JP2001042372A - Processing laser device - Google Patents

Processing laser device

Info

Publication number
JP2001042372A
JP2001042372A JP21266399A JP21266399A JP2001042372A JP 2001042372 A JP2001042372 A JP 2001042372A JP 21266399 A JP21266399 A JP 21266399A JP 21266399 A JP21266399 A JP 21266399A JP 2001042372 A JP2001042372 A JP 2001042372A
Authority
JP
Japan
Prior art keywords
optical crystal
nonlinear optical
temperature
angle
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21266399A
Other languages
Japanese (ja)
Inventor
Jun Sakuma
純 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Sogo Gijutsu Kenkyusho KK
Original Assignee
Ushio Sogo Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Sogo Gijutsu Kenkyusho KK filed Critical Ushio Sogo Gijutsu Kenkyusho KK
Priority to JP21266399A priority Critical patent/JP2001042372A/en
Priority to TW089111174A priority patent/TW456079B/en
Priority to PCT/JP2000/003986 priority patent/WO2001007963A1/en
Publication of JP2001042372A publication Critical patent/JP2001042372A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3546Active phase matching, e.g. by electro- or thermo-optic tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation

Abstract

PROBLEM TO BE SOLVED: To reduce as much as possible the fluctuation in output power in a processing laser device irradiating a subject to be processed with a wavelength converted laser beam and processing it. SOLUTION: The laser beam emitted from a laser light source 11 is made incident on a non-linear optical crystal 1 of an LBO, a CLBO, etc., and is wavelength converted to be emitted from the non-linear optical crystal 1. The temp. of the non-linear optical crystal 1 is measured by a sensor 3 to be sent to a controller 5 through a sensor amplifier 4. An optimum phase matching angle that maximum output power is obtained for the temp. of the non-linear optical crystal is stored beforehand in the controller 5, and the controller 5 drives a drive device 6 according to the temp. of the measured non-linear optical crystal 1, and adjusts the angle of the crystal axis of the non-linear optical crystal 1 by an angle moving mechanism 7 to control it so as to become the optimum phase matching angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非線形光学結晶を
用いて高調波レーザ光を発生させ、高調波レーザ光を多
層プリント板等の被照射物に照射して、孔あけ・マーキ
ング等の加工を行う加工用レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to processing such as drilling and marking by generating harmonic laser light using a nonlinear optical crystal and irradiating the object to be irradiated such as a multilayer printed board with the harmonic laser light. The present invention relates to a processing laser device that performs the following.

【0002】[0002]

【従来の技術】プリント基板のビアホールの孔あけ、フ
ィルム・金属の切断等の加工にレーザが使用される。プ
リント基板の加工用レーザとしては、波長262−35
5nmの高出力、高繰り返しの紫外レーザ光源が使われ
ている。図5に、非線形光学結晶を用いた波長変換によ
り加工を行なう加工用レーザ装置10の概略構成を示
す。レーザ光源11から出射されるレーザ光は、集光レ
ンズ12によって集光され、非線形光学結晶1に入射す
る。非線形光学結晶1に入射されたレーザ光の一部が波
長変換されて、非線形光学結晶1から出射し、出射光は
集光レンズ13によって集光され被加工物14に照射さ
れる。使用される非線形光学結晶1としては、例えばL
BO,CLBO等がある。
2. Description of the Related Art Lasers are used for forming via holes in printed circuit boards, cutting films and metals, and the like. As a laser for processing a printed circuit board, a wavelength of 262 to 35 is used.
A 5 nm high output, high repetition ultraviolet laser light source is used. FIG. 5 shows a schematic configuration of a processing laser device 10 for performing processing by wavelength conversion using a nonlinear optical crystal. Laser light emitted from the laser light source 11 is condensed by the condenser lens 12 and enters the nonlinear optical crystal 1. A part of the laser light incident on the nonlinear optical crystal 1 is wavelength-converted and emitted from the nonlinear optical crystal 1, and the emitted light is condensed by the condenser lens 13 and irradiated on the workpiece 14. As the nonlinear optical crystal 1 used, for example, L
BO, CLBO and the like.

【0003】上記した非線形光学結晶1の結晶軸と光軸
のなす角度は、波長変換効率が最大となる位相整合角と
呼ばれる角度に保持されるが、この角度は結晶の温度に
依存するため、温度が変化すると、出力するレーザパワ
ーが変化することが知られている。したがって、非線形
光学結晶1はその温度一定になるように制御されてい
る。非線形光学結晶1の温度制御は、非線形光学結晶1
の表面に熱電対15のような温度測定素子を接触させ、
非線形光学結晶全体をヒータ17等の加熱手段、もしく
はペルチェ素子等の冷却手段で覆う。そして、熱電対1
5の出力を温度調節器16(以下温調器16という)に
入力する。温調器16は、あらかじめ設定された温度に
なるように、測定された非線形光学結晶の温度をフィー
ドバックし、加熱手段もしくは冷却手段の入力を制御
し、非線形光学結晶1の温度を調節する。また、非線形
光学結晶1の位相整合角を調整するため、非線形光学結
晶1は駆動装置により駆動される角度調整機構7の上に
取り付けられている。
The angle between the crystal axis and the optical axis of the above-described nonlinear optical crystal 1 is maintained at an angle called a phase matching angle at which the wavelength conversion efficiency is maximized. However, since this angle depends on the temperature of the crystal, It is known that when the temperature changes, the output laser power changes. Therefore, the nonlinear optical crystal 1 is controlled so that its temperature becomes constant. The temperature control of the nonlinear optical crystal 1
A temperature measuring element such as a thermocouple 15 is brought into contact with the surface of
The entire nonlinear optical crystal is covered with a heating means such as a heater 17 or a cooling means such as a Peltier element. And thermocouple 1
5 is input to a temperature controller 16 (hereinafter, referred to as a temperature controller 16). The temperature controller 16 feeds back the measured temperature of the nonlinear optical crystal so as to be a preset temperature, controls the input of a heating unit or a cooling unit, and adjusts the temperature of the nonlinear optical crystal 1. Further, in order to adjust the phase matching angle of the nonlinear optical crystal 1, the nonlinear optical crystal 1 is mounted on an angle adjusting mechanism 7 driven by a driving device.

【0004】図5ではヒータ17を用いて非線形光学結
晶1を加熱する場合が図示されており、以下では非線形
光学結晶を加熱する場合を例にして説明する。加工用レ
ーザ装置10からの出力は、次のようにして調整する。 非線形光学結晶1を設定された所定の温度に加熱
し、一定温度になるように制御する。その状態で、レー
ザ光源11からのレーザ光を、非線形光学結晶1に入射
し、波長変換されて出力されるレーザ光を図示しないパ
ワーモニタによって受光する。 パワーモニタの表示を見ながら、その値が最大にな
るように、非線形光学結晶1の位相整合角を調整し、非
線形光学結晶1を配置する角度を決定する。上記した加
工用レーザ装置により、多層プリント板のビアホール加
工等を行う場合には、レーザ光をシャッタあるいはQ−
SWによりオン/オフして、パルス状のレーザ光を間欠
的に被加工物に照射する。
FIG. 5 shows a case where the nonlinear optical crystal 1 is heated using the heater 17. Hereinafter, a case where the nonlinear optical crystal is heated will be described as an example. The output from the processing laser device 10 is adjusted as follows. The nonlinear optical crystal 1 is heated to a predetermined temperature and is controlled to a constant temperature. In this state, the laser light from the laser light source 11 is incident on the nonlinear optical crystal 1, and the wavelength-converted and output laser light is received by a power monitor (not shown). While watching the display on the power monitor, the phase matching angle of the nonlinear optical crystal 1 is adjusted so that the value is maximized, and the angle at which the nonlinear optical crystal 1 is arranged is determined. When performing a via hole processing or the like of a multilayer printed board by the processing laser device described above, a laser beam is applied to a shutter or a Q-hole.
The workpiece is irradiated intermittently with pulsed laser light by being turned on / off by the SW.

【0005】図6にレーザ光によるビアホール加工の様
子を示す。同図(a)に示すように、通常、一枚の基板
上には、複数の照射領域A1,A2,…が形成されてお
り、各照射領域A1,A2,…には複数の孔あけ箇所が
設けられている。そして、加工用レーザ装置から放出さ
れるレーザ光を、ガルバノメータ等の制御手段により走
査して、多層プリント板の各孔あけ位置に位置決めし、
各孔あけ位置にパルス状のレーザ光を複数回照射してビ
アホール加工を行う。
FIG. 6 shows how a via hole is formed by a laser beam. As shown in FIG. 1A, usually, a plurality of irradiation areas A1, A2,... Are formed on a single substrate, and each irradiation area A1, A2,. Is provided. Then, the laser light emitted from the processing laser device is scanned by a control means such as a galvanometer, and is positioned at each hole-forming position of the multilayer printed board,
A via hole processing is performed by irradiating each of the drilling positions with a pulsed laser beam a plurality of times.

【0006】すなわち、同図(d)に示すように半値全
幅(ピーク値の1/2のときのパルス幅)が数10ns
〜数100nsで、繰り返し周波数が数kHz〜数10
kHzのレーザパルスを、領域A1の各孔あけ箇所で同
図(c)に示すように複数回照射して孔あけ加工を行
い、一つの孔あけが終わると同じ領域の次の孔あけ位置
にレーザ光を移動させ、同様にして孔あけを行う操作を
繰り返す。そして、領域A1の全ての孔あけが終了する
と、同図(b)示すように、レーザ光をオフにして、レ
ーザ光を次の領域A2に移動させ、同様な孔あけ加工を
行う。以下同様にして多層プリント板の各領域A1,A
2,…の孔あけ加工を順次行い、一枚の多層プリント基
板の孔あけが終わると、多層プリント板を交換して、次
のプリント板の加工を行う。ここで、レーザのショット
回数は、例えば1つの孔を加工するのに1〜30ショッ
トとなる。なお、図6(c)ではレーザ光の出射開始直
後、レーザ光の大きさが次第に大きくなっているが、こ
れは後述するように非線形光学結晶の内部温度の上昇に
よる出力変動である。
That is, as shown in FIG. 1D, the full width at half maximum (pulse width at half the peak value) is several tens ns.
To several hundred ns, and the repetition frequency is several kHz to several tens.
A laser pulse of kHz is applied a plurality of times to each of the drilled locations in the area A1 as shown in FIG. 3 (c) to perform drilling processing. The laser light is moved, and the operation of making a hole is repeated in the same manner. Then, when all the holes in the area A1 are completed, the laser light is turned off, the laser light is moved to the next area A2, and similar drilling is performed, as shown in FIG. Hereinafter, similarly, each area A1, A of the multilayer printed board
The drilling process of 2,... Is sequentially performed, and when the drilling of one multilayer printed board is completed, the multilayer printed board is replaced and the next printed board is processed. Here, the number of laser shots is, for example, 1 to 30 shots for processing one hole. In FIG. 6C, the size of the laser light gradually increases immediately after the start of the emission of the laser light, but this is an output fluctuation due to a rise in the internal temperature of the nonlinear optical crystal, as described later.

【0007】上記したように、加工用レーザ装置を多層
プリント板のビアホール等の加工に用いる場合、加工処
理済のワーク(多層プリント板)を未処理のワークに取
り換えたり、1つの多層プリント板内で、レーザ光を照
射する領域を移動させるなどの操作が必要である(この
操作を「段取り換え」という)。この段取り換えの時間
は、通常、数秒から数10秒(場合によっては数分間)
かかる。段取り換えを行なっている時は、図6で説明し
たようにレーザ光源からのレーザ光の出射を行なわず、
加工用レーザ装置はレーザを出力しない。そして、段取
り換え終了後、レーザ光源からレーザ光を出射し、ワー
クに波長変換されたレーザ光を照射する。
As described above, when a processing laser device is used for processing a via hole or the like of a multilayer printed board, a processed work (multilayer printed board) is replaced with an unprocessed work, or a single multilayer printed board is processed. Therefore, an operation such as moving an area to be irradiated with a laser beam is required (this operation is called “setup change”). This setup change time is usually several seconds to several tens of seconds (sometimes several minutes).
Take it. During the setup change, the laser light is not emitted from the laser light source as described with reference to FIG.
The processing laser device does not output a laser. After the completion of the setup change, the laser light is emitted from the laser light source, and the work is irradiated with the wavelength-converted laser light.

【0008】[0008]

【発明が解決しようとする課題】上記した非線形光学結
晶は屈折率が温度に依存して変化する。このため、レー
ザ光発生に伴う非線形光学結晶自身の自己加熱により光
軸と結晶軸のなす最適角度がレーザ光発生により変化
し、その出力が変動するという問題がある。そのため、
通常非線形光学結晶は、前記図5に示したように加熱手
段もしくは冷却手段により加熱もしくは冷却され周囲温
度が一定に保持される。しかし、前記図6で説明したよ
うに、数〜数10秒の時間間隔で間欠的に光を発生させ
る必要がある場合には過渡的に温度が変化するため一定
に保つことは困難である。図7は、レーザ光出射開始直
後の非線形光学結晶から出射されるレーザ光のパワーの
変化を示した図であり、非線形光学結晶としてCLBO
結晶を用い、CLBO結晶の温度を前記したように一定
に制御した場合を示している。同図に示すように、レー
ザ出射開始直後からレーサパワーは徐々に上昇する。
The refractive index of the above-mentioned nonlinear optical crystal changes depending on the temperature. Therefore, the self-heating of the nonlinear optical crystal itself accompanying the generation of the laser light causes a problem that the optimum angle between the optical axis and the crystal axis changes due to the generation of the laser light, and the output fluctuates. for that reason,
Usually, the nonlinear optical crystal is heated or cooled by the heating means or the cooling means as shown in FIG. 5 and the ambient temperature is kept constant. However, as described with reference to FIG. 6, when light needs to be generated intermittently at time intervals of several to several tens of seconds, it is difficult to keep the light constant because the temperature changes transiently. FIG. 7 is a diagram showing a change in power of laser light emitted from the nonlinear optical crystal immediately after the start of laser light emission.
The figure shows the case where the crystal is used and the temperature of the CLBO crystal is controlled to be constant as described above. As shown in the figure, the laser power gradually increases immediately after the start of laser emission.

【0009】レーザ光出力が図7のように変化すると、
例えばビアホール加工の場合、ビアホールの孔の深さが
変化したり、切断加工の場合切断面の形状が乱れる等、
実用上問題が生ずる。実用上、レーザ光出力の変動は1
0%以内に抑えることが要望されている。本発明は上記
した事情に鑑みなされたものであって、本発明の目的
は、非線形光学結晶を用いて波長変換したレーザ光を被
加工物に照射して加工を行う加工用のレーザ装置におい
て、段取り換え等によりレーザ光の出射を停止した後の
レーザ光の出力パワーが大きく変動することを極力小さ
くし、良好な加工を可能とすることである。
When the laser light output changes as shown in FIG.
For example, in the case of via hole processing, the depth of the hole of the via hole changes, and in the case of cutting processing, the shape of the cut surface is disordered,
Practical problems arise. In practice, the fluctuation of the laser light output is 1
It is demanded to keep it within 0%. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a processing laser device that performs processing by irradiating a workpiece with laser light whose wavelength has been converted using a nonlinear optical crystal, It is an object of the present invention to minimize fluctuations in the output power of the laser beam after stopping the emission of the laser beam due to a setup change or the like as much as possible, thereby enabling good processing.

【0010】[0010]

【課題を解決するための手段】上記課題を本発明におい
ては、加工用レーザ装置に、非線形光学結晶の温度を測
定する温度測定手段と、非線形光学結晶の結晶軸の角度
を調整する角度移動機構と、上記温度測定手段により測
定された非線形光学結晶の温度に基づき、上記角度移動
機構を制御する制御手段とを設け、該制御手段に、非線
形光学結晶の温度に対して、最大の出力パワーが得られ
る最適な位相整合角を予め記憶させておく。そして、制
御手段により、上記非線形光学結晶の温度に応じて非線
形光学結晶の角度を制御し、非線形光学結晶を最大の出
力パワーが得られる位相整合角に調整する。本発明にお
いては、上記構成としたので、非線形光学結晶の温度変
化に係わらず、非線形光学結晶の角度を、結晶温度に対
して最適な位相整合角を保つような角度に維持すること
ができ、レーザ光の出力パワーの変動を小さくすること
ができる。このため、加工用レーザ装置において、良好
な加工が可能となる。
According to the present invention, there is provided a processing laser device comprising: a temperature measuring means for measuring a temperature of a nonlinear optical crystal; and an angle moving mechanism for adjusting an angle of a crystal axis of the nonlinear optical crystal. And a control means for controlling the angle moving mechanism based on the temperature of the nonlinear optical crystal measured by the temperature measuring means, wherein the control means has a maximum output power with respect to the temperature of the nonlinear optical crystal. The obtained optimal phase matching angle is stored in advance. Then, the angle of the nonlinear optical crystal is controlled by the control means in accordance with the temperature of the nonlinear optical crystal, and the nonlinear optical crystal is adjusted to a phase matching angle at which the maximum output power is obtained. In the present invention, since the configuration described above, regardless of the temperature change of the nonlinear optical crystal, the angle of the nonlinear optical crystal can be maintained at an angle that maintains an optimal phase matching angle with respect to the crystal temperature, Fluctuations in the output power of the laser light can be reduced. For this reason, good processing is possible in the processing laser device.

【0011】[0011]

【発明の実施の形態】図1は本発明の実施例を示す図で
ある。図1ではレーザ光源、非線形光学結晶および該非
線形光学結晶の角度を制御する制御系のみが示されてお
り、その他の構成は省略されている。図1において、1
1はレーザ光源、1はLBO,CLBO等の非線形光学
結晶であり、非線形光学結晶1はホルダ2内に載置さ
れ、非線形光学結晶1の温度はセンサ3により測定され
る。なお、図示しないが非線形光学結晶1はヒータによ
り所望の温度に加熱される。4はセンサ3の出力を増幅
するセンサアンプ、5はコンピュータ等から構成される
制御装置である。
FIG. 1 is a diagram showing an embodiment of the present invention. FIG. 1 shows only a laser light source, a nonlinear optical crystal, and a control system for controlling the angle of the nonlinear optical crystal, and other components are omitted. In FIG. 1, 1
Reference numeral 1 denotes a laser light source, and 1 denotes a nonlinear optical crystal such as LBO or CLBO. The nonlinear optical crystal 1 is placed in a holder 2, and the temperature of the nonlinear optical crystal 1 is measured by a sensor 3. Although not shown, the nonlinear optical crystal 1 is heated to a desired temperature by a heater. Reference numeral 4 denotes a sensor amplifier for amplifying the output of the sensor 3, and reference numeral 5 denotes a control device including a computer or the like.

【0012】次に本実施例の動作について説明するが、
その前に、まず、結晶温度と波長変換効率および結晶の
温度と位相整合角との関係について説明する。一般に、
非線形光学結晶の波長変換効率ηは、次のような(1) 式
で表すことができる。 η∝{sin2( ΔkL/2)}/(ΔkL/2)2 …(1) ここで、Lは非線形光学結晶の光学的距離、Δkは非線
形光学結晶に入射するレーザと出射するレーザとの波数
の差であり、次のような(2) 式で表される。
Next, the operation of this embodiment will be described.
Before that, first, the relationship between the crystal temperature and the wavelength conversion efficiency and the relationship between the crystal temperature and the phase matching angle will be described. In general,
The wavelength conversion efficiency η of the nonlinear optical crystal can be expressed by the following equation (1). η∝ {sin 2 (ΔkL / 2)} / (ΔkL / 2) 2 (1) where L is the optical distance of the nonlinear optical crystal, and Δk is the distance between the laser beam entering and exiting the nonlinear optical crystal. This is the difference between the wave numbers and is expressed by the following equation (2).

【0013】また、λ1,λ2は非線形光学結晶に入射
するレーザの波長、λ3は非線形光学結晶から出射する
波長変換されたレーザの波長、ni は波長λiに対する
屈折率で、非線形光学結晶の物理光学座標に対する入射
光の入射角(θ)とその偏光方位(φ) 、及び非線形光
学結晶の温度(T) によって決まる。即ち、屈折率nは
次の(3) 式に示すようにθ,φ,Tの関数として表すこ
とができる。 n=f(θ,φ,T)…(3)
Λ1 and λ2 are the wavelengths of the laser beam incident on the nonlinear optical crystal, λ3 is the wavelength of the wavelength-converted laser beam emitted from the nonlinear optical crystal, and ni is the refractive index for the wavelength λi. It is determined by the incident angle (θ) of the incident light with respect to the coordinates, its polarization direction (φ), and the temperature (T) of the nonlinear optical crystal. That is, the refractive index n can be expressed as a function of θ, φ, and T as shown in the following equation (3). n = f (θ, φ, T) (3)

【0014】したがって、(1)(2)(3) 式より、波長変換
効率ηは、非線形光学結晶の温度Tの関数として表すこ
とができる。上記(1)(2)(3) 式により、結晶温度に対す
る波長変換効率ηを求めた例は図2のようになる。図2
において、横軸はある位相整合角のとき出力パワーが最
大となる結晶温度Toとの温度差、縦軸は変換効率であ
る。同図に示すように、結晶温度がToで最適な位相整
合角にあるとき、結晶温度がToより高くなっても低く
なっても、変換出力は低下する。図3は非線形光学結晶
の温度差と位相整合角ずれの関係の例を示す図である。
同図において、横軸は、結晶の温度差、縦軸は位相整合
角からの角度のずれを示し、例えば、結晶温度がToの
ときの位相整合角をθoとすると、結晶温度が+5°C
ずれ(To+5)°Cになると、位相整合角は約0.4
mradずれ、θo+0.4mradになる。ここで、
上記温度差ΔTと位相整合角のずれΔθの関係をΔθ=
f(ΔT)と表記すると、非線形光学結晶の温度がレー
ザ光照射に伴う自己加熱によりΔT上昇すると、非線形
光学結晶の位相整合角はΔθ=f(ΔT)ずれることに
なる。
Therefore, from the equations (1), (2) and (3), the wavelength conversion efficiency η can be expressed as a function of the temperature T of the nonlinear optical crystal. FIG. 2 shows an example in which the wavelength conversion efficiency η with respect to the crystal temperature is obtained from the above equations (1), (2) and (3). FIG.
In the graph, the horizontal axis represents the temperature difference from the crystal temperature To at which the output power becomes maximum at a certain phase matching angle, and the vertical axis represents conversion efficiency. As shown in the figure, when the crystal temperature is at the optimum phase matching angle at To, the conversion output is reduced whether the crystal temperature is higher or lower than To. FIG. 3 is a diagram showing an example of the relationship between the temperature difference of the nonlinear optical crystal and the phase matching angle shift.
In the figure, the horizontal axis shows the temperature difference of the crystal, and the vertical axis shows the angle deviation from the phase matching angle. For example, when the phase matching angle when the crystal temperature is To is θo, the crystal temperature is + 5 ° C
When the shift (To + 5) ° C. is reached, the phase matching angle becomes about 0.4.
mrad shift, θo + 0.4 mrad. here,
The relationship between the temperature difference ΔT and the phase matching angle shift Δθ is represented by Δθ =
If f (ΔT) is expressed, when the temperature of the nonlinear optical crystal increases by ΔT due to self-heating accompanying laser beam irradiation, the phase matching angle of the nonlinear optical crystal shifts by Δθ = f (ΔT).

【0015】したがって、結晶温度の温度がToであ
り、結晶の結晶軸がその時に最大変換効率となる位相整
合角θoに設定されている場合、レーザ光照射直後にお
いては変換効率が最大となるが、非線形光学結晶の温度
がレーザ光照射に伴う自己加熱によりΔT上昇すると、
位相整合角はθoからΔθずれる。すなわち、レーザ光
の光軸と非線形光学結晶の結晶軸の関係を、結晶温度が
Toのときに最適な位相整合角θoになるようにしてお
いても、結晶の温度がレーザ光照射に伴う自己加熱によ
りΔT上昇すると、位相整合角はΔθ=f(ΔT)ず
れ、変換効率が低下することとなる。そこで、本実施例
では、非線形光学結晶の温度を測定し、測定された温度
に応じて非線形光学結晶の結晶軸の角度を調整し、常に
非線形光学結晶が最適な位相整合状態を維持するように
した。
Therefore, when the temperature of the crystal temperature is To and the crystal axis of the crystal is set to the phase matching angle θo at which the maximum conversion efficiency is at that time, the conversion efficiency becomes maximum immediately after the laser beam irradiation. When the temperature of the nonlinear optical crystal rises by ΔT due to self-heating accompanying laser beam irradiation,
The phase matching angle deviates from θo by Δθ. In other words, even if the relationship between the optical axis of the laser beam and the crystal axis of the nonlinear optical crystal is set to the optimum phase matching angle θo when the crystal temperature is To, the temperature of the crystal is not affected by the laser beam irradiation. When ΔT increases due to heating, the phase matching angle shifts by Δθ = f (ΔT), and the conversion efficiency decreases. Therefore, in this embodiment, the temperature of the nonlinear optical crystal is measured, and the angle of the crystal axis of the nonlinear optical crystal is adjusted according to the measured temperature so that the nonlinear optical crystal always maintains an optimal phase matching state. did.

【0016】図1に戻り、以下、本実施例の動作を説明
する。レーザ光源11から放出されるレーザ光は、LB
O,CLBO等の非線形光学結晶1に入射し、2倍波、
3倍波等の高調波に波長変換され非線形光学結晶1から
出射する。非線形光学結晶1の温度はセンサ3により測
定され、センサアンプ4を介して制御装置5に送られ
る。制御装置5はセンサアンプ4の出力に基づき、駆動
装置6を駆動して角度移動機構7により非線形光学結晶
1の結晶軸の角度を入射するレーザ光の光軸に対して調
整する。制御装置5内には、上記図3に示したような非
線形光学結晶の温度に対して、最大の出力パワーが得ら
れる最適な位相整合角が予め記憶されており、制御装置
5は、測定した非線形光学結晶の温度に応じた最適な位
相整合角を求め、非線形光学結晶1の結晶軸の角度が最
適な位相整合角になるように制御する。図4は本実施例
の動作を示すタイムチャートであり、同図により本実施
例の動作について説明する。
Returning to FIG. 1, the operation of this embodiment will be described below. The laser light emitted from the laser light source 11 is LB
Incident on a nonlinear optical crystal 1 such as O, CLBO, etc .;
The wavelength is converted into a harmonic such as a third harmonic, and the light is emitted from the nonlinear optical crystal 1. The temperature of the nonlinear optical crystal 1 is measured by the sensor 3 and sent to the control device 5 via the sensor amplifier 4. The control device 5 drives the driving device 6 based on the output of the sensor amplifier 4 and adjusts the angle of the crystal axis of the nonlinear optical crystal 1 with respect to the optical axis of the incident laser beam by the angle moving mechanism 7. The optimal phase matching angle at which the maximum output power is obtained for the temperature of the nonlinear optical crystal as shown in FIG. 3 is stored in the control device 5 in advance. An optimum phase matching angle according to the temperature of the nonlinear optical crystal is determined, and control is performed so that the angle of the crystal axis of the nonlinear optical crystal 1 becomes the optimum phase matching angle. FIG. 4 is a time chart showing the operation of this embodiment. The operation of this embodiment will be described with reference to FIG.

【0017】図4において、(a)はレーザのオン/オ
フ状態、(b)は非線形光学結晶の温度、(c)は結晶
温度に対する結晶の最適位相整合角であり、制御装置5
は測定された温度に応じて、結晶軸の角度を調整し上記
最適な位相整合角になるとようにする。(d)は上記の
ように制御装置5により結晶軸の角度を制御したときに
得られるレーザ出力である。また、(e)(f)は非線
形光学結晶の角度を制御しない場合のレーザ出力を示
し、(e)は位相整合角が、結晶温度がT1(同図
(b)の点線参照)の時最適な角度となるように設定さ
れている場合を示し、(f)は位相整合角が、結晶温度
がT2(同図(b)の点線参照)の時最適な角度となる
ように設定されている場合を示している。
In FIG. 4, (a) shows the on / off state of the laser, (b) shows the temperature of the nonlinear optical crystal, and (c) shows the optimum phase matching angle of the crystal with respect to the crystal temperature.
Adjusts the angle of the crystal axis in accordance with the measured temperature so that the optimum phase matching angle is obtained. (D) is a laser output obtained when the angle of the crystal axis is controlled by the controller 5 as described above. (E) and (f) show the laser output when the angle of the nonlinear optical crystal is not controlled, and (e) shows the optimum phase matching angle when the crystal temperature is T1 (see the dotted line in FIG. 3 (b)). (F) shows that the phase matching angle is set to be an optimum angle when the crystal temperature is T2 (see the dotted line in FIG. 3 (b)). Shows the case.

【0018】なお、本実施例では、レーザ光照射開始前
は、非線形光学結晶の温度がToであり、位相整合角は
温度Toのとき最大効率が得られるθoに設定されてい
るものとする。図4(a)に示すようにレーザ光がオン
になると、非線形光学結晶1の温度は同図(b)に示す
ように上昇する。制御装置5にはセンサ3により測定さ
れた非線形光学結晶1の温度が入力される。制御装置5
は、前記図3に示した非線形光学結晶の温度差と位相ず
れ量との関係から、非線形光学結晶1の温度上昇ΔTに
応じた位相整合角の調整量Δθを求め、非線形光学結晶
1の角度がθo+Δθになるように調整する。これによ
り、図4(c)に示すように非線形光学結晶1の角度が
調整され、非線形光学結晶1の角度は温度To+ΔTに
おける最適な位相整合角θo+Δθとなる。このため、
図4(d)に示すようにレーザ出力はほぼ一定の大きさ
に維持される。上記制御装置5は動作を繰り返し、最適
な位相整合角を維持するように非線形光学結晶の角度を
調整する。
In this embodiment, it is assumed that the temperature of the nonlinear optical crystal is To before the start of laser beam irradiation, and the phase matching angle is set to θo at which the maximum efficiency is obtained at the temperature To. When the laser light is turned on as shown in FIG. 4A, the temperature of the nonlinear optical crystal 1 rises as shown in FIG. The temperature of the nonlinear optical crystal 1 measured by the sensor 3 is input to the control device 5. Control device 5
From the relationship between the temperature difference of the nonlinear optical crystal and the amount of phase shift shown in FIG. 3, an adjustment amount Δθ of the phase matching angle according to the temperature rise ΔT of the nonlinear optical crystal 1 is obtained. Is adjusted to be θo + Δθ. Thereby, the angle of the nonlinear optical crystal 1 is adjusted as shown in FIG. 4C, and the angle of the nonlinear optical crystal 1 becomes the optimum phase matching angle θo + Δθ at the temperature To + ΔT. For this reason,
As shown in FIG. 4D, the laser output is maintained at a substantially constant level. The control device 5 repeats the operation, and adjusts the angle of the nonlinear optical crystal so as to maintain the optimum phase matching angle.

【0019】ここで、上記のように非線形光学結晶の角
度調整を行わない場合、レーザ出力は図4(e)(f)
のようになる。すなわち、位相整合角が、結晶温度がT
1,T2の時最適な角度となるように設定されている場
合には、結晶温度がT1,T2のときに非線形光学結晶
の変換効率が最大となるから、レーザ出力は結晶の温度
がT1,T2に近づくにつれ大きくなり、結晶の温度が
T1,T2を越えると小さくなる。したがって、この場
合には図4(e)(f)に示すようにレーザ出力は変動
することとなる。以上のように、本発明においては、非
線形光学結晶の温度を測定し、それに応じて非線形光学
結晶の角度を調整しているので、非線形光学結晶の温度
変化に係わらず最適な位相整合状態を保つことができ、
レーザ出力の変動を小さくすることができる。このた
め、加工用レーザ装置に適用した場合に良好な加工を行
うことが可能となる。
Here, when the angle adjustment of the nonlinear optical crystal is not performed as described above, the laser output is as shown in FIGS.
become that way. That is, when the phase matching angle is equal to the crystal temperature T
In the case where the angle is set to be an optimum angle at 1 and T2, the conversion efficiency of the nonlinear optical crystal becomes maximum when the crystal temperature is T1 and T2. It increases as the temperature approaches T2, and decreases when the temperature of the crystal exceeds T1 and T2. Therefore, in this case, the laser output fluctuates as shown in FIGS. As described above, in the present invention, the temperature of the nonlinear optical crystal is measured, and the angle of the nonlinear optical crystal is adjusted accordingly, so that the optimal phase matching state is maintained regardless of the temperature change of the nonlinear optical crystal. It is possible,
Fluctuations in the laser output can be reduced. Therefore, when applied to a processing laser device, it is possible to perform good processing.

【0020】なお、レーザ装置の出力パワーをパワーメ
ータ等で測定し、出力パワーが一定になるように非線形
光学結晶の温度あるいは角度を調整する方法も考えられ
る。この方法は、レーザ光が常時出力されているレーザ
装置においては有効であるが、本発明が対象としている
間欠的にレーザ光が出力されるレーザ装置の場合、この
方法では効果的に出力変動を抑えることができない。す
なわち、間欠的にレーザ光が出力されるレーザ装置に上
記方法を適用した場合、レーザ光が出力されていない期
間には、上記出力パワーを一定にする制御系が動作せ
ず、レーザ光が出力される毎に上記制御系が作動するこ
ととなる。このため、レーザ光が出力される毎に過渡的
にレーザ光の出力パワーが変動する。これに対し、本実
施例の場合には、レーザ光が出力されていないときで
も、常に非線形光学結晶の温度に基づき非線形光学結晶
の角度を調整しているので、休止時間の多少にかかわら
ず常にレーザ出射直後から最大出力の得られる状態に保
つことができる上に、出力パワーに上記過渡的な変動が
起こることがなく、安定して出力パワーを一定に制御す
ることができる。
It is also conceivable to measure the output power of the laser device with a power meter or the like and adjust the temperature or angle of the nonlinear optical crystal so that the output power becomes constant. Although this method is effective in a laser device that constantly outputs laser light, in the case of a laser device in which laser light is intermittently output according to the present invention, this method can effectively reduce output fluctuation. I can't control it. That is, when the above method is applied to a laser device that outputs laser light intermittently, during a period in which no laser light is output, the control system for keeping the output power constant does not operate, and the laser light is output. The control system is activated each time it is performed. Therefore, the output power of the laser light fluctuates transiently every time the laser light is output. In contrast, in the case of the present embodiment, even when the laser light is not output, the angle of the nonlinear optical crystal is always adjusted based on the temperature of the nonlinear optical crystal. The maximum output can be maintained immediately after the laser emission, and the output power does not undergo the above-mentioned transient fluctuation, and the output power can be stably controlled to be constant.

【0021】[0021]

【発明の効果】以上説明したように、加工用レーザ装置
に、非線形光学結晶の温度を測定する温度測定手段と、
非線形光学結晶の結晶軸の角度を調整する角度移動機構
と、上記温度測定手段により測定された非線形光学結晶
の温度に基づき、上記角度移動機構を制御する制御手段
とを設け、該制御手段に、非線形光学結晶の温度に対し
て、最大の出力パワーが得られる最適な位相整合角を予
め記憶させておき、上記非線形光学結晶の温度に応じて
非線形光学結晶の結晶軸の角度を制御し、非線形光学結
晶を最大の出力パワーが得られる位相整合角に調整する
ようにしたので、レーザ光の出力パワーの変動を小さく
することができ、レーザ光が間欠的に出力される加工用
レーザ装置において良好な加工が可能となる。
As described above, a temperature measuring means for measuring the temperature of a nonlinear optical crystal is provided in a processing laser device.
An angle moving mechanism for adjusting the angle of the crystal axis of the nonlinear optical crystal, and a control means for controlling the angle moving mechanism based on the temperature of the nonlinear optical crystal measured by the temperature measuring means are provided. The optimal phase matching angle at which the maximum output power is obtained is stored in advance with respect to the temperature of the nonlinear optical crystal, and the angle of the crystal axis of the nonlinear optical crystal is controlled in accordance with the temperature of the nonlinear optical crystal. Since the optical crystal is adjusted to the phase matching angle at which the maximum output power is obtained, the fluctuation of the output power of the laser light can be reduced, which is favorable in a processing laser device in which the laser light is output intermittently. Processing is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】結晶温度と変換効率の関係を示す図である。FIG. 2 is a diagram showing a relationship between a crystal temperature and a conversion efficiency.

【図3】非線形光学結晶の温度差と位相整合角ずれの関
係を示す図である。
FIG. 3 is a diagram showing a relationship between a temperature difference of a nonlinear optical crystal and a phase matching angle shift.

【図4】本発明の実施例の動作を示すタイムチャートで
ある。
FIG. 4 is a time chart showing the operation of the embodiment of the present invention.

【図5】波長変換により加工を行なう加工用レーザ装置
の概略構成を示す図である。
FIG. 5 is a diagram showing a schematic configuration of a processing laser device that performs processing by wavelength conversion.

【図6】レーザ光によるビアホール加工の様子を示す図
である。
FIG. 6 is a diagram showing a state of via hole processing by laser light.

【図7】レーザ光出射開始直後レーザ光のパワーの変化
を示す図である。
FIG. 7 is a diagram showing a change in power of laser light immediately after the start of laser light emission.

【符号の説明】[Explanation of symbols]

1 非線形光学結晶 2 ホルダ 3 センサ 4 センサアンプ 5 制御装置 6 駆動装置 7 角度移動機構 11 レーザ光源 DESCRIPTION OF SYMBOLS 1 Nonlinear optical crystal 2 Holder 3 Sensor 4 Sensor amplifier 5 Control device 6 Drive device 7 Angle movement mechanism 11 Laser light source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学結晶を用いて高調波レーザ光
を発生させ、該高調波レーザ光を被照射物に間欠的に照
射して、被照射物の孔あけ・マーキング等の除去作業を
行う加工用レーザ装置であって、 上記加工用レーザ装置は、非線形光学結晶の温度を測定
する温度測定手段と、非線形光学結晶の結晶軸の角度を
調整する角度移動機構と、上記温度測定手段により測定
された非線形光学結晶の温度に基づき、上記角度移動機
構を制御する制御手段とを備え、 上記制御手段に、非線形光学結晶の温度に対して、最大
の出力パワーが得られる最適な位相整合角を予め記憶さ
せておき、上記制御手段により、上記非線形光学結晶の
温度に応じて非線形光学結晶の結晶軸の角度を制御し、
非線形光学結晶の角度を最大の出力パワーが得られる位
相整合角に調整することを特徴とする加工用レーザ装
置。
1. A method for generating a harmonic laser beam using a nonlinear optical crystal, intermittently irradiating the object to be irradiated with the harmonic laser beam, and performing a work of removing a hole, marking, or the like in the object to be irradiated. A processing laser device, wherein the processing laser device includes a temperature measuring unit that measures a temperature of the nonlinear optical crystal, an angle moving mechanism that adjusts an angle of a crystal axis of the nonlinear optical crystal, and a temperature measurement unit that measures the temperature. Control means for controlling the angle movement mechanism based on the temperature of the nonlinear optical crystal, wherein the control means determines an optimal phase matching angle at which the maximum output power is obtained with respect to the temperature of the nonlinear optical crystal. Stored in advance, by the control means, to control the angle of the crystal axis of the nonlinear optical crystal according to the temperature of the nonlinear optical crystal,
A processing laser device wherein an angle of a nonlinear optical crystal is adjusted to a phase matching angle at which a maximum output power is obtained.
JP21266399A 1999-07-27 1999-07-27 Processing laser device Pending JP2001042372A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21266399A JP2001042372A (en) 1999-07-27 1999-07-27 Processing laser device
TW089111174A TW456079B (en) 1999-07-27 2000-06-08 Laser device for laser machining
PCT/JP2000/003986 WO2001007963A1 (en) 1999-07-27 2000-06-19 Laser for laser machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21266399A JP2001042372A (en) 1999-07-27 1999-07-27 Processing laser device

Publications (1)

Publication Number Publication Date
JP2001042372A true JP2001042372A (en) 2001-02-16

Family

ID=16626353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21266399A Pending JP2001042372A (en) 1999-07-27 1999-07-27 Processing laser device

Country Status (3)

Country Link
JP (1) JP2001042372A (en)
TW (1) TW456079B (en)
WO (1) WO2001007963A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327749C (en) * 2002-10-22 2007-07-18 松下电器产业株式会社 Method for processing hole on ceramic sheet
CN102185236A (en) * 2011-02-28 2011-09-14 中国科学院长春光学精密机械与物理研究所 Device for automatically adjusting frequency doubling crystal under large power CO2 laser irradiation
JP2012037813A (en) * 2010-08-10 2012-02-23 Nikon Corp Ultraviolet laser device
JP2012203147A (en) * 2011-03-24 2012-10-22 Nikon Corp Ultraviolet laser device
WO2022230045A1 (en) * 2021-04-27 2022-11-03 三菱電機株式会社 Laser device, and laser processing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5964621B2 (en) * 2012-03-16 2016-08-03 株式会社ディスコ Laser processing equipment
CN103278128B (en) * 2013-05-17 2015-11-04 中国工程物理研究院激光聚变研究中心 One is KDP crystal optimum matching angle accurate measurement method fast
CN111765967A (en) * 2020-07-08 2020-10-13 浙江富春江环保科技研究有限公司 Laser energy online monitoring and feedback control system and method
CN112670814A (en) * 2020-12-25 2021-04-16 苏州科韵激光科技有限公司 Nonlinear optical frequency doubling module and laser system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107433A (en) * 1990-08-28 1992-04-08 Pioneer Electron Corp Optical nonlinear generation device
US5272709A (en) * 1992-10-02 1993-12-21 Alcon Surgical, Inc. Frequency doubled laser having power triggered optimization and regulation
US5264959A (en) * 1992-11-25 1993-11-23 The United States Of America As Represented By The United States Department Of Energy Temperature-insensitive phase-matched optical harmonic conversion crystal
US5644422A (en) * 1996-01-16 1997-07-01 New Focus, Inc. Techniques of radiation phase matching within optical crystals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327749C (en) * 2002-10-22 2007-07-18 松下电器产业株式会社 Method for processing hole on ceramic sheet
JP2012037813A (en) * 2010-08-10 2012-02-23 Nikon Corp Ultraviolet laser device
CN102185236A (en) * 2011-02-28 2011-09-14 中国科学院长春光学精密机械与物理研究所 Device for automatically adjusting frequency doubling crystal under large power CO2 laser irradiation
JP2012203147A (en) * 2011-03-24 2012-10-22 Nikon Corp Ultraviolet laser device
WO2022230045A1 (en) * 2021-04-27 2022-11-03 三菱電機株式会社 Laser device, and laser processing device

Also Published As

Publication number Publication date
WO2001007963A1 (en) 2001-02-01
TW456079B (en) 2001-09-21

Similar Documents

Publication Publication Date Title
JP4677392B2 (en) Pulse laser heat treatment apparatus and control method thereof
KR101272407B1 (en) Laser processing apparatus, laser light source apparatus, and controlling method of laser light source apparatus
JP2003046173A (en) Laser, wavelength changing element, laser oscillator, wavelength changing device, and method for laser beam machining
CN111801190B (en) Laser power control device, laser processing device, and laser power control method
US8165005B2 (en) Optical recording method and optical recording apparatus
JP2001042372A (en) Processing laser device
JP2003272892A (en) X-ray generating method and x-ray generating device
JP2018153846A (en) Laser processing apparatus and laser processing method
JP2001021931A (en) Laser device for processing using nonlinear crystal of type 1
KR20030081474A (en) Laser control method, laser apparatus, laser treatment method used for the same, laser treatment apparatus
JP3391301B2 (en) Laser equipment for processing
JP7079953B2 (en) Wavelength conversion method, wavelength conversion device and laser light source device
JP3506038B2 (en) Wavelength conversion method
TW480789B (en) Processing laser device
JP3968868B2 (en) Solid state laser equipment
JP2013089930A (en) Laser annealing method and laser annealing apparatus
JP2005079497A (en) Laser beam working method and working equipment, and display apparatus manufacturing method and display apparatus
JP2011118012A (en) Laser light source device
JP5834981B2 (en) Solid state laser equipment
WO2022230045A1 (en) Laser device, and laser processing device
JP4551385B2 (en) Laser irradiation device
JP2001053356A (en) Crystal retainer used for laser device for processing
JP2008078488A (en) Laser irradiation apparatus and method of manufacturing semiconductor device using the same
JPH04249388A (en) Laser wiring formation device
JP2018152442A (en) Laser processing device