JP2017069130A - Insulation wire - Google Patents

Insulation wire Download PDF

Info

Publication number
JP2017069130A
JP2017069130A JP2015195871A JP2015195871A JP2017069130A JP 2017069130 A JP2017069130 A JP 2017069130A JP 2015195871 A JP2015195871 A JP 2015195871A JP 2015195871 A JP2015195871 A JP 2015195871A JP 2017069130 A JP2017069130 A JP 2017069130A
Authority
JP
Japan
Prior art keywords
silica
insulated wire
polyolefin resin
resin
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015195871A
Other languages
Japanese (ja)
Inventor
石井 達也
Tatsuya Ishii
達也 石井
悟志 宿島
Satoshi Yadoshima
悟志 宿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015195871A priority Critical patent/JP2017069130A/en
Priority to CN201610866686.1A priority patent/CN106560899B/en
Publication of JP2017069130A publication Critical patent/JP2017069130A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating

Abstract

PROBLEM TO BE SOLVED: To provide an insulation wire having flame resistance added and improved defect due to reduction of elongation and tensile strength.SOLUTION: An insulation wire has at least a center conductor 11 and an insulator 12 coating the periphery of the center conductor 11. The insulator 12 is manufactured by adding a flame retardant containing halogen and silica to a polyolefin resin and crosslinking them. The silica has average particle diameter of 0.1 to 1.0 μm and is added at 10 to 15 pts.wt. based on 100 pts.wt. of the polyolefin resin.SELECTED DRAWING: Figure 1A

Description

本発明は、絶縁電線に関し、より詳細には、導体の周囲に被覆した絶縁体に難燃性が付与された絶縁電線に関する。   The present invention relates to an insulated wire, and more particularly, to an insulated wire in which flame resistance is imparted to an insulator coated around a conductor.

電子機器類の内部配線や自動車用配線等に使用する絶縁電線には、難燃性が要求され、例えば米国のUL(Under Writers Laboratories inc.)規格やカナダのCSA(Canadian Standards Association)規格などの対象となる電気機器や電子機器、あるいは電機用品安全法の絶縁物の使用温度上限規制などを対象とした機器等に対して使用する絶縁電線には、所定レベルの難燃性特性が求められる。    Insulated wires used for internal wiring of electronic equipment and automotive wiring are required to be flame retardant. For example, the United States UL (Under Writers Laboratories Inc.) standard and the Canadian CSA (Canadian Standards Association) standard A predetermined level of flame retardancy is required for an insulated wire used for a target electric device or electronic device, or a device that is subject to the upper limit of the use temperature of an insulator in the Electrical Appliance and Material Safety Law.

絶縁電線の難燃性を高めるための難燃材として、ポリオレフィン系樹脂などの樹脂化合物にシリカなどの無機フィラーを配合する場合がある。例えば特許文献1には、高分子材料に対して、無機フィラーと有機ケイ素化化合物が配合された樹脂組成物を用いた絶縁電線が開示されている。ここでは無機フィラーとして、シリカ等の金属酸化物を用いることが記載されている。無機フィラーの粒径は、0.1〜10μmの範囲に設定するのが好ましいとされ、その配合量は、高分子材料100重量部に対して50〜250重量部とすることが好ましいとされている。絶縁電線を成形する際には、上記の無機フィラーと有機ケイ素化化合物等を配合した組成物を、芯導体上に押出被覆して、電子線などの電離放射線照射を施すことにより組成物の高分子材料を架橋させる。   As a flame retardant for enhancing the flame retardancy of an insulated wire, an inorganic filler such as silica may be blended with a resin compound such as a polyolefin resin. For example, Patent Document 1 discloses an insulated wire using a resin composition in which an inorganic filler and an organosilicon compound are blended with a polymer material. Here, it is described that a metal oxide such as silica is used as the inorganic filler. The particle size of the inorganic filler is preferably set in the range of 0.1 to 10 μm, and the blending amount is preferably 50 to 250 parts by weight with respect to 100 parts by weight of the polymer material. Yes. When forming an insulated wire, a composition containing the above inorganic filler and an organosilicic compound is extrusion coated onto a core conductor and irradiated with ionizing radiation such as an electron beam. Crosslink molecular material.

特開平6−256567号公報JP-A-6-256567

特許文献1に記載された配合により、高分子材料に無機フィラー等を添加して押出被覆成形を行って架橋させた絶縁電線に対して、伸び(Elongation)、および破断時の抗張力(Tensile Strength))の点で、更に良好な特性の絶縁体を有する絶縁電線が求められている。   With the compounding described in Patent Document 1, elongation (Elongation) and tensile strength at break (Tensile Strength) of an insulated wire that has been crosslinked by extrusion coating with addition of an inorganic filler or the like to a polymer material ), There is a need for an insulated wire having an insulator with better characteristics.

本発明は、上述した実情に鑑みてなされたもので、難燃性が付与される絶縁電線において、伸びおよび抗張力を改善した絶縁電線の提供を目的とする。   This invention is made | formed in view of the situation mentioned above, and aims at provision of the insulated wire which improved elongation and tensile strength in the insulated wire to which a flame retardance is provided.

本発明による絶縁電線は、導体と、該導体の周囲を被覆した絶縁体とを少なくとも有する絶縁電線であって、前記絶縁体は、ポリオレフィン系樹脂に対して、ハロゲンを含む難燃剤と、シリカとが添加され、架橋されてなり、前記シリカは、平均粒子径が0.1〜1.0μmであり、前記ポリオレフィン系樹脂100重量部に対して、10〜15重量部添加されている絶縁電線である。   An insulated wire according to the present invention is an insulated wire having at least a conductor and an insulator covering the periphery of the conductor, the insulator being made of a flame retardant containing halogen, silica, and polyolefin resin. In addition, the silica is an insulated wire having an average particle diameter of 0.1 to 1.0 μm and 10 to 15 parts by weight added to 100 parts by weight of the polyolefin-based resin. is there.

本発明によれば、難燃性が付与される絶縁電線において、伸びおよび抗張力を改善した絶縁電線を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the insulated wire to which a flame retardance is provided, the insulated wire which improved elongation and tensile strength can be provided.

本発明による絶縁電線の構成例を示す図で、中心導体の周囲を絶縁体で被覆した絶縁電線の構成を示す図である。It is a figure which shows the structural example of the insulated wire by this invention, and is a figure which shows the structure of the insulated wire which coat | covered the circumference | surroundings of the center conductor with the insulator. 本発明による絶縁電線の構成例を示す図で、中心導体の周囲を絶縁体で被覆し、さらに外部導体が設けられ、外部導体の外側が外被で覆われた同軸電線の構成を示す図である。It is a figure which shows the structural example of the insulated wire by this invention, and is a figure which shows the structure of the coaxial electric wire which coat | covered the circumference | surroundings of the center conductor with the insulator, and was further provided with the external conductor, and the outer side of the external conductor was covered with the jacket. is there. 本発明の実施例および比較例による伸びおよび抗張力の測定結果を示す図である。It is a figure which shows the measurement result of elongation and tensile strength by the Example and comparative example of this invention.

最初に本発明の実施態様を列記して説明する。
(1)本願の絶縁電線は、導体と、該導体の周囲を被覆した絶縁体とを少なくとも有する絶縁電線であって、前記絶縁体は、ポリオレフィン系樹脂に対して、ハロゲンを含む難燃剤と、シリカとが添加され、架橋されてなり、前記シリカは、粒子径が0.1〜1.0μmであり、前記ポリオレフィン系樹脂100重量部に対して、10〜15重量部添加されている絶縁電線である。これにより、難燃性が付与される絶縁電線において、伸びおよび抗張力の低下による不良を改善した絶縁電線を提供することができる。
First, embodiments of the present invention will be listed and described.
(1) The insulated wire of the present application is an insulated wire having at least a conductor and an insulator covering the periphery of the conductor, and the insulator is a polyolefin-based resin, a flame retardant containing halogen, Silica is added and crosslinked, and the silica has a particle size of 0.1 to 1.0 μm, and 10 to 15 parts by weight are added to 100 parts by weight of the polyolefin resin. It is. Thereby, in the insulated wire to which a flame retardance is provided, the insulated wire which improved the defect by extension and the fall of a tensile strength can be provided.

(2)前記ポリオレフィン系樹脂は、エチレン・酢酸ビニル共重合樹脂と、ポリエチレン樹脂とが混合されていることが好ましい。これにより、難燃性の絶縁電線に好適なポリオレフィン系樹脂材料が提供される。 (2) The polyolefin resin is preferably a mixture of an ethylene / vinyl acetate copolymer resin and a polyethylene resin. Thereby, the polyolefin resin material suitable for a flame-retardant insulated wire is provided.

(3)前記エチレン・酢酸ビニル共重合樹脂とポリエチレン樹脂のとの重量混合比は、2:8〜5:5の範囲にあることが好ましい。これにより伸びおよび抗張力の低下による不良を改善するためのエチレン・酢酸ビニル共重合樹脂とポリエチレン樹脂の最適な混合比が与えられる。 (3) The weight mixing ratio of the ethylene / vinyl acetate copolymer resin and the polyethylene resin is preferably in the range of 2: 8 to 5: 5. This gives an optimum mixing ratio of the ethylene / vinyl acetate copolymer resin and the polyethylene resin to improve defects due to elongation and decrease in tensile strength.

[本発明の実施形態の詳細]
本発明に係る絶縁電線の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲およびこれと均等の範囲内での全ての変更が含まれる。
[Details of the embodiment of the present invention]
Specific examples of the insulated wire according to the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and includes all the changes in a claim and the range equivalent to this.

図1Aおよび図1Bは、本発明による絶縁電線の構成例を示す図である。図1Aに示す絶縁電線10は、中心導体11の周囲を絶縁体12で被覆した構成を有する。
また、図1Bに示す絶縁電線10は、中心導体11の周囲を絶縁体12で被覆し、さらに絶縁体12の外周に外部導体13が設けられ、外部導体13の外側が外被(シースともいう)14で覆われて保護された同軸電線として構成されている。本発明による実施形態は、図1Aおよび図1Bのいずれの構成に対しても適用可能である。
1A and 1B are diagrams showing a configuration example of an insulated wire according to the present invention. An insulated wire 10 shown in FIG. 1A has a configuration in which a central conductor 11 is covered with an insulator 12.
In addition, in the insulated wire 10 shown in FIG. 1B, the periphery of the center conductor 11 is covered with an insulator 12, and an outer conductor 13 is provided on the outer periphery of the insulator 12. ) It is configured as a coaxial wire covered and protected by 14. The embodiment according to the present invention can be applied to both configurations of FIG. 1A and FIG. 1B.

図1Aおよび図1Bの絶縁体12は、本発明に係る実施形態を特徴付けるものであり、ポリオレフィン系樹脂に対してハロゲンを含む難燃剤と、シリカとが添加され、架橋されてなり、シリカの粒子径が0.1〜1.0μmであり、ポリオレフィン系樹脂100重量部に対して、シリカが10〜15重量部添加されている。また、図1Aの絶縁電線10の構成において、中心導体11の周囲を多層の樹脂材料で被覆した構成とすることもできる。この場合、中心導体11の周囲に被覆された最内層の樹脂材料層を、上記のハロゲン系難燃剤およびシリカが配合されたポリオレフィン系樹脂層とする。   The insulator 12 of FIGS. 1A and 1B characterizes the embodiment according to the present invention. A flame retardant containing halogen and a silica are added to a polyolefin-based resin and crosslinked to form silica particles. A diameter is 0.1-1.0 micrometer, and 10-15 weight part of silica is added with respect to 100 weight part of polyolefin resin. Further, in the configuration of the insulated wire 10 in FIG. 1A, the center conductor 11 may be covered with a multilayer resin material. In this case, the innermost resin material layer coated around the central conductor 11 is a polyolefin resin layer in which the halogen flame retardant and silica are blended.

図1Aおよび図1Bの構成において、中心導体11は、単線または複数の素線を撚り合わせた撚線で形成され、例えば銅、軟鋼、銀、ニッケルめっき軟鋼、錫めっき軟鋼、銀メッキ軟鋼線等の導体材料からなるものを使用することができる。中心導体11は、その断面積を2〜40mm2とすることが好ましい。 1A and 1B, the center conductor 11 is formed of a single wire or a stranded wire obtained by twisting a plurality of strands, such as copper, mild steel, silver, nickel-plated mild steel, tin-plated mild steel, silver-plated mild steel wire, etc. It is possible to use a material made of a conductive material. The center conductor 11 preferably has a cross-sectional area of 2 to 40 mm 2 .

絶縁体12は、ポリオレフィン系樹脂に対して、ハロゲンを含む難燃剤と、シリカとが添加され、電子線等により架橋されている。
絶縁体12のベースとなるポリオレフィン系樹脂としては、エチレン・酢酸ビニル共重合体、またはポリエチレンを使用することができ、特にエチレン・酢酸ビニル共重合体とポリエチレンとの混合物を好適に用いることができる。この場合のエチレン・酢酸ビニル共重合体と、ポリエチレンとの重量混合比は、2:8〜5:5の範囲にあることが好ましい。すなわち、エチレン・酢酸ビニル共重合体とポリエチレンとの2成分の混合系において、エチレン・酢酸ビニル共重合体の重量混合比率は、20%〜50%の範囲にあることが好ましい。
ポリエチレンとしては、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(L−LDPE)、および高密度ポリエチレン(HDPE)を用いることができる。この他ポリオレフィン系樹脂として、エチレン−エチルアクリレート共重合体(EEA)、エチレン−メチルアクリレート共重合体(EMA)等を用いることができる。
The insulator 12 is added with a flame retardant containing halogen and silica, and is crosslinked by an electron beam or the like to the polyolefin resin.
As the polyolefin resin used as the base of the insulator 12, an ethylene / vinyl acetate copolymer or polyethylene can be used, and in particular, a mixture of the ethylene / vinyl acetate copolymer and polyethylene can be suitably used. . In this case, the weight mixing ratio of the ethylene / vinyl acetate copolymer and polyethylene is preferably in the range of 2: 8 to 5: 5. That is, in a two-component mixed system of ethylene / vinyl acetate copolymer and polyethylene, the weight mixing ratio of the ethylene / vinyl acetate copolymer is preferably in the range of 20% to 50%.
As the polyethylene, low density polyethylene (LDPE), linear low density polyethylene (L-LDPE), and high density polyethylene (HDPE) can be used. In addition, ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate copolymer (EMA), etc. can be used as polyolefin resin.

ハロゲンを含む難燃剤は、絶縁電線10に難燃性を付与するものであり、ハロゲン原子を含む有機難燃剤を用いることができる。例えば、ハロゲン系有機難燃剤として、臭素系芳香族化合物を用いることができる。臭素系芳香族化合物としては例えばポリブロモビフェニル(PBB)やポリブロモジフェニルエーテル(PBDE)を用いることができる。本実施形態では、金属水酸化物や金属酸化物、金属炭酸塩等による難燃剤は添加されないが、必要に応じてこれら難燃剤を使用するものであってもよい。   The flame retardant containing halogen imparts flame retardancy to the insulated wire 10, and an organic flame retardant containing a halogen atom can be used. For example, a brominated aromatic compound can be used as the halogen-based organic flame retardant. As the brominated aromatic compound, for example, polybromobiphenyl (PBB) or polybromodiphenyl ether (PBDE) can be used. In this embodiment, flame retardants such as metal hydroxides, metal oxides, and metal carbonates are not added, but these flame retardants may be used as necessary.

シリカは、絶縁電線10に難燃性を付与する無機フィラーとして配合される。また、シリカを配合することにより絶縁体12の抗張力を増大させることができる。
シリカの粒径は、0.1〜1.0μmの範囲とすることが好ましく、絶縁体12のベースとなるポリオレフィン系樹脂100重量部に対して、10〜15重量部配合されることが好ましい。シリカの粒径が上記範囲より大きくなると、ポリオレフィン系樹脂の内部におけるシリカの分散性が悪くなり、ポリオレフィン系樹脂の伸び、および抗張力が低下する。特に、エチレン・酢酸ビニル共重合体とポリエチレンとの混合体を使用する場合、粒径の大きいシリカはポリエチレンに対する分散性が悪く、伸び、および抗張力を低下させる要因となる。シリカの粒径を0.1〜1.0μmの範囲に最適化することで、ポリオレフィン系樹脂に対するシリカの分散を良好なものとし、ポリオレフィン系樹脂の伸び、および抗張力の低下を防止することができる。
絶縁体12のベースとなるポリオレフィン系樹脂には、この他必要に応じて、滑剤、老化防止剤、加工助剤、着色剤等の他の配合成分を適宜配合させることができる。
Silica is blended as an inorganic filler that imparts flame retardancy to the insulated wire 10. Moreover, the tensile strength of the insulator 12 can be increased by blending silica.
The silica particle size is preferably in the range of 0.1 to 1.0 μm, and preferably 10 to 15 parts by weight with respect to 100 parts by weight of the polyolefin resin serving as the base of the insulator 12. When the particle diameter of the silica is larger than the above range, the dispersibility of the silica inside the polyolefin resin is deteriorated, and the elongation and tensile strength of the polyolefin resin are lowered. In particular, when a mixture of an ethylene / vinyl acetate copolymer and polyethylene is used, silica having a large particle size is poor in dispersibility in polyethylene and causes elongation and a decrease in tensile strength. By optimizing the particle size of the silica in the range of 0.1 to 1.0 μm, it is possible to improve the dispersion of the silica with respect to the polyolefin resin and to prevent the elongation of the polyolefin resin and the decrease in the tensile strength. .
In addition to this, other compounding components such as a lubricant, an anti-aging agent, a processing aid, and a colorant can be appropriately mixed with the polyolefin-based resin serving as the base of the insulator 12 as necessary.

図1Bの同軸電線の場合、外部導体13は、例えば軟銅線または銅合金線、または銀めっきもしくは錫メッキ軟銅線を絶縁体12の外周に編組または横巻き等によって巻き付けて形成されている。または外部導体13として金属テープが巻き付けられている。外被14は、絶縁体12と同じ材料とすることができる。あるいは外被14は、PVC(塩化ビニル樹脂)やポリエチレン樹脂、フッ素樹脂材等を押出し成形して被覆し、あるいはポリエステルテープなどの樹脂テープを巻き付ける等により適宜構成することができる。   In the case of the coaxial cable shown in FIG. 1B, the outer conductor 13 is formed by, for example, winding an annealed copper wire or a copper alloy wire, or a silver-plated or tin-plated annealed copper wire around the outer periphery of the insulator 12 by braiding or lateral winding. Alternatively, a metal tape is wound as the outer conductor 13. The jacket 14 can be made of the same material as the insulator 12. Alternatively, the jacket 14 can be appropriately configured by extruding and coating PVC (vinyl chloride resin), polyethylene resin, fluororesin material or the like, or winding a resin tape such as a polyester tape.

上記の構成の絶縁電線10において、絶縁体12は、架橋されることで3次元網状構造が付与されている。ここでは上記のようにハロゲン系難燃剤およびシリカ等の配合剤を配合したポリオレフィン系樹脂を中心導体11の周囲に押出被覆し、押出被覆したポリオレフィン系樹脂に対して電子線を照射することで、ポリオレフィン系樹脂を架橋させることができる。
上記のように電子線を照射することで、架橋速度や簡便さの点で効果的にポリオレフィン系樹脂を架橋させることができるが、この他、アルファ線、ガンマ線、X線、紫外線等の他の電離放射線を照射することによってポリオレフィン系樹脂を架橋させるものであってもよく、あるいは、ポリオレフィン系樹脂に予め有機過酸化物を混練して加熱によって架橋する方法、あるいは水架橋などの方法を採用してもよい。
In the insulated wire 10 having the above configuration, the insulator 12 is given a three-dimensional network structure by being crosslinked. Here, the polyolefin resin containing the halogen-based flame retardant and the compounding agent such as silica as described above is extrusion-coated around the center conductor 11, and the extrusion-coated polyolefin resin is irradiated with an electron beam. A polyolefin resin can be crosslinked.
By irradiating with an electron beam as described above, the polyolefin resin can be effectively cross-linked in terms of cross-linking speed and simplicity, but in addition to this, other such as alpha rays, gamma rays, X-rays, ultraviolet rays, etc. The polyolefin resin may be crosslinked by irradiating with ionizing radiation, or a method such as kneading an organic peroxide in advance with the polyolefin resin and crosslinking by heating, or a method such as water crosslinking is adopted. May be.

上記構成の配合により、導体と、その導体の周囲を被覆した絶縁体とを少なくとも有し、絶縁体がポリオレフィン系樹脂に対して、ハロゲンを含む難燃剤と、シリカとが添加されて架橋されてなる絶縁電線において、粒子径が0.1〜1.0μmのシリカを、ポリオレフィン系樹脂100重量部に対して10〜15重量部添加した構成の絶縁電線が提供される。このポリオレフィン系樹脂は、エチレン・酢酸ビニル共重合樹脂と、ポリエチレン樹脂とが混合されているもので、これらの重量混合比は、2:8〜5:5の範囲にあることが好ましい。シリカを添加することで、ポリオレフィン系樹脂に対する難燃性を付与するとともに、ポリオレフィン系樹脂の抗張力を増大させることができる。このときに、シリカの粒子径を0.1〜1.0μmの範囲にすることにより、ポリオレフィン系樹脂に対するシリカの分散性を良好にし、シリカの分散不良によるポリオレフィン系樹脂の伸び、および抗張力の低下を防ぐことができる。これにより、難燃性が付与される絶縁電線において、伸びおよび抗張力の低下による不良を改善した絶縁電線を提供することができる。   By blending the above structure, the conductor has at least an insulator covering the periphery of the conductor, and the insulator is cross-linked by adding a flame retardant containing halogen and silica to the polyolefin resin. An insulated wire having a configuration in which 10 to 15 parts by weight of silica having a particle size of 0.1 to 1.0 μm is added to 100 parts by weight of a polyolefin-based resin is provided. This polyolefin resin is a mixture of an ethylene / vinyl acetate copolymer resin and a polyethylene resin, and the weight mixing ratio thereof is preferably in the range of 2: 8 to 5: 5. By adding silica, flame retardancy to the polyolefin resin can be imparted and the tensile strength of the polyolefin resin can be increased. At this time, by making the particle diameter of the silica within the range of 0.1 to 1.0 μm, the dispersibility of the silica to the polyolefin resin is improved, the elongation of the polyolefin resin due to poor dispersion of the silica, and the decrease in the tensile strength Can be prevented. Thereby, in the insulated wire to which a flame retardance is provided, the insulated wire which improved the defect by extension and the fall of a tensile strength can be provided.

(実施例)
図1Aの構成で、中心導体11の周囲にポリオレフィン系樹脂を被覆成形し、電子線による架橋を行って絶縁電線10を形成し、ポリオレフィン系樹脂の伸び(破断伸度(%);Elongation)と、抗張力(破断時の引張強度;Tensile Strength)とを測定した。測定した結果を図2に示す。
中心導体11としては、外径0.254mmφの錫めっき軟銅線を41本撚った撚線とし、その断面積を2mm2とした。中心導体11の周囲に被覆するポリオレフィン系樹脂としては、エチレン・酢酸ビニル共重合体(EVA)とポリエチレン(PE)とを図2に示す重量比で混合したものを用いた。ポリオレフィン系樹脂には、ハロゲンを含む難燃剤と、シリカとを配合した。シリカの平均粒子径(D50)と、ポリオレフィン系樹脂(EVAとPEの混合物)に対する配合量(重量部)を変化させた。そしてこれらハロゲンを含む難燃剤、およびシリカを配合したポリオレフィン系樹脂を、中心導体11の周囲に押出して被覆成形し、その後電子線を照射してポリオレフィン系樹脂を架橋させ、絶縁電線を得た。ポリオレフィン系樹脂による被覆層の厚さは0.76mmとし、絶縁電線の外形は3.59mmとした。この絶縁電線のポリオレフィン系樹脂の伸び、および抗張力を測定した。測定法としては、ポリオレフィン系樹脂の架橋後、ポリオレフィン系樹脂による被覆層から10mm幅の試料の採取し、引張試験機により試料の破断時の伸びと、破断時の強度(抗張力)とを測定した。
(Example)
In the configuration of FIG. 1A, a polyolefin resin is coated and molded around the center conductor 11 and cross-linked with an electron beam to form an insulated wire 10, and the elongation of the polyolefin resin (breaking elongation (%); Elongation) The tensile strength (tensile strength at break; Tensile Strength) was measured. The measurement results are shown in FIG.
The central conductor 11 was a stranded wire in which 41 tin-plated annealed copper wires having an outer diameter of 0.254 mmφ were twisted, and the cross-sectional area was 2 mm 2 . As the polyolefin resin to be coated around the center conductor 11, a mixture of ethylene / vinyl acetate copolymer (EVA) and polyethylene (PE) at a weight ratio shown in FIG. 2 was used. The polyolefin resin was blended with a flame retardant containing halogen and silica. The compounding amount (parts by weight) relative to the average particle diameter (D50) of silica and the polyolefin resin (a mixture of EVA and PE) was changed. Then, a polyolefin resin containing the halogen-containing flame retardant and silica was extruded around the center conductor 11 to form a coating, and then irradiated with an electron beam to crosslink the polyolefin resin to obtain an insulated wire. The thickness of the coating layer made of polyolefin resin was 0.76 mm, and the outer shape of the insulated wire was 3.59 mm. The elongation and tensile strength of the polyolefin resin of this insulated wire were measured. As a measuring method, after crosslinking of the polyolefin resin, a 10 mm width sample was taken from the coating layer of the polyolefin resin, and the elongation at break and the strength at break (tensile strength) of the sample were measured by a tensile tester. .

図2に示すNo.1〜No.3は実施例であり、No.4は比較例である。本構成において、伸びは400%以上、抗張力は14.7MPa(1.50kg/mm2)であることが必要である。No.1の実施例は、EVAとPEの重量混合比は4:6であり、シリカの平均粒子径は0.1μm、EVAとPEの混合物に対するシリカの配合量は15重量部である。このときの伸びは425%であり、抗張力は16.9MPであって、伸びおよび抗張力のいずれもが良好なレベルであった。 No. 1 to No. 3 shown in FIG. 2 are examples, and No. 4 is a comparative example. In this configuration, it is necessary that the elongation is 400% or more and the tensile strength is 14.7 MPa (1.50 kg / mm 2 ). No. In Example 1, the weight mixing ratio of EVA and PE is 4: 6, the average particle diameter of silica is 0.1 μm, and the blending amount of silica with respect to the mixture of EVA and PE is 15 parts by weight. The elongation at this time was 425%, the tensile strength was 16.9 MP, and both the elongation and the tensile strength were good levels.

No.2の実施例は、EVAとPEの重量混合比は5:5であり、シリカの平均粒子径は1.0μm、EVAとPEの混合物に対するシリカの配合量は10重量部である。このときの伸びは447%であり、抗張力は15.5MPであって、伸びおよび抗張力のいずれもが良好なレベルであった。
No.3の実施例は、EVAとPEの重量混合比は2:8であり、シリカの平均粒子径は0.1μm、EVAとPEの混合物に対するシリカの配合量は15重量部である。このときの伸びは409%であり、抗張力は17.7MPであって、伸びおよび抗張力のいずれもが良好なレベルであった。
一方、No.4の比較例では、EVAとPEの重量混合比は4:6であり、シリカの平均粒子径は6.0μm、EVA/PPに対するシリカの配合量は10重量部である。このときの伸びは379%であり、抗張力は14.5MPであって、伸びおよび抗張力のいずれもが良好ではないレベルであった。これにより、シリカの平均粒子径は0.1〜6.0μm、EVAとPEの重量比は2:8〜5:5の範囲、EVA/PEに対するシリカの配合量は10〜15重量部とすることで、伸びおよび抗張力が良好な絶縁電線を得ることができた。
No. In Example 2, the weight mixing ratio of EVA and PE is 5: 5, the average particle size of silica is 1.0 μm, and the blending amount of silica with respect to the mixture of EVA and PE is 10 parts by weight. The elongation at this time was 447%, the tensile strength was 15.5 MP, and both the elongation and the tensile strength were at a satisfactory level.
No. In Example 3, the weight mixing ratio of EVA and PE is 2: 8, the average particle diameter of silica is 0.1 μm, and the blending amount of silica with respect to the mixture of EVA and PE is 15 parts by weight. The elongation at this time was 409%, the tensile strength was 17.7 MP, and both the elongation and the tensile strength were good levels.
On the other hand, no. In Comparative Example 4, the weight mixing ratio of EVA and PE is 4: 6, the average particle diameter of silica is 6.0 μm, and the blending amount of silica with respect to EVA / PP is 10 parts by weight. The elongation at this time was 379%, the tensile strength was 14.5 MP, and neither the elongation nor the tensile strength was at a satisfactory level. Thereby, the average particle diameter of silica is 0.1 to 6.0 μm, the weight ratio of EVA to PE is in the range of 2: 8 to 5: 5, and the blending amount of silica with respect to EVA / PE is 10 to 15 parts by weight. Thus, an insulated wire having good elongation and tensile strength could be obtained.

10…絶縁電線、11…中心導体、12…絶縁体、13…外部導体、14…外被。 DESCRIPTION OF SYMBOLS 10 ... Insulated electric wire, 11 ... Center conductor, 12 ... Insulator, 13 ... Outer conductor, 14 ... Outer jacket.

Claims (3)

導体と、該導体の周囲を被覆した絶縁体とを少なくとも有する絶縁電線であって、
前記絶縁体は、ポリオレフィン系樹脂に対して、ハロゲンを含む難燃剤と、シリカとが添加され、架橋されてなり、
前記シリカは、平均粒子径が0.1〜1.0μmであり、前記ポリオレフィン系樹脂100重量部に対して、10〜15重量部添加されている絶縁電線。
An insulated wire having at least a conductor and an insulator covering the conductor,
The insulator is added to a polyolefin resin with a flame retardant containing halogen and silica, and is crosslinked.
The insulated wire has an average particle diameter of 0.1 to 1.0 μm, and is added to 10 to 15 parts by weight with respect to 100 parts by weight of the polyolefin resin.
前記ポリオレフィン系樹脂は、エチレン・酢酸ビニル共重合樹脂と、ポリエチレン樹脂とが混合されている、請求項1に記載の絶縁電線。   The insulated wire according to claim 1, wherein the polyolefin-based resin is a mixture of an ethylene / vinyl acetate copolymer resin and a polyethylene resin. 前記エチレン・酢酸ビニル共重合樹脂とポリエチレン樹脂のとの重量混合比は、2:8〜5:5の範囲にある、請求項2に記載の絶縁電線。
The insulated wire according to claim 2, wherein a weight mixing ratio of the ethylene / vinyl acetate copolymer resin and the polyethylene resin is in a range of 2: 8 to 5: 5.
JP2015195871A 2015-10-01 2015-10-01 Insulation wire Pending JP2017069130A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015195871A JP2017069130A (en) 2015-10-01 2015-10-01 Insulation wire
CN201610866686.1A CN106560899B (en) 2015-10-01 2016-09-29 Insulated electric conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015195871A JP2017069130A (en) 2015-10-01 2015-10-01 Insulation wire

Publications (1)

Publication Number Publication Date
JP2017069130A true JP2017069130A (en) 2017-04-06

Family

ID=58485799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015195871A Pending JP2017069130A (en) 2015-10-01 2015-10-01 Insulation wire

Country Status (2)

Country Link
JP (1) JP2017069130A (en)
CN (1) CN106560899B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057619A (en) * 2017-09-21 2019-04-11 株式会社カネカ Back contact solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238253A1 (en) * 2019-06-03 2022-07-28 Sumitomo Electric Industries, Ltd. Core electric wire for multicore cable, and multicore cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228046A (en) * 1985-03-30 1986-10-11 Mitsubishi Cable Ind Ltd Resin composition
JP2013155269A (en) * 2012-01-30 2013-08-15 Autonetworks Technologies Ltd Flame-retardant composition and insulated wire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358228B2 (en) * 1993-03-03 2002-12-16 住友電気工業株式会社 Resin composition and insulated wire and insulated tube therefrom
CN101481475B (en) * 2008-07-17 2011-11-02 黑龙江沃尔德电缆有限公司 Ultraviolet crosslinked expansion type flame-retardant polyolefin cable insulation sheath material and preparation thereof
CN103854730A (en) * 2012-12-05 2014-06-11 烟台市电缆厂 Environment-friendly low-smoke halogen-free flame retardant electric wire and manufacturing method
US10662323B2 (en) * 2013-08-12 2020-05-26 Nkt Hv Cables Ab Thermoplastic blend formulations for cable insulations
CN103854791B (en) * 2014-02-24 2016-08-24 安徽华源电缆集团有限公司 A kind of small size environmental protection oil-resisting type railway locomotive cable
CN103985462A (en) * 2014-05-04 2014-08-13 南安市国高建材科技有限公司 Inflaming retarding, high temperature resisting and environment protecting cable and manufacture method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228046A (en) * 1985-03-30 1986-10-11 Mitsubishi Cable Ind Ltd Resin composition
JP2013155269A (en) * 2012-01-30 2013-08-15 Autonetworks Technologies Ltd Flame-retardant composition and insulated wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057619A (en) * 2017-09-21 2019-04-11 株式会社カネカ Back contact solar cell

Also Published As

Publication number Publication date
CN106560899A (en) 2017-04-12
CN106560899B (en) 2019-04-12

Similar Documents

Publication Publication Date Title
JP5821827B2 (en) Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition
JP6902205B2 (en) cable
WO2015159788A1 (en) Insulating resin composition and insulated wire
JP2015074709A (en) Vinyl chloride resin composition, electric wire, and cable
CN106251965B (en) Halogen-free flame retardant insulation electric wire and halogen-free flameproof cable
WO2018074233A1 (en) Insulated wire, and insulating resin composition
JP2017069130A (en) Insulation wire
JP2593715B2 (en) Coaxial cable and method of manufacturing the same
JP2003147134A (en) Semiconductor watertight composition
JP6111448B2 (en) Fireproof cable
JP2018014247A (en) Insulated wire and vinyl chloride resin composition
JP7122829B2 (en) Cable and cable manufacturing method
JP6756691B2 (en) Insulated wire
EP3675140B1 (en) Resin composition, sheated cable, and wire harness
JP6756692B2 (en) Insulated wire
JP6756693B2 (en) Insulated wire
US10872712B2 (en) Insulated wire
JP6388216B2 (en) Insulated wires and cables
JP7037280B2 (en) Insulated wire
JP6816420B2 (en) Insulated wires and cables
JP7064697B2 (en) Flame-retardant electrical insulation composition and electric wire
EP3480829B1 (en) Insulated electric wire
JP6860833B2 (en) Flame-retardant insulated wires and flame-retardant cables
JP6239712B1 (en) Insulated wire
JP2023018245A (en) insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625