JP2001047079A - Method and apparatus for water treatment - Google Patents

Method and apparatus for water treatment

Info

Publication number
JP2001047079A
JP2001047079A JP22246799A JP22246799A JP2001047079A JP 2001047079 A JP2001047079 A JP 2001047079A JP 22246799 A JP22246799 A JP 22246799A JP 22246799 A JP22246799 A JP 22246799A JP 2001047079 A JP2001047079 A JP 2001047079A
Authority
JP
Japan
Prior art keywords
water
amount
oxygen
treatment
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22246799A
Other languages
Japanese (ja)
Inventor
Takashi Seki
隆志 関
Tsuguhito Itou
世人 伊藤
Takuhei Kimura
拓平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22246799A priority Critical patent/JP2001047079A/en
Publication of JP2001047079A publication Critical patent/JP2001047079A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably continue water treatment corresponding to a reaction advance state, in aerobically treating water containing an org. compd. with microorganisms, by controlling a treatment condition so that the amt. of carbon dioxide generated by microbial action and/or the amt. of oxygen consumed by microbial action becomes a predetermined range. SOLUTION: Raw water 14 containing an org. compd. is supplied to a treatment tank 12 through a raw water inflow line 9 by a raw water pump 3 to be aerobically treated with microorganisms and the treated water is discharged from a treated water outflow line 10. During this aerobic treatment, the concn. of oxygen obtained from an exhaust gas oxygen densitometer 4, the concn. of carbon dioxide obtained from an exhaust gas carbon dioxide densitometer 5, the pH of raw water in treated water obtained from the pH meter 6 of the treatment tank and the concn. of dissolved oxygen in raw water during treatment obtained from the dissolved oxygen densitometer 8 of the treatment tank are sent to a control device 13. In the control device 13, on the basis of these measured values, a blower 1 is controlled to perform the regulation of a supply amt. of oxygen and a stirrer 17 is controlled to regulate stirring intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、好気的な微生物を
用いて有機化合物を含有する水を処理する方法およびそ
の装置に関する。
The present invention relates to a method and an apparatus for treating water containing organic compounds using aerobic microorganisms.

【0002】[0002]

【従来の技術】近年、排水処理、なかでも好気的な微生
物を用いて有機物を含む排水を処理する方法が注目を集
めている。この方法においては、微生物の状態や排水中
の有機物の種類や濃度などにより処理負荷が変動しやす
く、効率的な処理を行うために、適切な指標を見出し、
反応を制御することが好ましい。そこで、たとえば、活
性汚泥法においては、活性汚泥槽に供給する酸素や栄養
塩の量を調節し、反応を制御することが行われている
が、その際の指標として、MLSS(汚泥量)やSVI
(汚泥容積指標)などが用いられている。しかしなが
ら、これらは、測定にある程度の時間を要するため、リ
アルタイムでの制御が難しく、処理効率の点で問題があ
った。また、リアルタイムの制御指標として、たとえ
ば、pHを用いて曝気量制御を行うことが知られている
が(特開昭56−33098号公報、特開昭58−12
4596号公報)、pHは微生物の作用に基づく直接的
な指標ではないため、信頼性が低く、やはり、処理効率
に劣るといった問題があった。
2. Description of the Related Art In recent years, attention has been focused on wastewater treatment, particularly a method of treating wastewater containing organic substances using aerobic microorganisms. In this method, the processing load is likely to fluctuate depending on the state of microorganisms and the type and concentration of organic matter in the wastewater, and in order to perform efficient treatment, an appropriate index is found.
It is preferred to control the reaction. Thus, for example, in the activated sludge method, the amount of oxygen and nutrients supplied to the activated sludge tank is adjusted to control the reaction, and as an index at that time, MLSS (sludge amount) or MLSS (sludge amount) is used. SVI
(Sludge volume index) is used. However, these methods require a certain amount of time for measurement, so that real-time control is difficult, and there is a problem in terms of processing efficiency. It is also known to control the aeration amount using, for example, pH as a real-time control index (JP-A-56-33098, JP-A-58-12).
No. 4596), pH is not a direct index based on the action of microorganisms, and thus has a problem of low reliability and poor processing efficiency.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、好気
的な微生物を用いた水処理において、効率的な処理を行
うことのできる水処理方法および水処理装置を提供する
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a water treatment method and a water treatment apparatus capable of performing efficient treatment in water treatment using aerobic microorganisms.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の本発明は、微生物を用いて有機化合物を含む水を好気
的に処理するに際し、微生物の作用により生ずる二酸化
炭素量および/または微生物の作用により消費される酸
素量が所定の範囲内になるように処理条件を制御する水
処理方法を特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an aerobic treatment of water containing an organic compound using a microorganism, the amount of carbon dioxide produced by the action of the microorganism and / or the amount of the microorganism. The water treatment method is characterized in that the treatment conditions are controlled so that the amount of oxygen consumed by the action of (1) falls within a predetermined range.

【0005】ここで、処理中の水に酸素を供給する工
程、微生物に栄養を与えるために処理中の水に栄養塩を
供給する工程および微生物による有機化合物の分解を促
進するために処理中の水を攪拌する工程からなる群から
選ばれる少なくとも一つの工程をさらに含んでいること
も好ましい。
[0005] Here, the step of supplying oxygen to the water being treated, the step of supplying nutrients to the water being treated to provide nutrients to the microorganisms, and the step of supplying oxygen to the water being treated to promote the decomposition of organic compounds by the microorganisms. It is preferable that the method further includes at least one step selected from the group consisting of a step of stirring water.

【0006】また、制御対象として、処理する水の量、
酸素供給量、栄養塩供給量および攪拌強度からなる群か
ら選ばれる少なくとも一つを選択することも好ましい。
[0006] In addition, the amount of water to be treated
It is also preferable to select at least one selected from the group consisting of oxygen supply, nutrient supply and stirring intensity.

【0007】さらに、微生物の作用により生ずる二酸化
炭素および/または微生物の作用により消費される酸素
量が増加しているときは、酸素供給量、栄養塩供給量お
よび攪拌強度からなる群から選ばれる少なくとも一つの
制御量を増加させ、上記二酸化炭素量および/または酸
素量が減少しているときは、酸素供給量、栄養塩供給量
および攪拌強度からなる群から選ばれる少なくとも一つ
の制御量を減少させることも好ましい。
Further, when the amount of carbon dioxide generated by the action of microorganisms and / or the amount of oxygen consumed by the action of microorganisms is increasing, at least one selected from the group consisting of oxygen supply, nutrient supply and stirring intensity. One control amount is increased, and when the carbon dioxide amount and / or the oxygen amount is decreasing, at least one control amount selected from the group consisting of the oxygen supply amount, the nutrient supply amount, and the stirring intensity is decreased. It is also preferred.

【0008】また、微生物を用いて水を処理する処理槽
と、微生物の作用により生ずる二酸化炭素量および/ま
たは微生物の作用により消費される酸素量を測定する測
定手段と、この測定手段により得られる測定値に基づい
て処理条件を制御する制御手段とを備えている水処理装
置も好ましい。
[0008] Further, a treatment tank for treating water using microorganisms, measuring means for measuring the amount of carbon dioxide generated by the action of microorganisms and / or the amount of oxygen consumed by the action of microorganisms, and the measuring means are provided by the measuring means. A water treatment apparatus provided with a control means for controlling treatment conditions based on measured values is also preferable.

【0009】さらに、処理槽に処理する水を供給する水
供給手段、処理中の水に酸素を供給する酸素供給手段、
微生物に栄養を与えるための栄養塩供給手段および酸素
供給効率を向上させるための攪拌手段からなる群から選
ばれる少なくとも一つの手段をさらに含んでいることも
好ましい。
Water supply means for supplying water to be treated to the treatment tank; oxygen supply means for supplying oxygen to the water being treated;
It is also preferred that the composition further includes at least one means selected from the group consisting of a nutrient supply means for feeding the microorganisms and a stirring means for improving the oxygen supply efficiency.

【0010】また、制御手段が水供給手段、酸素供給手
段、栄養塩供給手段および攪拌手段からなる群から選ば
れる少なくとも一つの手段に結合されていることも好ま
しい。
[0010] It is also preferable that the control means is connected to at least one means selected from the group consisting of water supply means, oxygen supply means, nutrient supply means and stirring means.

【0011】さらに、上記に記載の水処理方法または水
処理装置を用いる処理水の製造方法も好ましい。
Further, a method for producing treated water using the above-mentioned water treatment method or water treatment apparatus is also preferable.

【0012】[0012]

【発明の実施の形態】本発明は、有機化合物を含有する
水(以下、有機排水という)を処理対象とする。この有
機排水には、下水や、工場などから排出される特定の物
質を多量に含む排水などがあるが、有機化合物を含んで
いれば、どのような水であっても処理対象として適用す
ることができる。また、水を好気的に処理する方法とし
て、たとえば、活性汚泥法があるが、本発明は、その他
に、特定の菌を使用した排水処理を行う場合や、特殊な
排水を微生物処理する場合や、高負荷排水を高効率な酸
素供給により処理する場合にも適用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention deals with water containing an organic compound (hereinafter referred to as organic waste water). This organic wastewater includes sewage and wastewater containing a large amount of specific substances discharged from factories, etc. Any water containing organic compounds should be applied as a treatment target. Can be. Further, as a method of aerobically treating water, for example, there is an activated sludge method, but in the present invention, in addition, when performing wastewater treatment using specific bacteria, or when performing microbial treatment of special wastewater Also, the present invention can be applied to a case where high-load wastewater is treated by highly efficient oxygen supply.

【0013】本発明においては、微生物の作用により生
ずる二酸化炭素量および/または微生物の作用により消
費される酸素量が所定の範囲内になるように処理条件を
制御する。好気的な微生物を用いる水処理では、処理槽
内の微生物は、原水中の有機化合物を酸素を使用して分
解し、主に二酸化炭素と微生物菌体になる。そこで、分
解の際に酸素を消費して二酸化炭素を排出する点に着目
すれば、微生物の作用により生ずる二酸化炭素量や微生
物の作用により消費される酸素量を測定し、これらが所
定の範囲内になるように処理条件を制御することによ
り、効率的な処理が可能となる。微生物の作用により生
ずる二酸化炭素量は、たとえば、処理中の水から排出さ
れる二酸化炭素量や、処理中の水の溶存二酸化炭素量を
測定することにより得ることができる。また、微生物の
作用により消費される酸素量は、たとえば、処理中の水
から排出される酸素量や、処理中の水の溶存酸素量を測
定することにより得ることができる。これらの測定は、
それぞれ単独でおこなってもよいが、たとえば、排出さ
れる二酸化炭素量と酸素量とを同時に測定して、これら
が所定の範囲内になるよう処理条件を制御すると、処理
の安定性が増し、より効率的に処理を行うことができ好
ましい。
In the present invention, the treatment conditions are controlled so that the amount of carbon dioxide generated by the action of microorganisms and / or the amount of oxygen consumed by the action of microorganisms fall within a predetermined range. In water treatment using aerobic microorganisms, the microorganisms in the treatment tank decompose organic compounds in the raw water using oxygen, and mainly produce carbon dioxide and microbial cells. Therefore, if attention is paid to the point of consuming oxygen during decomposition and emitting carbon dioxide, the amount of carbon dioxide generated by the action of microorganisms and the amount of oxygen consumed by the action of microorganisms are measured, and these are measured within a predetermined range. By controlling the processing conditions so as to satisfy, efficient processing is possible. The amount of carbon dioxide generated by the action of microorganisms can be obtained, for example, by measuring the amount of carbon dioxide discharged from water during treatment or the amount of dissolved carbon dioxide in water during treatment. The amount of oxygen consumed by the action of microorganisms can be obtained, for example, by measuring the amount of oxygen discharged from water during treatment or the amount of dissolved oxygen in water during treatment. These measurements are
Each may be performed independently, for example, by simultaneously measuring the amount of carbon dioxide and the amount of oxygen emitted and controlling the processing conditions so that these are within a predetermined range, the stability of the processing increases, It is preferable because the processing can be performed efficiently.

【0014】上記に加えて、たとえば、処理中の原水の
pH値などを測定し、これが所定の範囲内になるように
処理条件を制御することもできる。測定対象を複数とす
ると、処理の安定性が増すが、必要に応じて適宜選択す
るとよい。
In addition to the above, for example, it is also possible to measure the pH value or the like of raw water during treatment and control the treatment conditions so that the pH value falls within a predetermined range. When a plurality of measurement objects are used, the stability of the process is increased, but it may be appropriately selected as needed.

【0015】処理条件の制御対象としては、たとえば、
処理する水の供給量や酸素供給量、栄養塩添加量、攪拌
強度を挙げることができる。具体的には、微生物の作用
により生ずる二酸化炭素量および/または微生物の作用
により消費される酸素量が増加しているときには、酸素
供給量、栄養塩供給量および攪拌強度からなる群から選
ばれる少なくとも一つの制御量を増加させることによ
り、増大した負荷に対応した処理を行うことができ、水
処理の安定性を増すことができる。また、上記の二酸化
炭素量および/または酸素量が減少しているときには、
上記の制御量の少なくとも一つを減少させることによ
り、負荷に相応の処理を経済的に行うことができ、やは
り、水処理の安定性を増すことができる。
The control target of the processing condition is, for example,
The supply amount of water to be treated, the supply amount of oxygen, the addition amount of nutrients, and the stirring intensity can be mentioned. Specifically, when the amount of carbon dioxide generated by the action of microorganisms and / or the amount of oxygen consumed by the action of microorganisms is increasing, at least one selected from the group consisting of oxygen supply, nutrient supply and stirring intensity By increasing one control amount, processing corresponding to the increased load can be performed, and the stability of water treatment can be increased. In addition, when the amount of carbon dioxide and / or oxygen is reduced,
By reducing at least one of the above-mentioned control variables, a treatment corresponding to the load can be economically performed, and the stability of the water treatment can also be increased.

【0016】さらに、処理する水の処理負荷量を一定に
して効率的に安定して運転する場合には、処理する水の
供給量、または、処理する水に含まれる有機化合物の濃
度と供給量の積で表される値を一定範囲内にすることが
好ましい。処理する水に含まれる有機化合物の濃度が高
い場合には、希釈水を処理する水に供給し、この供給量
を制御することも好ましい。
Further, when operating efficiently and stably with the treatment load of the water to be treated constant, the supply amount of the treatment water or the concentration and supply amount of the organic compound contained in the water to be treated. Is preferably within a certain range. When the concentration of the organic compound contained in the water to be treated is high, it is also preferable to supply the dilution water to the water to be treated and to control the supply amount.

【0017】また、処理する水の供給量を一定にし、処
理能力を増減させて効率的な安定処理を行う場合には、
酸素供給量、栄養塩添加量、攪拌強度などの制御量をそ
れぞれ単独でまたは組合せて増減させると好ましい。処
理能力を増加させるには、上記制御量を増加させ、処理
能力を減少させるには、上記制御量を減少させるとよ
い。
Further, when the supply amount of the water to be treated is fixed and the treatment capacity is increased or decreased to perform an efficient stable treatment,
It is preferable to increase or decrease each of the control amounts such as the oxygen supply amount, the nutrient addition amount, and the stirring intensity alone or in combination. The control amount may be increased to increase the processing capacity, and the control amount may be decreased to decrease the processing capacity.

【0018】この他にも、処理する水に含まれる有機化
合物の組成が変化する場合は、その組成変化に合わせて
副添加物の添加量を制御する方法などを用いることもで
きる。
In addition, when the composition of the organic compound contained in the water to be treated changes, a method of controlling the amount of the sub-additive in accordance with the change in the composition can be used.

【0019】さらに、活性汚泥法に適用する場合には、
返送汚泥量を制御することも好ましい。
Further, when applied to the activated sludge method,
It is also preferable to control the amount of returned sludge.

【0020】本発明は、ポリエステル織物の苛性ソーダ
による減量処理廃液を含む有機排水の処理に特に有効で
ある。上記廃液は、高BOD負荷であることが多いうえ
に、減量処理の対象となる品種により負荷の変動が大き
く、従来は、他の排水などで希釈して活性汚泥法により
処理されていた。しかし、通常の活性汚泥法による処理
は、原水流入量を一定にして処理を行うため、処理水の
水質を一定範囲内に保つためには、最も高いBODの排
水が流入した場合にも処理できるように曝気量などの処
理条件の設定を行っておく必要があった。そのため、通
常時は過剰な処理条件設定となり、効率が悪く、また、
原水の濃度変動のために処理槽の運転負荷が大きく変動
し、処理安定性も優れているとはいいがたかった。本発
明では、微生物の作用により生ずる二酸化炭素量や微生
物の作用により消費される酸素量などの処理状態を示す
指標により運転条件を制御するため、上記のような有機
排水に対しても、効率的かつ安定的に水処理を行うこと
が可能になる。
The present invention is particularly effective for the treatment of organic wastewater containing waste water from weight reduction treatment of polyester fabric with caustic soda. The waste liquid often has a high BOD load, and the load greatly varies depending on the type of the target for weight reduction treatment. Conventionally, the waste liquid is diluted with other wastewater or the like and treated by the activated sludge method. However, since the treatment by the ordinary activated sludge method is performed while keeping the raw water inflow rate constant, in order to keep the quality of the treated water within a certain range, the treatment can be performed even when the highest BOD wastewater flows in. Thus, it is necessary to set processing conditions such as the amount of aeration. Therefore, in normal times, excessive processing conditions are set, resulting in poor efficiency.
The operation load of the treatment tank fluctuated greatly due to the concentration fluctuation of the raw water, and it was hard to say that the treatment stability was excellent. In the present invention, since the operating conditions are controlled by an index indicating a treatment state such as the amount of carbon dioxide generated by the action of microorganisms and the amount of oxygen consumed by the action of microorganisms, the above-described organic wastewater is also efficiently used. Water treatment can be performed stably.

【0021】本発明の一実施態様に係る水処理装置は、
図1に示すように、原水14を貯留する処理槽12と、
この処理槽12に原水を供給するための、原水流入ライ
ン9を備えた原水ポンプ(水供給手段)3と、処理槽底
部に配され、ブロア1によって供給された空気などの気
体を散気する散気装置(酸素供給手段)2と、供給され
た気体の泡を細かく砕いて酸素を原水に溶解させ酸素供
給効率を向上させる攪拌機(攪拌手段)17と、ポンプ
15を備えた栄養塩供給装置(栄養塩供給手段)11
と、処理水を取り出す処理水流出ライン10と、排気ダ
クト16とを有している。排気ダクト16には、排気ダ
クト16内を流れる気体の酸素濃度を計測する排気酸素
濃度計4と、二酸化炭素濃度を計測する排気二酸化炭素
濃度計5とが接続されている。また、処理槽12には、
処理中の原水のpHを測定する処理槽pH計6と、処理
中の原水の溶存酸素濃度を計測する処理槽溶存酸素濃度
計8が配されている。上記のブロア1、原水ポンプ3、
ポンプ15および攪拌機17は、制御装置13から送ら
れる信号により制御できるように、それぞれ制御装置と
電気的に接続されている。また、排気酸素濃度計4、排
気二酸化炭素濃度計5、処理槽pH計6および処理槽溶
存酸素濃度計8は、制御装置13へ計測値を電気信号と
して送ることができるように、それぞれ制御装置と電気
的に接続されている。
[0021] The water treatment apparatus according to one embodiment of the present invention comprises:
As shown in FIG. 1, a treatment tank 12 for storing raw water 14,
A raw water pump (water supply means) 3 having a raw water inflow line 9 for supplying raw water to the processing tank 12, and a gas such as air supplied by the blower 1 is disposed at the bottom of the processing tank. A nutrient supply apparatus including a diffuser (oxygen supply means) 2, a stirrer (stirring means) 17 for finely crushing supplied gas bubbles to dissolve oxygen in raw water and improve oxygen supply efficiency, and a pump 15 (Nutrient supply means) 11
And a treated water outflow line 10 for taking out treated water, and an exhaust duct 16. The exhaust duct 16 is connected to an exhaust oximeter 4 for measuring the oxygen concentration of the gas flowing in the exhaust duct 16 and an exhaust carbon dioxide meter 5 for measuring the carbon dioxide concentration. In the processing tank 12,
A treatment tank pH meter 6 for measuring the pH of the raw water being treated and a treatment tank dissolved oxygen concentration meter 8 for measuring the dissolved oxygen concentration of the raw water being treated are provided. The above blower 1, raw water pump 3,
The pump 15 and the stirrer 17 are each electrically connected to the control device so that they can be controlled by a signal sent from the control device 13. The exhaust oxygen concentration meter 4, the exhaust carbon dioxide concentration meter 5, the treatment tank pH meter 6, and the treatment tank dissolved oxygen concentration meter 8 are controlled by control devices so that the measured values can be sent to the control device 13 as electric signals. Is electrically connected to

【0022】原水は、原水ポンプ3により、原水流入ラ
イン9を通って処理槽12に供給され、微生物による好
気的処理を受けた後、処理水流出ライン10から排出さ
れる。この好気的処理中、排気酸素濃度計4により得た
酸素濃度(酸素量)や、排気二酸化炭素濃度計5により
得た二酸化炭素濃度(二酸化炭素量)、処理槽pH計に
より得た処理中の原水のpH、処理槽溶存酸素濃度計8
により得た処理中の原水の溶存酸素濃度は、それぞれ電
気信号として制御装置13に送られ、これらの計測値に
基づいて、必要に応じて、ブロア1を制御して酸素供給
量を調節したり、攪拌機17を制御して攪拌強度を調節
したり、原水ポンプ3を制御して処理する水の量を調節
したり、ポンプ15を制御して栄養塩供給量を調節した
りする。
The raw water is supplied to the treatment tank 12 through the raw water inflow line 9 by the raw water pump 3, and after being subjected to aerobic treatment by microorganisms, is discharged from the treated water outflow line 10. During the aerobic treatment, the oxygen concentration (oxygen amount) obtained by the exhaust oxygen concentration meter 4, the carbon dioxide concentration (carbon dioxide amount) obtained by the exhaust carbon dioxide concentration meter 5, and the processing obtained by the treatment tank pH meter. Raw water pH, treatment tank dissolved oxygen concentration meter 8
The dissolved oxygen concentration of the raw water in the process obtained by the above is sent to the controller 13 as an electric signal, and based on these measured values, the blower 1 is controlled as necessary to adjust the oxygen supply amount. The agitator 17 is controlled to adjust the stirring intensity, the raw water pump 3 is controlled to adjust the amount of water to be treated, and the pump 15 is controlled to adjust the nutrient supply amount.

【0023】制御手段は、たとえば、上記の計測値を受
け入れる入力部と、各制御対象を制御するための条件を
記憶するメモリ部と、上記入力部とメモリ部とに接続さ
れ、入力部からの計測値とメモリ部に記憶された条件を
比較判定する判定部と、この判定部の出力により各制御
手段を調節するための制御値を出力する出力部とを備え
た構成とすることができる。上記メモリ部には、たとえ
ば、微生物の作用により生ずる二酸化炭素量や微生物の
作用により消費される酸素量の増加減少割合と、処理す
る水の量や酸素供給量、栄養塩供給量、攪拌強度などの
制御量との関係を記憶させたり、酸素供給量を増加させ
るときに用いる、処理中の水の溶存酸素量の閾値を記憶
させたりすることができる。また、上記の酸素濃度変化
量や二酸化炭素変化量と各制御量との関係を記憶させる
ことにより、たとえば、酸素濃度が一定となるような制
御を行うことが可能となり、安定した水処理を行うこと
ができる。
The control means includes, for example, an input unit for receiving the above-mentioned measured value, a memory unit for storing conditions for controlling each control object, and connected to the input unit and the memory unit. A configuration may be provided that includes a determination unit that compares and determines the measured value with the condition stored in the memory unit, and an output unit that outputs a control value for adjusting each control unit based on an output of the determination unit. The memory unit includes, for example, an increase / decrease rate of the amount of carbon dioxide generated by the action of microorganisms and the amount of oxygen consumed by the action of microorganisms, the amount of water to be treated, the supply amount of oxygen, the supply amount of nutrients, the stirring intensity, Can be stored, or the threshold value of the dissolved oxygen amount of the water during the treatment used when increasing the oxygen supply amount can be stored. In addition, by storing the relationship between the above-mentioned oxygen concentration change amount and carbon dioxide change amount and each control amount, for example, it is possible to perform control such that the oxygen concentration is constant, and to perform stable water treatment. be able to.

【0024】[0024]

【実施例】(実施例1)槽容量が1Lである図1のよう
な装置を用いて、BOD源としてテレフタル酸2ナトリ
ウム塩5g/Lとエチレングリコール1.9g/Lとを
含む混合水溶液を原水として分解処理実験を行った。原
水を、当初200mL/h(滞留5h)で供給し、酸素
供給は通気攪拌により行った。また無機塩(栄養塩)を
BOD:N:Pが100:5:1となるように添加し
た。運転は排気酸素濃度が一定となり、かつDOが1p
pmであるように原水流入量および無機塩添加量を制御
した。なお、滞留時間が5〜9時間の間で処理性が変わ
らないことは事前に確認した。
(Example 1) Using a device having a tank capacity of 1 L as shown in FIG. 1, a mixed aqueous solution containing 5 g / L of disodium terephthalate and 1.9 g / L of ethylene glycol as a BOD source was used. Decomposition experiments were performed as raw water. Raw water was initially supplied at 200 mL / h (residence 5 h), and oxygen was supplied by aeration and stirring. In addition, inorganic salts (nutrition salts) were added so that BOD: N: P became 100: 5: 1. In operation, exhaust oxygen concentration is constant and DO is 1p
pm, the inflow of raw water and the amount of inorganic salt added were controlled. In addition, it confirmed beforehand that processability did not change in residence time between 5 to 9 hours.

【0025】上記条件で運転時、原水のBOD濃度を
1.6倍に上昇させたところ、原水供給量は125mL
/hに制御された。また、処理水を遠心分離し、菌体を
除いた上清のBODは原水の3%であり、原水濃度を上
昇させる前と同等であった。 (実施例2)実施例1と同様の装置を用いて、テレフタ
ル酸2ナトリウム塩8g/Lとエチレングリコール3g
/Lを主BOD源とする混合水溶液を原水として分解処
理実験を行った。原水を、167mL/h(滞留6h)
で供給し、酸素供給は通気攪拌により行った。また無機
塩をBOD:N:Pが100:5:1となるように添加
した。運転は排気酸素濃度が一定となり、かつDOが1
ppmであるように通気量および攪拌強度を制御した。
When operating under the above conditions, when the BOD concentration of the raw water was increased 1.6 times, the raw water supply amount was 125 mL.
/ H. The BOD of the supernatant obtained by centrifuging the treated water and removing the cells was 3% of the raw water, which was equivalent to that before the concentration of the raw water was increased. (Example 2) Using the same apparatus as in Example 1, terephthalic acid disodium salt 8 g / L and ethylene glycol 3 g
A decomposition treatment experiment was performed using a mixed aqueous solution containing / L as a main BOD source as raw water. Raw water is 167 mL / h (retention 6h)
And oxygen was supplied by aeration and agitation. Further, an inorganic salt was added so that BOD: N: P became 100: 5: 1. In operation, the exhaust oxygen concentration was constant and DO was 1
The aeration rate and stirring intensity were controlled to be ppm.

【0026】上記条件で運転時、原水のBOD濃度を
1.6倍に減少させたところ、攪拌強度が、600rp
mから400rpmに制御され、攪拌に要する消費電力
を節約することができた。 (実施例3)実施例1と同様の装置を用いて、テレフタ
ル酸2ナトリウム塩8g/Lとエチレングリコール3g
/Lを主BOD源とする混合水溶液を原水として分解処
理実験を行った。原水を、167mL/h(滞留6h)
で供給し、酸素供給は通気攪拌により行った。また無機
塩をBOD:N:Pが100:5:1となるように添加
した。運転は溶存酸素濃度、排気酸素濃度および排気二
酸化炭素濃度が一定となるように、酸素供給量を制御し
た。
During the operation under the above conditions, when the BOD concentration of the raw water was reduced by 1.6 times, the stirring intensity became 600 rpm.
m was controlled to 400 rpm, and power consumption required for stirring could be saved. (Example 3) Using the same apparatus as in Example 1, terephthalic acid disodium salt 8 g / L and ethylene glycol 3 g
A decomposition treatment experiment was performed using a mixed aqueous solution containing / L as a main BOD source as raw water. Raw water is 167 mL / h (residence 6h)
And oxygen was supplied by aeration and agitation. Further, an inorganic salt was added so that BOD: N: P became 100: 5: 1. In the operation, the oxygen supply was controlled so that the dissolved oxygen concentration, the exhaust oxygen concentration, and the exhaust carbon dioxide concentration were constant.

【0027】上記条件で運転時、模擬的に溶存酸素計を
故障状態においたが、排気酸素濃度および排気二酸化炭
素濃度の情報から、溶存酸素濃度の情報が誤りであると
判断して、排気酸素濃度および排気二酸化炭素濃度のデ
ータで酸素供給量を制御し、処理を安定的に継続するこ
とができた。 (比較例1)実施例1と同様の装置を用いて、テレフタ
ル酸2ナトリウム塩5g/Lとエチレングリコール1.
9g/Lを主BOD源とする混合水溶液を原水として分
解処理実験を行った。原水を、200mL/h(滞留5
h)で供給し、酸素供給は通気攪拌により行った。また
無機塩をBOD:N:Pが100:5:1となるように
添加した。運転は条件制御をせず、原水流入量を固定し
て行った。
During operation under the above conditions, the dissolved oxygen meter was simulated in a failure state. However, from the information on the exhaust oxygen concentration and the exhaust carbon dioxide concentration, it was determined that the information on the dissolved oxygen concentration was incorrect, and the exhaust oxygen The oxygen supply amount was controlled based on the data of the concentration and the exhausted carbon dioxide concentration, and the treatment could be continued stably. Comparative Example 1 Using the same apparatus as in Example 1, terephthalic acid disodium salt 5 g / L and ethylene glycol 1.
A decomposition treatment experiment was performed using a mixed aqueous solution containing 9 g / L as a main BOD source as raw water. 200 mL / h of raw water (retention 5
h), and oxygen was supplied by aeration and stirring. Further, an inorganic salt was added so that BOD: N: P became 100: 5: 1. The operation was performed without controlling the conditions and fixing the inflow of raw water.

【0028】上記条件で運転時、原水のBOD濃度を
1.6倍に上昇させたところ、処理水を遠心分離し、菌
体を除いた上清のBODは原水の38%となり、未処理
原水が処理水として流出した。 (比較例2)実施例1と同様の装置を用いて、テレフタ
ル酸2ナトリウム塩8g/Lとエチレングリコール3g
/Lを主BOD源とする混合水溶液を原水として分解処
理実験を行った。原水を、167mL/h(滞留6h)
で供給し、酸素供給は通気攪拌により行った。また無機
塩をBOD:N:Pが100:5:1となるように添加
した。運転は条件制御をせず、すべて一定条件でおこな
った。
When operating under the above conditions, when the BOD concentration of the raw water was increased 1.6 times, the treated water was centrifuged and the BOD of the supernatant from which the cells were removed was 38% of the raw water, and the untreated raw water was 38%. Flowed out as treated water. (Comparative Example 2) Using the same apparatus as in Example 1, terephthalic acid disodium salt 8 g / L and ethylene glycol 3 g
A decomposition treatment experiment was performed using a mixed aqueous solution containing / L as a main BOD source as raw water. Raw water is 167 mL / h (retention 6h)
And oxygen was supplied by aeration and agitation. Further, an inorganic salt was added so that BOD: N: P became 100: 5: 1. The operation was performed under constant conditions without any condition control.

【0029】上記条件で運転時、原水のBOD濃度を
0.6倍に減少させたが、酸素供給は制御されていない
ため、原水負荷が減少しても攪拌600rpmで運転を
継続し、実施例2と比較して消費電力が大きくなった。 (比較例3)実施例1と同様の装置を用いて、テレフタ
ル酸2ナトリウム塩8g/Lとエチレングリコール3g
/Lを主BOD源とする混合水溶液を原水として分解処
理実験を行った。原水を、167mL/h(滞留6h)
で供給し、酸素供給は通気攪拌により行った。また無機
塩をBOD:N:Pが100:5:1となるように添加
した。運転は溶存酸素濃度のみで酸素供給量を決定する
方式で制御した。
During the operation under the above conditions, the BOD concentration of the raw water was reduced by 0.6 times, but the oxygen supply was not controlled, so that the operation was continued at 600 rpm with stirring even if the raw water load was reduced. Power consumption was larger than that of No. 2. (Comparative Example 3) Using the same apparatus as in Example 1, terephthalic acid disodium salt 8 g / L and ethylene glycol 3 g
A decomposition treatment experiment was performed using a mixed aqueous solution containing / L as a main BOD source as raw water. Raw water is 167 mL / h (retention 6h)
And oxygen was supplied by aeration and agitation. Further, an inorganic salt was added so that BOD: N: P became 100: 5: 1. The operation was controlled in such a manner that the oxygen supply amount was determined only by the dissolved oxygen concentration.

【0030】上記条件で運転時、模擬的に溶存酸素計を
故障状態においたところ、制御不能となり、処理を継続
できなかった。
When the dissolved oxygen meter was simulated during the operation under the above conditions, the control became impossible, and the process could not be continued.

【0031】[0031]

【発明の効果】本発明によれば、微生物を用いて有機化
合物を含む水を好気的に処理するに際し、微生物の作用
により生ずる二酸化炭素量および/または微生物の作用
により消費される酸素量が所定の範囲内になるように処
理条件を制御するので、反応の進行状態に応じた処理を
行うことができ、処理を安定的に継続することができ
る。
According to the present invention, the amount of carbon dioxide generated by the action of microorganisms and / or the amount of oxygen consumed by the action of microorganisms when aerobically treating water containing organic compounds using microorganisms is reduced. Since the processing conditions are controlled so as to be within a predetermined range, processing according to the progress of the reaction can be performed, and the processing can be stably continued.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様に係る水処理装置の概略図
である。
FIG. 1 is a schematic diagram of a water treatment apparatus according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:ブロア 2:散気装置(酸素供給手段) 3:原水ポンプ(水供給手段) 4:排気酸素濃度計 5:排気二酸化炭素濃度計 6:処理槽pH計 7:原水流入口 8:処理槽溶存酸素濃度計 9:原水流入ライン 10:処理水流出ライン 11:栄養塩供給装置(栄養塩供給手段) 12:処理槽 13:制御装置 14:原水 15:ポンプ 16:排気ダクト 17:攪拌機(攪拌手段) 1: Blower 2: Air diffuser (oxygen supply means) 3: Raw water pump (water supply means) 4: Exhaust oxygen concentration meter 5: Exhaust carbon dioxide concentration meter 6: Treatment tank pH meter 7: Raw water inlet 8: Treatment tank Dissolved oxygen concentration meter 9: Raw water inflow line 10: Treated water outflow line 11: Nutrient supply unit (nutrient supply means) 12: Treatment tank 13: Control unit 14: Raw water 15: Pump 16: Exhaust duct 17: Stirrer (stirring) means)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】微生物を用いて有機化合物を含む水を好気
的に処理するに際し、微生物の作用により生ずる二酸化
炭素量および/または微生物の作用により消費される酸
素量が所定の範囲内になるように処理条件を制御するこ
とを特徴とする水処理方法。
1. An aerobic treatment of water containing an organic compound using a microorganism, the amount of carbon dioxide generated by the action of the microorganism and / or the amount of oxygen consumed by the action of the microorganism fall within a predetermined range. Water treatment method characterized by controlling the treatment conditions as described above.
【請求項2】処理中の水に酸素を供給する工程、微生物
に栄養を与えるために処理中の水に栄養塩を供給する工
程および微生物による有機化合物の分解を促進するため
に処理中の水を攪拌する工程からなる群から選ばれる少
なくとも一つの工程をさらに含んでいる、請求項1に記
載の水処理方法。
2. The step of supplying oxygen to the water being treated, the step of supplying nutrients to the water being treated to nourish the microorganisms, and the water being treated to promote the decomposition of organic compounds by the microorganisms. The water treatment method according to claim 1, further comprising at least one step selected from the group consisting of agitating the water.
【請求項3】制御対象として、処理する水の量、酸素供
給量、栄養塩供給量および攪拌強度からなる群から選ば
れる少なくとも一つを選択する、請求項2に記載の水処
理方法。
3. The water treatment method according to claim 2, wherein at least one selected from the group consisting of an amount of water to be treated, an oxygen supply amount, a nutrient supply amount and a stirring intensity is selected as a control target.
【請求項4】微生物の作用により生ずる二酸化炭素およ
び/または微生物の作用により消費される酸素量が増加
しているときは、酸素供給量、栄養塩供給量および攪拌
強度からなる群から選ばれる少なくとも一つの制御量を
増加させ、上記二酸化炭素量および/または酸素量が減
少しているときは、酸素供給量、栄養塩供給量および攪
拌強度からなる群から選ばれる少なくとも一つの制御量
を減少させる、請求項3に記載の水処理方法。
4. When the amount of carbon dioxide generated by the action of microorganisms and / or the amount of oxygen consumed by the action of microorganisms is increasing, at least one selected from the group consisting of oxygen supply, nutrient supply and stirring intensity. One control amount is increased, and when the carbon dioxide amount and / or the oxygen amount is decreasing, at least one control amount selected from the group consisting of the oxygen supply amount, the nutrient supply amount, and the stirring intensity is decreased. The water treatment method according to claim 3.
【請求項5】微生物を用いて水を処理する処理槽と、微
生物の作用により生ずる二酸化炭素量および/または微
生物の作用により消費される酸素量を測定する測定手段
と、この測定手段により得られる測定値に基づいて処理
条件を制御する制御手段とを備えていることを特徴とす
る水処理装置。
5. A treatment tank for treating water using microorganisms, a measuring means for measuring the amount of carbon dioxide generated by the action of microorganisms and / or the amount of oxygen consumed by the action of microorganisms, and the measuring means. A water treatment apparatus, comprising: control means for controlling treatment conditions based on measured values.
【請求項6】処理槽に処理する水を供給する水供給手
段、処理中の水に酸素を供給する酸素供給手段、微生物
に栄養を与えるための栄養塩供給手段および酸素供給効
率を向上させるための攪拌手段からなる群から選ばれる
少なくとも一つの手段をさらに含んでいる、請求項5に
記載の水処理装置。
6. A water supply means for supplying water to be treated to a treatment tank, an oxygen supply means for supplying oxygen to water being treated, a nutrient supply means for feeding nutrients to microorganisms, and for improving oxygen supply efficiency. The water treatment apparatus according to claim 5, further comprising at least one means selected from the group consisting of:
【請求項7】制御手段が水供給手段、酸素供給手段、栄
養塩供給手段および攪拌手段からなる群から選ばれる少
なくとも一つの手段に結合されている、請求項6に記載
の水処理装置。
7. The water treatment apparatus according to claim 6, wherein the control means is connected to at least one means selected from the group consisting of water supply means, oxygen supply means, nutrient supply means and stirring means.
【請求項8】請求項1〜4のいずれかに記載の水処理方
法または請求項5〜7のいずれかに記載の水処理装置を
用いることを特徴とする処理水の製造方法。
8. A method for producing treated water, comprising using the water treatment method according to any one of claims 1 to 4 or the water treatment apparatus according to any one of claims 5 to 7.
JP22246799A 1999-08-05 1999-08-05 Method and apparatus for water treatment Pending JP2001047079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22246799A JP2001047079A (en) 1999-08-05 1999-08-05 Method and apparatus for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22246799A JP2001047079A (en) 1999-08-05 1999-08-05 Method and apparatus for water treatment

Publications (1)

Publication Number Publication Date
JP2001047079A true JP2001047079A (en) 2001-02-20

Family

ID=16782885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22246799A Pending JP2001047079A (en) 1999-08-05 1999-08-05 Method and apparatus for water treatment

Country Status (1)

Country Link
JP (1) JP2001047079A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273462A (en) * 2001-03-22 2002-09-24 Asahi Kasei Corp Method and device for treating waste water
KR100500374B1 (en) * 2002-10-08 2005-07-12 (주)원진 The method and wastewater disposal plant of high concentration using a vacuum pump
WO2014049672A1 (en) * 2012-09-27 2014-04-03 パナソニック株式会社 Carbon dioxide manufacturing apparatus
WO2024048112A1 (en) * 2022-09-01 2024-03-07 オルガノ株式会社 Wastewater treatment method and wastewater treatment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273462A (en) * 2001-03-22 2002-09-24 Asahi Kasei Corp Method and device for treating waste water
KR100500374B1 (en) * 2002-10-08 2005-07-12 (주)원진 The method and wastewater disposal plant of high concentration using a vacuum pump
WO2014049672A1 (en) * 2012-09-27 2014-04-03 パナソニック株式会社 Carbon dioxide manufacturing apparatus
WO2024048112A1 (en) * 2022-09-01 2024-03-07 オルガノ株式会社 Wastewater treatment method and wastewater treatment device

Similar Documents

Publication Publication Date Title
US6712970B1 (en) Sewage treatment process with phosphorus removal
US6783679B1 (en) Waste treatment process
EP0423889B1 (en) Method and installation for processing manure, fermented manure and Kjeldahl-N containing waste water
JPWO2009041009A1 (en) Organic waste treatment method and apparatus
Andreottola et al. Treatment of winery wastewater in a sequencing batch biofilm reactor
JP4410163B2 (en) Waste water ozone treatment method and ozone treatment apparatus
JP3275351B2 (en) Anaerobic treatment of organic wastewater
AU767197B2 (en) Waste treatment process
JP2001047079A (en) Method and apparatus for water treatment
JP5854743B2 (en) Operation control device and control method for sewage treatment plant
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
JP6306298B2 (en) Sewage treatment plant operation method, operation control device, and sewage treatment plant
JP2006312122A (en) Control method for electrolysis of sludge
JP2002001388A (en) Equipment and process for treating sewage
JP3649632B2 (en) Biological nitrogen removal method
CA2881911A1 (en) A method and an apparatus for simultaneous removal of thiosalt and nitrogen compounds in waste water
Slade et al. N-ViroTech®-a novel process for the treatment of nutrient limited wastewaters
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP2009214073A (en) Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor
JP2004041981A (en) Organic waste water treatment method and its system
JPS588320B2 (en) How to treat organic sludge
JPS6154296A (en) Treatment of sewage
JP4688714B2 (en) Organic acid generation method
US11724948B2 (en) Method for wastewater treatment through microorganism biochemical pathway optimization