JP2001047345A - Fine hole machining method - Google Patents

Fine hole machining method

Info

Publication number
JP2001047345A
JP2001047345A JP22632899A JP22632899A JP2001047345A JP 2001047345 A JP2001047345 A JP 2001047345A JP 22632899 A JP22632899 A JP 22632899A JP 22632899 A JP22632899 A JP 22632899A JP 2001047345 A JP2001047345 A JP 2001047345A
Authority
JP
Japan
Prior art keywords
hole
diameter
processing
blank
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22632899A
Other languages
Japanese (ja)
Inventor
Minoru Tamura
稔 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP22632899A priority Critical patent/JP2001047345A/en
Publication of JP2001047345A publication Critical patent/JP2001047345A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To establish a fine hole machining method allowing a bore polishing stably with excellent quality and dimensional accuracy through a single machining, achieving automation of the bore finishing work using one finishing machine, and reducing the processing cost to a great extent. SOLUTION: A blank 1 is provided where a minor diameteric portion 3 of a through hole 2 has diameter enlarging from one side to the other in such an arrangement that the hole diameter of the first named end is over 96% of the maximum finished dimension, the diameter difference between the two ends is less than 5 μm, and the hole bend is under 10 μm, and the blank is grasped by a grasping part 5 capable of rotating and reciprocating from the first end, and bore machining is executed by inserting a wire-form machining tool 6 into the through hole from the other end. The bore machining is performed so that one end of the blank, preferably the minor diameteric side, is grasped and rotated and the wire-form machining tool is inserted from the other end, preferably from the major diameteric side, so that relative reciprocation is generated in the axial direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動加工に適した
細孔加工方法に関し、特に光コネクタ用フェルールのブ
ランクの内径自動加工に適した細孔加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming pores suitable for automatic processing, and more particularly to a method for forming pores suitable for automatic processing of the inner diameter of a blank of a ferrule for an optical connector.

【0002】[0002]

【従来の技術】細長い貫通孔を有し、しかも高い寸法精
度が要求される代表的なものとして、光コネクタ用フェ
ルールもしくはキャピラリが挙げられる。以下、添付図
面を参照しながら説明すると、図14は、光コネクタに
おけるキャピラリ11とフランジ12が別体型のフェル
ール10を示している。すなわち、フェルール10は、
光ファイバ17(もしくは光ファイバ素線)を挿入する
ための小径の貫通孔13が中心軸線に沿って形成された
キャピラリ11と、中心軸線に沿って光ファイバ心線1
6(光ファイバの外周に外被が被着されたもの)挿通用
の大径の貫通孔14が形成されたフランジ部12とから
なる。キャピラリ11のテーパ径部15が形成された端
部を、フランジ12の先端穴部19に締り嵌め又は接着
等により固着して組み立てられ、キャピラリ11の小径
の貫通孔13とフランジ12の大径の貫通孔14はテー
パ径部15を介して接続される。一対の光ファイバ1
7,17の接続は、それらが挿入・接合された各フェル
ール10,10を割りスリーブ18の両端から挿入し、
フェルール10,10同士の端面を突き合わせることに
より行なわれ、これによって光ファイバ17,17の軸
線が整列した状態で先端部が突き合わせ接続される。一
方、図15は、光コネクタのキャピラリ部11aとフラ
ンジ部12aが一体の光コネクタ用フェルール10aを
示している。
2. Description of the Related Art A ferrule or a capillary for an optical connector is a typical example having an elongated through hole and requiring high dimensional accuracy. Referring to the accompanying drawings, FIG. 14 shows a ferrule 10 in which an optical connector has a capillary 11 and a flange 12 which are separate bodies. That is, the ferrule 10
A capillary 11 in which a small-diameter through hole 13 for inserting an optical fiber 17 (or an optical fiber) is formed along the central axis, and the optical fiber core 1 along the central axis.
6 (the outer periphery of the optical fiber is covered with a jacket) and a flange portion 12 in which a large-diameter through hole 14 for insertion is formed. The end of the capillary 11 on which the tapered diameter portion 15 is formed is fixed to the distal end hole 19 of the flange 12 by tight fitting or bonding or the like, and assembled, and the small diameter through hole 13 of the capillary 11 and the large diameter of the flange 12 are assembled. The through holes 14 are connected via tapered diameter portions 15. A pair of optical fibers 1
The connection of 7, 17 is performed by inserting the ferrules 10, 10 into which they have been inserted and joined, from both ends of the sleeve 18, and
This is performed by abutting the end faces of the ferrules 10, 10, whereby the tips are abutted and connected with the axes of the optical fibers 17, 17 aligned. On the other hand, FIG. 15 shows an optical connector ferrule 10a in which the capillary portion 11a and the flange portion 12a of the optical connector are integrated.

【0003】光ファイバ挿通用の小径の貫通孔13の孔
径は、タイプにより様々であるが、例えばSC型と呼ば
れるキャピラリ(フェルール)ではφ0.126mm、
深さ10mmの細孔を有している。光コネクタにおいて
は、接続すべき2本の光ファイバの相対位置を正確に合
わせることが要求されるため、フェルールもしくはキャ
ピラリの外径及び小径部内径(特に突き合わせ面近傍の
内径)には高い寸法精度が要求される。従来、光コネク
タ用フェルールもしくはキャピラリは、射出成形、押出
成形等により成形し、焼成したジルコニア等のセラミッ
クブランクに、内周研磨加工、外周研磨加工等を行なっ
て作製されている。
[0003] The diameter of the small diameter through hole 13 for inserting an optical fiber varies depending on the type. For example, a capillary (ferrule) called SC type has a diameter of 0.126 mm.
It has pores with a depth of 10 mm. In an optical connector, since it is required that the relative positions of two optical fibers to be connected are accurately matched, high dimensional accuracy is required for the outer diameter and inner diameter of the ferrule or capillary (in particular, the inner diameter near the abutting surface). Is required. 2. Description of the Related Art Conventionally, ferrules or capillaries for optical connectors have been manufactured by subjecting a ceramic blank, such as zirconia, formed by injection molding, extrusion molding, or the like, to inner peripheral polishing, outer peripheral polishing, or the like.

【0004】射出成形、押出成形等によって作製された
加工されるべき細孔を有する成形素材(ブランク)の内
径研磨加工法としては、従来、複数個のブランクをウッ
ドメタル等の低融点半田によって固定し、同時にワイヤ
ーラッピング加工する方法(メタルセット方式)と、ブ
ランクを1個ずつワイヤーラッピング加工する方法が知
られている。例えば、フェルール用のブランクの場合、
複数個のブランクをセット用ワイヤに通し、このワイヤ
を緊張させた状態で各ブランクをホルダにウッドメタル
によって固定する。次いで、セット用ワイヤを外し、テ
ーパの付いた研磨用ワイヤを通した後、適当な粒度の研
磨用粉末やダイヤモンドスラリーなどの研磨剤を供給し
ながら、ブランクをホルダと共に回転させ、同時に研磨
用ワイヤを軸線方向に往復動させることにより、複数個
のブランクの細孔加工を同時に行なう。加工終了後、ウ
ッドメタルを溶解し、ブランクをホルダから外して洗浄
する。この方法の場合、複数個のブランクを同時に加工
できる利点はあるが、ブランクの孔径にばらつきがある
ため、加工代を大きくとる必要があるという難点があ
る。これを解決するため、複数のブランクをホルダに固
定せず、張設された研磨用ワイヤに複数個のブランクを
通して遊動状態に保持し、ブランクを1個ずつ回転させ
てラッピング加工を行なう方法もある(特許第2542
982号公報)。
[0004] As a method of polishing the inner diameter of a molding material (blank) having pores to be processed, which is produced by injection molding, extrusion molding or the like, conventionally, a plurality of blanks are fixed with low melting point solder such as wood metal. A method of simultaneously performing wire wrapping (metal set method) and a method of performing wire wrapping one blank at a time are known. For example, for a ferrule blank,
A plurality of blanks are passed through a setting wire, and each blank is fixed to a holder with wood metal while the wires are tensioned. Next, after removing the setting wire and passing through a tapered polishing wire, the blank is rotated together with the holder while supplying an abrasive such as a polishing powder or a diamond slurry of an appropriate particle size, and at the same time, the polishing wire is Are reciprocated in the axial direction, thereby simultaneously processing the pores of a plurality of blanks. After processing, the wood metal is melted, and the blank is removed from the holder and washed. This method has the advantage that a plurality of blanks can be processed at the same time, but has the disadvantage that the processing allowance must be increased because the hole diameters of the blanks vary. In order to solve this problem, there is a method in which a plurality of blanks are not fixed to a holder, a plurality of blanks are passed through a stretched polishing wire and held in a floating state, and the blanks are rotated one by one to perform a lapping process. (Patent No. 2542
982).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記し
たような従来のメタルセット方式及び1個ずつブランク
を加工する方式とも、必ず複数個のブランクをワイヤに
通し、加工後に取外すワイヤ通し・取外し作業が必要に
なる。特にメタルセット方式の場合、セット用ワイヤに
複数個のブランクを通し、ホルダに固定した後、ブラン
ク固定ホルダを抜いて再度研磨用ワイヤに通すという2
度のワイヤ通し作業が必要になる。このようなワイヤ通
し・取外し作業は、細孔加工の自動化を妨げる大きな原
因となっている。また、前記したようなワイヤラッピン
グ加工の場合、テーパの付いた研磨用ワイヤを別途作製
しておき、取替え時には使用した研磨用ワイヤ部材を全
体的に交換することが必要となる。そのため、研磨用ワ
イヤのコストが高くなるという問題もある。
However, in both the conventional metal setting method and the method of processing blanks one by one as described above, a plurality of blanks must be passed through a wire, and a wire passing / removing operation must be performed after processing. Will be needed. In particular, in the case of the metal setting method, a plurality of blanks are passed through the setting wire, fixed to the holder, then the blank fixing holder is pulled out, and the blank is again passed through the polishing wire.
It requires a lot of wire passing work. Such a wire passing / removing operation is a major factor that hinders automation of pore processing. Further, in the case of the wire wrapping as described above, it is necessary to separately manufacture a polishing wire having a taper, and to replace the used polishing wire member as a whole at the time of replacement. Therefore, there is a problem that the cost of the polishing wire is increased.

【0006】本発明は、上記のようなワイヤラッピング
加工に伴う問題を解消し、必ず手作業で行なうことが必
要になるワイヤ通し・取外し作業をなくすために、相対
的に回転・往復動させながら1個のブランクの細孔に線
状加工具を挿通することにより加工を行なう方法を提供
し、それによって細孔加工の自動化を図ろうとするもの
である。このような細孔加工を行なえる装置としては、
国際公開WO97/26113号に提案されているよう
な加工機がある。しかしながら、通常のブランクでは、
細孔の表面粗さ、曲り、テーパなどのために加工代を大
きくとる必要があり、例えばフェルール用のブランクの
場合には20μm以上必要とされている。ブランクの細
孔内径は小さく、また線状加工具もかなり細いものとな
るため、大きな加工を行なう場合、線状加工具も数種類
用意しておき、段階的に複数回の加工を行なわねばなら
ない。そのため、自動加工として設計するには複数台の
加工機が必要となり、設備コストがかなり高くなるとい
う課題が残されてしまう。
The present invention solves the above-mentioned problems associated with the wire wrapping process, and eliminates the need to manually perform the wire passing / removing operation. An object of the present invention is to provide a method of performing processing by inserting a linear processing tool into the pores of one blank, thereby attempting to automate the processing of the pores. As a device that can perform such pore processing,
There is a processing machine as proposed in International Publication WO97 / 26113. However, with a normal blank,
It is necessary to increase the processing allowance due to the surface roughness, bending, and taper of the pores. For example, in the case of a blank for a ferrule, 20 μm or more is required. Since the inside diameter of the pores of the blank is small and the linear processing tool is considerably thin, when performing large processing, several types of linear processing tools must be prepared and processing must be performed stepwise a plurality of times. Therefore, a plurality of processing machines are required for designing as automatic processing, and the problem that the equipment cost becomes considerably high remains.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記のよ
うな問題は、加工代を小さくするように予めブランクの
方で調整を行なうことにより解決され、細孔の孔曲り、
テーパ度を制御したブランク作製と、ブランクの細孔に
線状加工具を挿通することによる加工技術とを組み合わ
せることにより、単一の加工工程により内径研磨加工が
行なえ、従って自動化を達成できることを見出し、本発
明を完成するに至ったものである。ブランクの作製時に
は、細孔の孔曲り及びテーパ度のいずれか一方又は両方
の調整が必要となる。本発明の細孔加工方法の第一の態
様は、大径部と加工されるべき小径部とからなる貫通孔
を有する物品の貫通孔内径部の加工方法であって、上記
貫通孔の孔曲りが10μm以下の物品を準備し、該物品
の一端部を把持し、他端側より貫通孔へ線状の加工具を
挿通することにより内径加工を行なうことを特徴とする
ものである。
Means for Solving the Problems The present inventors have solved the above-mentioned problems by adjusting the blanks in advance so as to reduce the machining allowance, and have found that the pores are bent,
By combining the blank production with controlled taper degree and the processing technology by inserting a linear processing tool through the pores of the blank, it was found that the inner diameter polishing can be performed in a single processing step, and thus automation can be achieved. Thus, the present invention has been completed. When manufacturing a blank, it is necessary to adjust one or both of the curvature and the degree of taper of the fine holes. A first aspect of the method for processing a pore of the present invention is a method for processing an inner diameter of a through-hole of an article having a through-hole including a large-diameter portion and a small-diameter portion to be processed. Is prepared by preparing an article having a diameter of 10 μm or less, gripping one end of the article, and inserting a linear processing tool into the through hole from the other end to perform inner diameter processing.

【0008】一方、本発明の細孔加工方法の第二の態様
は、上記貫通孔の小径部が一端側から他端側に向って拡
大する孔径を有し、一端側の孔径が最大仕上寸法の96
%以上、好ましくは75μmから250μm、他端側と
一端側の孔径差が5μm以下の物品を準備し、該物品を
一端側より把持し、他端側より貫通孔へ線状の加工具を
挿通することにより内径加工を行なうことを特徴とする
ものである。また、本発明の細孔加工方法の第三の態様
は、上記貫通孔の小径部が一端側から他端側に向って拡
大する孔径を有し、一端側の孔径が最大仕上寸法の96
%以上、好ましくは75μmから250μm、他端側と
一端側の孔径差が5μm以下、孔曲りが10μm以下の物
品を準備し、該物品を一端側より把持し、他端側より貫
通孔へ線状の加工具を挿通することにより内径加工を行
なうことを特徴とするものである。前記いずれの態様に
おいても、好適には、前記物品の一端側、好ましくは小
径部側端部を把持しながら回転させ、これに他端側、好
ましくは大径部側より線状の加工具を挿通し、軸線方向
に相対的に往復動させることにより内径加工を行なう。
[0008] On the other hand, in a second aspect of the pore forming method of the present invention, the small-diameter portion of the through hole has a hole diameter that increases from one end to the other end, and the hole diameter at one end is the maximum finishing dimension. Of 96
% Or more, preferably 75 μm to 250 μm, and a hole diameter difference between the other end and one end of 5 μm or less is prepared, the article is gripped from one end, and a linear processing tool is inserted into the through hole from the other end. In this way, the inner diameter is processed. Further, in the third aspect of the pore forming method of the present invention, the small-diameter portion of the through-hole has a hole diameter that increases from one end to the other end, and the hole diameter at one end is 96 mm, which is the maximum finishing dimension.
% Or more, preferably 75 μm to 250 μm, a hole diameter difference between the other end side and one end side of 5 μm or less, a hole bending of 10 μm or less is prepared, the article is gripped from one end side, and a wire is drawn from the other end side to the through hole. It is characterized in that inner diameter processing is performed by inserting a processing tool in a shape of a circle. In any of the above aspects, it is preferable to rotate the one end side of the article, preferably the small-diameter portion side end while gripping it, and apply a linear processing tool from the other end side, preferably the large-diameter portion side. The inner diameter is processed by inserting and reciprocating relatively in the axial direction.

【0009】[0009]

【発明の実施の形態】本発明の細孔加工方法は、前記の
ように、細孔の孔曲り及びテーパ度のいずれか一方又は
両方を加工代を小さくできるような寸法条件に調整した
ブランクを準備し、これを、回転・往復動自在に保持さ
れたブランクの細孔に線状加工具を挿通することにより
加工する技術と組み合わせたことを特徴としている。こ
のように予め所定の寸法条件に調整したブランクを用い
ることにより、単一の加工工程により安定して優れた品
質、寸法精度の内径研磨加工を行なうことができ、しか
も段階的な内径研磨が不要なため、1台の加工機で内径
仕上げ加工の自動化を達成できるという利点が得られ
る。その結果、加工工程を簡略化できると共に、加工に
係わる人手を削減できる。さらに、線状加工具は、磨耗
した先端部分のみを切断し、所定のテーパ状に再加工し
て用いることができるため、ワイヤーコストを低減で
き、上記人件費の削減とも相俟って加工コストを大幅に
低減できる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, according to the pore forming method of the present invention, a blank in which one or both of the curvature and the degree of taper of the pores are adjusted to a dimensional condition capable of reducing a processing margin can be obtained. It is characterized in that it is prepared and combined with a technique of processing by inserting a linear processing tool through a fine hole of a blank held rotatably and reciprocally. By using the blank adjusted to the predetermined dimensional conditions in this way, the inner diameter can be polished with excellent quality and dimensional accuracy in a single processing step, and stepwise inner diameter polishing is not required. Therefore, there is an advantage that automation of the inner diameter finishing can be achieved by one processing machine. As a result, the processing steps can be simplified and the number of labor involved in processing can be reduced. Furthermore, since the linear processing tool can be used by cutting only the worn tip portion and reworking it into a predetermined taper shape, the wire cost can be reduced, and the processing cost is reduced in combination with the above-mentioned labor cost reduction. Can be greatly reduced.

【0010】以下、添付図面を参照しながら本発明の細
孔加工方法について詳細に説明する。図1は、図14に
示す光コネクタ用フェルール10のキャピラリ11とし
て用いる内径仕上げ加工前のブランク1を示しており、
加工されるべき小径部3と大径部(テーパ径部)4とか
らなる貫通孔2を有する。一方、図2は、他の形態のブ
ランク1aを示しており、同様に加工されるべき小径部
3aと大径部4aとからなる貫通孔2aを有する。この
ブランク1aは、大径部4aの端部をテーパ径部を残し
て切断することにより、図1に示すようなブランクとす
ることもできる。なお、本明細書において「大径部」と
は、小径部よりも大きな径の部分を意味し、図1に示す
テーパ径部や図2に示す大径の貫通孔部のいずれも含む
概念である。上記図1及び図2に示すブランク1,1a
は、本発明に従って細孔加工される。また、図15に示
すキャピラリ−フランジ一体型のフェルールや、フェル
ール(キャピラリ)以外の他の形態のブランクも本発明
に従って加工できる。
Hereinafter, the pore processing method of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a blank 1 before an inner diameter finishing process used as a capillary 11 of the optical connector ferrule 10 shown in FIG.
It has a through hole 2 composed of a small diameter portion 3 to be processed and a large diameter portion (tapered diameter portion) 4. On the other hand, FIG. 2 shows a blank 1a of another form, which has a through-hole 2a composed of a small-diameter portion 3a and a large-diameter portion 4a to be processed similarly. This blank 1a can be made into a blank as shown in FIG. 1 by cutting the end of the large diameter portion 4a while leaving the tapered diameter portion. In this specification, the term “large-diameter portion” means a portion having a larger diameter than the small-diameter portion, and is a concept including both the tapered-diameter portion shown in FIG. 1 and the large-diameter through-hole portion shown in FIG. is there. Blank 1 and 1a shown in FIGS.
Is microporated according to the present invention. Further, a ferrule integrated with a capillary and a flange shown in FIG. 15 and a blank having a form other than the ferrule (capillary) can be processed according to the present invention.

【0011】一般に、射出成形や押出成形等によって作
製された細孔を有するブランクは、細孔に種々の大きさ
の孔曲りやテーパを有しており、またその範囲にもバラ
ツキがあり一定していない。図3は、図1に示すブラン
ク1に生じた貫通孔2の孔曲りXを解り易いように拡大
デフォルメして示した図であり、図4はテーパ状貫通孔
2の孔径差(テーパ差)Yを拡大デフォルメして示した
図である。光コネクタ用フェルールは光ファイバを接続
するための部品であり、キャピラリの貫通孔に光ファイ
バを接着してから先端面を加工するため、貫通孔の曲り
は少ない方が望ましい。一方、ブランクの貫通孔に線状
加工具を挿入して相対的に回転・往復動させて加工を行
なう方法の場合、孔曲りの矯正効果はそれ程大きくな
い。本発明者は、孔曲りXが所定割合以下の少ないブラ
ンク1を用いた場合、上記加工方法でもフェルールとし
て充分に使用できる品質の内径加工が単一工程で可能で
あることを見出した。例えば、SC型フェルールの場
合、キャピラリ小径部の仕上げ内径は126μmであ
り、加工前のブランクの孔曲りが10μm以下であれ
ば、外径の振れ(同軸度:貫通孔の両端孔口を支持して
回転させたときの外径のズレ)や内径テーパの影響を受
けないで所定品質、寸法の内径に加工できる。
In general, a blank having pores produced by injection molding, extrusion molding, or the like has various sizes of curved or tapered pores, and the range of the pores varies and is constant. Not. FIG. 3 is a diagram showing a hole X of the through hole 2 generated in the blank 1 shown in FIG. 1 in an enlarged and deformed manner so as to be easily understood. FIG. 4 is a diagram showing a difference in hole diameter (taper difference) of the tapered through hole 2. It is the figure which showed Y by enlarging deformation. The ferrule for an optical connector is a component for connecting an optical fiber, and since the tip surface is processed after bonding the optical fiber to the through hole of the capillary, it is desirable that the bending of the through hole is small. On the other hand, in the case of the method in which the linear processing tool is inserted into the through hole of the blank and relatively rotated and reciprocated to perform the processing, the effect of correcting the hole bending is not so large. The inventor of the present invention has found that, when the blank 1 having a small hole curvature X of a predetermined ratio or less is used, it is possible in a single step to perform internal diameter processing of a quality sufficient for use as a ferrule even with the above processing method. For example, in the case of the SC type ferrule, the finished inner diameter of the capillary small diameter portion is 126 μm, and if the blank bends before processing is 10 μm or less, the outer diameter is deflected (coaxiality: both ends of the through hole are supported. The inner diameter can be machined to a predetermined quality and size without being affected by the deviation of the outer diameter when rotated in the rotating manner or the taper of the inner diameter.

【0012】また、本発明者らは、ブランク1の貫通孔
2のテーパが少ない場合、線状加工具の加工パス数(段
階的加工工程数)を少なくすることが可能であることを
見出した。例えば、前記したSC型フェルールの場合、
ブランク1の貫通孔2の一端側の孔径(最小径)Zが1
10μm、他端側と一端側の孔径差Yが5μmより大きな
ブランクを用いた場合(図4参照)、所定の寸法精度を
満足するまでの加工パス数は3回必要であったが、孔径
Zが120μm以上、孔径差Yが5μm以下のブランクを
用いた場合、1回の加工で完了し、また加工した孔の真
円度も0.5μm以下で安定していた。なお、SC型フ
ェルールの場合、光ファイバを2本通す使い方があるた
め、ブランク1の貫通孔2の小径部の最大径は250μ
m以下に制限される。また、最も少ない加工代で細孔研
磨加工を行なうためには、上記孔曲りとテーパ度の双方
の条件を満足するように作製したブランクを用いること
が好ましいことは言うまでもない。
Further, the present inventors have found that when the taper of the through hole 2 of the blank 1 is small, the number of processing passes (the number of stepwise processing steps) of the linear processing tool can be reduced. . For example, in the case of the SC ferrule described above,
The hole diameter (minimum diameter) Z at one end of the through hole 2 of the blank 1 is 1
When a blank having a hole diameter difference Y of 10 μm and the other end side larger than 5 μm was used (see FIG. 4), three machining passes were required until a predetermined dimensional accuracy was satisfied. Was 120 μm or more and the hole diameter difference Y was 5 μm or less, the blank was completed by one processing, and the roundness of the processed hole was stable at 0.5 μm or less. In the case of the SC type ferrule, the maximum diameter of the small diameter portion of the through hole 2 of the blank 1 is 250 μm because there is a usage in which two optical fibers are passed.
m or less. Needless to say, in order to perform the pore polishing with the minimum processing margin, it is preferable to use a blank prepared so as to satisfy both the above-mentioned conditions of the hole bending and the taper degree.

【0013】図5及び図6は、本発明の細孔加工方法を
説明するための概略図である。キャピラリのブランク1
は、加工装置の把持部(チャック機構)5により小径部
3側の端部が把持され、矢印方向に回転及び往復動され
る(図5)。この状態で、駆動装置としての往復回転自
在の一対の駆動ロール7により挟持された先端部がテー
パ状に先細となった線状加工具(長尺ワイヤ)6が、大
径部4側から貫通孔2へ挿通され(図6)、矢印で示す
ように軸線方向に往復動され、従来と同様に適当な研磨
剤を供給しながら内径研磨加工が行なわれる。所定回数
の加工を終えて線状加工具6のテーパ状先端部が磨耗し
た時には、線状加工具6は加工装置近傍に配置された加
工具切断加工部8に移動され、磨耗した先端部を焼き切
り、砥石を用いて所定の形状に加工した後、次の内径研
磨加工に供される。なお、線状加工具の先端部の加工
は、機械加工の他、エッチングなどの化学的方法も採用
できる。
FIG. 5 and FIG. 6 are schematic views for explaining the pore processing method of the present invention. Capillary blank 1
The end of the small-diameter portion 3 is gripped by a gripper (chuck mechanism) 5 of the processing apparatus, and is rotated and reciprocated in the direction of the arrow (FIG. 5). In this state, a linear processing tool (long wire) 6 whose front end portion is tapered and held by a pair of reciprocally rotatable driving rolls 7 as a driving device penetrates from the large diameter portion 4 side. It is inserted into the hole 2 (FIG. 6) and reciprocated in the axial direction as shown by the arrow, and the inner diameter is polished while supplying an appropriate abrasive as in the conventional case. When the tapered tip of the linear processing tool 6 has worn out after finishing the predetermined number of times of processing, the linear processing tool 6 is moved to the processing tool cutting processing section 8 arranged near the processing apparatus, and the worn tip is removed. After being burned and processed into a predetermined shape using a grindstone, it is subjected to the next inner diameter polishing process. The tip of the linear processing tool can be processed by a chemical method such as etching, in addition to mechanical processing.

【0014】なお、図示の例ではブランク1及び線状加
工具6の両方が往復動されているが、いずれか一方を往
復動するようにしてもよい。また、ブランク1の貫通孔
2への線状加工具6の挿入方向としては、小径部3側よ
りも大径部4側から挿入する方が好ましい。特に光コネ
クタ用フェルール(キャピラリ)の場合、小径部3側の
端面が相手方フェルール(キャピラリ)との当接面とな
るので、誤って傷付けることがないように大径部4側か
ら挿入することが望ましい。また、場合によっては、大
径部4がテーパ状の場合には、線状加工具の挿入ガイド
として機能させることも考えられる。なお、加工装置と
しては国際公開WO97/26113号に記載の装置を
適宜設計変更したり、作動条件を設定して用いることが
できるので、その詳細な説明は省略する。
In the illustrated example, both the blank 1 and the linear processing tool 6 are reciprocated, but either one of them may be reciprocated. As for the direction in which the linear processing tool 6 is inserted into the through hole 2 of the blank 1, it is preferable to insert the linear processing tool 6 from the large-diameter portion 4 side rather than the small-diameter portion 3 side. In particular, in the case of a ferrule (capillary) for an optical connector, since the end surface on the small diameter portion 3 side is a contact surface with a mating ferrule (capillary), the ferrule (capillary) can be inserted from the large diameter portion 4 side so as not to be erroneously damaged. desirable. In some cases, when the large diameter portion 4 is tapered, the large diameter portion 4 may function as an insertion guide for a linear processing tool. As the processing apparatus, the apparatus described in International Publication WO97 / 26113 can be appropriately modified in design and operating conditions can be set and used. Therefore, detailed description thereof will be omitted.

【0015】[0015]

【実施例】以下、射出成形によって製造したキャピラリ
ブランクを本発明に従って内径研磨加工を施し、本発明
の効果を具体的に確認した実施例について説明する。用
いたブランクは、ジルコニア製の射出成形品で図1に示
す形状を有するものであり、50個を用いた。用いたブ
ランクの貫通孔の孔曲りの分布を図7に、先端部の孔径
の分布を図8に、貫通孔のテーパ値の分布を図9に、ま
た外径の振れ値(ワーク振れ値)の分布を図10に示
す。このように種々の孔径やテーパ値を持つブランク
を、本発明に従って内径研磨加工を行なった後の加工品
の非円率の分布を図11に、同心度の分布を図12に、
また内径平均値の分布を図13に示す。
EXAMPLES Hereinafter, examples will be described in which the inner diameter of a capillary blank manufactured by injection molding is polished according to the present invention, and the effect of the present invention is specifically confirmed. The blanks used were injection molded products made of zirconia and had the shape shown in FIG. 1, and 50 blanks were used. FIG. 7 shows the distribution of the bending of the through hole of the blank used, FIG. 8 shows the distribution of the hole diameter at the tip, FIG. 9 shows the distribution of the taper value of the through hole, and the deflection value of the outer diameter (work deflection value). Is shown in FIG. The blanks having various hole diameters and taper values in this way are shown in FIG. 11 for the non-circularity distribution and the concentricity distribution in FIG.
FIG. 13 shows the distribution of the average inner diameter value.

【0016】ここで、「非円率」とは、断面楕円径の孔
の長径(LD)と短径(SD)の差を平均内径(MD)
で除した百分率(LD−SD)/MD×100を表わ
し、真円度からのズレを意味する。「同心度」とは、先
端面の外径測定によって得られた短径で円を作成したと
きの外円の中心と、内径測定によって得られた短径で円
を作成したときの内円の中心のズレの2倍の値で同心度
を表わしており、同心度1.4以下の加工品が製品価値
を有し、好ましい同心度は1.0以下である。また、
「内径平均」とは、先端側と大径部側の小径部の短径で
円を作成したときの平均径を表わしている。図7〜10
と図11〜13から明らかなように、本発明の方法によ
れば1回の内径研磨加工によって光コネクタ用キャピラ
リとして充分な品質、寸法精度の製品を高歩留りで加工
できることがわかる。
Here, the term "non-circularity" means the difference between the major axis (LD) and minor axis (SD) of a hole having a cross-sectional elliptical diameter is the average internal diameter (MD).
Represents the percentage (LD-SD) / MD × 100 divided by, and means the deviation from the roundness. "Concentricity" refers to the center of the outer circle when a circle is created with the minor diameter obtained by measuring the outer diameter of the tip surface, and the inner circle when the circle is created with the minor diameter obtained by measuring the inner diameter. The concentricity is represented by a value twice as large as the center deviation. A processed product having a concentricity of 1.4 or less has a product value, and a preferable concentricity is 1.0 or less. Also,
The “inner diameter average” represents an average diameter when a circle is formed with the shorter diameters of the small diameter portion on the tip side and the large diameter portion side. 7 to 10
As is clear from FIGS. 11 to 13, according to the method of the present invention, a product having sufficient quality and dimensional accuracy as a capillary for an optical connector can be processed at a high yield by a single inner diameter polishing process.

【0017】[0017]

【発明の効果】以上のように、本発明の細孔加工方法
は、細孔の孔曲り及びテーパ度のいずれか一方又は両方
を加工代を小さくできるような寸法条件に調整したブラ
ンクの作製と、相対的に回転・往復動させながらブラン
クの細孔に線状加工具を挿通することによる加工技術と
を組み合わせたものであるため、単一の加工工程により
安定して優れた品質、寸法精度の内径研磨加工を高歩留
りで行なうことができ、しかも段階的な内径研磨が不要
なため、1台の加工機で内径仕上げ加工の自動化を達成
できるという利点が得られる。その結果、加工工程を簡
略化できると共に、加工に係わる人手を削減できる。さ
らに、線状加工具は、磨耗した先端部分のみを切断し、
所定のテーパ状に再加工して用いることができるため、
ワイヤーコストを低減でき、上記人件費の削減とも相俟
って加工コストを大幅に低減できる。
As described above, the method for forming a pore according to the present invention provides a method for manufacturing a blank in which one or both of the curvature and the degree of taper of the pores are adjusted to dimensional conditions capable of reducing the machining allowance. Combines with the processing technology of inserting a linear processing tool through the pores of the blank while relatively rotating and reciprocating, so that a single processing step stably provides excellent quality and dimensional accuracy The inner diameter polishing can be performed at a high yield, and stepwise inner diameter polishing is not required, so that there is an advantage that automation of the inner diameter finishing can be achieved by one processing machine. As a result, the processing steps can be simplified and the number of labor involved in processing can be reduced. Furthermore, the linear tool cuts only the worn tip,
Because it can be used by reworking into a predetermined taper shape,
The wire cost can be reduced, and the processing cost can be significantly reduced in combination with the reduction of the labor cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光コネクタ用フェルールのキャピラリに加工す
るブランクの一形態を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a blank to be processed into a capillary of a ferrule for an optical connector.

【図2】光コネクタ用フェルールのキャピラリに加工す
るブランクの他の形態を示す断面図である。
FIG. 2 is a cross-sectional view showing another embodiment of a blank to be processed into a capillary of an optical connector ferrule.

【図3】孔曲りXを拡大デフォルメして示したブランク
の断面図である。
FIG. 3 is a cross-sectional view of a blank, showing the hole bending X in an enlarged deformation.

【図4】テーパ状貫通孔の孔径差Yを拡大デフォルメし
て示したブランクの断面図である。
FIG. 4 is a cross-sectional view of a blank in which a hole diameter difference Y between tapered through holes is enlarged and deformed.

【図5】本発明の細孔加工方法を説明するための概略部
分断面図である。
FIG. 5 is a schematic partial cross-sectional view for explaining a pore processing method of the present invention.

【図6】ブランクの貫通孔に線状加工具が挿通された状
態を示す部分断面図である。
FIG. 6 is a partial cross-sectional view showing a state where a linear processing tool is inserted into a through hole of a blank.

【図7】ブランクの貫通孔の孔曲りの分布を示すグラフ
である。
FIG. 7 is a graph showing a distribution of hole bending of a through hole of a blank.

【図8】ブランクの先端部の孔径の分布を示すグラフで
ある。
FIG. 8 is a graph showing the distribution of the hole diameter at the leading end of the blank.

【図9】ブランクの貫通孔のテーパ値の分布を示すグラ
フである。
FIG. 9 is a graph showing a distribution of taper values of through holes of a blank.

【図10】ブランクの外径の振れ値の分布を示すグラフ
である。
FIG. 10 is a graph showing a distribution of run-out values of the outer diameter of a blank.

【図11】内径研磨加工後の加工品の非円率の分布を示
すグラフである。
FIG. 11 is a graph showing a distribution of non-circularity of a processed product after inner diameter polishing.

【図12】内径研磨加工後の加工品の同心度の分布を示
すグラフである。
FIG. 12 is a graph showing a distribution of concentricity of a processed product after inner diameter polishing.

【図13】内径研磨加工後の加工品の内径平均値の分布
を示すグラフである。
FIG. 13 is a graph showing the distribution of the average inner diameter of the processed product after the inner diameter polishing.

【図14】キャピラリとフランジが別体型の光コネクタ
用フェルールを示す概略部分断面図である。
FIG. 14 is a schematic partial cross-sectional view showing a ferrule for an optical connector in which a capillary and a flange are separate bodies.

【図15】キャピラリ部とフランジ部が一体型の光コネ
クタ用フェルールを示す概略部分断面図である。
FIG. 15 is a schematic partial cross-sectional view showing an optical connector ferrule in which a capillary portion and a flange portion are integrated.

【符号の説明】[Explanation of symbols]

1,1a ブランク 2,2a 貫通孔 3,3a 小径部 4,4a 大径部 5 把持部 6 線状加工具 7 駆動ロール 10,10a フェルール 11 キャピラリ DESCRIPTION OF SYMBOLS 1, 1a Blank 2, 2a Through-hole 3, 3a Small diameter part 4, 4a Large diameter part 5 Gripping part 6 Linear processing tool 7 Drive roll 10, 10a Ferrule 11 Capillary

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 大径部と加工されるべき小径部とからな
る貫通孔を有する物品の貫通孔内径部の加工方法であっ
て、上記貫通孔の小径部の孔曲りが10μm以下の物品
を準備し、該物品の一端部を把持し、他端部側より貫通
孔へ線状の加工具を挿通することにより内径加工を行な
うことを特徴とする細孔加工方法。
1. A method for processing an inner diameter portion of a through-hole of an article having a through-hole including a large-diameter portion and a small-diameter portion to be processed, wherein the small-diameter portion of the through-hole has a curvature of 10 μm or less. A method of forming a pore, comprising preparing, gripping one end of the article, and inserting a linear processing tool into the through hole from the other end side to perform inner diameter processing.
【請求項2】 大径部と加工されるべき小径部とからな
る貫通孔を有する物品の貫通孔内径部の加工方法であっ
て、上記貫通孔の小径部が一端側から他端側に向って拡
大する孔径を有し、一端側の孔径が最大仕上寸法の96
%以上、他端側と一端側の孔径差が5μm以下の物品を
準備し、該物品を一端側より把持し、他端側より貫通孔
へ線状の加工具を挿通することにより内径加工を行なう
ことを特徴とする細孔加工方法。
2. A method of processing an inner diameter portion of a through hole of an article having a through hole including a large diameter portion and a small diameter portion to be processed, wherein the small diameter portion of the through hole extends from one end to the other end. The diameter of the hole at one end is 96 mm, which is the maximum finish size.
%, And a hole diameter difference between the other end side and the one end side of 5 μm or less is prepared, the article is gripped from one end side, and a linear processing tool is inserted into the through hole from the other end side to perform inner diameter processing. A pore processing method characterized by performing.
【請求項3】 大径部と加工されるべき小径部とからな
る貫通孔を有する物品の貫通孔内径部の加工方法であっ
て、上記貫通孔の小径部が一端側から他端側に向って拡
大する孔径を有し、一端側の孔径が最大仕上寸法の96
%以上、他端側と一端側の孔径差が5μm以下、孔曲り
が10μm以下の物品を準備し、該物品を一端側より把
持し、他端側より貫通孔へ線状の加工具を挿通すること
により内径加工を行なうことを特徴とする細孔加工方
法。
3. A method of processing an inner diameter portion of a through hole of an article having a through hole including a large diameter portion and a small diameter portion to be processed, wherein the small diameter portion of the through hole extends from one end to the other end. The diameter of the hole at one end is 96 mm, which is the maximum finish size.
%, The difference in hole diameter between the other end and the one end is 5 μm or less, and the bending of the hole is 10 μm or less. The article is gripped from one end, and a linear processing tool is inserted into the through hole from the other end. A pore processing method characterized by performing internal diameter processing by performing the above.
【請求項4】 前記貫通孔の小径部の一端側の孔径が7
5〜250μmであることを特徴とする請求項2又は3
に記載の方法。
4. A hole diameter at one end of a small diameter portion of the through hole is 7
4. The structure according to claim 2, wherein the thickness is 5 to 250 [mu] m.
The method described in.
【請求項5】 前記物品の一端側を把持しながら回転さ
せ、これに他端側より線状の加工具を挿通し、軸線方向
に相対的に往復動させることにより内径加工を行なうこ
とを特徴とする請求項1乃至4のいずれか一項に記載の
方法。
5. An inner diameter processing is performed by rotating the article while gripping one end thereof, inserting a linear processing tool from the other end thereof, and relatively reciprocating in the axial direction. The method according to any one of claims 1 to 4, wherein
JP22632899A 1999-08-10 1999-08-10 Fine hole machining method Pending JP2001047345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22632899A JP2001047345A (en) 1999-08-10 1999-08-10 Fine hole machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22632899A JP2001047345A (en) 1999-08-10 1999-08-10 Fine hole machining method

Publications (1)

Publication Number Publication Date
JP2001047345A true JP2001047345A (en) 2001-02-20

Family

ID=16843463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22632899A Pending JP2001047345A (en) 1999-08-10 1999-08-10 Fine hole machining method

Country Status (1)

Country Link
JP (1) JP2001047345A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071703A (en) * 2001-09-05 2003-03-12 Seiko Instruments Inc Multistage pore processing method and apparatus
CN105108595A (en) * 2015-09-28 2015-12-02 无锡海特精密模具有限公司 Female-mold machining jig
CN106041653A (en) * 2016-08-12 2016-10-26 马鞍山市恒永利机械科技有限公司 Automatic workpiece inner hole machining method
CN106078378A (en) * 2016-08-12 2016-11-09 马鞍山市恒永利机械科技有限公司 A kind of full-automatic numerical control inner circle mill
CN106078374A (en) * 2016-08-12 2016-11-09 马鞍山市恒永利机械科技有限公司 A kind of inner hole of workpiece automatic machining device
CN106271917A (en) * 2016-08-12 2017-01-04 马鞍山市恒永利机械科技有限公司 A kind of method utilizing full-automatic numerical control inner circle mill to carry out inner hole grinding
CN106808327A (en) * 2017-03-02 2017-06-09 王丽 A kind of nut inner ring sanding apparatus for being easy to position
KR102347853B1 (en) * 2021-10-20 2022-01-06 주식회사 페코텍 Sorting Apparatus and Sorting Method for Capillary for Wire Bonding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071703A (en) * 2001-09-05 2003-03-12 Seiko Instruments Inc Multistage pore processing method and apparatus
CN105108595A (en) * 2015-09-28 2015-12-02 无锡海特精密模具有限公司 Female-mold machining jig
CN106041653A (en) * 2016-08-12 2016-10-26 马鞍山市恒永利机械科技有限公司 Automatic workpiece inner hole machining method
CN106078378A (en) * 2016-08-12 2016-11-09 马鞍山市恒永利机械科技有限公司 A kind of full-automatic numerical control inner circle mill
CN106078374A (en) * 2016-08-12 2016-11-09 马鞍山市恒永利机械科技有限公司 A kind of inner hole of workpiece automatic machining device
CN106271917A (en) * 2016-08-12 2017-01-04 马鞍山市恒永利机械科技有限公司 A kind of method utilizing full-automatic numerical control inner circle mill to carry out inner hole grinding
CN106078374B (en) * 2016-08-12 2018-08-10 马鞍山市恒永利机械科技有限公司 A kind of inner hole of workpiece automatic machining device
CN106041653B (en) * 2016-08-12 2018-08-17 马鞍山市恒永利机械科技有限公司 A kind of inner hole of workpiece automatic processing method
CN106808327A (en) * 2017-03-02 2017-06-09 王丽 A kind of nut inner ring sanding apparatus for being easy to position
CN106808327B (en) * 2017-03-02 2019-02-26 温州市尖端标准件有限公司 A kind of nut inner ring grinding device convenient for positioning
KR102347853B1 (en) * 2021-10-20 2022-01-06 주식회사 페코텍 Sorting Apparatus and Sorting Method for Capillary for Wire Bonding

Similar Documents

Publication Publication Date Title
JP3197482B2 (en) Manufacturing method of ferrule for optical fiber connector
JP2001047345A (en) Fine hole machining method
JP2002162536A (en) Ferrule for optical connector, and its manufacturing method
CN100532016C (en) High-accuracy centerless grinding method for processing axially grooved shaft parts
CN112621111B (en) Processing method of large-diameter conical core rod with holes
JPH0420908A (en) Optical fiber connector terminal
JP2628250B2 (en) Outer diameter processing method of ceramic ferrule
JP2006110689A (en) Inside diameter machining device of cylindrical body and inside diameter machining method using this
JP3426221B2 (en) Ceramic blank used for manufacturing ferrules for optical fiber connectors
US5113465A (en) Optical fiber connector terminal and method of making same
JP2577300B2 (en) Manufacturing method of ceramic ferrule
JP3872359B2 (en) Fiber optic fixture
JP2000343391A (en) Pore polishing method
JP2002018926A (en) Apparatus and method for wire extrusion coating material
JP3878863B2 (en) Optical communication sleeve and manufacturing method thereof
JPH02211410A (en) Manufacture of ferrule for optical fiber connector
JPH1179772A (en) Method for working terminal of preform for optical fiber
JPS60263909A (en) Manufacture of core of optical fiber connector
JP4194234B2 (en) Ferrule injection mold and ferrule molding material
JP2005338517A (en) Ferrule for optical connector and forming core pin
JP2005212007A (en) Inner diameter processing method of cylindrical body
JPH09133837A (en) Optical fiber connector and ferrule for optical fiber connector and its production
JP2002137157A (en) Polishing device for inner periphery of sleeve and wire for polishing sleeve used in the polishing device
JPH04244369A (en) Wire for lapping
JPS5959322A (en) Electrode for discharge machining of minute holes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019