20/80 is preferable, and a range of 70/30 to 20/80 is more preferable.

【0009】ポリオレフィン系樹脂とポリフェニレンエ
ーテルの混合はバンバリーミキサー、加圧ニーダー、二
軸混合機等の既知の混合装置を適用することができ、両
者の溶融混合時にポリスチレンとポリエチレンのブロッ
ク共重合体やグラフト共重合体、ポリスチレンとエチレ
ンアクリル酸エチルのブロック共重合体やグラフト共重
合体等の既知の相容化剤を添加すれば、ポリオレフィン
系樹脂とポリフェニレンエーテルを微分散させることが
でき、得られる樹脂混合物の伸びや引張強さ等の機械的
物性においても好ましい結果を得ることができる。
For mixing the polyolefin resin and the polyphenylene ether, known mixing devices such as a Banbury mixer, a pressure kneader, and a twin-screw mixer can be applied. When the two components are melt-mixed, a block copolymer of polystyrene and polyethylene can be used. If a known compatibilizing agent such as a graft copolymer, a block copolymer of polystyrene and ethylene ethyl acrylate or a graft copolymer is added, the polyolefin resin and the polyphenylene ether can be finely dispersed and obtained. Preferred results can also be obtained in mechanical properties such as elongation and tensile strength of the resin mixture.

【0010】上記のポリオレフィン樹脂とポリフェニレ
ンエーテルとの混合物をベースポリマーとして、これに
上記の既知の混合装置を用いて非ハロゲン系難燃剤を添
加すれば本発明の難燃性樹脂組成物が得られる。混合
は、あらかじめベースポリマーを混合しておいて、これ
に非ハロゲン難燃剤を添加して再度混合してもよく、ベ
ースポリマーを混合するときに同時に、非ハロゲン難燃
剤も添加して混合しても良い。非ハロゲン難燃剤として
は水酸化アルミニウム、水酸化マグネシウム等の金属水
酸化物、三酸化アンチモン、硼酸塩、モリブデン塩類等
の無機系難燃剤、リン酸エステル化合物、亜リン酸エス
テル化合物、ホスホネート化合物等のリン系難燃剤、メ
ラミン系化合物等の窒素系難燃剤、ポリシロキサン等の
シリコーン系難燃剤等、既知の非ハロゲン系難燃剤が適
用できる。これらを単独または併用して添加するものと
する。非ハロゲン系難燃剤の添加量はベースポリマー1
00重量部に対し、10〜200重量部、より好ましく
は20〜150重量部の範囲で適宜設定できるが、10
重量部未満では十分な難燃性を得ることができず、20
0重量部を越えて配合しても難燃性が頭打ちになるばか
りか、コストの点でも不利である。
If a mixture of the above-mentioned polyolefin resin and polyphenylene ether is used as a base polymer and a non-halogen flame retardant is added thereto using the above-mentioned known mixing apparatus, the flame-retardant resin composition of the present invention can be obtained. . The mixing may be performed by mixing a base polymer in advance, adding a non-halogen flame retardant thereto, and mixing again.At the same time as mixing the base polymer, a non-halogen flame retardant is also added and mixed. Is also good. Non-halogen flame retardants include metal hydroxides such as aluminum hydroxide and magnesium hydroxide, inorganic flame retardants such as antimony trioxide, borates and molybdenum salts, phosphate ester compounds, phosphite ester compounds, phosphonate compounds, etc. Known non-halogen flame retardants such as phosphorus flame retardants, nitrogen flame retardants such as melamine compounds, and silicone flame retardants such as polysiloxane can be applied. These may be added alone or in combination. The amount of non-halogen flame retardant added is base polymer 1
The amount can be appropriately set within the range of 10 to 200 parts by weight, more preferably 20 to 150 parts by weight, with respect to 00 parts by weight.
If the amount is less than 10 parts by weight, sufficient flame retardancy cannot be obtained.
If it is added in excess of 0 parts by weight, not only does the flame retardancy level off, but it is also disadvantageous in terms of cost.

【0011】上記樹脂組成物を発泡させるにあたり、化
学押出発泡法を適用する場合には、アゾビスカルボンア
ミド等のアゾ系化合物、オキシビス(ベンゼンスルホニ
ルヒドラジド)等のヒドラジド化合物、ニトロソ系化合
物、炭酸水素ナトリウム等の既知の化学発泡剤を樹脂組
成物に添加しておいて、押出発泡させれば良い。発泡剤
の添加量は必要とする発泡度に応じて適宜設定できる
が、通常、ベースポリマー100重量部に対し、0.5
〜5重量部の範囲が好ましい。また、ガス押出発泡も適
用することができる。なお、上記の樹脂組成物には必要
に応じて、前記の相容化剤の他、滑剤、充填剤、酸化防
止剤、安定剤、可塑剤等の既知の配合薬品を添加するこ
とも可能である。
In applying the chemical extrusion foaming method to foam the above resin composition, an azo compound such as azobiscarbonamide, a hydrazide compound such as oxybis (benzenesulfonylhydrazide), a nitroso compound, A known chemical foaming agent such as sodium may be added to the resin composition and then extruded and foamed. The amount of the foaming agent can be appropriately set according to the required degree of foaming.
A range of from 5 to 5 parts by weight is preferred. Gas extrusion foaming can also be applied. In addition, if necessary, in addition to the above-described compatibilizer, known compounding chemicals such as a lubricant, a filler, an antioxidant, a stabilizer, and a plasticizer can be added to the resin composition. is there.

【0012】また、本願のシールド電線は加速電子線、
γ線等の電離放射線を照射するなどの方法により、発泡
絶縁体、外被を架橋すれば、耐熱性や耐薬品性が向上
し、より信頼性の高い難燃性シールド電線が得られ、例
えば、端末を半田付けしても発泡層が溶融することな
く、端末加工性が向上する。さらに、上記の発泡絶縁体
の内周や外周に絶縁破壊電圧を向上せしめる等の目的で
充実層を形成してもよく、充実層には本願の樹脂組成物
はもちろんのこと、ポリエチレン樹脂組成物等の既知の
樹脂組成物も適用することが可能である。
Further, the shielded electric wire of the present invention is an accelerating electron beam,
By irradiating ionizing radiation such as γ-rays or the like, if the foamed insulator and the jacket are crosslinked, heat resistance and chemical resistance are improved, and a more reliable flame-retardant shielded wire is obtained. In addition, even when the terminal is soldered, the foamed layer is not melted, and the processability of the terminal is improved. Further, a solid layer may be formed on the inner periphery or the outer periphery of the foamed insulator for the purpose of improving the dielectric breakdown voltage, and the solid layer may be formed of not only the resin composition of the present invention but also a polyethylene resin composition. It is also possible to apply a known resin composition such as

【0013】[0013]

【実施例】以下に実施例を用いて、本発明をさらに詳し
く説明する。 実施例1〜4 表1の上方に実施例1〜4で用いた樹脂組成物の配合の
一部(特徴部分)を示す。これらの実施例で用いた樹脂
組成物には、表1の上方に記載した以外に、ベースポリ
マー100重量部に対し、ステアリン酸0.5重量部、イルカ
゛ノックス1010(チバガイギー製、商品名)1重量部、ポリ
スチレンとポリエチレンのグラフト共重合体(ポリスチ
レンとポリエチレンの比率50/50、MI値1@190
℃荷重2160g)10重量部、アゾビスカルボンアミド1
重量部を共通に添加した。当該樹脂組成物を30mm溶融押
出機(L/D=24)を用いて、素線径0.127mmの軟銅線の7
本撚り導体上に外径1.20mm、インラインのキャパシタン
スモニターで静電容量100±5pF/mとなるように化学発泡
押出を行った。その結果、実施例1〜4の樹脂組成物は
いずれも安定に発泡押出を行うことができ、所望の外径
と静電容量の発泡絶縁電線が得られた。静電容量につい
ては水中漬浸法で確認した結果、表1の下方に記載の如
く、何れも目標値の100±5pF/mの範囲内であり、誘電率
に換算すると(*)、実施例1〜4はいずれも2.0〜
2.1の範囲にあり、シールド電線として実用上問題の
ない2.3以下のレベルの低誘電率の発泡体層が形成さ
れていることがわかった。 (*)静電容量と誘電率の換算式 誘電率ε=(C×log(Do/Di))/24.12 ここに、Cは静電容量、Doは絶縁体の外径、Diは導体の
外径を表す。また、得られた発泡絶縁電線の難燃性を調
べるため、VW−1燃焼試験を試験点数5点で行ったと
ころ、何れも合格することがわかった。続いて、実施例
1〜4の発泡絶縁電線の外周にそれぞれ素線径0.127mm
の錫メッキ軟銅線を横巻きする方法でシールド層を形成
し、その外周にエチレン酢酸ビニル共重合体(酢酸ビニ
ル含量33重量%、MI値5@190℃荷重2160g)100
重量部に対し、水酸化マグネシウムを150重量部を主
たる成分として配合した非ハロゲン系難燃性樹脂組成物
を0.38mm厚で被覆してジャケット層を形成し、シールド
電線を得た。これらのシールド電線についてVW−1試
験を試験点数5点で行ったところ、何れも合格すること
がわかった。次に、前記の如く、発泡絶縁電線の外周
に、それぞれ、シールド層、ジャケット層を順次設けた
4種類のシールド電線に、それぞれ、加速電圧が3Me
Vの電子線を200kGy照射し、発泡絶縁層とジャケ
ット層を架橋した。これらのシールド電線を丸ごと、お
よび、端末30mmのジャケット層と横巻きシールド層を
除去し、発泡絶縁体層を露出させたものを、それぞれ、
300℃の溶融半田浴に漬浸したが、いずれも形状を保
持しており、耐熱性に優れたシールド電線であることが
わかった。
The present invention will be described in more detail with reference to the following examples. Examples 1 to 4 Above Table 1, a part (characteristic portion) of the composition of the resin composition used in Examples 1 to 4 is shown. The resin compositions used in these examples were, in addition to those described above in Table 1, 0.5 parts by weight of stearic acid and 1 part by weight of Dolphinox 1010 (trade name, manufactured by Ciba Geigy) based on 100 parts by weight of the base polymer. , A graft copolymer of polystyrene and polyethylene (ratio of polystyrene and polyethylene 50/50, MI value 1 @ 190
℃ load 2160g) 10 parts by weight, azobiscarbonamide 1
Parts by weight were commonly added. Using a 30 mm melt extruder (L / D = 24), the resin composition was used to form a soft copper wire having a wire diameter of 0.127 mm.
Chemical foaming extrusion was performed on the stranded conductor so that the outer diameter was 1.20 mm and the capacitance was 100 ± 5 pF / m by an in-line capacitance monitor. As a result, any of the resin compositions of Examples 1 to 4 could be stably foamed and extruded, and a foamed insulated wire having a desired outer diameter and capacitance was obtained. As shown in the lower part of Table 1, the capacitance was within the range of 100 ± 5 pF / m of the target value, and the capacitance was converted to the dielectric constant (*). 1 to 4 are all 2.0 to
It was found that a low dielectric constant foam layer having a level of 2.3 or less, which is within the range of 2.1 and has no practical problem as a shielded wire, was formed. (*) Capacitance and dielectric constant conversion formula Dielectric constant ε = (C × log (Do / Di)) / 24.12 where C is the capacitance, Do is the outside diameter of the insulator, and Di is the outside of the conductor. Represents the diameter. In addition, in order to examine the flame retardancy of the obtained foamed insulated wire, a VW-1 combustion test was performed at five test points, and it was found that all passed. Subsequently, the outer diameter of each of the foamed insulated wires of Examples 1 to 4 was 0.127 mm.
A shield layer is formed by horizontally winding a tin-plated annealed copper wire, and an ethylene-vinyl acetate copolymer (vinyl acetate content: 33% by weight, MI value: 5 @ 190 ° C., load: 2,160 g) 100
A non-halogen flame-retardant resin composition containing 150 parts by weight of magnesium hydroxide as a main component was coated to a thickness of 0.38 mm with respect to parts by weight to form a jacket layer to obtain a shielded electric wire. When a VW-1 test was performed on these shielded wires with five test points, it was found that all passed. Next, as described above, the acceleration voltage of 3 Me was applied to each of the four types of shielded wires in which a shield layer and a jacket layer were sequentially provided on the outer periphery of the foamed insulated wire.
A V electron beam was irradiated at 200 kGy to crosslink the foamed insulating layer and the jacket layer. These shielded wires were entirely removed, and the jacket layer and the side-wound shield layer of the terminal 30 mm were removed to expose the foamed insulator layer.
It was immersed in a 300 ° C. molten solder bath, but it was found that each of them retained the shape and was a shielded wire having excellent heat resistance.

【0014】[0014]

【表1】 [Table 1]

【0015】比較例1〜3 表2の上方に比較例1〜3で用いた樹脂組成物の配合の
一部(特徴部分)を示す。比較例1〜3で用いた樹脂組
成物には、表2の上方に記載した以外に、ベースポリマ
ー100重量部に対し、ステアリン酸0.5重量部、イルカ゛ノ
ックス1010(チバガイギー製、商品名)1重量部、アゾビ
スカルボンアミド2重量部を共通に添加した。当該樹脂
組成物を実施例1〜4と同様に30mm押出機(L/D=24)を
用いて素線径0.127mmの軟銅線の7本撚り導体上に外径
1.20mm、静電容量100±5pF/mを目標に化学発泡押出を検
討した。比較例1はエチレンアクリル酸エチル共重合体
100重量部に水酸化マグネシウムを50重量部添加し
た樹脂組成物を用いたものであり、得られた発泡電線の
静電容量を水中浸漬法で測定したところ98pF/m(誘電率
換算2.1)とポリエチレン(誘電率2.2)と同等の
低誘電率の発泡絶縁体が得られていることがわかった。
しかし、この発泡電線の難燃性を調べるため、VW−1
燃焼試験を行ったところ、試験点数5点中5点とも不合
格であり、難燃性に劣ることがわかった。比較例2はエ
チレン酢酸ビニル共重合体に水酸化マグネシウムを15
0重量部添加した樹脂組成物を用いて同様に化学発泡押
出を行い、押出条件を種々検討したが、安定して得られ
る範囲では、最も高い発泡度が得られたものでも静電容
量は162pF/mであり(誘電率換算で3.3)、シールド
電線として使用するには問題があることがわかった。ま
た、これ以上発泡度を上げようとしても絶縁体の押出外
径が安定しないばかりか、外観も悪くなり、良好なサン
プルが得られなかった。しかし、VW−1燃焼試験を行
ったところ、試験点数5点中5点ともに合格であり、難
燃性には優れていることがわかった。比較例3は直鎖状
低密度ポリエチレンに水酸化マグネシウムを100重量
部添加した樹脂組成物を用いたものであり、同様に化学
発泡押出を行い、押出条件を種々検討したが、最も高い
発泡度が得られたものでも静電容量は148pF/mであり
(誘電率換算で3.0)、シールド電線としては不十分
な電気的特性であることがわかった。しかも、VW−1
燃焼試験を行ったところ、試験点数5点中5点とも不合
格で、難燃性も良くなかった。
Comparative Examples 1 to 3 Above Table 2, a part (characteristic part) of the composition of the resin composition used in Comparative Examples 1 to 3 is shown. The resin compositions used in Comparative Examples 1 to 3 were, in addition to those described above in Table 2, in addition to 0.5 parts by weight of stearic acid and 1 part by weight of Dolphinox 1010 (trade name, manufactured by Ciba Geigy) based on 100 parts by weight of the base polymer. Parts and 2 parts by weight of azobiscarbonamide were commonly added. Using a 30 mm extruder (L / D = 24), the resin composition was coated on a soft copper wire having a strand diameter of 0.127 mm and stranded on a seven-stranded conductor in the same manner as in Examples 1 to 4.
Chemical foaming extrusion was studied with the aim of 1.20mm and capacitance of 100 ± 5pF / m. Comparative Example 1 uses a resin composition in which 50 parts by weight of magnesium hydroxide was added to 100 parts by weight of an ethylene-ethyl acrylate copolymer, and the capacitance of the obtained foamed electric wire was measured by a water immersion method. However, it was found that a foamed insulator having a low dielectric constant equivalent to 98 pF / m (dielectric constant 2.1) and polyethylene (dielectric constant 2.2) was obtained.
However, in order to investigate the flame retardancy of this foamed electric wire, VW-1
As a result of performing a combustion test, all of the five test points out of five were rejected, indicating that the flame retardancy was poor. In Comparative Example 2, magnesium hydroxide was added to an ethylene-vinyl acetate copolymer.
Chemical foaming extrusion was performed in the same manner using the resin composition added with 0 parts by weight, and various extrusion conditions were examined. As long as the resin composition was stably obtained, the capacitance was 162 pF even if the highest foaming degree was obtained. / m (3.3 in terms of dielectric constant), which proved to be problematic for use as a shielded wire. Further, even if an attempt was made to further increase the degree of foaming, not only did the extruded outer diameter of the insulator become unstable, but also the appearance deteriorated, and a good sample could not be obtained. However, when the VW-1 combustion test was performed, all of the five test points passed the test, and it was found that the flame retardancy was excellent. Comparative Example 3 uses a resin composition in which 100 parts by weight of magnesium hydroxide was added to linear low-density polyethylene, and was similarly subjected to chemical foaming extrusion to examine various extrusion conditions. Was obtained, the capacitance was 148 pF / m (3.0 in terms of dielectric constant), which proved to be insufficient electrical properties as a shielded wire. Moreover, VW-1
As a result of a combustion test, five out of five test points failed, and the flame retardancy was not good.

【0016】[0016]

【表2】 [Table 2]

【0017】比較例4.比較例4では実施例2の配合組
成において、水酸化マグネシウムを添加しない樹脂組成
物を作製し、実施例1〜4と同様に30mm押出機(L/D=2
4)を用いて素線径0.127mmの軟銅線の7本撚り導体上に
外径1.20mm、静電容量100±5pF/mを目標に化学発泡押出
を検討した。その結果、発泡押出は安定に行うことがで
き、所望の外径と静電容量の発泡絶縁電線が得られた。
静電容量については水中漬浸法で確認した結果、表3の
下方に記載のごとく99pF/m、誘電率に換算すると2.0
であり、ポリエチレンと同等の低誘電率の発泡体である
ことがわかった。しかし、VW−1燃焼試験を試験点数
5点で行ったところ、5点とも不合格となることがわか
った。 比較例5.比較例5はベースポリマーをポリフェニレン
エーテル単体とし、これに水酸化マグネシウムを添加し
た樹脂組成物を実施例1〜4と同様に30mm押出機(L/D=
24)を用いて素線径0.127mmの軟銅線の7本撚り導体上
に外径1.20mm、静電容量100±5pF/mを目標に化学発泡押
出を検討したものである。ところが、押出条件を種々検
討しても、キャパシタンスモニターに表示される静電容
量の値の変動が極めて大きく、静電容量が安定したサン
プルを得ることができなかった。すなわち、この樹脂組
成物では、発泡度を安定させ、均一な低誘電率層を形成
することができず、シールド電線用には不適当であるこ
とがわかった。
Comparative Example 4 In Comparative Example 4, a resin composition was prepared in the same composition as in Example 2 except that magnesium hydroxide was not added, and a 30 mm extruder (L / D = 2) was prepared in the same manner as in Examples 1 to 4.
Using 4), chemical foam extrusion was studied on a seven-stranded conductor of soft copper wire with a wire diameter of 0.127 mm, with an outer diameter of 1.20 mm and a capacitance of 100 ± 5 pF / m. As a result, foam extrusion could be performed stably, and a foamed insulated wire having a desired outer diameter and capacitance was obtained.
The capacitance was confirmed by the immersion method in water, and as a result, as shown in the lower part of Table 3, it was 99 pF / m.
It was found that the foam had a low dielectric constant equivalent to that of polyethylene. However, when the VW-1 combustion test was performed with five test points, it was found that all five points failed. Comparative Example 5 Comparative Example 5 used a 30 mm extruder (L / D =) as in Examples 1 to 4 in the same manner as in Examples 1 to 4 except that the base polymer was a simple substance of polyphenylene ether and magnesium hydroxide was added thereto.
This study examined chemical foam extrusion on a seven-stranded conductor made of soft copper wire with a strand diameter of 0.127 mm using the method described in 24) with the target of an outer diameter of 1.20 mm and a capacitance of 100 ± 5 pF / m. However, even if various extrusion conditions were examined, the value of the capacitance displayed on the capacitance monitor fluctuated extremely, and a sample with a stable capacitance could not be obtained. That is, it was found that this resin composition could not stabilize the degree of foaming and could not form a uniform low dielectric constant layer, and was not suitable for a shielded electric wire.

【0018】[0018]

【表3】 [Table 3]

【0019】実施例5.実施例2の樹脂組成物において
化学発泡剤のアゾビスカルボンアミドを添加しない樹脂
組成物を作製し、30mmφのガス発泡押出機を用いて、
素線径0.127mmの軟銅線の7本撚り導体上に被覆厚0.40m
m、静電容量100±5pF/mを目標にガス発泡押出を検討し
た。窒素ガス注入圧力280bar、樹脂圧210kg/cm2、バレ
ル温度160℃、ダイス温度160℃、スクリュー回転数22
rpm、線速200m/分の条件でガス発泡押出を検討した
ところ、所定の外径の静電容量が103pF/m(水中漬浸法
にて測定)の発泡絶縁電線が得られた。誘電率に換算す
ると2.1であり、ポリエチレンと同等の低誘電率の発
泡絶縁体が得られていることがわかった。この発泡電線
の難燃性を調べるため、VW−1燃焼試験を行ったとこ
ろ、試験点数5点中5点とも合格し、難燃性にも優れる
ことがわかった。 比較例6.比較例2の材料において化学発泡剤のアゾビ
スカルボンアミドを添加しない樹脂組成物を作製し、3
0mmφのガス発泡押出機を用いて、実施例5と同様の方
法で素線径0.127mmの軟銅線の7本撚り導体上に被覆厚
0.40mm、静電容量100±5pF/mを目標としてガス発泡押出
を検討した。しかしながら、窒素ガスの注入圧、ダイス
温度、スクリュー回転数、線速等を種々検討しても目標
の静電容量の発泡電線は得られず、安定して得られた範
囲では、静電容量が168pF/mと誘電率に換算して3.4
で、シールド電線としては問題のある電気的特性のもの
しか得られなかった。以上のようにポリオレフィン系樹
脂とポリフェニレンエーテルとの混合物をベースポリマ
ーとして、これに非ハロゲン系難燃剤を添加した樹脂組
成物を用いることにより、化学発泡押出やガス発泡押出
による発泡押出を容易に安定して行うことができ、環境
上の問題もなく、誘電率等の電気的特性がシールド電線
に適し、しかも高度な難燃性も満足する電線が得られる
という特有の効果を奏することがわかる。
Embodiment 5 FIG. A resin composition was prepared by adding the chemical blowing agent azobiscarbonamide to the resin composition of Example 2, and using a 30 mmφ gas foaming extruder,
0.40m coating thickness on 7 strands of soft copper wire with strand diameter 0.127mm
The gas foaming extrusion was studied with the aim of m and electrostatic capacity of 100 ± 5 pF / m. Nitrogen gas injection pressure 280bar, resin pressure 210kg / cm2, barrel temperature 160 ° C, die temperature 160 ° C, screw rotation speed 22
When the gas foaming extrusion was studied under the conditions of rpm and a linear velocity of 200 m / min, a foamed insulated wire having a predetermined outer diameter and a capacitance of 103 pF / m (measured by an immersion method in water) was obtained. It was 2.1 in terms of the dielectric constant, and it was found that a foamed insulator having a low dielectric constant equivalent to that of polyethylene was obtained. A VW-1 combustion test was performed to examine the flame retardancy of this foamed electric wire. As a result, all of the five test points passed the test, and it was found that the flame retardancy was excellent. Comparative Example 6 A resin composition was prepared in the same manner as in Comparative Example 2 except that the chemical blowing agent azobiscarbonamide was not added.
Using a gas foaming extruder with a diameter of 0 mm, apply a coating thickness on a seven-stranded conductor of soft copper wire with a strand diameter of 0.127 mm in the same manner as in Example 5.
We studied gas foaming extrusion with a target of 0.40 mm and a capacitance of 100 ± 5 pF / m. However, even if the injection pressure of the nitrogen gas, the die temperature, the screw rotation speed, the linear velocity, etc. are variously examined, the foamed electric wire having the target capacitance cannot be obtained. 168 pF / m converted to a dielectric constant of 3.4
As a result, only shielded electric wires having problematic electrical characteristics were obtained. As described above, by using a resin composition in which a mixture of a polyolefin resin and polyphenylene ether is used as a base polymer and a non-halogen flame retardant is added thereto, foaming extrusion by chemical foaming extrusion or gas foaming extrusion is easily stabilized. It can be seen that there is no particular problem in that an electric characteristic such as a dielectric constant or the like suitable for a shielded electric wire and an electric wire satisfying high flame retardancy can be obtained without environmental problems.

【0020】[0020]

【発明の効果】本発明のシールド電線は、環境問題がな
く、信号の伝送速度が速く、伝送損失が少なく、かつ高
度な難燃性を有するシールド電線であり、電子機器の機
内配線の分野における利用価値は非常に高いものがあ
る。
The shielded electric wire of the present invention is a shielded electric wire having no environmental problems, a high signal transmission speed, a small transmission loss, and a high degree of flame retardancy. Some of the utility values are very high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野山 眞代 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 Fターム(参考) 5G305 AA02 AB10 AB25 AB35 BA13 BA14 BA26 CA01 CA13 CA54 CC03 CD13 5G315 CA03 CB02 CD01 CD02 CD13 CD14  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayo Uenoyama 1-3-1 Shimaya, Konohana-ku, Osaka-shi F-term in Osaka Works, Sumitomo Electric Industries, Ltd. 5G305 AA02 AB10 AB25 AB35 BA13 BA14 BA26 CA01 CA13 CA54 CC03 CD13 5G315 CA03 CB02 CD01 CD02 CD13 CD14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発泡絶縁体の換算誘電率が2.3以下
で、かつジャケット層と外部導体層を取り去った状態の
発泡絶縁電線の形状でUL規格のVW−1垂直燃焼試験
に合格する非ハロゲン難燃性シールド電線。
1. A foamed insulated wire having a converted dielectric constant of 2.3 or less and having a jacket layer and an outer conductor layer removed, and passing a UL standard VW-1 vertical combustion test. Halogen flame-retardant shielded wires.
【請求項2】 中心導体の外周に難燃性樹脂組成物の発
泡体が被覆され、その外周に外部導体層とジャケット層
が順次形成されているシールド電線に於いて、該発泡体
が、ポリオレフィンとポリフェニレンエーテルとの、重
量比で90/10〜20/80の混合物をベースポリマ
ーとして、これに非ハロゲン系難燃剤を添加した難燃性
樹脂組成物よりなることを特徴とする非ハロゲン難燃性
シールド電線。
2. A shielded electric wire in which a foam of a flame-retardant resin composition is coated on the outer periphery of a center conductor and an outer conductor layer and a jacket layer are sequentially formed on the outer periphery, wherein the foam is a polyolefin. Non-halogen flame-retardant resin composition comprising a mixture of a polyphenylene ether and a polyphenylene ether in a weight ratio of 90/10 to 20/80 as a base polymer to which a non-halogen flame retardant is added. Shielded wire.
【請求項3】 中心導体の外周に形成された難燃性樹脂
組成物の発泡体が架橋されていることを特徴とする請求
項2に記載の非ハロゲン難燃性シールド電線。
3. The halogen-free flame-retardant shielded electric wire according to claim 2, wherein a foam of the flame-retardant resin composition formed on the outer periphery of the center conductor is cross-linked.
JP11224747A 1999-08-09 1999-08-09 Non-halogen flame retardant shield cable Pending JP2001052537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11224747A JP2001052537A (en) 1999-08-09 1999-08-09 Non-halogen flame retardant shield cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11224747A JP2001052537A (en) 1999-08-09 1999-08-09 Non-halogen flame retardant shield cable

Publications (2)

Publication Number Publication Date
JP2001052537A true JP2001052537A (en) 2001-02-23
JP2001052537A5 JP2001052537A5 (en) 2006-05-11

Family

ID=16818614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11224747A Pending JP2001052537A (en) 1999-08-09 1999-08-09 Non-halogen flame retardant shield cable

Country Status (1)

Country Link
JP (1) JP2001052537A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202664A (en) * 2005-01-24 2006-08-03 Hitachi Kokusai Denki Engineering:Kk Coaxial cable
JP2008198399A (en) * 2007-02-08 2008-08-28 Sumitomo Chemical Co Ltd Insulated wire coating material
US8545974B2 (en) 2005-02-09 2013-10-01 Laird Technologies, Inc. Flame retardant EMI shields

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389992A (en) * 1977-01-18 1978-08-08 Fujikura Ltd Foaming polyolefine insulated wire
JPS59190018U (en) * 1983-06-06 1984-12-17 住友電気工業株式会社 Flame retardant, low smoke coaxial cable
JPS618808A (en) * 1984-06-22 1986-01-16 住友電気工業株式会社 Flame resistant foamable polyolefin insulated wire
JPH02189809A (en) * 1989-01-17 1990-07-25 Hitachi Cable Ltd Flame retardant wire/cable
JPH02195605A (en) * 1988-12-07 1990-08-02 Union Carbide Chem & Plast Co Inc Flame retardent composition
JPH02215013A (en) * 1989-02-15 1990-08-28 Sumitomo Electric Ind Ltd Shielded electric wire
JPH02291605A (en) * 1989-02-15 1990-12-03 Sumitomo Electric Ind Ltd Insulated wire
JPH0378910A (en) * 1989-08-23 1991-04-04 Mitsubishi Cable Ind Ltd Flame retardant high foam cable
JPH0593107A (en) * 1991-10-02 1993-04-16 Sumitomo Bakelite Co Ltd Flame-retardant resin composition
JPH07304891A (en) * 1994-05-11 1995-11-21 Yazaki Corp Flame-retardant resin composition
JPH11185532A (en) * 1997-12-24 1999-07-09 Asahi Chem Ind Co Ltd Resin composition for wire and cable cover

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389992A (en) * 1977-01-18 1978-08-08 Fujikura Ltd Foaming polyolefine insulated wire
JPS59190018U (en) * 1983-06-06 1984-12-17 住友電気工業株式会社 Flame retardant, low smoke coaxial cable
JPS618808A (en) * 1984-06-22 1986-01-16 住友電気工業株式会社 Flame resistant foamable polyolefin insulated wire
JPH02195605A (en) * 1988-12-07 1990-08-02 Union Carbide Chem & Plast Co Inc Flame retardent composition
JPH02189809A (en) * 1989-01-17 1990-07-25 Hitachi Cable Ltd Flame retardant wire/cable
JPH02215013A (en) * 1989-02-15 1990-08-28 Sumitomo Electric Ind Ltd Shielded electric wire
JPH02291605A (en) * 1989-02-15 1990-12-03 Sumitomo Electric Ind Ltd Insulated wire
JPH0378910A (en) * 1989-08-23 1991-04-04 Mitsubishi Cable Ind Ltd Flame retardant high foam cable
JPH0593107A (en) * 1991-10-02 1993-04-16 Sumitomo Bakelite Co Ltd Flame-retardant resin composition
JPH07304891A (en) * 1994-05-11 1995-11-21 Yazaki Corp Flame-retardant resin composition
JPH11185532A (en) * 1997-12-24 1999-07-09 Asahi Chem Ind Co Ltd Resin composition for wire and cable cover

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202664A (en) * 2005-01-24 2006-08-03 Hitachi Kokusai Denki Engineering:Kk Coaxial cable
US8545974B2 (en) 2005-02-09 2013-10-01 Laird Technologies, Inc. Flame retardant EMI shields
JP2008198399A (en) * 2007-02-08 2008-08-28 Sumitomo Chemical Co Ltd Insulated wire coating material

Similar Documents

Publication Publication Date Title
US5614319A (en) Insulating composition, insulated plenum cable and methods for making same
US20130273367A1 (en) Composition for wire coating material, insulated wire, and wiring harness
US10703889B2 (en) Insulated electric wire and insulating resin composition
JPH10168248A (en) Flame-retardant resin composition and insulated wire, shielded wire and covering tube using the same
JP2007238845A (en) Flame-retardant composition and electric wire
JP2015164114A (en) On-vehicle electric wire and cable
JPH06290638A (en) Flame-resistant electric insulating composite and insulated wire using the composite
JP2001052537A (en) Non-halogen flame retardant shield cable
US10755834B2 (en) Insulated wire
JP2000336225A (en) Flame retarded resin composition and electric wire/cable using same
JP2002146118A (en) Flame-retardant resin composition and flame-retardant insulated wire using the same as coating material
JP6658236B2 (en) LAN cable
JP2010157413A (en) Non-halogen flame retardant electric wire/cable
JP2017069130A (en) Insulation wire
JP2927058B2 (en) Heat-resistant flame-retardant insulated wire and method of manufacturing the same
KR101418565B1 (en) Foam composition, foamed insulator thereof and coaxial cable
JP3083396B2 (en) DC high-voltage wires
JPH06290637A (en) Flame-resistant electric insulating composite and insulated wire using the composite
JPH09320358A (en) Flame resistant insulated wire
JP3345966B2 (en) Flame retardant resin composition and insulated wire therefrom
JP2560679B2 (en) Flame retardant electrical insulation composition
JP2002343144A (en) Non halogen flame retardant insulated electric wire excellent in wire stripping
JP2017228524A (en) Insulated wire
JP3829647B2 (en) Non-halogen flame retardant insulated wire with excellent wire strip properties
JP7064697B2 (en) Flame-retardant electrical insulation composition and electric wire

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100701

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100820