JP2001045800A - Method for controlling synchronous motor - Google Patents

Method for controlling synchronous motor

Info

Publication number
JP2001045800A
JP2001045800A JP11213143A JP21314399A JP2001045800A JP 2001045800 A JP2001045800 A JP 2001045800A JP 11213143 A JP11213143 A JP 11213143A JP 21314399 A JP21314399 A JP 21314399A JP 2001045800 A JP2001045800 A JP 2001045800A
Authority
JP
Japan
Prior art keywords
axis
current
permanent magnet
synchronous motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11213143A
Other languages
Japanese (ja)
Other versions
JP4172563B2 (en
Inventor
Shigenori Hagiwara
茂教 萩原
Yoichi Omori
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP21314399A priority Critical patent/JP4172563B2/en
Publication of JP2001045800A publication Critical patent/JP2001045800A/en
Application granted granted Critical
Publication of JP4172563B2 publication Critical patent/JP4172563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously measure the constant of an electric motor by allowing an AC current to flow to a d-axis when the estimation of the direction of a permanent magnet is completed, allowing an AC current with a phase being different by 90 degrees and with an equal amplitude to flow to a q-axis, and obtaining the inductance of both the axes of the electric motor and the resistance component for setting and storing. SOLUTION: An electric motor constant-calculating means 8 inputs a d-axis current id, a q-axis current iq, a d-axis voltage vd, and a q-axis voltage vd, and outputs a control signal S5 where an AC current flows as the d-axis current and an AC current with a phase being different by 90 degrees and with an equal amplitude flows as the q-axis current. Then, Fourier transform is made, thus obtaining a d-axis inductance Ld, a resistance component Rd, and a q-axis inductance Lq, a resistance component Rq. Also, a setting storage means 9 inputs the inductance, resistance components, and the magnetic flux of a permanent magnet, sets and stores the average value of the resistance components Rd and Rq as armature resistance R, and sets and stores the inductance Ld and Lq of both the axes and the magnetic flux of the permanent magnet, thus performing setting to a control device without using a device for measuring the constant of the electric motor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石形同期電
動機を制御するシステムに関わり、特に位置センサや速
度センサ等を用いずに調整を簡単に行い、しかも高精度
に行うことができる同期電動機の制御方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for controlling a permanent magnet type synchronous motor, and more particularly to a synchronous motor which can be easily adjusted with high accuracy without using a position sensor or a speed sensor. In the control method.

【0002】[0002]

【従来の技術】従来、永久磁石形同期電動機の電動機定
数である巻線抵抗は、直流試験で測定し、d軸のインダ
クタンスLdは、永久磁石形同期電動機を固定した状態
でd軸電流だけに交流電流を流す拘束試験で測定し、q
軸のインダクタンスLqは、永久磁石形同期電動機を固
定した状態でq軸電流だけに交流電流を流す拘束試験で
測定し、永久磁石の磁束は負荷試験で測定し、測定され
た電動機定数は、手動によって制御装置へ入力してい
た。
2. Description of the Related Art Conventionally, a winding resistance which is a motor constant of a permanent magnet type synchronous motor is measured by a DC test, and an inductance Ld of a d-axis is limited to a d-axis current only when the permanent magnet type synchronous motor is fixed. Measured by a restraint test with alternating current, q
The inductance Lq of the shaft is measured by a constraint test in which an AC current is applied only to the q-axis current with the permanent magnet type synchronous motor fixed, the magnetic flux of the permanent magnet is measured by a load test, and the measured motor constant is manually measured. Input to the control unit.

【0003】[0003]

【発明が解決しようとする課題】永久磁石形同期電動機
を高精度に制御するには、永久磁石形同期電動機の電動
機定数の値が必要な場合がある。しかし、例えばd軸の
インダクタンスLdとq軸のインダクタンスLqを測定
する場合、永久磁石形同期電動機が回転しないように固
定する道具が必要であり、そのような試験装置がないと
永久磁石形同期電動機を高精度に制御できなかった。ま
た、電機子抵抗とd軸のインダクタンスLd及びq軸の
インダクタンスLqは別々に測定しているため、手間が
かかるという問題があった。
In order to control a permanent magnet synchronous motor with high accuracy, a value of a motor constant of the permanent magnet synchronous motor may be required. However, for example, when measuring the inductance Ld of the d-axis and the inductance Lq of the q-axis, a tool for fixing the permanent magnet type synchronous motor so that it does not rotate is necessary. Could not be controlled with high precision. Further, since the armature resistance, the inductance Ld on the d-axis, and the inductance Lq on the q-axis are measured separately, there is a problem that it takes time and effort.

【0004】また、d軸のインダクタンスLdとq軸の
インダクタンスLqを測定する場合、永久磁石の方向を
検出する位置検出器が必要になる。さらに、永久磁石の
磁束を測定する場合、永久磁石の方向を検出する位置検
出器と永久磁石形同期電動機の回転速度を検出する速度
検出器が必要となる。これらの位置および速度検出器は
振動、粉塵や温度等の使用制限や、モータ体積の増大、
さらに検出器信号線の断線やノイズ混入等の問題があ
る。本発明はこのような点に鑑みて創案されたもので、
その目的とするところは、これらの欠点を解決し、位置
検出器や速度検出器、試験装置を用いずに電動機定数を
同時に測定することができる同期電動機の制御方法を提
供するものである。
When measuring the d-axis inductance Ld and the q-axis inductance Lq, a position detector for detecting the direction of the permanent magnet is required. Further, when measuring the magnetic flux of the permanent magnet, a position detector for detecting the direction of the permanent magnet and a speed detector for detecting the rotational speed of the permanent magnet synchronous motor are required. These position and speed detectors limit the use of vibration, dust, temperature, etc., increase the motor volume,
Further, there are problems such as disconnection of the detector signal line and noise mixing. The present invention has been made in view of such a point,
It is an object of the present invention to solve these drawbacks and to provide a synchronous motor control method capable of simultaneously measuring a motor constant without using a position detector, a speed detector, and a test device.

【0005】[0005]

【課題を解決するための手段】その目的を達成するため
に、請求項1に示す如く、永久磁石形同期電動機に流れ
る一次電流を推定された永久磁石の方向に平行なd軸電
流成分と、d軸に垂直なq軸電流成分に分けて制御する
同期電動機の制御方法において、永久磁石形同期電動機
が停止した状態でd軸電流として交流電流を流し、q軸
電流としてd軸電流に対して90度位相が異なり振幅が
等しい交流電流を流し、d軸電圧の振幅とq軸電圧の振
幅を比較してd軸電圧の振幅がq軸電圧の振幅よりも大
きければ推定された永久磁石の方向を90度進めるか又
は遅らせ、q軸電流を流さず、d軸電流として交流電流
を流し、q軸電圧の微分値とd軸電流の積によって推定
された永久磁石の方向を修正し、q軸電流は流さず、d
軸電流に交流電流を流し、d軸電流が正の時のd軸電圧
の平均値が、d軸電流が負の時のd軸電圧の平均値より
大きい場合に推定された永久磁石の方向を180度進
め、永久磁石の方向の推定が全て終わった時点で、d軸
電流として交流電流を流し、q軸にはd軸電流に対して
90度位相が異なり振幅が等しい交流電流を流し、d軸
電流の大きさと位相及びd軸電圧の大きさと位相より永
久磁石形同期電動機のd軸インダクタンスLdと抵抗成
分Rdを求めて設定記憶し、q軸電流の大きさと位相及
びq軸電圧の大きさと位相より永久磁石形同期電動機の
q軸インダクタンスLqと抵抗成分Rqを求めて設定記
憶するものである。
In order to achieve the object, a primary current flowing through a permanent magnet type synchronous motor is defined by a d-axis current component parallel to an estimated direction of the permanent magnet. In a control method of a synchronous motor that performs control by dividing the current into a q-axis current component perpendicular to the d-axis, an alternating current is passed as a d-axis current while the permanent magnet synchronous motor is stopped, and a q-axis current is applied to the d-axis current. An alternating current having a 90 degree phase difference and equal amplitude is passed, and the amplitude of the d-axis voltage and the amplitude of the q-axis voltage are compared. If the amplitude of the d-axis voltage is larger than the amplitude of the q-axis voltage, the estimated direction of the permanent magnet is determined. Is advanced or delayed by 90 degrees, the q-axis current is not passed, the AC current is passed as the d-axis current, the direction of the permanent magnet estimated by the product of the differential value of the q-axis voltage and the d-axis current is corrected, and the q-axis is corrected. No current flows, d
When an alternating current is applied to the axis current, the direction of the permanent magnet estimated when the average value of the d-axis voltage when the d-axis current is positive is larger than the average value of the d-axis voltage when the d-axis current is negative is When the direction of the permanent magnet is estimated by 180 degrees, an alternating current is supplied as a d-axis current at the time when the estimation of the direction of the permanent magnet is completed. From the magnitude and phase of the axis current and the magnitude and phase of the d-axis voltage, the d-axis inductance Ld and the resistance component Rd of the permanent magnet synchronous motor are obtained and set and stored, and the magnitude and phase of the q-axis current and the magnitude of the q-axis voltage are obtained. The q-axis inductance Lq and the resistance component Rq of the permanent magnet synchronous motor are obtained from the phase and set and stored.

【0006】また、抵抗成分Rdと抵抗成分Rqの平均
値を永久磁石形同期電動機の電機子抵抗Rとして設定記
憶するものである。
Further, the average value of the resistance component Rd and the resistance component Rq is set and stored as the armature resistance R of the permanent magnet type synchronous motor.

【0007】また、d軸電流として交流電流を流し、q
軸電流として直流電流を流し、永久磁石形同期電動機が
回転している状態で、d軸電流、q軸電流及びq軸電圧
から永久磁石の方向及び永久磁石形同期電動機の回転速
度を推定し、電機子抵抗R、d軸インダクタンスLd、
q軸インダクタンスLq、推定された永久磁石の方向、
推定された回転速度、d軸電流、q軸電流及びq軸電圧
を入力して永久磁石の磁束を求めて設定記憶するもので
ある。
Further, an alternating current is applied as a d-axis current, and q
When a DC current is passed as the axis current and the permanent magnet synchronous motor is rotating, the direction of the permanent magnet and the rotation speed of the permanent magnet synchronous motor are estimated from the d-axis current, the q-axis current and the q-axis voltage, Armature resistance R, d-axis inductance Ld,
q-axis inductance Lq, estimated permanent magnet direction,
The estimated rotational speed, d-axis current, q-axis current, and q-axis voltage are input, and the magnetic flux of the permanent magnet is determined and set and stored.

【0008】[0008]

【発明の実施の形態】以下、本発明につき、図を用いて
説明する。図1は本発明の一実施例のブロック図であ
り、1は永久磁石形同期電動機、4は永久磁石形同期電
動機1に電力を供給する電力変換器、2は永久磁石形同
期電動機1に印加される一次電圧v1を検出する電圧検
出器、3は永久磁石形同期電動機1に流れる一次電流i
1を検出する電流検出器である。6はd軸インダクタン
スLd、q軸インダクタンスLq、電機子抵抗R及び永
久磁石の磁束φを入力して、永久磁石形同期電動機1を
トルク制御するために必要な制御信号S1を出力するト
ルク制御器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention, wherein 1 is a permanent magnet synchronous motor, 4 is a power converter for supplying electric power to the permanent magnet synchronous motor 1, and 2 is applied to the permanent magnet synchronous motor 1. A voltage detector 3 for detecting the primary voltage v1 is a primary current i flowing through the permanent magnet type synchronous motor 1.
This is a current detector for detecting the value “1”. Reference numeral 6 denotes a torque controller that inputs a d-axis inductance Ld, a q-axis inductance Lq, an armature resistance R, and a magnetic flux φ of a permanent magnet, and outputs a control signal S1 necessary for controlling the torque of the permanent magnet synchronous motor 1. It is.

【0009】電流成分変換器13は、一次電流i1及び
推定された永久磁石の方向θgを入力してd軸電流id
及びq軸電流iqを出力する。電圧成分変換器14は、
一次電圧v1及び推定された永久磁石の方向θgを入力
してd軸電圧vd及びq軸電圧vqを出力する。位置・
速度推定手段7は、d軸電流idとして交流電流が流
れ、q軸電流としてd軸電流に対して90度位相が異な
り振幅が等しい交流電流が流れるような制御信号S2、
q軸電流は流さずd軸電流idとして交流電流が流れる
ような制御信号S3、q軸電流iqは流さずd軸電流i
dとして磁気飽和が生じるような大きめの交流電流が流
れるような制御信号S4、推定された回転速度ωg及び
推定された永久磁石の方向θgを出力する。詳細につい
ては後述する。
The current component converter 13 receives the primary current i1 and the estimated direction θg of the permanent magnet and inputs the d-axis current id.
And q-axis current iq. The voltage component converter 14
The d-axis voltage vd and the q-axis voltage vq are output by inputting the primary voltage v1 and the estimated direction θg of the permanent magnet. position·
The speed estimating means 7 controls the control signal S2 such that an alternating current flows as the d-axis current id and an alternating current having a phase difference of 90 degrees with respect to the d-axis current and equal amplitude flows as the q-axis current.
A control signal S3 such that an AC current flows as a d-axis current id without flowing a q-axis current, a d-axis current i without flowing a q-axis current iq
As d, the control signal S4 for causing a large AC current to flow so as to cause magnetic saturation, the estimated rotation speed ωg, and the estimated permanent magnet direction θg are output. Details will be described later.

【0010】電動機定数演算手段8は、d軸電流id、
q軸電流iq、d軸電圧vd及びq軸電圧vqを入力し
て、d軸電流idとして交流電流が流れ、q軸電流iq
としてd軸電流idと90度位相が異なり振幅の等しい
交流電流が流れるような制御信号S5を出力し、d軸電
流id、q軸電流iq、d軸電圧vd及びq軸電圧vq
をフーリエ変換し、d軸電流idの基本波成分の大きさ
と位相及びd軸電圧vdの基本波成分の大きさと位相か
らd軸インダクタンスLdと抵抗成分Rdを求め、q軸
電流iqの基本波成分の大きさと位相及びq軸電圧vq
の基本波成分の大きさと位相からq軸インダクタンスL
qと抵抗成分Rqを求める。
The motor constant calculating means 8 calculates the d-axis current id,
The q-axis current iq, the d-axis voltage vd, and the q-axis voltage vq are input, an alternating current flows as the d-axis current id, and the q-axis current iq
And outputs a control signal S5 such that an alternating current having a phase different from that of the d-axis current id by 90 degrees and having the same amplitude flows, and the d-axis current id, the q-axis current iq, the d-axis voltage vd, and the q-axis voltage vq
Is Fourier-transformed, the d-axis inductance Ld and the resistance component Rd are obtained from the magnitude and phase of the fundamental component of the d-axis current id and the magnitude and phase of the fundamental component of the d-axis voltage vd, and the fundamental component of the q-axis current iq is obtained. Magnitude and phase and q-axis voltage vq
From the magnitude and phase of the fundamental wave component of
q and the resistance component Rq are obtained.

【0011】磁束演算手段10は、d軸電流id、q軸
電流iq、q軸電圧vq、d軸インダクタンスLd、q
軸インダクタンスLq、電機子抵抗R、推定された永久
磁石の方向θg及び推定された回転速度ωgを入力し
て、d軸電流idとして交流電流が流れ、q軸電流iq
として直流電流が流れるような制御信号S6及び永久磁
石の磁束φを出力する。設定記憶手段9は、d軸インダ
クタンスLd、q軸インダクタンスLq、抵抗成分R
d、抵抗成分Rq及び永久磁石の磁束φを入力し、抵抗
成分Rdと抵抗成分Rqの平均値を電機子抵抗Rとして
設定記憶し、d軸インダクタンスLd、q軸インダクタ
ンスLq及び永久磁石の磁束φを設定記憶する。
The magnetic flux calculating means 10 includes a d-axis current id, a q-axis current iq, a q-axis voltage vq, a d-axis inductance Ld, q
The shaft inductance Lq, the armature resistance R, the estimated direction θg of the permanent magnet, and the estimated rotation speed ωg are input, and an alternating current flows as a d-axis current id, and a q-axis current iq
The control signal S6 and the magnetic flux φ of the permanent magnet are output such that a DC current flows. The setting storage means 9 includes a d-axis inductance Ld, a q-axis inductance Lq, and a resistance component R
d, the resistance component Rq and the magnetic flux φ of the permanent magnet are inputted, the average value of the resistance component Rd and the resistance component Rq is set and stored as the armature resistance R, and the d-axis inductance Ld, the q-axis inductance Lq and the magnetic flux φ of the permanent magnet are set. Is set and stored.

【0012】スイッチ5は、トルク制御器6が出力する
制御信号S1と位置・速度推定手段7が出力する制御信
号S2、S3、S4、電動機定数演算手段8が出力する
制御信号S5及び磁束演算手段10が出力する制御信号
S6のいずれかを選択するスイッチであり、永久磁石形
同期電動機1をトルク制御するときは制御信号S1を電
力変換器4に出力し、電動機定数が未知の状態で永久磁
石の方向を推定するときは制御信号S2、S3、S4の
順番に電力変換器4に出力し、d軸インダクタンスL
d、q軸インダクタンスLq及び抵抗成分Rを演算する
ときは制御信号S5を電力変換器4に出力し、永久磁石
の磁束φを演算するときは制御信号S6を電力変換器4
に出力する。
The switch 5 includes a control signal S1 output from the torque controller 6, control signals S2, S3, S4 output from the position / speed estimating means 7, a control signal S5 output from the motor constant calculating means 8, and a magnetic flux calculating means. 10 is a switch for selecting one of the control signals S6 output. When the torque of the permanent magnet type synchronous motor 1 is controlled, the control signal S1 is output to the power converter 4, and when the motor constant is unknown, the permanent magnet Are estimated to the power converter 4 in the order of the control signals S2, S3, and S4, and the d-axis inductance L
When the d and q-axis inductances Lq and the resistance components R are calculated, the control signal S5 is output to the power converter 4, and when the magnetic flux φ of the permanent magnet is calculated, the control signal S6 is converted to the power converter 4.
Output to

【0013】図2は、図1中の位置・速度推定手段7の
詳細ブロック図を表しており、15はdq軸判定手段で
あり、d軸電圧vdとq軸電圧vqを入力して、d軸電
流idとして交流電流が流れ、q軸電流iqとしてd軸
電流idに対して90度位相が異なり振幅が等しい交流
電流が流れるような制御信号S2と、d軸電圧vdの振
幅の大きさとq軸電圧vqの振幅の大きさを比較して、
d軸電圧vdの振幅の方が大きければ推定された永久磁
石の方向θgを90度進めるか又は遅らせる信号Sθ1
を出力する。
FIG. 2 is a detailed block diagram of the position / velocity estimating means 7 in FIG. 1. Reference numeral 15 denotes dq-axis determining means, which inputs a d-axis voltage vd and a q-axis voltage vq, A control signal S2 in which an AC current flows as the axis current id, and an AC current having a phase different from the d-axis current id by 90 degrees and the same amplitude flows as the q-axis current iq, and the magnitude of the amplitude of the d-axis voltage vd and q By comparing the magnitude of the amplitude of the shaft voltage vq,
If the amplitude of the d-axis voltage vd is larger, the signal Sθ1 for advancing or delaying the estimated direction θg of the permanent magnet by 90 degrees.
Is output.

【0014】16は磁極判定手段であり、d軸電流id
及びd軸電圧vdを入力して、q軸電流iqは流さずd
軸電流idに磁気飽和が生じるような大きめの交流電流
が流れるような制御信号S4と、d軸電流idが正の時
のd軸電圧vdの平均値がd軸電流idが負の時のd軸
電圧vdの平均値より大きい場合に推定された永久磁石
の方向θgを180度進める信号Sθ2を出力する。1
7は位置・速度修正手段であり、q軸電流iqは流さ
ず、d軸電流idに交流電流が流れるような制御信号S
3、永久磁石形同期電動機1の推定された回転速度ωg
及び推定された永久磁石の方向θgを出力する。以下、
その詳細を図3により説明する。
Numeral 16 denotes a magnetic pole determining means, which is a d-axis current id.
And the d-axis voltage vd, the q-axis current iq does not flow, and d
The average value of the control signal S4 in which a large AC current flows so that magnetic saturation occurs in the axis current id and the d-axis voltage vd when the d-axis current id is positive is d when the d-axis current id is negative. A signal Sθ2 for advancing the estimated direction θg of the permanent magnet by 180 degrees when the average value of the shaft voltage vd is larger than the average value is output. 1
Reference numeral 7 denotes a position / velocity correcting means which controls the control signal S such that the q-axis current iq does not flow and the AC current flows to the d-axis current id.
3. Estimated rotational speed ωg of permanent magnet type synchronous motor 1
And the estimated direction θg of the permanent magnet is output. Less than,
The details will be described with reference to FIG.

【0015】図3中、18は微分器であり、q軸電流i
qを微分する。19はインダクタンス分電圧降下演算器
であり、微分器18の出力とq軸インダクタンスLqの
積を演算する。20は抵抗分電圧降下演算器であり、q
軸電流iqと電機子抵抗Rの積を出力する。21は加算
器であり、各部の定数を設定記憶する前に永久磁石の方
向を推定する場合は加算機21の出力を何らかの方法で
0Vにクリップ(図示せず)し、各部の定数が設定記憶
されている場合はクリッフ゜回路が働かず、この場合はイン
ダクタンス分電圧降下演算器19の出力と抵抗分電圧降
下演算器20の出力を加算する。
In FIG. 3, reference numeral 18 denotes a differentiator, and a q-axis current i
Differentiate q. Reference numeral 19 denotes an inductance voltage drop calculator for calculating the product of the output of the differentiator 18 and the q-axis inductance Lq. Reference numeral 20 denotes a resistance voltage drop calculator, and q
The product of the shaft current iq and the armature resistance R is output. Reference numeral 21 denotes an adder. When estimating the direction of the permanent magnet before setting and storing the constant of each unit, the output of the adder 21 is clipped to 0 V (not shown) by any method, and the constant of each unit is set and stored. In this case, the clipping circuit does not operate, and in this case, the output of the voltage drop calculator for inductance 19 and the output of the voltage drop calculator for resistance 20 are added.

【0016】22は減算器であり、加算器21の出力と
q軸電圧vqを入力し、q軸電圧vqから加算器21の
出力を減算した値を出力する。23は微分器であり、減
算器22の出力を微分する。24は位置誤差検出手段で
あり、d軸電流idと微分器23の出力dvqの積aを
出力する。25は低域通過フィルタであり、位置誤差検
出手段24の出力aの高調波成分を除去し直流成分af
のみを出力する。
A subtracter 22 receives the output of the adder 21 and the q-axis voltage vq, and outputs a value obtained by subtracting the output of the adder 21 from the q-axis voltage vq. 23 is a differentiator for differentiating the output of the subtractor 22. Reference numeral 24 denotes a position error detecting means, which outputs a product a of the d-axis current id and the output dvq of the differentiator 23. Reference numeral 25 denotes a low-pass filter which removes a harmonic component of the output a of the position error detecting means 24 and removes the DC component af
Output only

【0017】26は速度推定手段であり、低域通過フィ
ルタ25の出力afを入力して、永久磁石形同期電動機
1の回転速度ωgを出力する。27は位置推定手段であ
り、dq軸判定手段15の出力Sθ1、磁極判定手段1
6の出力Sθ2及び推定された回転速度ωgを入力し
て、q軸電流iqは流さずd軸電流idに交流電流が流
れるような制御信号S3及び推定された永久磁石の方向
θgを出力する。
Reference numeral 26 denotes a speed estimating means, which receives the output af of the low-pass filter 25 and outputs the rotational speed ωg of the permanent magnet type synchronous motor 1. 27 is a position estimating means, which is the output Sθ1 of the dq axis determining means 15 and the magnetic pole determining means 1
6 and the estimated rotation speed ωg, and outputs a control signal S3 and an estimated permanent magnet direction θg such that an AC current flows through the d-axis current id without flowing the q-axis current iq.

【0018】以下は本発明によって、前記問題点を解決
できる理由を説明する。まず、請求項1によって永久磁
石の方向が推定できる理由を説明するために、最初に、
位置・速度修正手段17を説明する。図4は永久磁石形
同期電動機1の実際の永久磁石φgrの方向θgrと推
定された永久磁石φgの方向θgの関係をベクトルで表
したもので、これらの間に
Hereinafter, the reason why the above problem can be solved by the present invention will be described. First, in order to explain the reason why the direction of the permanent magnet can be estimated according to claim 1, first,
The position / speed correcting means 17 will be described. FIG. 4 is a vector representing the relationship between the actual direction θgr of the permanent magnet φgr of the permanent magnet type synchronous motor 1 and the estimated direction θg of the permanent magnet φg.

【0019】[0019]

【数1】 (Equation 1)

【0020】の位置誤差Δθがある場合、数2に示す如
くq軸電流iqを流さずd軸電流idとして交流電流を
流すように制御すると、
When there is a position error Δθ, as shown in Equation 2, if the AC current is passed as the d-axis current id without flowing the q-axis current iq,

【0021】[0021]

【数2】 (Equation 2)

【0022】実際の永久磁石φgrの方向θgr(以
下、dr軸という)に平行なdr軸電流成分idr及び
dr軸に垂直な軸(以下、qr軸という)方向のqr軸
電流成分iqrは数3で表わされる。
The dr-axis current component idr parallel to the actual direction θgr (hereinafter referred to as dr axis) of the permanent magnet φgr and the qr-axis current component iqr in the direction perpendicular to the dr axis (hereinafter referred to as qr axis) are represented by the following equation (3). Is represented by

【0023】[0023]

【数3】 (Equation 3)

【0024】ここで、Ihは交流電流の波高値、ωhは
交流電流の角周波数、tは時間である。永久磁石形同期
電動機1の特性方程式は、次式で表せられる。
Here, Ih is the peak value of the AC current, ωh is the angular frequency of the AC current, and t is the time. The characteristic equation of the permanent magnet type synchronous motor 1 is expressed by the following equation.

【0025】[0025]

【数4】 (Equation 4)

【0026】ここで、vdrはdr軸電圧、vqrはq
r軸電圧、pは微分演算子、ωgrは永久磁石形同期電
動機1の実際の回転速度である。(6)式および(7)
式に、(4)式および(5)式に代入すると、
Where vdr is the dr-axis voltage and vqr is q
The r-axis voltage, p is a differential operator, and ωgr is the actual rotation speed of the permanent magnet synchronous motor 1. Equation (6) and (7)
By substituting into equations (4) and (5),

【0027】[0027]

【数5】 (Equation 5)

【0028】となる。(8)式と(9)式よりq軸電圧
vqは、次式となる。
## EQU1 ## From the equations (8) and (9), the q-axis voltage vq is given by the following equation.

【0029】[0029]

【数6】 (Equation 6)

【0030】位置誤差検出手段24の出力aは、d軸電
流idとq軸電圧vqの微分値dvqとの積であること
から、(2)式と(10)式より、
Since the output a of the position error detecting means 24 is the product of the d-axis current id and the differential value dvq of the q-axis voltage vq, from the equations (2) and (10),

【0031】[0031]

【数7】 (Equation 7)

【0032】となり、低域通過フィルタ25に通してa
の高周波成分を除去すると、
And passes through a low-pass filter 25 to
Removing the high frequency components of

【0033】[0033]

【数8】 (Equation 8)

【0034】となる。Lq>Ldなので(12)式よ
り、−90度<Δθ<90度の場合は、位置誤差Δθの
符号とafの符号が逆になることが分かる。つまり推定
している永久磁石φgの方向θgが実際の永久磁石φg
rの方向θgrより進んでいる場合は、af<0となり
速度推定手段26によって比例積分増幅させることで、
永久磁石形同期電動機1の推定された回転速度ωgが小
さくなるので推定された永久磁石の方向θgの進みが遅
くなり実際の永久磁石の方向θgrに一致するようにな
る。逆の場合も同様である。
## EQU1 ## Since Lq> Ld, from equation (12), it can be seen that when −90 degrees <Δθ <90 degrees, the sign of the position error Δθ and the sign of af are opposite. In other words, the direction θg of the estimated permanent magnet φg is
When the vehicle is traveling in the direction θgr in the direction of r, af <0, and the speed estimating means 26 performs proportional-plus-integral amplification.
Since the estimated rotational speed ωg of the permanent magnet type synchronous motor 1 becomes small, the estimated advance in the direction θg of the permanent magnet is slowed, and the estimated direction θg coincides with the actual direction θgr of the permanent magnet. The same applies to the opposite case.

【0035】位置・速度修正手段17によって、永久磁
石形同期電動機1の回転速度と永久磁石の方向を推定す
る場合、d軸電流idには交流電流を流している。する
と、d軸とq軸との干渉によって、q軸電流iqにも交
流成分が現れる。このq軸電流iqの交流成分は、q軸
電圧vqにも現れてくる。そこで、図3では、q軸電圧
vqがq軸電流iqの交流成分の影響を受けないよう
に、減算器22によってq軸電流iqに関する項を取り
除くために、q軸電圧vqに{vq−(R+p・Lq)
・iq}を代入している。また、電機子抵抗R、d軸イ
ンダクタンスLd及びq軸インダクタンスLqが未知の
段階で永久磁石の方向を推定する場合、減算器22はq
軸電圧vqをそのまま出力する。
When the rotational speed of the permanent magnet synchronous motor 1 and the direction of the permanent magnet are estimated by the position / speed correcting means 17, an alternating current is passed as the d-axis current id. Then, an AC component also appears in the q-axis current iq due to interference between the d-axis and the q-axis. The AC component of the q-axis current iq appears also in the q-axis voltage vq. Therefore, in FIG. 3, the q-axis voltage vq is changed to {vq− ( R + p · Lq)
・ Iq} is substituted. When estimating the direction of the permanent magnet at a stage where the armature resistance R, the d-axis inductance Ld, and the q-axis inductance Lq are unknown, the subtractor 22 sets q
The shaft voltage vq is output as it is.

【0036】つまり、(12)式より、d軸電流idと
q軸電圧vqの微分値の積から、位置誤差Δθに応じた
afが得られることから永久磁石の方向と回転速度を推
定することができる。
That is, from equation (12), af corresponding to the position error Δθ is obtained from the product of the differential value of the d-axis current id and the differential value of the q-axis voltage vq. Can be.

【0037】次に、位置誤差Δθが90度ずれていた場
合について説明する。先に述べた位置・速度修正手段1
7による永久磁石の方向を推定する方法は、最初の位置
誤差Δθが±90度付近の場合、afが不安定となり永
久磁石の方向θgを推定できない。しかるに本発明によ
れば、dq軸判定手段15によって、数9の(13)式
および(14)式に示す電流をd軸およびq軸に流すこ
とにより修正が可能になる。以下、この点について説明
する。
Next, the case where the position error Δθ is shifted by 90 degrees will be described. Position / speed correction means 1 described above
In the method of estimating the direction of the permanent magnet according to 7, when the initial position error Δθ is around ± 90 degrees, af becomes unstable and the direction θg of the permanent magnet cannot be estimated. However, according to the present invention, the correction can be performed by causing the dq-axis determination means 15 to flow the currents shown in Expressions (13) and (14) of Expression 9 on the d-axis and the q-axis. Hereinafter, this point will be described.

【0038】[0038]

【数9】 (Equation 9)

【0039】なお、永久磁石形同期電動機1が回転する
と位置誤差Δθが変化するため、以下の方法では推定さ
れた永久磁石の方向θgを修正することができないが、
(13)式および(14)式の電流を流しても回転しな
いことを最初に説明する。(1)式で示される位置誤差
Δθがあると、実際に流れるdr軸電流idrとqr軸
電流iqrは、(13)式および(14)式より、
Since the position error Δθ changes when the permanent magnet synchronous motor 1 rotates, the estimated direction θg of the permanent magnet cannot be corrected by the following method.
First, the fact that the motor does not rotate even when the currents of equations (13) and (14) are applied will be described. If there is a position error Δθ expressed by the equation (1), the dr-axis current idr and the qr-axis current iqr that actually flow are given by the equations (13) and (14).

【0040】[0040]

【数10】 (Equation 10)

【0041】となる。一方、永久磁石形同期電動機1の
トルク式は、
## EQU1 ## On the other hand, the torque type of the permanent magnet type synchronous motor 1 is as follows.

【0042】[0042]

【数11】 [Equation 11]

【0043】と表される。(15)式と(16)式を
(17)式に代入すると、永久磁石形同期電動機1の発
生するトルクは次式で表される。
## EQU4 ## By substituting equations (15) and (16) into equation (17), the torque generated by the permanent magnet synchronous motor 1 is expressed by the following equation.

【0044】[0044]

【数12】 (Equation 12)

【0045】(18)式に示す如く、発生するトルクは
交流成分のみであることから平均すれば0であり、永久
磁石形同期電動機1は回転しない。次に、位置誤差Δθ
が90度ずれているか否かの検出が、数9の(13)式
および(14)式に示す電流をd軸およびq軸に流すこ
とで可能になることを説明する。永久磁石形同期電動機
が停止している場合の実際のdr軸電圧vdrとqr軸
電圧vqrは、(15)式、(16)式を(6)式、
(7)式に代入することにより、(19)式、(20)
式で表わされ、d軸電圧vdとq軸電圧vqは、(2
1)式、(22)式で表わされる。
As shown in the equation (18), since the generated torque is only the AC component, it is 0 on average, and the permanent magnet type synchronous motor 1 does not rotate. Next, the position error Δθ
It will be described that the detection of whether or not the angle is shifted by 90 degrees can be performed by flowing the currents shown in Expressions (13) and (14) of Expression 9 on the d-axis and the q-axis. When the permanent magnet type synchronous motor is stopped, the actual dr-axis voltage vdr and qr-axis voltage vqr are calculated by using Equation (15) and Equation (16) as Equation (6).
By substituting into equation (7), equations (19) and (20)
The d-axis voltage vd and the q-axis voltage vq are expressed by (2
Expressions 1) and (22) are used.

【0046】[0046]

【数13】 (Equation 13)

【0047】[0047]

【数14】 [Equation 14]

【0048】ここに、Here,

【0049】[0049]

【数15】 (Equation 15)

【0050】である。Ld<Lqの関係から、(23)
式と(25)式より、位置誤差Δθが±90度に近づく
ほどd軸電圧vdの振幅の大きさVdはq軸電圧vqの
振幅の大きさVqよりも大きくなることが分かる。以上
に説明したように、(13)式および(14)式で示さ
れる電流を流すことで、電動機定数を用いることなく、
永久磁石形同期電動機1が停止した状態で、d軸電圧v
dの振幅の大きさとq軸電圧vqの振幅の大きさを比較
することで、簡単に位置誤差Δθが±90度あるかどう
か判定することが可能になる。
Is as follows. From the relationship of Ld <Lq, (23)
From the expressions and the expression (25), it can be seen that the magnitude Vd of the amplitude of the d-axis voltage vd becomes larger than the magnitude Vq of the amplitude of the q-axis voltage vq as the position error Δθ approaches ± 90 degrees. As described above, by flowing the currents represented by Expressions (13) and (14), the motor constants can be used without using the motor constants.
With the permanent magnet synchronous motor 1 stopped, the d-axis voltage v
By comparing the magnitude of the amplitude of d with the magnitude of the amplitude of the q-axis voltage vq, it is possible to easily determine whether the position error Δθ is ± 90 degrees.

【0051】しかし、dq軸判定手段15は、位置誤差
Δθが90度あるかどうかの判定は可能であるが、位置
誤差Δθの符号や正確な大きさまでは推定できない。よ
って、永久磁石形同期電動機1が停止した状態で、d軸
電圧vdの振幅の大きさがq軸電圧vqの振幅の大きさ
よりも大きければ、推定された永久磁石の方向θgを9
0度進めるかまたは遅らせて、先述した位置・速度推定
手段17と後述する磁極判定手段16とで推定された永
久磁石の方向θgを修正する。
However, the dq-axis determination means 15 can determine whether the position error Δθ is 90 degrees, but cannot estimate the position error Δθ based on the sign or the exact size of the position error Δθ. Therefore, if the magnitude of the d-axis voltage vd is larger than the magnitude of the q-axis voltage vq with the permanent magnet synchronous motor 1 stopped, the estimated direction θg of the permanent magnet is set to 9
The direction θg of the permanent magnet estimated by the above-described position / speed estimating means 17 and the magnetic pole determining means 16 described later is corrected by moving forward or backward by 0 degrees.

【0052】次に、位置誤差Δθが180度ずれていた
場合について説明する。(12)式より、位置誤差Δθ
が−90度<Δθ<90度である場合は位置誤差Δθが
減る方向に修正されるが、位置誤差Δθが±90度以上
の場合は(12)式より、位置誤差Δθの符号とafの
符号が同符号のため位置誤差Δθが180度になってし
まう。
Next, the case where the position error Δθ is shifted by 180 degrees will be described. From equation (12), the position error Δθ
Is smaller than -90 degrees <Δθ <90 degrees, the position error Δθ is corrected in a decreasing direction. However, when the position error Δθ is ± 90 degrees or more, the sign of the position error Δθ and Since the code is the same, the position error Δθ is 180 degrees.

【0053】しかるに本発明によれば、数2の(2)式
および(3)式に示す電流をd軸およびq軸に流すこと
により修正が可能になる(ただし、(2)式の交流電流
の波高値は、磁気飽和が生じるような大きめの値)。以
下、この点について説明する。なお、dq軸判定手段1
5と同様に、永久磁石形同期電動機1が回転すると位置
誤差Δθが変化するため、以下の方法では推定された永
久磁石の方向θgを修正することができないが、(2)
式および(3)式の電流を流しても回転しないことを最
初に説明する。位置・速度修正手段7によって推定され
た永久磁石の方向θgの位置誤差Δθは、0かまたは1
80度なので、実際に流れるdr軸電流idrとqr軸
電流iqrは、(4)式および(5)式より、
However, according to the present invention, the correction can be performed by flowing the currents shown in the equations (2) and (3) of the equation (2) on the d-axis and the q-axis (however, the AC current in the equation (2)) Is a value that is large enough to cause magnetic saturation). Hereinafter, this point will be described. Note that the dq axis determination means 1
5, the position error Δθ changes when the permanent magnet synchronous motor 1 rotates, so that the estimated permanent magnet direction θg cannot be corrected by the following method.
First, it will be described that the motor does not rotate even when the currents of the equations (3) and (3) are applied. The position error Δθ of the direction θg of the permanent magnet estimated by the position / speed correction means 7 is 0 or 1
Since it is 80 degrees, the dr-axis current idr and the qr-axis current iqr that actually flow are given by the equations (4) and (5).

【0054】[0054]

【数16】 (Equation 16)

【0055】となる。iqr=0であるので(17)式
に示す永久磁石形同期電動機1のトルクは0になり、永
久磁石形同期電動機1は回転しない。次に、位置誤差Δ
θが180度ずれているか否かの検出が数2の(2)
式、(3)式に示す電流を流すことで可能になることを
説明する。
Is as follows. Since iqr = 0, the torque of the permanent magnet synchronous motor 1 shown in Expression (17) becomes 0, and the permanent magnet synchronous motor 1 does not rotate. Next, the position error Δ
The detection of whether or not θ is shifted by 180 degrees is based on Expression 2 (2).
The fact that it becomes possible by flowing the current shown in the equation (3) will be described.

【0056】永久磁石の方向が正しく推定されている場
合のd軸インダクタンスLdは、d軸電流idが正なら
d軸電流idによる磁束の方向と永久磁石の磁束の方向
が等しくなりd軸インダクタンスLdが小さくなり、d
軸電流idが負ならd軸電流idによる磁束の方向と永
久磁石の磁束の方向が逆方向となりd軸インダクタンス
Ldが大きくなる磁気飽和現象が発生する。そこで、q
軸電流iqは流さず、d軸電流idに磁気飽和が生じる
ような大きめの交流電流を流して、磁極判定手段16に
よって、d軸電流idが正の時のd軸電圧vdの平均値
とd軸電流idが負の時のd軸電圧vdを比較すること
で180度の位置誤差Δθを判定することができる。
When the direction of the permanent magnet is correctly estimated, the d-axis inductance Ld is determined as follows. If the d-axis current id is positive, the direction of the magnetic flux due to the d-axis current id is equal to the direction of the magnetic flux of the permanent magnet, and the d-axis inductance Ld Becomes smaller and d
If the axis current id is negative, the direction of the magnetic flux due to the d-axis current id and the direction of the magnetic flux of the permanent magnet become opposite, and a magnetic saturation phenomenon occurs in which the d-axis inductance Ld increases. Then, q
The axis current iq is not passed, but a large alternating current is applied to the d-axis current id so as to cause magnetic saturation, and the magnetic pole determination means 16 calculates the average value of d-axis voltage vd and d-axis current vd when the d-axis current id is positive. By comparing the d-axis voltage vd when the axis current id is negative, a position error Δθ of 180 degrees can be determined.

【0057】以上に説明したように、(2)式および
(3)式に示す電流を流すことで、電動機定数を用いる
前の段階においてもまた、永久磁石形同期電動機1が停
止した状態で、d軸電流idが正の時のd軸電圧vdの
平均値とd軸電流idが負の時のd軸電圧vdを比較す
ることで、簡単に180度の位置誤差Δθを判定するこ
とが可能になる。
As described above, by applying the currents shown in the equations (2) and (3), even before the motor constants are used, the permanent magnet type synchronous motor 1 can be stopped even before the motor constants are used. By comparing the average value of the d-axis voltage vd when the d-axis current id is positive and the d-axis voltage vd when the d-axis current id is negative, the position error Δθ of 180 degrees can be easily determined. become.

【0058】次に、請求項1によって、位置誤差Δθが
0の状態で、d軸電流idとq軸電流iqに(13)式
および(14)式のような電流を流すことで、電動機定
数を測定することができる理由を説明するために、電動
機定数演算手段8について説明する。なお、永久磁石形
同期電動機1が回転すると、電動機定数を測定すること
ができないが、(13)式および(14)式の電流を流
す場合に回転しないことは先に(18)式に示したとお
りであり、Δθが0の場合も回転しないことは明らかで
ある。次に、位置誤差Δθが0の状態で、d軸方向及び
q軸方向に(13)式および(14)式に示す電流を流
すことで電動機定数の測定が可能なことを説明する。位
置誤差Δθが0で永久磁石形同期電動機1が停止してい
る場合、idr=id、iqr=iq、vdr=vd、
vqr=vq、ωgr=0であるので(6)式、(7)
式はそれぞれ(30)式、(31)式で表される。
Next, according to claim 1, when the position error Δθ is 0, the currents as expressed by the equations (13) and (14) are applied to the d-axis current id and the q-axis current iq, so that the motor constant In order to explain the reason why can be measured, the motor constant calculation means 8 will be described. It should be noted that when the permanent magnet type synchronous motor 1 rotates, the motor constant cannot be measured. However, the fact that the motor does not rotate when the currents of equations (13) and (14) flow is shown in equation (18) above. It is clear that no rotation occurs when Δθ is zero. Next, a description will be given of the fact that the motor constant can be measured by flowing the currents shown in Expressions (13) and (14) in the d-axis direction and the q-axis direction when the position error Δθ is 0. When the position error Δθ is 0 and the permanent magnet synchronous motor 1 is stopped, idr = id, iqr = iq, vdr = vd,
Since vqr = vq and ωgr = 0, Equation (6) and (7)
The equations are represented by equations (30) and (31), respectively.

【0059】[0059]

【数17】 [Equation 17]

【0060】よって、(30)式から、d軸電圧vdの
大きさと位相とd軸電流idの大きさと位相より、d軸
のインダクタンスLdと抵抗成分Rdが演算できること
がわかり、同様に(31)式から、q軸のインダクタン
スLqと抵抗成分Rqが演算できることがわかる。以上
に説明したように位置誤差Δθが0で永久磁石形同期電
動機1が停止している場合、(13)式及び(14)式
で示す電流を流すことで、d軸のインダクタンスLdと
q軸のインダクタンスLqと電機子抵抗Rを同時に演算
することができ、従来のように永久磁石形同期電動機を
固定して電流を測定することなく、自動的に測定し、設
定することが可能になった。
Therefore, it can be seen from the equation (30) that the d-axis inductance Ld and the resistance component Rd can be calculated from the magnitude and phase of the d-axis voltage vd and the magnitude and phase of the d-axis current id. It can be seen from the equation that the q-axis inductance Lq and the resistance component Rq can be calculated. As described above, when the position error Δθ is 0 and the permanent magnet type synchronous motor 1 is stopped, the currents represented by the equations (13) and (14) are passed to obtain the inductance Ld of the d-axis and the q-axis. And the armature resistance R can be calculated at the same time, making it possible to automatically measure and set the current without fixing the permanent magnet synchronous motor as in the prior art and measuring the current. .

【0061】次に、請求項2によって永久磁石の磁束が
測定できる理由を説明するために、磁束演算手段10に
ついて説明する。設定記憶手段9にd軸インダクタンス
Ld、q軸インダクタンスLq及び電機子抵抗Rが設定
記憶され、位置・速度推定手段7によって永久磁石の方
向θgと回転速度ωgが推定されているとする。次式に
示す如く、d軸電流idに交流電流、q軸電流iqに直
流電流を流す。
Next, to explain the reason why the magnetic flux of the permanent magnet can be measured according to claim 2, the magnetic flux calculating means 10 will be described. It is assumed that the d-axis inductance Ld, the q-axis inductance Lq, and the armature resistance R are set and stored in the setting storage unit 9, and the direction θg and rotation speed ωg of the permanent magnet are estimated by the position / speed estimation unit 7. As shown in the following equation, an AC current flows through the d-axis current id, and a DC current flows through the q-axis current iq.

【0062】[0062]

【数18】 (Equation 18)

【0063】(32)式と(33)式を(17)式に代
入すると、永久磁石形同期電動機1の発生するトルク
は、(34)式になる。
When the equations (32) and (33) are substituted into the equation (17), the torque generated by the permanent magnet type synchronous motor 1 becomes the equation (34).

【0064】[0064]

【数19】 [Equation 19]

【0065】(34)式第2項は交流成分なので平均す
れば0になるが、第1項は直流成分であることから永久
磁石形同期電動機1に一定のトルクが現れ、永久磁石形
同期電動機1は回転する。よって、(7)式より、
Since the second term of the equation (34) is an AC component, it averages to zero. However, since the first term is a DC component, a constant torque appears in the permanent magnet synchronous motor 1 and the permanent magnet synchronous motor 1 1 rotates. Therefore, from equation (7),

【0066】[0066]

【数20】 (Equation 20)

【0067】となることから、dr軸電流idr、qr
軸電流iqr、qr軸電圧vqr、d軸インダクタンス
Ld、q軸インダクタンスLq、電機子抵抗R、回転速
度ωg及び永久磁石の方向θgが分かれば、永久磁石の
磁束φが演算できる。以上に説明したように、設定記憶
手段9にd軸インダクタンスLd、q軸インダクタンス
Lq及び電機子抵抗Rが設定記憶され、位置・速度推定
手段7によって永久磁石の方向θgと回転速度ωgが推
定され、(32)式及び(33)式で示す電流を流すこ
とで、永久磁石の磁束φを演算することができ、従来の
ように位置検出器や速度検出器を用いることなく、自動
的に測定し、設定することが可能になった。
Thus, the dr-axis current idr, qr
If the axis current iqr, the qr-axis voltage vqr, the d-axis inductance Ld, the q-axis inductance Lq, the armature resistance R, the rotational speed ωg, and the direction θg of the permanent magnet can be calculated, the magnetic flux φ of the permanent magnet can be calculated. As described above, the d-axis inductance Ld, the q-axis inductance Lq, and the armature resistance R are set and stored in the setting storage unit 9, and the direction θg and the rotational speed ωg of the permanent magnet are estimated by the position / speed estimation unit 7. , (32) and (33), the magnetic flux φ of the permanent magnet can be calculated, and the measurement is automatically performed without using a position detector or a speed detector as in the conventional case. And it became possible to set.

【0068】[0068]

【発明の効果】本発明により、永久磁石形同期電動機の
電動機定数を測定する装置を用いないで制御装置に設定
できることから、制御装置の調整が簡単で高精度にな
る。
According to the present invention, it is possible to set the control device without using a device for measuring the motor constant of the permanent magnet synchronous motor, so that the control device can be adjusted easily and with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を表すブロック図である。FIG. 1 is a block diagram illustrating an embodiment of the present invention.

【図2】本発明の一実施例を表すブロック図である。FIG. 2 is a block diagram illustrating an embodiment of the present invention.

【図3】本発明の一実施例を表すブロック図である。FIG. 3 is a block diagram illustrating an embodiment of the present invention.

【図4】本発明の原理を表すベクトル図である。FIG. 4 is a vector diagram illustrating the principle of the present invention.

【符号の説明】[Explanation of symbols]

1 永久磁石形同期電動機 2 電圧検出器 3 電流検出器 4 電力変換器 5 スイッチ 6 トルク制御器 7 位置・速度推定手段 8 電動機定数演算手段 9 設定記憶手段 10 磁束演算手段 13 電流成分変換器 14 電圧成分変換器 15 dq軸判定手段 16 磁極判定手段 17 位置・速度修正手段 18 微分器 19 インダクタンス分電圧降下演算器 20 抵抗分電圧降下演算器 21 加算器 22 減算器 23 微分器 24 位置誤差検出手段 25 低域通過フィルタ 26 速度推定手段 27 位置推定手段 REFERENCE SIGNS LIST 1 permanent magnet type synchronous motor 2 voltage detector 3 current detector 4 power converter 5 switch 6 torque controller 7 position / speed estimation means 8 motor constant calculation means 9 setting storage means 10 magnetic flux calculation means 13 current component converter 14 voltage Component converter 15 dq-axis determination means 16 Magnetic pole determination means 17 Position / speed correction means 18 Differentiator 19 Inductance voltage drop calculator 20 Resistance voltage drop calculator 21 Adder 22 Subtractor 23 Differentiator 24 Position error detecting means 25 Low-pass filter 26 Speed estimating means 27 Position estimating means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】永久磁石形同期電動機に流れる一次電流を
推定された永久磁石の方向(以下、d軸という)に平行
なd軸電流成分と、d軸に垂直な軸(以下、q軸とい
う)方向のq軸電流成分に分けて制御する同期電動機の
制御方法において、永久磁石形同期電動機が停止した状
態でd軸電流として交流電流を流し、q軸電流としてd
軸電流に対して90度位相が異なり振幅が等しい交流電
流を流し、d軸電圧の振幅とq軸電圧の振幅を比較して
d軸電圧の振幅がq軸電圧の振幅よりも大きければ推定
された永久磁石の方向を90度進めるか又は遅らせ、q
軸電流を流さず、d軸電流として交流電流を流し、q軸
電圧の微分値とd軸電流の積によって前記推定された永
久磁石の方向を修正し、q軸電流は流さず、d軸電流に
交流電流を流し、d軸電流が正の時のd軸電圧の平均値
が、d軸電流が負の時のd軸電圧の平均値より大きい場
合に前記推定された永久磁石の方向を180度進め、永
久磁石の方向の推定が全て終わった時点で、d軸電流と
して交流電流を流し、q軸にはd軸電流に対して90度
位相が異なり振幅が等しい交流電流を流し、d軸電流の
大きさと位相及びd軸電圧の大きさと位相より永久磁石
形同期電動機のd軸インダクタンスLdと抵抗成分Rd
を求めて設定記憶し、q軸電流の大きさと位相及びq軸
電圧の大きさと位相より永久磁石形同期電動機のq軸イ
ンダクタンスLqと抵抗成分Rqを求めて設定記憶する
ことを特徴とする同期電動機の制御方法。
1. A d-axis current component parallel to an estimated permanent magnet direction (hereinafter referred to as d-axis) and a primary current flowing through a permanent magnet type synchronous motor and an axis perpendicular to the d-axis (hereinafter referred to as q-axis). In the method for controlling a synchronous motor that controls the q-axis current component separately in the q) -direction, an alternating current is passed as a d-axis current in a state where the permanent magnet type synchronous motor is stopped, and a d-axis current is d.
An alternating current having a phase difference of 90 degrees and an equal amplitude is applied to the axis current, and the amplitude of the d-axis voltage is compared with the amplitude of the q-axis voltage. If the amplitude of the d-axis voltage is larger than the amplitude of the q-axis voltage, it is estimated. Forward or backward the direction of the permanent magnet by 90 degrees, q
An AC current is passed as the d-axis current without passing the shaft current, and the estimated direction of the permanent magnet is corrected by the product of the differential value of the q-axis voltage and the d-axis current. When the average value of the d-axis voltage when the d-axis current is positive is larger than the average value of the d-axis voltage when the d-axis current is negative, the estimated permanent magnet direction is changed by 180. When the estimation of the direction of the permanent magnet is completed, an AC current is passed as a d-axis current, and an AC current having a 90-degree phase difference and an equal amplitude with respect to the d-axis current is passed to the q-axis. From the magnitude and phase of the current and the magnitude and phase of the d-axis voltage, the d-axis inductance Ld and the resistance component Rd of the permanent magnet synchronous motor
The synchronous motor is characterized in that the q-axis inductance Lq and the resistance component Rq of the permanent magnet synchronous motor are determined and stored from the magnitude and phase of the q-axis current and the magnitude and phase of the q-axis voltage. Control method.
【請求項2】抵抗成分Rdと抵抗成分Rqの平均値を永
久磁石形同期電動機の電機子抵抗Rとして設定記憶する
ことを特徴とする請求項1記載の同期電動機の制御方
法。
2. The synchronous motor control method according to claim 1, wherein an average value of the resistance component Rd and the resistance component Rq is set and stored as an armature resistance R of the permanent magnet type synchronous motor.
【請求項3】d軸電流として交流電流を流し、q軸電流
として直流電流を流し、永久磁石形同期電動機が回転し
ている状態で、d軸電流、q軸電流及びq軸電圧から永
久磁石の方向及び永久磁石形同期電動機の回転速度を推
定し、電機子抵抗R、d軸インダクタンスLd、q軸イ
ンダクタンスLq、前記推定された永久磁石の方向、推
定された回転速度、d軸電流、q軸電流及びq軸電圧を
入力して永久磁石の磁束を求めて設定記憶することを特
徴とする請求項1記載の同期電動機の制御方法。
3. An AC current is passed as a d-axis current, a DC current is passed as a q-axis current, and a permanent magnet type synchronous motor is rotated. And the rotational speed of the permanent magnet type synchronous motor are estimated, and the armature resistance R, the d-axis inductance Ld, the q-axis inductance Lq, the estimated permanent magnet direction, the estimated rotational speed, the d-axis current, q 2. The synchronous motor control method according to claim 1, wherein the shaft current and the q-axis voltage are inputted, and the magnetic flux of the permanent magnet is obtained and set and stored.
JP21314399A 1999-07-28 1999-07-28 Control method of synchronous motor Expired - Lifetime JP4172563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21314399A JP4172563B2 (en) 1999-07-28 1999-07-28 Control method of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21314399A JP4172563B2 (en) 1999-07-28 1999-07-28 Control method of synchronous motor

Publications (2)

Publication Number Publication Date
JP2001045800A true JP2001045800A (en) 2001-02-16
JP4172563B2 JP4172563B2 (en) 2008-10-29

Family

ID=16634301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21314399A Expired - Lifetime JP4172563B2 (en) 1999-07-28 1999-07-28 Control method of synchronous motor

Country Status (1)

Country Link
JP (1) JP4172563B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262599A (en) * 2001-03-01 2002-09-13 Fuji Electric Co Ltd Control device for synchronous motor
JP2006087152A (en) * 2004-09-14 2006-03-30 Hitachi Ltd Controller and module of permanent magnet synchronous motor
JP2009112081A (en) * 2007-10-29 2009-05-21 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
CN106997024A (en) * 2017-04-21 2017-08-01 珠海格力节能环保制冷技术研究中心有限公司 A kind of permagnetic synchronous motor parameter detection device and method
JP2019129663A (en) * 2018-01-26 2019-08-01 川崎重工業株式会社 Estimation device and estimation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262599A (en) * 2001-03-01 2002-09-13 Fuji Electric Co Ltd Control device for synchronous motor
JP4590755B2 (en) * 2001-03-01 2010-12-01 富士電機システムズ株式会社 Control device for synchronous motor
JP2006087152A (en) * 2004-09-14 2006-03-30 Hitachi Ltd Controller and module of permanent magnet synchronous motor
JP4517793B2 (en) * 2004-09-14 2010-08-04 株式会社日立製作所 Permanent magnet synchronous motor control device and module
JP2009112081A (en) * 2007-10-29 2009-05-21 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
CN106997024A (en) * 2017-04-21 2017-08-01 珠海格力节能环保制冷技术研究中心有限公司 A kind of permagnetic synchronous motor parameter detection device and method
JP2019129663A (en) * 2018-01-26 2019-08-01 川崎重工業株式会社 Estimation device and estimation method
WO2019146746A1 (en) * 2018-01-26 2019-08-01 川崎重工業株式会社 Estimation device and estimation method
JP7028656B2 (en) 2018-01-26 2022-03-02 川崎重工業株式会社 Estimator and estimation method

Also Published As

Publication number Publication date
JP4172563B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
CN113866480B (en) Detection of offset errors in phase current measurements for motor control systems
JP4519864B2 (en) AC rotating machine electrical constant measuring method and AC rotating machine control apparatus used for carrying out this measuring method
US20170264227A1 (en) Inverter control device and motor drive system
JP5861819B2 (en) Control device for permanent magnet type synchronous motor
US9231510B2 (en) Control device for rotary machine and inductance measurement method for rotary machine
JP2000270600A (en) Drive of induction motor, and estimating method of its parameters
JPH10323099A (en) Motor controller
JP2004112898A (en) Control method and device for motor in position sensorless
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP5757205B2 (en) Control device for permanent magnet type synchronous motor
JP2001352800A (en) Constant identification method of synchronous motor and control unit with constant identification function therefor
JP5396741B2 (en) Control device for permanent magnet type synchronous motor
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
US6242882B1 (en) Motor control apparatus
JP4172563B2 (en) Control method of synchronous motor
JP4305698B2 (en) Synchronous motor position and speed estimation device
JP4670162B2 (en) Control device for synchronous motor
JP3707659B2 (en) Constant identification method for synchronous motor
KR100371371B1 (en) Vector control apparatus for induction motor
JP4086370B2 (en) Control method of synchronous motor
JPH11123000A (en) Position and speed sensorless controller
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP4086369B2 (en) Control method of synchronous motor
JP7163640B2 (en) Synchronous motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

R150 Certificate of patent or registration of utility model

Ref document number: 4172563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

EXPY Cancellation because of completion of term