JP2001050495A - Gas storing method - Google Patents

Gas storing method

Info

Publication number
JP2001050495A
JP2001050495A JP11224707A JP22470799A JP2001050495A JP 2001050495 A JP2001050495 A JP 2001050495A JP 11224707 A JP11224707 A JP 11224707A JP 22470799 A JP22470799 A JP 22470799A JP 2001050495 A JP2001050495 A JP 2001050495A
Authority
JP
Japan
Prior art keywords
gas
container
filled
pressure
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11224707A
Other languages
Japanese (ja)
Other versions
JP3809894B2 (en
Inventor
Kiyoto Inomata
清人 猪俣
Kazuhiro Kanazawa
一弘 金澤
Yasuhiko Urabe
安彦 浦辺
Tomoharu Okui
智治 奥井
Genichi Ikeda
元一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP22470799A priority Critical patent/JP3809894B2/en
Publication of JP2001050495A publication Critical patent/JP2001050495A/en
Application granted granted Critical
Publication of JP3809894B2 publication Critical patent/JP3809894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a gas storing method that enables to store a large amount of gas in a container. SOLUTION: In this gas storing method, gas is introduced into a container filled with fine-hole materials at high pressure higher than 20 barometric pressure. And then the fine-hole materials of which diameter is 0.9 nm or below occupy at least 5% or more of whole capacity in the container when it is filled. Hence, larger amounts of gas than the mere gas filling amounts equivalent to the extrapolation value to high pressure with adsorptive feature at the measurement of gas less than 20 barometric pressure to the fine material can be filled in the container. Also, larger amounts of gas than the gas filling amounts by mere pressure filling to the container to which fine-hole material is not filled can be filled in the container.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタン、エタン、
エチレン、プロパン、ブタンその他の低級炭化水素等の
ガスの貯蔵方法に関し、より詳しくはそれらのガスを適
切な細孔径を有する細孔材料に対して高圧下大量に吸着
させてガスを貯蔵する方法に関する。
TECHNICAL FIELD The present invention relates to methane, ethane,
The present invention relates to a method for storing gases such as ethylene, propane, butane and other lower hydrocarbons, and more particularly to a method for storing such gases by adsorbing them in large amounts under high pressure onto a pore material having an appropriate pore diameter. .

【0002】[0002]

【従来の技術】ガスは気体の状態のままでは非常に大き
い体積を有し且つ比重が小さい。このため、その貯蔵効
率を上げるためには、ガスの体積を小さくし密度を上げ
る方法が採られる。従来、ガス貯蔵法には、圧縮、液
化、吸着など種々の方法があり、対象とするガスの種
類、規模等に応じて様々な手法が実用化されている。そ
の中でも、圧力すなわち圧縮によるガス貯蔵法は、プロ
セスが簡単であり操作が簡便であるため、主として比較
的小規模なガス貯蔵において広く使われている。一方、
ガスを吸着剤に吸着させて貯蔵する方法は、比較的低圧
の領域において圧縮にまさるガス貯蔵量が得られるため
精力的に開発が行われている。
2. Description of the Related Art A gas has a very large volume and a low specific gravity in a gaseous state. Therefore, in order to increase the storage efficiency, a method of reducing the volume of the gas and increasing the density is adopted. Conventionally, there are various gas storage methods, such as compression, liquefaction, and adsorption, and various methods have been put into practical use according to the type and scale of the target gas. Among them, the gas storage method by pressure, that is, compression, is widely used mainly in relatively small-scale gas storage because the process is simple and the operation is simple. on the other hand,
A method of adsorbing and storing a gas with an adsorbent has been energetically developed because a gas storage amount that can be exceeded in compression can be obtained in a relatively low pressure region.

【0003】このうち、圧縮によるガス貯蔵法において
は、圧力に応じて貯蔵量が決まり、要求される貯蔵量の
増加に応じて、さらに高い圧力を要する点に問題があ
る。一方、吸着剤によるガス貯蔵法においては、十分な
貯蔵量を得るためにはやはり相応の圧力が必要となるう
え、さらに高い圧力では、吸着剤自体の占める体積によ
り、貯蔵できるガス量が圧縮による方法よりも少なくな
ってしまう点が問題である。
[0003] Among them, the gas storage method by compression has a problem in that the storage amount is determined according to the pressure, and a higher pressure is required as the required storage amount increases. On the other hand, in the gas storage method using an adsorbent, a corresponding pressure is still necessary to obtain a sufficient storage amount, and at a higher pressure, the amount of gas that can be stored depends on the volume occupied by the adsorbent itself. The problem is that it is less than the method.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来技術に
おける以上のような諸問題点に鑑み、細孔材料を用い且
つ高圧圧縮によるガスの貯蔵方法について追求し、各種
実験を行ったところ、適切な細孔径を有する細孔材料と
適切な圧力を組み合わせることにより、同じ温度、圧力
条件において、従来の圧縮によるガス貯蔵量や吸着剤に
よるガス貯蔵量よりも、また圧縮による充填量と吸着剤
による吸着量の和に相当するガス貯蔵量よりも、より大
量のガスを貯蔵できることを見い出した。
SUMMARY OF THE INVENTION In view of the above problems in the prior art, the present invention pursued a gas storage method using high-pressure compression using a porous material, and conducted various experiments. By combining a pore material with an appropriate pore size and an appropriate pressure, at the same temperature and pressure conditions, the amount of gas stored by compression and the amount of gas stored by adsorbent, and the amount of gas charged by compression and adsorbent It has been found that a larger amount of gas can be stored than the gas storage amount corresponding to the sum of the adsorption amounts by the gas.

【0005】すなわち本発明は、適切な細孔径を有する
細孔材料と適切な高圧を組み合わせることにより、従来
の圧縮による場合と同じ温度、圧力条件において、従来
の圧縮によるガス貯蔵量や吸着剤によるガス貯蔵量より
も、また従来の圧縮によるガス貯蔵量と吸着剤によるガ
ス貯蔵量を合わせたガス貯蔵量よりも、より大量のガス
を貯蔵できるガスの貯蔵方法を提供することを目的とす
る。
[0005] That is, the present invention combines the gas storage amount and the adsorbent by the conventional compression under the same temperature and pressure conditions as in the conventional compression by combining a pore material having an appropriate pore diameter and an appropriate high pressure. It is an object of the present invention to provide a gas storage method capable of storing a larger amount of gas than a gas storage amount or a conventional gas storage amount obtained by combining a gas storage amount by compression and a gas storage amount by an adsorbent.

【0006】[0006]

【課題を解決するための手段】本発明は、細孔材料を、
その細孔のうち細孔径0.90nm以下の細孔が容器充
填時に容器の全容積中少なくとも5%以上となるよう
に、充填した容器内に、20気圧以上の高圧でガスを導
入することにより、当該ガスの細孔材料への20気圧未
満の測定における吸着特性の単なる高圧への外挿値に相
当するガス充填量、および細孔材料を充填しない容器へ
の単なる圧力充填によるガス充填量よりも大量のガスを
容器内に充填することを特徴とするガスの貯蔵方法を提
供する。
SUMMARY OF THE INVENTION The present invention provides a porous material,
By introducing gas at a high pressure of 20 atm or more into the filled container so that the pores having a pore size of 0.90 nm or less among the pores become at least 5% or more of the total volume of the container when the container is filled. The gas filling amount corresponding to the extrapolated value of the adsorption property in the measurement of the gas to the pore material of less than 20 atm, which is simply extrapolated to a high pressure, and the gas filling amount by the simple pressure filling of the container not filled with the pore material. The present invention also provides a gas storage method characterized by filling a container with a large amount of gas.

【0007】[0007]

【発明の実施の形態】本発明においては、容器内に、細
孔材料を、その細孔のうち細孔径0.90nm以下の細
孔が容器充填時に容器の全容積中少なくとも5%以上と
なるように充填することが重要である。これにより、ガ
スの細孔材料への20気圧未満の測定における吸着特性
の高圧への単なる外挿値に相当するガス充填量と、細孔
材料を伴わない(充填しない)容器への単なる圧力充填
によるガス充填量とを合わせたガス貯蔵量よりも大量の
ガスを貯蔵することができる。すなわち、本発明によれ
ば、高圧による充填量と吸着剤による吸着量の和を大き
く越えた大量のガスが容器中に貯蔵される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a pore material having a pore diameter of 0.90 nm or less in a container accounts for at least 5% or more of the total volume of the container when the container is filled. It is important to fill as well. As a result, the gas filling amount corresponding to a mere extrapolation value of the adsorption characteristic to a high pressure in the measurement of the gas into the pore material at less than 20 atm, and the simple pressure filling of the container without (not filling) the pore material Can store a larger amount of gas than the combined gas storage amount with the gas filling amount. That is, according to the present invention, a large amount of gas, which greatly exceeds the sum of the amount charged by the high pressure and the amount adsorbed by the adsorbent, is stored in the container.

【0008】上記細孔材料としては、細孔径が0.90
nm以下の細孔を、細孔材料を容器に充填した時に容器
の全容積中少なくとも5%以上となるような量以上有す
る細孔材料であれば特に限定はなく、その材質、製法、
形状如何を問わず使用できる。具体的には活性炭やセラ
ミックスなどが用いられ、特に好ましくは活性炭が用い
られる。活性炭の場合、粉末状、粒状、繊維状その他の
各種形状で、各種の細孔径を有するものが容易に入手可
能であるが、本発明においては、それらのうち、その細
孔径が0.90nm以下の細孔を、容器に充填した時に
容器の全容積中少なくとも5%以上となるような活性炭
を用いる。細孔径は液体窒素温度における窒素吸着量及
び吸着等温線測定により容易に測定することができる。
なお、本明細書中、「細孔径」とは、活性炭の細孔がス
リット状であるという仮定に基づいた場合のスリット幅
を指し、計算方法としては、すべて「細孔径=2×細孔
容量÷細孔内比表面積」により求め、細孔の解析はカー
ボンブラックを参照物質とするtープロット法により行
った。
The above-mentioned pore material has a pore diameter of 0.90.
The pore material is not particularly limited as long as the pore material has a pore size of at most 5 nm or less in the container when the pore material is filled with the pore material at least 5% or more of the total volume of the container.
It can be used in any shape. Specifically, activated carbon, ceramics and the like are used, and particularly preferably activated carbon is used. In the case of activated carbon, powders, granules, fibers and various other shapes having various pore diameters are easily available. In the present invention, among them, the pore diameter is 0.90 nm or less. Activated carbon is used such that when filled in the container, at least 5% or more of the total volume of the container is filled. The pore diameter can be easily measured by measuring the amount of nitrogen adsorbed at the temperature of liquid nitrogen and the adsorption isotherm.
In this specification, “pore diameter” refers to a slit width based on the assumption that the pores of activated carbon are slit-shaped, and all calculation methods are “pore diameter = 2 × pore volume”. The specific pore area was determined by the “specific surface area in the pores”, and the pores were analyzed by a t-plot method using carbon black as a reference substance.

【0009】表1は、上記事実を見い出し、本発明を完
成させるに至るまでに用いた各種細孔材料のうち幾つか
の代表例についての諸物性である。図1は、表1の細孔
材料を用い、後述図8の試験装置で実施例1に準じて得
られた(試料容器の内容積=12.3cc、温度=24
℃)、容器容積あたりのメタンの貯蔵効率を示してい
る。図1には容器に細孔材料を充填しない圧縮貯蔵のみ
の場合の計算値と実測値も併記している。図1のとお
り、圧縮のみによる貯蔵の場合、メタン貯蔵量は圧力上
昇に伴いほぼ直線的に増加する。
Table 1 shows the above facts and shows various physical properties of some typical examples of various porous materials used to complete the present invention. FIG. 1 was obtained by using the pore materials shown in Table 1 and using a test apparatus shown in FIG. 8 to be described later according to Example 1 (internal volume of sample container = 12.3 cc, temperature = 24).
° C), and shows the methane storage efficiency per container volume. FIG. 1 also shows the calculated values and the actually measured values in the case of only the compressed storage without filling the container with the porous material. As shown in FIG. 1, in the case of storage by compression only, the methane storage amount increases almost linearly with an increase in pressure.

【0010】[0010]

【表 1】 [Table 1]

【0011】一方、細孔材料を充填し併用した場合のメ
タン貯蔵量は、圧縮貯蔵のみによる場合に比べて増加し
ているが、その程度は試料の種類ごとに異なっている。
試料Eでは、圧力100気圧程度までは圧縮貯蔵のみの
場合に比べて増加しているが、それを越える圧力では圧
縮貯蔵のみの場合と同程度となる。さらに圧力を上げ、
160気圧では、圧縮貯蔵の場合より少なくなってしま
う。また、同様に、試料Fでは、圧力160気圧程度ま
では圧縮貯蔵のみの場合に比べて増加しているが、18
0気圧では圧縮貯蔵のみの場合と同程度となる。これら
の結果は、試料Eや試料Fの材料を用いた場合、圧力条
件によっては細孔材料の作用がないか、もしくはむしろ
圧縮による貯蔵を妨害することを示している。
On the other hand, the amount of methane stored when the porous material is filled and used together is increased as compared with the case where only the compressed storage is used, but the degree differs depending on the type of the sample.
In sample E, the pressure increases up to a pressure of about 100 atm as compared with the case where only compressed storage is performed, but at a pressure exceeding that, it is almost the same as the case where only compressed storage is performed. Further increase the pressure,
At 160 atm, it is less than in compressed storage. Similarly, in sample F, the pressure up to a pressure of about 160 atm is larger than that in the case of only compressed storage,
At 0 atm, it is almost the same as the case of only compressed storage. These results indicate that the use of the sample E or sample F material has no effect on the pore material or rather hinders storage by compression depending on the pressure conditions.

【0012】これに対して、試料A〜Dでのメタン貯蔵
量は、圧縮貯蔵のみの場合に比べて、20気圧から18
0気圧までの全ての圧力において非常に増加している。
試料Eの平均細孔径は1.01nm、試料Fの平均細孔
径は1.96nmであるのに対して、試料A〜Dの平均
細孔径はいずれも0.91nm以下であり、その間にメ
タン貯蔵量に関する効果に影響を及ぼす何らかの重要な
要因があることを示している。
On the other hand, the amount of methane stored in each of the samples A to D is 20 to 18 atmospheres compared to the case of only the compressed storage.
It increases very much at all pressures up to 0 atm.
Sample E has an average pore diameter of 1.01 nm and sample F has an average pore diameter of 1.96 nm, whereas Samples A to D have an average pore diameter of 0.91 nm or less, and meanwhile contain methane storage. It indicates that there is some important factor affecting the effect on quantity.

【0013】図2は試料A〜Fの細孔径の分布につい
て、細孔径と細孔容積との関係を示した図であり、図3
にそのうち細孔径1.00nmまでの部分を拡大して示
している。図2〜3のとおり、細孔径の分布に関して、
試料E、Fは試料A〜Dの場合に対して明らかに異なる
分布を示している。試料E及びFの細孔径は0.90n
m程度より大きい方にシフトしているのに対して、試料
A〜Dの細孔径はいずれも0.90nmより小さい方に
シフトしており、この点がメタン貯蔵量を増加させる作
用として大きく関与していものと認められる。
FIG. 2 is a diagram showing the relationship between the pore diameter and the pore volume with respect to the distribution of the pore diameters of the samples A to F.
FIG. 2 shows an enlarged part of the pore diameter up to 1.00 nm. As shown in FIGS.
Samples E and F show clearly different distributions than the samples A to D. Samples E and F have a pore size of 0.90 n
m, whereas the pore diameters of Samples A to D are all shifted to smaller than 0.90 nm, and this point greatly contributes to the effect of increasing the methane storage amount. It is recognized that you are doing.

【0014】なお、メタン貯蔵量を増加させる試料A〜
Dのうち、試料A、B、Cについては、細孔径の分布が
0.7nmもしくはそれ以下にピークを有するほか、
1.2nm付近にもなだらかな分布を有しているが、こ
の点を試料E及びFにおける事実と併せ考えると、試料
A、B、Cにおける細孔径0.90nm以下の細孔がメ
タン貯蔵量を増加させる作用をしているものと解され
る。
[0014] Samples A to
Among D, for samples A, B and C, the pore size distribution has a peak at 0.7 nm or less,
Although it has a gentle distribution near 1.2 nm, when this point is considered together with the facts in Samples E and F, the pores having a pore diameter of 0.90 nm or less in Samples A, B, and C show the methane storage amount. It is understood that it has the effect of increasing.

【0015】図4は試料構成比率、すなわち容器内の全
容積における、すなわち容器内の全空間に試料A〜Fを
密に充填した場合における試料A〜Fの骨格部分、細孔
部分及びボイド部分の占有比率を示した図である。ボイ
ド部分は試料によって占有されていない空間部分(各粒
子間のすきま及び容器壁と各粒子との間のすきま)であ
り、この部分にはメタンは圧縮のみにより貯蔵される。
炭素骨格、細孔が試料により占有された部分であり、上
記試料A〜Dと試料E及びFとの関係(図2〜3)から
して、その細孔のうち0.90nm以下の部分がメタン
の吸着に大きく寄与しているものと認められる。
FIG. 4 shows the sample composition ratio, that is, the skeleton portion, the pore portion, and the void portion of the samples A to F when the samples A to F are densely filled in the entire volume in the container, that is, when the entire space in the container is densely filled. FIG. The void portion is a space portion not occupied by the sample (a gap between each particle and a gap between the container wall and each particle), in which methane is stored only by compression.
The carbon skeleton and the pores are portions occupied by the sample. From the relationship between the samples A to D and the samples E and F (FIGS. 2 to 3), the portion of the pores having a size of 0.90 nm or less is determined. It is recognized that it greatly contributes to methane adsorption.

【0016】さらに図5は、図4の試料構成比率中にお
ける、各試料における細孔容積あたりのメタン貯蔵効率
を示した図である。図5のとおり、試料A〜Dそれ自体
によるメタンの吸着貯蔵量は、圧縮貯蔵に比べて格段に
優れていることが明らかである。ところが、試料E、F
のメタン貯蔵効率は、試料A〜Dのメタン貯蔵効率に比
べて格段に小さく、試料A〜Dのグループに対して、明
確な、截然とした差があることが分かる。特に、試料F
は、図4に示されるとおり試料中に細孔の占める比率が
50%であるにも拘わらず、図5に示されるように細孔
中の吸着量は試料A〜Dに比べて約半分であり、この原
因としては、図2に示されるように、細孔中の0.90
nm以下の比率が非常に少ないことが関与しているもの
と推察される。
FIG. 5 is a graph showing the methane storage efficiency per pore volume in each sample in the sample composition ratio of FIG. As shown in FIG. 5, it is clear that the adsorption and storage amount of methane by the samples A to D themselves is much superior to the compression storage. However, samples E and F
The methane storage efficiency of Samples A to D is much smaller than the methane storage efficiency of Samples A to D, and it can be seen that there is a clear and clear difference between the groups of Samples A to D. In particular, sample F
As shown in FIG. 4, although the ratio of the pores in the sample is 50% as shown in FIG. 4, the amount of adsorption in the pores is about half that of the samples A to D as shown in FIG. The reason for this is that, as shown in FIG.
It is presumed that the very small ratio of nm or less is involved.

【0017】以上の実験結果から得られる試料A〜Dの
細孔中のメタン密度は、LNGにおける600倍に近い
400〜600倍という値であり、例えば室温、50気
圧で得られるメタン密度としては異常な高密度貯蔵であ
る。この現象の原因については今後の研究に待つほかは
ないが、例えばメタン分子3個分というように、細孔材
料が有する適度な細孔径により、両壁面に吸着したメタ
ンの層間が新たな吸着に適した層間隔となり、その層間
に更にメタンが吸着されて液体に近い高密度貯蔵が得ら
れるものとも考察される。
The methane density in the pores of Samples A to D obtained from the above experimental results is a value of 400 to 600 times, which is close to 600 times that of LNG. Unusual high density storage. The cause of this phenomenon can only be awaited in future research, but due to the appropriate pore size of the pore material, for example, three methane molecules, a new layer of methane adsorbed on both wall surfaces can be formed. It is considered that a suitable layer interval is obtained, and that methane is further adsorbed between the layers to obtain high-density storage close to a liquid.

【0018】本発明のガス貯蔵方法によるガス貯蔵量
が、空の容器に単に圧縮によってガスを貯蔵する場合
(例えば180気圧で230倍である)に比べて上回る
ためには、液体に近い高密度な貯蔵が起きる0.90n
m以下の細孔が占める容器内の体積比は、炭素骨格につ
いては最少10%程度が必要であるため、これを基にし
て算出すると、少なくとも5%程度以上が必要である
(後述実施例も参照)。したがって、0.90nm以下
の細孔が占める容器内の体積比がこれ以上であれば、圧
縮による貯蔵量を越えるガス貯蔵ができる。そして、こ
のことから、その容器内において、細孔材料の細孔のう
ち細孔径0.90nm以下の細孔が占める体積比を、例
えば10%、15%、30%、50%と大きくすれば、
これらに対応して空の容器に単に圧縮によってガスを貯
蔵する場合に比べて更に大量のガスを貯蔵することがで
きる。
In order for the gas storage amount according to the gas storage method of the present invention to be higher than when gas is stored in an empty container simply by compression (for example, 230 times at 180 atm), a high density close to a liquid is required. 0.90n which causes a great storage
The volume ratio in the container occupied by pores of m or less is required to be at least about 5% or more when calculated based on the carbon skeleton because the carbon skeleton needs to have a minimum of about 10%. reference). Therefore, if the volume ratio in the container occupied by pores of 0.90 nm or less is more than this, gas storage exceeding the storage amount by compression can be performed. From this, if the volume ratio occupied by pores having a pore diameter of 0.90 nm or less among the pores of the pore material in the container is increased to, for example, 10%, 15%, 30%, and 50%, ,
Correspondingly, a larger amount of gas can be stored in an empty container than in a case where the gas is simply stored by compression.

【0019】本発明においては、以上の事実を基に、細
孔材料を、その細孔のうち細孔径0.90nm以下の細
孔が容器充填時に容器の全容積中少なくとも5%以上と
なるように、充填した容器内に、20気圧以上の高圧で
ガスを導入する。これにより、当該ガスの細孔材料への
低圧での吸着特性の単なる高圧への外挿値に相当するガ
ス充填量、および細孔材料を充填しない容器への単なる
圧力充填による当該ガス充填量よりも大量のガスを容器
内に充填することができる。
In the present invention, based on the above facts, the pore material is prepared such that pores having a pore diameter of 0.90 nm or less among the pores constitute at least 5% or more of the total volume of the container when the container is filled. Then, gas is introduced into the filled container at a high pressure of 20 atm or more. Thereby, the gas filling amount corresponding to the extrapolation value of the gas to the pore material at a low pressure at a low pressure is simply extrapolated to a high pressure, and the gas filling amount by a simple pressure filling to a container not filled with the pore material. Also, a large amount of gas can be filled in the container.

【0020】この事実、すなわち本発明によるガス貯蔵
が細孔材料自体による貯蔵であることから、容器に、細
孔材料を、その細孔のうち細孔径0.90nm以下の細
孔が容器充填時に容器の全容積中少なくとも5%以上と
なるように充填し、且つ、容器のボイド部分(図4参
照)を可及的に減らすように工夫をすることにより、同
一容積の容器中に更に大量のガスを貯蔵することができ
る。
This fact, that is, since the gas storage according to the present invention is storage by the porous material itself, the porous material is placed in the container, and the pores having a diameter of 0.90 nm or less among the pores are filled when the container is filled. By filling the container so that it accounts for at least 5% or more of the total volume of the container and reducing the void portion (see FIG. 4) of the container as much as possible, a larger amount of the same volume of the container can be obtained. Gas can be stored.

【0021】本発明において、ガスを貯蔵するに際して
は、上記細孔材料を充填した容器に例えば昇圧ピスト
ン、バルブ等を介して貯蔵を意図するガスを高圧下に導
入することによりガスを貯蔵する。容器としては、例え
ば少なくとも200気圧に対する耐圧性をもち、密閉で
きる中空の容器が用いられる。貯蔵対象ガスとしては、
メタン、エタン、エチレン、アセチレン、プロパン、ブ
タン等の低級炭化水素、これらの混合ガス、酸素、窒
素、水素等が挙げられる。このうち特にメタン及びメタ
ンを主成分とするガスが挙げられ、メタンを主成分とす
るガスの例としては天然ガスや都市ガスが挙げられる。
In the present invention, when storing a gas, the gas to be stored is introduced into the container filled with the above-mentioned pore material under high pressure, for example, through a pressure-raising piston, a valve, or the like. As the container, for example, a hollow container that has pressure resistance to at least 200 atm and can be hermetically used is used. As the gas to be stored,
Examples thereof include lower hydrocarbons such as methane, ethane, ethylene, acetylene, propane, and butane, mixed gases thereof, oxygen, nitrogen, and hydrogen. Among them, particularly, methane and a gas containing methane as a main component are exemplified. Examples of the gas mainly containing methane include natural gas and city gas.

【0022】図6は、細孔材料を充填した耐圧容器へガ
スを貯蔵する態様例を示す図である。メタン等の貯蔵す
るガスをポンプにより昇圧し、バルブを介して耐圧容器
内の細孔材料に吸着させて貯蔵する。図7は本発明にお
ける細孔材料を充填した耐圧容器の2、3の態様例を断
面図として示す図である。図7(a)は細孔材料を耐圧
容器中に層状に充填した態様、図7(b)は細孔材料の
充填層に上下方向に貫通孔を設けた態様、図7(c)は
充填層に枝管を設け、充填層の下部にも空間を設けた態
様である。これら図示の態様では上部等に空間部分があ
るが、本発明におけるガス貯蔵は特定の細孔材料自体を
利用する貯蔵であるため、空間部分は可及的に少なくす
るのが好ましい。
FIG. 6 is a diagram showing an embodiment in which gas is stored in a pressure-resistant container filled with a porous material. A gas to be stored, such as methane, is pressurized by a pump, and adsorbed and stored in a pore material in a pressure-resistant container via a valve. FIG. 7 is a cross-sectional view showing a few embodiments of the pressure-resistant container filled with the porous material according to the present invention. 7A shows a mode in which the porous material is filled in a pressure-resistant container in a layered manner, FIG. 7B shows a mode in which through-holes are provided in the filling layer of the porous material in the vertical direction, and FIG. In this embodiment, a branch pipe is provided in the layer, and a space is provided below the packed layer. In these illustrated embodiments, there is a space in the upper part or the like, but since the gas storage in the present invention is storage using a specific pore material itself, it is preferable to make the space as small as possible.

【0023】細孔材料を充填した耐圧容器中の該細孔材
料に吸着、貯蔵したガスを使用する際には、例えばバル
ブ操作等により細孔材料に吸着された貯蔵ガスを適宜放
散して容器からガスを抜き出して使用する。このように
ガスの貯蔵及び抜き出し、共に構成が簡単であり、従来
のガスの圧縮と同様の簡便な操作で、単なる圧縮による
場合に比べて、より大量のガスを貯蔵し、抜き出すこと
ができる。また、容器中のガス残量に関係なく自由に貯
蔵、抜き出しを行うことができるだけでなく、細孔材料
も繰り返し使用することができる。
When using a gas adsorbed and stored on the pore material in a pressure-resistant container filled with the pore material, the stored gas adsorbed on the pore material is appropriately diffused by, for example, a valve operation or the like, and the container Extract the gas from and use it. As described above, the gas storage and extraction are both simple in construction, and a larger amount of gas can be stored and extracted by simple operations similar to conventional gas compression as compared with a simple compression. Further, not only can the gas be stored and extracted freely irrespective of the remaining amount of gas in the container, but also the porous material can be used repeatedly.

【0024】このため、本発明のガス貯蔵方法は、ガス
としてメタン等の低級炭化水素あるいはその混合ガスを
対象とする場合、例えば病院、ビル、家庭などでの常時
又は非常時用の燃料ガスの貯蔵、供給、コジェネレーシ
ョン発電機への常時あるいは非常時用の燃料ガスの貯
蔵、供給、自動車等の輸送機器用やその供給基地用の燃
料ガスの貯蔵、供給など、従来における燃料ガスの貯
蔵、供給における場合と同様の用途に利用できる。しか
も、上記のように貯蔵、抜き出しが容易であるのに加
え、従来に比べて同一容量で大量のガスを貯蔵できるこ
とから容器を小型化できるなど各種利点が得られる。
For this reason, the gas storage method of the present invention can be applied to a case where a low-grade hydrocarbon such as methane or a mixed gas thereof is used as a gas. Conventional storage of fuel gas, such as storage, supply, storage or supply of fuel gas for cogeneration generators for regular or emergency use, storage and supply of fuel gas for transportation equipment such as automobiles and their supply bases, It can be used for the same applications as in the supply. Moreover, in addition to being easy to store and withdraw as described above, a large amount of gas can be stored with the same capacity as compared with the related art, so that various advantages such as downsizing of the container can be obtained.

【0025】[0025]

【実施例】以下、実施例に基づき本発明をさらに詳細に
説明するが、本発明がこれら実施例により限定されない
ことはもちろんである。本実施例では、まず実施例で使
用した実験用装置の概略、操作例を説明し、次いでこの
装置を使用し、上記と同じ試料A〜Fを用いた具体的な
吸着試験例を記載している。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it is needless to say that the present invention is not limited to these Examples. In this example, first, an outline of the experimental device used in the example, an operation example will be described, and then, using this device, specific adsorption test examples using the same samples A to F will be described. I have.

【0026】図8は本実施例で使用した実験用装置の構
成を原理的に示した図である。図8中、V1〜V4はバ
ルブであり、試料容器の内容積は12.3cm3であ
る。ボンベに充填されたメタンを昇圧ピストンにより昇
圧し、バルブV1を介して試料部における細孔材料を充
填した試料容器に導入する。操作にあたっては、まず真
空ポンプにより試料容器及び導管内を真空引きした後、
バルブを切り換えてメタンを導入する。メタンを所定圧
力まで導入した時点で、その状態で所定時間、例えば1
0分程度待った後、試料容器からのメタンの捕集操作を
実施する。
FIG. 8 is a diagram showing in principle the configuration of the experimental apparatus used in this embodiment. In FIG. 8, V1 to V4 are valves, and the internal volume of the sample container is 12.3 cm 3 . The methane filled in the cylinder is pressurized by a pressurizing piston and introduced into a sample container filled with a pore material in a sample portion via a valve V1. In the operation, first, the inside of the sample container and the conduit is evacuated by a vacuum pump,
Switch the valve to introduce methane. When methane is introduced to a predetermined pressure, the state is maintained for a predetermined time, for example, 1 hour.
After waiting about 0 minutes, the operation of collecting methane from the sample container is performed.

【0027】《実施例1》試料容器に、平均細孔径(ス
リット幅として)が0.81nm、比表面積1249m
2/g、全細孔容量0.51cm3/g、真密度1.9g
/cm3の活性炭9.30g(試料A)を充填した。バ
ルブV1を閉め、バルブV2、V3、V4を開けて、室
温にて1時間、真空ポンプによって真空排気を行うこと
により、試料容器内、ライン内の空気の排気および活性
炭に吸着したガスの脱ガスを行った。次いで、バルブV
2、V3、V4を閉め、V1を開け、室温24℃におい
て、試料容器にメタンガスを圧力180気圧になるまで
導入し、圧力がほぼ安定するまで10分間保ち、十分な
ガス充填を行った。
Example 1 In a sample container, an average pore diameter (as a slit width) was 0.81 nm, and a specific surface area was 1249 m.
2 / g, total pore volume 0.51 cm 3 / g, true density 1.9 g
/ Cm 3 of activated carbon (sample A). The valve V1 is closed, the valves V2, V3, and V4 are opened, and vacuum evacuation is performed at room temperature for 1 hour by a vacuum pump, thereby exhausting air in the sample container and the line and degassing gas adsorbed on activated carbon. Was done. Then, valve V
2. V3 and V4 were closed, V1 was opened, and methane gas was introduced into the sample container at room temperature 24 ° C. until the pressure reached 180 atm. The pressure was maintained for 10 minutes until the pressure was almost stabilized, and sufficient gas filling was performed.

【0028】その後、バルブV1を閉め、V3を開けて
充填されたメタンガスを放出し、湿式ガスメーター(湿
式ガス流量計)によりガス量を測定した。圧力が大気圧
まで下がったところで、バルブV3を閉め、V2、V4
を開けて、真空ポンプを用いてさらに150Torrの
低圧まで吸引し、活性炭に吸着されたガスの脱着を行
い、出てきたガスの量を引続き湿式ガスメーターにより
測定した。ポンプを用いた脱着はガスが出てこなくなる
まで行った。その間約10分であった。
Thereafter, the valve V1 was closed and V3 was opened to discharge the filled methane gas, and the gas amount was measured by a wet gas meter (wet gas flow meter). When the pressure drops to the atmospheric pressure, the valve V3 is closed, and V2, V4
Was opened and the pressure was further suctioned to a low pressure of 150 Torr using a vacuum pump to desorb the gas adsorbed on the activated carbon, and the amount of the gas emitted was subsequently measured by a wet gas meter. Desorption using a pump was performed until gas did not come out. It took about 10 minutes.

【0029】こうして放出されたガス量は全部で344
4cm3であった。測定後、上記と同様の操作により、
再度メタンにより180気圧まで加圧し、放出ガスの体
積を測定した後、さらにもう一度同様の操作を繰り返し
た。その結果得られたガス量は、それぞれ、3321c
3、3567cm3であった。これらの結果は、容器の
容積12.3cm3を基準とすると、充填されたガスの
体積比で約280倍となり、空の容器に180気圧のメ
タンを充填した場合のガス量である230倍(計算値と
実測値も一致、メタンガスの圧縮係数により理想気体の
180倍よりは多くなる)に比べて約22%の増加であ
った。
The total amount of gas thus released is 344
It was 4 cm 3 . After measurement, by the same operation as above,
The pressure was again increased to 180 atm with methane, the volume of the released gas was measured, and the same operation was repeated once more. The resulting gas volumes were 3321 c
m 3 , 3567 cm 3 . These results show that the volume ratio of the charged gas is about 280 times based on the volume of the container of 12.3 cm 3 , and the gas amount is 230 times when the empty container is filled with 180 atm of methane ( The calculated value and the measured value are also in agreement, and the compression coefficient of methane gas increases by more than 180 times that of the ideal gas).

【0030】ところで、試料容器には活性炭をできるだ
け密になるように充填したが、容器の容積12.3cm
3のうち、9.30g(活性炭重量)÷1.9g/cm3
(真密度)=4.91cm3は炭素骨格により占められ
た体積であり、9.30g(活性炭重量)×0.51c
3/g(細孔容量)=4.74cm3は全細孔容積であ
るので、残りの12.3−4.91−4.74=2.6
5(cm3)は粒子間及び容器内壁と各粒子間の空間であ
る。したがって、この空間には、ガスが単なる圧縮によ
り充填される。空の容器にメタンガス180気圧をかけ
て充填されうるガス量である230倍という値を用いる
と、試料容器内の粒子間及び容器内壁と各粒子間の空間
である2.65cm3の空間に、圧縮ガスとして充填さ
れたガス量は2.65×230=610cm3と計算さ
れる。
The sample container was filled with activated carbon so as to be as dense as possible, but the volume of the container was 12.3 cm.
Of 3, 9.30 g (activated carbon weight) ÷ 1.9g / cm 3
(True density) = 4.91 cm 3 is the volume occupied by the carbon skeleton, and is 9.30 g (weight of activated carbon) × 0.51 c
Since m 3 / g (pore volume) = 4.74 cm 3 is the total pore volume, the remaining 12.3-4.91-4.74 = 2.6.
5 (cm 3 ) is the space between the particles and between the inner wall of the container and each particle. Thus, this space is filled with gas by simple compression. When a value of 230 times, which is a gas amount that can be filled by applying 180 atm of methane gas to an empty container, is used, a space of 2.65 cm 3 , which is a space between particles in the sample container and a space between the container inner wall and each particle, The amount of gas charged as compressed gas is calculated as 2.65 × 230 = 610 cm 3 .

【0031】したがって、放出ガスの総量3444cm
3から、圧縮によるガス分610cm3を差し引いた28
34cm3が、活性炭内部の細孔中に充填されていたガ
ス量であり、試料A中の全細孔容量は上記のとおり4.
74cm3であるので、活性炭の細孔中のガスは283
4÷4.74=598(倍)もの高密度で充填されてい
たことになる。
Therefore, the total amount of the released gas is 3444 cm.
From 3, minus the gas partial 610cm 3 by compression 28
34 cm 3 is the amount of gas filled in the pores inside the activated carbon, and the total pore volume in sample A is 3.
Since it is 74 cm 3 , the gas in the pores of the activated carbon is 283
This means that packing was performed at a density as high as 4 ÷ 4.74 = 598 (times).

【0032】これは、−163℃の極低温において液化
させたメタンがガス体になる際の体積比が600倍であ
ることから考えると、活性炭の細孔中のメタンガスがほ
とんど液体に近い密度で充填されていることを示すもの
である。このように、本発明によれば、既存のボンベで
対応できる例えば180気圧程度の圧力をかけることに
より、極端な低温を用いることなく、例えば24℃とい
う常温において液体並みの高密度でメタンガスの充填が
できる。
Considering that the volume ratio when methane liquefied at a very low temperature of -163 ° C. becomes a gaseous material is 600 times, the methane gas in the pores of the activated carbon has a density almost close to that of a liquid. It indicates that it is filled. As described above, according to the present invention, by applying a pressure of, for example, about 180 atm, which can be dealt with by an existing cylinder, the methane gas can be filled at a normal temperature of, for example, 24 ° C. with a high density of liquid at a normal temperature of, for example, 24 ° C. Can be.

【0033】《実施例2》実施例1と同様の装置に、実
施例1とは製法の異なる、平均細孔径(スリット幅とし
て)が0.86nm、比表面積1420m2/g、全細
孔容量0.67cm3/g、真密度1.9g/cm3の活
性炭2.99g(試料B)を充填し、実施例1と全く同
様の操作により、メタンガスに180気圧をかけた場合
の充填量を3回測定した。その結果、得られたガス量は
3137cm3、3198cm3、3013cm3であっ
た。この結果は、上記と同様の計算により、容器の容積
基準で255倍、細孔容積基準で565倍もの高密度充
填を示すものである。
Example 2 The same apparatus as in Example 1 was used, except that the average pore diameter (as slit width) was 0.86 nm, the specific surface area was 1420 m 2 / g, and the total pore volume was different from that of Example 1. 2.99 g of activated carbon (sample B) having a density of 0.67 cm 3 / g and a true density of 1.9 g / cm 3 was charged, and the amount of charge when 180 atm was applied to methane gas by the same operation as in Example 1 It was measured three times. As a result, the obtained gas amounts were 3137 cm 3 , 3198 cm 3 , and 3013 cm 3 . This result shows a high density packing of 255 times based on the volume of the container and 565 times based on the pore volume by the same calculation as above.

【0034】《実施例3》実施例1と同様の装置に、実
施例1、2とは異なる製法で得られた、平均細孔径(ス
リット幅として)が0.87nm、比表面積1720m
2/g、全細孔容量0.75cm3/g、真密度1.9g
/cm3の活性炭2.20g(試料C)を充填し、実施
例1と全く同様の操作により、メタンガスに180気圧
をかけた場合の充填量を3回測定した。その結果、得ら
れたガス量は3075cm3、3137cm3、3026
cm3であった。この結果は、同様の計算により、容器
の容積基準で250倍、細孔容積基準で560倍の高密
度充填を示すものである。
Example 3 An average pore diameter (as a slit width) of 0.87 nm and a specific surface area of 1,720 m, obtained by a method different from those of Examples 1 and 2 in an apparatus similar to that of Example 1, was used.
2 / g, total pore volume 0.75 cm 3 / g, true density 1.9 g
/ Cm 3 of activated carbon (sample C) was filled, and the same operation as in Example 1 was carried out, and the filling amount when methane gas was applied at 180 atm was measured three times. As a result, the obtained gas amounts were 3075 cm 3 , 3137 cm 3 , and 3026 cm 3 .
cm 3 . The result shows that the same calculation shows a high density packing of 250 times based on the volume of the container and 560 times based on the pore volume.

【0035】《実施例4》実施例1と同様の装置に、実
施例1、2、3とは異なる製法で得られた、平均細孔径
(スリット幅として)が0.91nm、比表面積148
0m2/g、全細孔容量0.75cm3/g、真密度1.
9g/cm3の活性炭5.01g(試料D)を充填し、
実施例1と全く同様の操作により、メタンガスに180
気圧をかけた場合の充填量を3回測定した。その結果、
得られたガス量は3198cm3、3080cm3、30
70cm3であった。この結果は、同様の計算により、
容器の容積基準で250倍、細孔容積基準で490倍の
高密度充填を示すものである。
Example 4 An average pore diameter (as a slit width) of 0.91 nm and a specific surface area of 148 obtained by a method different from those of Examples 1, 2, and 3 were obtained in the same apparatus as in Example 1.
0 m 2 / g, total pore volume 0.75 cm 3 / g, true density 1.
Fill 5.0 g of 9 g / cm 3 activated carbon (sample D),
By exactly the same operation as in Example 1, 180
The filling amount when the air pressure was applied was measured three times. as a result,
The amount of gas obtained was 3198 cm 3 , 3080 cm 3 , 30
70 cm 3 . The result of this calculation is
It shows a high density packing of 250 times based on the volume of the container and 490 times based on the pore volume.

【0036】《比較例1》実施例1と同様の装置に、実
施例1、2、3、4とは製法の異なる、平均細孔径(ス
リット幅として)が1.01nmとやや大きく、比表面
積1950m2/g、全細孔容量1.02cm3/g、真
密度1.9g/cm3の活性炭2.93g(試料E)を
充填し、実施例1と全く同様の操作により、メタンガス
に180気圧をかけた場合の充填量を3回測定した。そ
の結果、得られたガス量は2435cm3、2470c
3、2463cm3であった。この結果は、前記と同様
の計算により、容器の容積基準で200倍となり、空の
容器への圧縮によるガス充填量である230倍を下回る
ものであった。
Comparative Example 1 The same apparatus as in Example 1 was used, except that the production method was different from Examples 1, 2, 3, and 4. 2.93 g of activated carbon (sample E) having 1950 m 2 / g, a total pore volume of 1.02 cm 3 / g, and a true density of 1.9 g / cm 3 were charged. The filling amount when the air pressure was applied was measured three times. As a result, the obtained gas amount was 2435 cm 3 , 2470 c
m 3 , 2463 cm 3 . According to the same calculation as above, the result was 200 times based on the volume of the container, and was smaller than 230 times, which is the gas filling amount due to compression into an empty container.

【0037】《比較例2》実施例1と同様の装置に、実
施例1、2、3、4、比較例1とは製法の異なる、平均
細孔径(スリット幅として)が1.96nmとさらに大
きく、比表面積1568m2/g、全細孔容量1.52
cm3/g、真密度1.9g/cm3の活性炭4.01g
(試料F)を充填し、実施例1と全く同様の操作によ
り、メタンガスに180気圧をかけた場合の充填量を3
回測定した。その結果、得られたガス量は2891cm
3、2895cm3、2887cm3であった。この結果
は、前記と同様の計算により、容器の容積基準で235
倍となり、空の容器への圧縮によるガス充填量である2
30倍と同等のものであった。
Comparative Example 2 An apparatus similar to that of Example 1 was used, and the average pore diameter (as a slit width) was 1.96 nm, which was different from that of Examples 1, 2, 3, and 4 and Comparative Example 1. Large, specific surface area 1568 m 2 / g, total pore volume 1.52
4.01 g of activated carbon with cm 3 / g and true density of 1.9 g / cm 3
(Sample F) was filled, and the filling amount when 180 atm was applied to the methane gas was set to 3 in the same manner as in Example 1.
Measured times. As a result, the obtained gas amount was 2891 cm.
3, it was 2895cm 3, 2887cm 3. The result is 235 based on the volume of the container by the same calculation as above.
2 times the amount of gas filling by compression into an empty container
It was equivalent to 30 times.

【0038】[0038]

【発明の効果】本発明によれば、細孔材料を、その細孔
のうち細孔径0.90nm以下の細孔が容器充填時に容
器の全容積中少なくとも5%以上となるように充填した
容器内に大量のガスを貯蔵することができる。また、本
発明によるガス貯蔵が細孔材料自体による貯蔵であるこ
とから、容器内において、細孔材料の細孔のうち細孔径
0.90nm以下の細孔が占める体積比を大きくし、ま
た容器内におけるボイド部分を可及的に減らすように工
夫をすることにより、同一容積の容器中に更に大量のガ
スを貯蔵することができる。
According to the present invention, a container filled with a porous material such that the pores having a pore diameter of 0.90 nm or less out of the pores constitute at least 5% or more of the total volume of the container when the container is filled. A large amount of gas can be stored inside. Further, since the gas storage according to the present invention is storage by the pore material itself, the volume ratio of pores having a pore diameter of 0.90 nm or less among the pores of the pore material in the container is increased, and By devising as much as possible the void portion in the inside, a larger amount of gas can be stored in the same volume container.

【図面の簡単な説明】[Brief description of the drawings]

【図1】表1の試料A〜Fを用いた場合の、容器容積あ
たりのメタンの貯蔵効率を示した図。
FIG. 1 is a diagram showing the storage efficiency of methane per container volume when samples A to F in Table 1 are used.

【図2】試料A〜Fの細孔径と細孔容積との関係を示し
た図。
FIG. 2 is a diagram showing the relationship between the pore diameter and the pore volume of Samples A to F.

【図3】図2のうち細孔径1.00までの部分を拡大し
て示した図。
FIG. 3 is an enlarged view of a portion of FIG. 2 up to a pore diameter of 1.00.

【図4】試料A〜Fの試料構成比率を示した図。FIG. 4 is a diagram showing sample composition ratios of samples A to F.

【図5】図4の試料構成比率中における、各試料におけ
る細孔容積あたりのメタン貯蔵効率を示した図。
5 is a diagram showing methane storage efficiency per pore volume in each sample in the sample composition ratio of FIG.

【図6】細孔材料を充填した耐圧容器へガスを貯蔵する
態様例を示した図。
FIG. 6 is a view showing an embodiment in which gas is stored in a pressure-resistant container filled with a porous material.

【図7】細孔材料を充填した耐圧容器の態様例を断面図
として示した図。
FIG. 7 is a sectional view showing an example of an embodiment of a pressure-resistant container filled with a porous material.

【図8】実施例で使用した実験用装置の構成を原理的に
示した図。
FIG. 8 is a diagram showing in principle the configuration of an experimental device used in the examples.

【符号の説明】[Explanation of symbols]

V1〜V4 バルブ V1-V4 valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥井 智治 東京都町田市能ヶ谷町848ー53 (72)発明者 池田 元一 神奈川県逗子市逗子6ー5ー35 Fターム(参考) 3E072 AA03 DA05 EA01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomoji Okui 848-53 Nogaya-cho, Machida-shi, Tokyo (72) Motoichi Ikeda 6-35-35 Zushi, Zushi-shi, Kanagawa F-term (reference) 3E072 AA03 DA05 EA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】細孔材料を、その細孔のうち細孔径0.9
0nm以下の細孔が容器充填時に容器の全容積中少なく
とも5%以上となるように、充填した容器内に、20気
圧以上の高圧でガスを導入することにより、当該ガスの
細孔材料への20気圧未満の測定における吸着特性の単
なる高圧への外挿値に相当するガス充填量、および細孔
材料を充填しない容器への単なる圧力充填によるガス充
填量よりも大量のガスを容器内に充填することを特徴と
するガスの貯蔵方法。
The present invention relates to a microporous material having a pore diameter of 0.9.
By introducing a gas at a high pressure of 20 atm or more into the filled container so that the pores of 0 nm or less account for at least 5% of the total volume of the container at the time of filling the container, Filling the container with a larger amount of gas than the gas filling amount equivalent to the extrapolated value of the adsorption property to a simple high pressure in the measurement below 20 atm, and the gas filling amount by simply pressure filling a container not filled with porous material A method for storing gas.
【請求項2】上記細孔材料が活性炭である請求項1に記
載のガスの貯蔵方法。
2. The gas storage method according to claim 1, wherein the pore material is activated carbon.
【請求項3】上記ガスがメタン、エタン、プロパン、ブ
タン等の低級炭化水素、またはそれらの混合ガスである
請求項1又は2に記載のガスの貯蔵方法。
3. The gas storage method according to claim 1, wherein the gas is a lower hydrocarbon such as methane, ethane, propane, butane, or a mixed gas thereof.
【請求項4】上記ガスが天然ガスまたは都市ガスである
請求項1又は2に記載のガスの貯蔵方法。
4. The gas storage method according to claim 1, wherein the gas is natural gas or city gas.
JP22470799A 1999-08-06 1999-08-06 Gas storage method Expired - Fee Related JP3809894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22470799A JP3809894B2 (en) 1999-08-06 1999-08-06 Gas storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22470799A JP3809894B2 (en) 1999-08-06 1999-08-06 Gas storage method

Publications (2)

Publication Number Publication Date
JP2001050495A true JP2001050495A (en) 2001-02-23
JP3809894B2 JP3809894B2 (en) 2006-08-16

Family

ID=16817992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22470799A Expired - Fee Related JP3809894B2 (en) 1999-08-06 1999-08-06 Gas storage method

Country Status (1)

Country Link
JP (1) JP3809894B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267097A (en) * 2001-03-08 2002-09-18 Osaka Gas Co Ltd Adsorption type fuel storage device for natural gas automobile
JP2002267096A (en) * 2001-03-08 2002-09-18 Osaka Gas Co Ltd Adsorption type storage method of fuel for natural gas and methane automobile
JP2004275091A (en) * 2003-03-17 2004-10-07 Asahi Breweries Ltd Method for producing fermented malt beverage and active carbon for removing purines from fermented malt beverage
JP2004321004A (en) * 2003-04-21 2004-11-18 Asahi Breweries Ltd Method for producing fermented malt beverage
CN115355444A (en) * 2022-09-08 2022-11-18 燕山大学 Method for efficiently storing methane gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267097A (en) * 2001-03-08 2002-09-18 Osaka Gas Co Ltd Adsorption type fuel storage device for natural gas automobile
JP2002267096A (en) * 2001-03-08 2002-09-18 Osaka Gas Co Ltd Adsorption type storage method of fuel for natural gas and methane automobile
JP4605926B2 (en) * 2001-03-08 2011-01-05 大阪瓦斯株式会社 Adsorption-type natural gas vehicle fuel storage system
JP4646422B2 (en) * 2001-03-08 2011-03-09 大阪瓦斯株式会社 Adsorption storage method for natural gas and methane automobile fuel
JP2004275091A (en) * 2003-03-17 2004-10-07 Asahi Breweries Ltd Method for producing fermented malt beverage and active carbon for removing purines from fermented malt beverage
JP2004321004A (en) * 2003-04-21 2004-11-18 Asahi Breweries Ltd Method for producing fermented malt beverage
CN115355444A (en) * 2022-09-08 2022-11-18 燕山大学 Method for efficiently storing methane gas

Also Published As

Publication number Publication date
JP3809894B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
Zhou et al. Enhancement of the methane storage on activated carbon by preadsorbed water
RU2228485C2 (en) Method and plant for accumulation of gas and agent absorbing gas and method of production of such agent
MY146174A (en) Gas storage and dispensing system with monolithic carbon adsorbent
US5787605A (en) Method of storing and transporting gases
US8231712B2 (en) Carbon-based sorbent for gas storage, and method for preparation thereof
Matranga et al. Molecular simulation of adsorbed natural gas
US6329316B1 (en) Granular active carbon for natural-gas occlusion and process for producing the same
CN107366824A (en) Absorbing storage tank for natural gas
CN1038507A (en) The method and apparatus of sorptively storing multiconstituent gas
JP2001050495A (en) Gas storing method
Malbrunot et al. Storage of gases at room temperature by adsorption at high pressure
Van Voorhis et al. Free energy of immersion of compressed powders with different liquids. II. Silica powder
EP0875714A1 (en) Method and apparatus for treating bog in a low temperature liquid storage tank
JP4823949B2 (en) Mixed gas storage container
JP3710594B2 (en) Automotive fuel gas tank and automotive fuel gas station
JP4300381B2 (en) Adsorbed storage device for odorized fuel gas
JP4812194B2 (en) Natural gas adsorption storage device and adsorption storage method
US20230227309A1 (en) STORAGE AND DELIVERY VESSEL FOR STORING GeH4, USING A ZEOLITIC ADSORBENT
JP4271521B2 (en) Gas adsorption device and manufacturing method thereof
JP3522493B2 (en) Portable and replaceable fuel gas tank
JP2005048798A (en) Gas adsorbing apparatus
JPH10324647A (en) High-density methane hydrate and its production
JPH10299999A (en) City gas supply quantity regulating method and city gas tank therefor
JP2000018495A (en) Methane fuel gas storing/feeding method
KR19980086378A (en) A material containing a hydrous compound of lower hydrocarbon and a method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees