WO2022230045A1 - Laser device, and laser processing device - Google Patents

Laser device, and laser processing device Download PDF

Info

Publication number
WO2022230045A1
WO2022230045A1 PCT/JP2021/016768 JP2021016768W WO2022230045A1 WO 2022230045 A1 WO2022230045 A1 WO 2022230045A1 JP 2021016768 W JP2021016768 W JP 2021016768W WO 2022230045 A1 WO2022230045 A1 WO 2022230045A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
wavelength
laser
laser light
wavelength conversion
Prior art date
Application number
PCT/JP2021/016768
Other languages
French (fr)
Japanese (ja)
Inventor
弘 菊池
望 平山
秀則 深堀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/016768 priority Critical patent/WO2022230045A1/en
Publication of WO2022230045A1 publication Critical patent/WO2022230045A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation

Definitions

  • the present disclosure relates to a laser device and a laser processing device that wavelength-convert and output laser light from a laser light source.
  • Patent Document 1 in order to maintain the temperature of the wavelength conversion crystal at the temperature with the highest conversion efficiency, it is possible to adjust the output power fluctuation of a laser of a specific wavelength to be wavelength-converted so that the response is similar to that of light output power fluctuation.
  • a wavelength conversion method is disclosed in which a high-speed temperature control device is locally used to enable high-speed temperature control equivalent to laser output fluctuations.
  • a first temperature control step is performed in which a temperature control device is used to control the temperature of the wavelength conversion element. Then, in order to cope with temperature fluctuations of the wavelength conversion element and obtain a high-power wavelength converted output, auxiliary light in a wavelength range that does not contribute to wavelength conversion is irradiated from the auxiliary light source to the working region to supply heat to the wavelength conversion element.
  • a second temperature control step is performed. Then, based on the amount of heat supplied to the wavelength conversion element in the first temperature adjustment step and the amount of heat supplied to the wavelength conversion element in the second temperature adjustment step, the temperature of the wavelength conversion element is assisted to reach the target temperature.
  • a temperature control step is performed to control the amount of heat absorbed from the light source.
  • the present disclosure has been made in view of the above, and the wavelength-converted laser light can be output without complicating the device configuration when the output of the laser light with a specific wavelength changes greatly in a short time. It is an object of the present invention to obtain a laser device capable of avoiding output fluctuation, output decrease, and the like.
  • a laser device includes a laser light source, a laser control section, a wavelength conversion element, and a temperature control section in order to solve the above-described problems and achieve the object.
  • the laser light source generates laser light of a first wavelength.
  • the laser control unit controls the laser light source based on laser control information, which is information regarding control of the laser light source.
  • the wavelength conversion element wavelength-converts laser light of a first wavelength into laser light of a second wavelength of 400 nm or less. After the first section, which is a time section before a change point at which the specific output, which is the output that contributes to the wavelength conversion to the second wavelength laser light, of the output of the first wavelength laser light, the temperature control unit changes.
  • the laser control information of the second interval is acquired before the output change point of the second interval, and based on the acquired laser control information of the second interval to control the temperature of the wavelength conversion element in the second section.
  • the output of laser light with a specific wavelength changes significantly in a short period of time
  • the output fluctuation, output decrease, etc. of the wavelength-converted laser light can be corrected without complicating the device configuration. There is an effect that it can be avoided.
  • FIG. 1 is a diagram schematically showing an example of a configuration of a laser processing apparatus including a laser device according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing an example of temperature adjustment processing in the temperature adjustment unit;
  • FIG. 4 is a diagram showing an example of temperature control processing in the temperature control unit of the laser device according to Embodiment 1;
  • FIG. 11 is a perspective view schematically showing an example of the structure of a wavelength conversion element and a temperature adjustment section in a laser device according to Embodiment 3;
  • FIG. 5 is a diagram showing an example of changes in temperature measurement values when the active region of the wavelength conversion element in the laser device according to Embodiment 3 is position A in FIG. 4;
  • FIG. 5 is a diagram showing an example of changes in temperature measurement values when the active region of the wavelength conversion element in the laser device according to Embodiment 3 is position B in FIG. 4;
  • FIG. 11 is a diagram schematically showing an example of a configuration of a laser processing apparatus including a laser device according to Embodiment 3;
  • FIG. 10 is a diagram showing an overview of a control method using temperature setting information in a laser device according to a third embodiment;
  • a laser device and a laser processing device will be described in detail below with reference to the drawings.
  • the embodiments described below are examples, and the scope of the present disclosure is not limited by the embodiments described below.
  • an upper limit value and a lower limit value are provided for the output value, and a state in which the output fluctuation value fluctuates between the upper limit value and the lower limit value described on the left may be called constant.
  • the upper limit and lower limit may be set such that the change in output when changing from the first section to the second section is greater than the difference between the upper limit and the lower limit.
  • FIG. 1 is a diagram schematically showing an example of a configuration of a laser processing apparatus including a laser device according to Embodiment 1.
  • the laser processing device 1 includes a laser device 10 , a stage 21 , a laser scanning section 22 and a processing control section 23 .
  • the laser device 10 is a device that emits a laser beam L2 of a second wavelength.
  • the laser device 10 includes a laser light source 11 , a laser control section 12 , a wavelength conversion element 13 , a temperature adjustment section 14 , a temperature sensor 15 and a temperature control section 16 .
  • the laser light source 11 oscillates laser light L1 of a first wavelength, which is a specific wavelength.
  • the first wavelength laser light L1 is visible light with a wavelength of 532 nm.
  • An example of the laser light source 11 is a laser oscillator.
  • the laser control unit 12 controls the laser light source 11 based on laser control information, which is information regarding control of the laser light source 11 .
  • laser control information which is information regarding control of the laser light source 11 .
  • the on-time which is a time interval before the change time point at which the specific output, which is the output contributing to the wavelength conversion to the second-wavelength laser light L2, of the output of the first-wavelength laser light L1, and the on-time
  • the laser light L1 of the first wavelength is input to the wavelength conversion element 13 so as to include an off time in which the specific output is a constant time interval after the time is taken as an example.
  • the on-time is a period during which the wavelength conversion element 13 converts the laser light L1 of the first wavelength into the laser light L2 of the second wavelength
  • the off-time is the conversion to the laser light L2 of the second wavelength.
  • An example of the laser control information is the average output of the laser light L1 of the first wavelength, the drive current of the laser device 10, and the repetition frequency of the laser light L1 of the first wavelength, which are related to the OFF time of the laser light L2 of the second wavelength. It is a characteristic of laser light including at least one of them.
  • the ON time and OFF time change at least one of the average power of the laser light L1 of the first wavelength, the driving current of the laser device 10, and the repetition frequency of the laser light L1 of the first wavelength.
  • the ON time is the time during which wavelength conversion is performed by inputting the laser light L1 of the first wavelength into the wavelength conversion element 13 with a predetermined peak power or higher.
  • the laser control unit 12 switches from on-time to off-time by switching to continuous oscillation at a constant output and making the peak power less than a constant value.
  • the wavelength conversion element 13 converts all or part of the first wavelength laser light L1 emitted from the laser light source 11 into laser light L2 of a second wavelength shorter than the first wavelength by a nonlinear effect.
  • the wavelength conversion element 13 converts the ultraviolet laser light L2 having a wavelength of 400 nm or less.
  • the wavelength conversion element 13 is, for example, a CsLiB 6 O 10 (CLBO) crystal.
  • CLBO CsLiB 6 O 10
  • the wavelength conversion element 13 emits the converted laser light L ⁇ b>2 of the second wavelength to the laser scanning unit 22 . That is, the laser device 10 oscillates the laser light L2 of the second wavelength.
  • the temperature adjuster 14 adjusts the temperature so that the active region, which is the region of the wavelength conversion element 13 through which the laser light L1 of the first wavelength passes, is maintained at a predetermined target temperature.
  • the target temperature is a temperature at which the heated active region is wavelength-converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value.
  • the temperature adjustment unit 14 is, for example, a Peltier element that is a thermoelectric element that supplies and absorbs heat. That is, the temperature adjustment unit 14 adjusts the temperature by performing at least one of heat input and exhaust heat to the wavelength conversion element 13 so that the temperature of the wavelength conversion element 13 approaches the target temperature.
  • the temperature sensor 15 detects the temperature of the wavelength conversion element 13.
  • the temperature sensor 15 outputs the detected temperature of the wavelength conversion element 13 to the temperature controller 16 .
  • the temperature control unit 16 adjusts the target temperature of the temperature adjustment unit 14 while measuring the temperature of the wavelength conversion element 13 with the temperature sensor 15 so that the temperature of the working region of the wavelength conversion element 13 is maintained within a predetermined temperature range. to control. Further, in Embodiment 1, the temperature control unit 16 is connected to the laser control unit 12, and the laser control unit 12 outputs the laser light L1 having the first wavelength from the laser control unit 12 during the ON time for the OFF time after the current time. Get information. The temperature control unit 16 calculates a target temperature so that the temperature of the active region of the wavelength conversion element 13 during the OFF time does not deviate from a predetermined temperature range, and sets the calculated target temperature in the temperature adjustment unit 14 . Calculation of the target temperature by the temperature control unit 16 will be described later.
  • the stage 21 holds a processing target 50 that is a laser processing target.
  • the stage 21 can move in a direction parallel to the holding surface that holds the workpiece 50, a direction perpendicular to the holding surface, around an axis perpendicular to the holding surface, and in a plane parallel to the holding surface. It has a configuration movable about one axis. That is, the stage 21 moves in a direction parallel to the holding surface, a direction perpendicular to the holding surface, around an axis perpendicular to the holding surface, and around one axis in a plane parallel to the holding surface.
  • a drive system (not shown) is provided to enable this.
  • the laser scanning unit 22 scans the second wavelength laser light L2 emitted from the laser device 10 .
  • An example of the laser scanning unit 22 is a processing head.
  • the laser scanning unit 22 may have a configuration capable of moving in a direction parallel to the holding surface of the stage 21 and a direction perpendicular to the holding surface. That is, the laser scanning unit 22 may be provided with a driving system (not shown) that enables the laser scanning unit 22 to move in the direction parallel to and perpendicular to the holding surface.
  • the processing control unit 23 controls the operations of the laser scanning unit 22 and the stage 21 .
  • the laser device 10 the stage 21, the laser scanning section 22 and the processing control section 23 are illustrated, but the stage 21, the laser scanning section 22 and the processing control section 23 need to be accompanied. You can omit them instead.
  • the laser control unit 12, the temperature control unit 16, and the processing control unit 23 are connected so as to be able to exchange information with each other. Thereby, the laser control unit 12, the temperature control unit 16, and the processing control unit 23 can recognize the oscillation state and the output control state of the laser.
  • FIG. 2 is a diagram illustrating an example of temperature adjustment processing in the temperature adjustment unit.
  • FIG. 2 shows a graph 200 showing an example of measured values of the temperature of the working area, which is the area through which the laser beam L1 of the first wavelength passes, in the wavelength conversion element 13, and changes in the output of the laser beam L2 of the second wavelength. are shown in association with a graph 210 showing an example of .
  • the horizontal axis is time
  • the vertical axis is the measured value of the temperature in the active region of the wavelength conversion element 13 .
  • the horizontal axis is time
  • the vertical axis is the power of the second wavelength laser light L2.
  • the temperature control unit 16 performs temperature control so that the temperature of the wavelength conversion element 13 approaches the set temperature TC .
  • the set temperature TC is a constant value TC0 .
  • the wavelength conversion element 13 When the laser beam L1 of the first wavelength is incident on the wavelength conversion element 13, the wavelength is converted in the active region in the wavelength conversion element 13, and at the same time, the wavelength-converted laser beam L2 of the second wavelength passes through. Fever develops. This heat generation heats the working area.
  • the wavelength conversion element 13 is provided with a temperature adjustment section 14, and the temperature adjustment section 14 maintains a temperature at which the heated action region is wavelength-converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value.
  • T C0 is the set temperature T C of the temperature adjustment unit 14 and T d is the amount of temperature rise in the action region due to the heat generated by the laser beam L2 of the second wavelength
  • T d is the amount of temperature rise in the action region due to the heat generated by the laser beam L2 of the second wavelength
  • the temperature of the action region is T C0 +T d .
  • the temperature of the wavelength conversion element 13 is maintained at a temperature at which the output of the laser light L1 of the first wavelength is equal to or higher than a predetermined value, and the wavelength is converted with a wavelength conversion efficiency equal to or higher than the predetermined reference value at this time. It shall be At this time, the temperature of the wavelength conversion element 13 with respect to the set temperature T C0 of the temperature adjustment unit 14 receives a temperature rise value T d due to heat generation from the laser beam L2 of the second wavelength, and becomes T C0 +T d . .
  • the temperature T C0 +T d at this time is the temperature at which the wavelength is converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value.
  • the on-time ⁇ t on is the time during which part of the laser light L1 of the first wavelength is wavelength-converted by the input of the laser light L1 of the first wavelength, and the wavelength is completely converted. It is assumed that an off time ⁇ t off which is a time when the power supply is off is set. That is, the on-time ⁇ t on is a time interval in which the specific output, which is the output that contributes to the wavelength conversion of the laser light L1 having the first wavelength to the laser light L2 having the second wavelength, is input, and the specific output is the wavelength It is assumed that off-time ⁇ t off , which is a constant time interval that does not contribute to conversion, is set.
  • the wavelength conversion efficiency from time t 22 immediately after incidence of the first wavelength laser beam L1 to time t 24 when the temperature of the active region changes to the temperature T C0 +T d or a predetermined temperature range is determined in advance. below the reference value.
  • the time from time t22 to time t24 is the time ⁇ t25 required for the output of the second wavelength laser light L2 to rise. In the following, the time required for rise is also referred to as rise time.
  • the rise time ⁇ t 25 is lengthened because the temperature of the active region must be increased by T d .
  • the temperature control unit 16 shortens the rise time of the output of the second wavelength laser light L2 emitted from the wavelength conversion element 13 when switching from the OFF time ⁇ t off to the ON time ⁇ t on . temperature control.
  • FIG. 3 is a diagram showing an example of temperature control processing in the temperature control unit of the laser device according to Embodiment 1.
  • FIG. FIG. 3 shows a graph 300 showing an example of measured values of the temperature of the working area, which is the area through which the laser beam L1 of the first wavelength passes, in the wavelength conversion element 13, and the output change of the laser beam L2 of the second wavelength. are shown in association with a graph 310 showing an example.
  • the horizontal axis is time
  • the vertical axis is the measured value of the temperature of the active region of the wavelength conversion element 13 .
  • the horizontal axis is time
  • the vertical axis is the power of the second wavelength laser light L2.
  • the temperature control unit 16 performs temperature control so as to keep the temperature of the wavelength conversion element 13 at the set temperature TC .
  • the set temperature T C is indicated by a dotted line, and unlike the case of FIG. 2, it is not always constant.
  • the temperature control unit 16 sets the start time t 31 and the end time t 32 of the off time ⁇ t off from the laser control unit 12 before the start time t 31 and the end time t 32 of the off time ⁇ t off . It is obtained before the change time point at which the specific output of the laser light L1 of the wavelength changes. In other words, the temperature controller 16 anticipates the OFF time ⁇ t off . Then, the temperature control unit 16 calculates the corrected temperature T F according to the off-time ⁇ t off read ahead.
  • the correction temperature T F is the set temperature T C of the action region during the off time ⁇ t off during which wavelength conversion is not performed, and the wavelength conversion efficiency equal to or higher than a predetermined reference value when the laser beam L1 of the first wavelength is incident. is the temperature to be corrected so as to be equal to or higher than the temperature at which
  • the temperature control unit 16 allows the laser beam L1 of the first wavelength to enter.
  • the correction temperature TF can be calculated so that the wavelength conversion efficiency of the active region at the time of the above becomes equal to or higher than a predetermined reference value. Note that the correction temperature T F may be changed with time. In one example, as shown in FIG.
  • the temperature control unit 16 changes the temperature adjustment unit 14 to A new set temperature T C of the temperature adjuster 14 is T C0 +T F obtained by adding the correction temperature T F to the set temperature T C0 .
  • the set temperature T C0 +T F of the temperature adjustment unit 14 is the temperature at which the wavelength is converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value at the moment when the laser light L1 of the first wavelength is input to the action region.
  • the set temperature T C0 +T F for the off time ⁇ t off corresponds to the second section set temperature.
  • the temperature of the active region is the temperature at which the wavelength is converted with the wavelength conversion efficiency equal to or higher than the predetermined reference value, so the rise time ⁇ t 35 is as shown in FIG. is shortened compared to the rise time ⁇ t 25 for . That is, the output of the second wavelength laser light L2 rises in a shorter time than in the case of FIG.
  • This temperature control makes it possible to efficiently oscillate the laser beam L2 of the second wavelength at a high output.
  • the temperature adjustment unit 14 in the laser device 10 of Embodiment 1 can shorten the rise time as compared with the case of generating the laser light L2 having a wavelength exceeding 400 nm.
  • the temperature control unit 16 acquires the laser control information of the laser light source 11 for the off time ⁇ t off before the times t 31 and t 32 at which the output changes during the off time ⁇ t off . Based on the laser control information for ⁇ t off , the temperature of the wavelength conversion element 13 during the off time ⁇ t off is controlled. At this time, the temperature control unit 16 uses the laser control information to calculate the change in the temperature of the active region during the off time ⁇ t off . Then, the temperature control unit 16 adjusts the ON time so that the temperature of the active region at the moment when the laser light L1 of the first wavelength is input becomes a temperature at which the wavelength is converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value. A correction temperature T F for correcting the set temperature T C0 at ⁇ t on is calculated, and the temperature of the wavelength conversion element 13 is controlled using T C0 +T F .
  • the laser control information may be any information that can calculate the change in temperature of the wavelength conversion element 13 at the time of switching from the OFF time ⁇ t off to the ON time ⁇ t on .
  • the laser control information may be any information that has a correlation with the heat generated by the laser beam L2 of the second wavelength.
  • the laser control information can be an amount that correlates with the amount of heat generated per unit time in the wavelength conversion element 13 . This makes it possible to calculate the correction temperature T F at the off time ⁇ t off using the laser control information.
  • the temperature control unit 16 adjusts the temperature of the wavelength conversion element 13 during the off time ⁇ t off based on a comparison between the amount of heat generated during the on time ⁇ t on and the amount of heat generated during the off time ⁇ t off . can be controlled. Specifically, the temperature control unit 16 acquires the element temperature, which is the temperature of the wavelength conversion element 13 measured by the temperature sensor 15, and heats the wavelength conversion element 13 so that the element temperature approaches the target temperature. Temperature control is performed by implementing heat and/or heat. Thus, the wavelength conversion element 13 can be controlled because the laser control information has a correlation with the heat generation of the laser beam L2 of the second wavelength.
  • the temperature control unit 16 determines the amount of heat generated by the wavelength conversion element 13 during the off-time ⁇ t off based on the amount of heat generated by the wavelength conversion element 13 during the off-time ⁇ t off . Then, the temperature of the wavelength conversion element 13 is controlled for the on-time ⁇ t on so that the temperature of the wavelength conversion element 13 approaches the set temperature TC at the end of the on - time ⁇ t on . to run. Since the laser control information has a correlation with the heat generation of the wavelength conversion element 13 by the laser light L2 of the second wavelength, the temperature control unit 16 controls the change in the heat generation of the wavelength conversion element 13 by the laser light L2 of the second wavelength according to the laser control information. can be read ahead. As a result, the temperature of the wavelength conversion element 13 can be controlled within a predetermined temperature range.
  • the laser device 10 includes a laser light source 11 that emits a laser beam L1 of a first wavelength, and a laser light source 11 according to laser control information for controlling the emission of the laser beam L1 of the first wavelength from the laser light source 11. 11, a wavelength conversion element 13 for wavelength-converting laser light L1 of a first wavelength from the laser light source 11 into laser light L2 of a second wavelength shorter than the first wavelength, and a wavelength conversion element. and a temperature controller 16 that controls the temperature maintained by the wavelength conversion element 13 by the temperature controller 14 .
  • the temperature control unit 16 acquires the laser control information for the off time ⁇ t off before the output change point of transition to the off time ⁇ t off , and performs wavelength conversion for the off time ⁇ t off based on the laser control information for the off time ⁇ t off . Control the temperature of the element 13 . Specifically, at the sum T C0 +T F of the set temperature T C0 and the correction temperature T F in the ON time ⁇ t on , the wavelength conversion efficiency of the action region when the laser beam L1 of the first wavelength is incident is determined in advance. The correction temperature T F of the temperature adjustment unit 14 during the OFF time ⁇ t off is calculated and set in the temperature adjustment unit 14 so as to be equal to or higher than a predetermined value.
  • the temperature adjustment unit 14 adjusts the temperature during the OFF time ⁇ t off to a temperature obtained by adding the correction temperature T F to the set temperature T C0 .
  • This has the effect of shortening the rise time of the laser beam L2 of the second wavelength when the off-time ⁇ t off transitions to the on-time ⁇ t on compared to the conventional art.
  • the temperature control timing can be pre-read and executed by pre-reading the laser output change based on the laser control information from the laser control unit 12 side, and the temperature of the wavelength conversion element 13 can be brought closer to the target temperature. be able to.
  • the output of the laser light L1 of the specific wavelength changes greatly in a short time, it is possible to avoid output fluctuations, output reduction, etc. of the wavelength-converted laser light L2 without complicating the device configuration. It is possible to obtain a laser device 10 capable of
  • Embodiment 2 when the laser light L2 of the second wavelength is emitted at the start time t32 of the ON time ⁇ t on with an output power equal to or greater than a predetermined value, the wavelength conversion element 13 receives the second wavelength
  • the temperature of the active area rises due to the heat generated by the laser beam L2, and the temperature moves away from the predetermined temperature range. In one example, it becomes higher than the predetermined temperature T C0 +T d . Therefore, the temperature control unit 16 sets a constant time from the rise of the laser beam L2 of the second wavelength so that the temperature of the active region does not deviate from the predetermined temperature range after the start time t32 of the ON time ⁇ t on .
  • the correction temperature TF may be gradually set to 0 over time.
  • An example of a constant time can be the rise time ⁇ t 35 .
  • the temperature control unit 16 gradually reduces the correction temperature T F to 0 over a certain period of time from the rise of the second-wavelength laser beam L 2 . did.
  • the temperature control unit 16 can prevent the temperature of the active region from deviating from the predetermined temperature range with respect to the temperature at which the wavelength is converted with the wavelength conversion efficiency equal to or higher than the predetermined reference value. .
  • the output of the laser light L2 of the second wavelength can be stably and efficiently oscillated.
  • FIG. 4 is a perspective view schematically showing an example of the structure of the wavelength conversion element and the temperature adjustment section in the laser device according to Embodiment 3.
  • the wavelength conversion element 13 is arranged above the temperature adjustment section 14 with a heat diffusion plate 31 interposed therebetween.
  • the thermal diffusion plate 31 is a member that makes the temperature distribution in the wavelength conversion element 13 uniform.
  • the area of the incident surface 13a of the wavelength conversion element 13, which is the surface on which the laser beam L1 of the first wavelength is incident, is sufficiently larger than the areas of the active regions 131a and 131b through which the laser beam L1 of the first wavelength passes. .
  • the positions of the active regions 131 a and 131 b can be set at arbitrary positions within the incident surface 13 a of the wavelength conversion element 13 .
  • Positions A and B of action regions 131 a and 131 b may be relatively close to temperature adjustment section 14 or may be relatively far from temperature adjustment section 14 .
  • FIG. 4 illustrates an action area 131a provided at a position A far from the temperature adjustment section 14 and an action area 131b provided at a position B close to the temperature adjustment section 14.
  • the action regions 131a and 131b are simply referred to as the action region 131 when there is no need to distinguish them individually.
  • FIG. 5 is a diagram showing an example of changes in temperature measurement values when the active region of the wavelength conversion element in the laser device according to Embodiment 3 is position A in FIG.
  • FIG. 6 is a diagram showing an example of changes in temperature measurement values when the active region of the wavelength conversion element in the laser device according to Embodiment 3 is position B in FIG.
  • the horizontal axis is time
  • the vertical axis is the measured value of the temperature in the working region of the wavelength conversion element 13.
  • the second wavelength laser light L ⁇ b>2 passing through the wavelength conversion element 13 has a different distance from the temperature adjustment section 14 depending on the positions A and B of the wavelength conversion element 13 . Even if heat is similarly generated by the laser beam L2 of the second wavelength, if the distance from the temperature adjustment unit 14 is different, the temperature adjustment of the action regions 131a and 131b by the temperature adjustment unit 14 is performed as shown in FIGS. There may be a difference in the rising temperature Td , which is the rising temperature due to different effects. In addition, the temperature rise Td may differ depending on the frequency and predetermined output value of the passing laser light L2 of the second wavelength.
  • the amount of heat generated by the laser light L2 of the second wavelength with respect to the wavelength conversion element 13 may also differ, which may also cause a difference in the temperature rise Td . be.
  • the corrected temperature T F described in the first embodiment is also different in each case.
  • the temperature control unit 16 performs appropriate settings determined by the positions A and B of the active regions 131a and 131b, the frequency and predetermined output value of the laser light L2 of the second wavelength, the physical property values of the wavelength conversion element 13, and the like. It may have temperature setting information in which the temperature T C and the correction temperature T F are tabulated. In this case, the temperature control section 16 has a storage section (not shown) that stores the temperature setting information.
  • FIG. 7 is a diagram schematically showing an example of the configuration of a laser processing apparatus equipped with a laser device according to Embodiment 3.
  • symbol is attached
  • the laser device 10 further includes an incident position changing section 32 .
  • the incident position changing unit 32 changes the incident position of the laser light L ⁇ b>1 of the first wavelength emitted from the laser light source 11 to the wavelength conversion element 13 .
  • the incident position changing unit 32 is capable of changing the relative positions of the emission end of the laser light L1 of the first wavelength in the laser light source 11 and the incident surface of the wavelength conversion element 13 on which the laser light L1 of the first wavelength is incident.
  • the incident position changing section 32 is a drive system provided in at least one of the laser light source 11 and the wavelength conversion element 13 .
  • the incident position changer 32 is controlled by the laser controller 12 in one example.
  • the laser control unit 12 controls at least the laser light source 11 and the wavelength conversion element 13 so that the output end of the laser light source 11 is positioned at a desired position on a coordinate system based on a predetermined position on the incident surface. Control to change one position.
  • the temperature control unit 16 obtains in advance from the laser control unit 12 the incident position of the laser beam L1 of the first wavelength to the wavelength conversion element 13 during the ON time ⁇ t on , and adjusts the wavelength conversion element 13 based on the obtained incident position.
  • FIG. 8 is a diagram showing an outline of a control method using temperature setting information in the laser device according to the third embodiment.
  • the temperature setting information 161 corresponds the set temperature T C and the correction temperature T F to the material characteristic information of the wavelength conversion element 13, which is parameters such as the position of the active region 131 and the frequency and output of the second wavelength laser light L2. This is the information attached.
  • the temperature control unit 16 controls the combination of the conditions in the temperature setting information 161, that is, the position of the active region 131, the frequency and output of the laser beam L2 of the second wavelength, and the physical property values of the wavelength conversion element 13. from the temperature setting information 161 .
  • the temperature control unit 16 sets the read setting temperature T C and correction temperature T F in the temperature adjustment unit 14 . By doing so, even if the parameters of the laser beam L2 of the second wavelength and the position of the active region 131 are changed, or if the physical property value is changed due to the replacement of the wavelength conversion element 13, the first embodiment can be used. Control by the temperature adjustment unit 14 described above can be performed.
  • the temperature control unit 16 controls the set temperature T C corrected by the correction temperature T F such that the temperature of the action region 131 is always a temperature at which wavelength conversion is performed with a wavelength conversion efficiency equal to or higher than a predetermined reference value. can do. As a result, the output of the laser light L2 of the second wavelength can be stably and efficiently oscillated.
  • the temperature setting information 161 actually operates in a plurality of combinations in which the position, frequency, and output of the action area 131 are changed, and sets the temperature T so that the temperature of the action area 131 operates within a predetermined temperature range. It is created by exhaustively ascertaining the values of C and correction temperature T F . Based on this result, the combination of the position of the active region 131, the frequency and output of the second wavelength laser light L2, and the physical property value of the wavelength conversion element 13 is associated with the set temperature T C and the correction temperature T F.
  • the temperature setting information 161 is created and stored in the temperature control unit 16 .
  • the set temperature T C and the correction temperature T F corresponding to the parameters such as the position of the active region 131 and the frequency and output of the second-wavelength laser beam L2 are read from the temperature setting information 161, and the read set temperature T C and the correction temperature T F are set in the temperature adjuster 14 .
  • the values of the set temperature TC and the correction temperature TF corresponding to this change are stored in the temperature setting information. 161, and the temperature control unit 16 controls the temperature of the wavelength conversion element 13 based on the values of the set temperature T C and the correction temperature T F that have been obtained.
  • the position of the active region 131 of the wavelength conversion element 13 is not fixed because the position of the active region 131 can be changed in a predetermined period.
  • deterioration due to irradiation of the laser light L1 of the first wavelength and passage of the laser light L2 of the second wavelength to a specific portion of the wavelength conversion element 13 can be suppressed, and the wavelength conversion element 13 has a long life. has the effect of
  • the temperature control unit 16 changes not only the incident position to the wavelength conversion element 13 but also the frequency of the laser light L2 of the second wavelength, the predetermined output value, and the physical property value of the wavelength conversion element 13. Also for such a change in usage conditions, the values of the set temperature T C and the correction temperature T F corresponding to this change are obtained from the temperature setting information 161 . Then, the temperature control unit 16 controls the temperature of the wavelength conversion element 13 based on the acquired set temperature T C and correction temperature T F without calculating the correction temperature T F. It can be performed. In addition, since the control temperature can be obtained from the information stored in the storage section of the temperature control section 16 without performing pre-measurement for temperature control each time, the laser device 10 can be operated efficiently. Also, by converting the temperature setting information 161 into a data table, information for temperature control can be calculated from the data table.
  • Embodiment 4 In temperature control using the temperature setting information 161 created in Embodiment 3, when referring to the correction temperature TF from the temperature setting information 161, the position of the active region 131 or the physical property value of the wavelength conversion element 13 is the temperature setting information. 161 may not.
  • the temperature control unit 16 determines a value not included in the temperature setting information 161 based on the position of the active region 131 of the temperature setting information 161 or the physical property value of the wavelength conversion element 13. may be obtained using an interpolation method such as linear interpolation. Thereby, the correction temperature T F can be determined using the position of the active region 131 or the physical property value of the wavelength conversion element 13 that is not included in the temperature setting information 161 .
  • the temperature control unit 16 determines the correction temperature T F that does not exist in the temperature setting information 161 by interpolation using data in the temperature setting information 161 .
  • the wavelength conversion element 13 having the active region 131 or the physical property value not included in the temperature setting information 161 .
  • the output of the second wavelength equal to or greater than the predetermined value is detected. There is an effect that it becomes possible to realize the emission of the laser light L2.
  • Embodiment 5 Immediately after switching from the on-time ⁇ t on to the off-time ⁇ t off , the temperature of the wavelength conversion element 13 approaches the set temperature T C by the temperature adjuster 14 as the off-time ⁇ t off elapses. In order to bring the temperature of the active region 131 of the wavelength conversion element 13 to the temperature to which the correction temperature T F is added, the longer the OFF time ⁇ t off is, the more heat is generated by the temperature adjustment section 14 . When the off -time ⁇ t off becomes longer so that the temperature of the action area 131 becomes equal to the set temperature T C , the amount of heat generated by the temperature adjustment unit 14 for applying the correction temperature T F becomes maximum. The amount of heat generated by the temperature control unit 14 is constant.
  • the correction temperature T F and the amount of heat generation required to give the correction temperature T F for the length of the off time ⁇ t off are made into a data table in advance, and the heat generation amount is determined according to the length of the off time ⁇ t off . good too.
  • this makes it possible to eliminate the need for temperature measurement by the temperature sensor 15 and temperature control using the temperature measurement results.
  • This makes it possible to apply the correction temperature T F to the wavelength conversion element 13 in a shorter time than in temperature control that requires feedback via temperature measurement.
  • the correction temperature T F can be applied to the wavelength conversion element 13 .
  • the length of the off time ⁇ t off can be recognized by the temperature control section 16 cooperating with the laser control section 12 and reading the laser control information in advance. As a result, the output of the laser light L2 of the second wavelength can be stably and efficiently oscillated.
  • Embodiment 6 wavelength conversion is performed by inputting the laser light L1 of the first wavelength into the wavelength conversion element 13 with a predetermined peak power or higher during the ON time ⁇ t on . Further, in switching from the on-time ⁇ t on to the off-time ⁇ t off , the laser control unit 12 switches to continuous oscillation at a constant output so that the peak power becomes less than a constant. However, switching to the off time ⁇ t off is not limited to this method.
  • switching to the off time ⁇ t off can also be performed by increasing the frequency of the pulse-oscillated laser light L1 of the first wavelength at a constant output. In this case, the energy per pulse becomes small and the peak power is lowered, so wavelength conversion is not performed.
  • the laser control information defines that the laser light L1 of the first wavelength is increased by the frequency at a constant output. Even when the operation is switched between the ON time ⁇ t on and the OFF time ⁇ t off , the heat generation in the wavelength conversion element 13 due to the laser light L2 of the second wavelength is reduced during the OFF time ⁇ t off . Temperature control is effective, and the output of the laser light L2 of the second wavelength can be stably and efficiently oscillated.
  • Embodiment 7 the mechanism for switching to the OFF time ⁇ t off switches the laser light L1 of the first wavelength from pulse oscillation to continuous oscillation to attenuate the laser light L1 of the first wavelength.
  • the mechanism for switching from the ON time ⁇ t on to the OFF time ⁇ t off is not limited to this.
  • FIG. 9 is a diagram schematically showing an example of the configuration of a laser device according to Embodiment 7.
  • symbol is attached
  • the laser device 10 further includes a modulation element 33 between the laser light source 11 and the wavelength conversion element 13.
  • the modulation element 33 is a general term for elements that can stop, attenuate, or rotate the polarization of the laser light L1 of the first wavelength that is incident on the wavelength conversion element 13 from the laser light source 11 .
  • the modulating element 33 may be a mechanical shutter arranged between the laser light source 11 and the wavelength converting element 13 .
  • the mechanical shutter can block the laser beam L1 of the first wavelength and prevent it from passing through the wavelength conversion element 13 .
  • the modulating element 33 may be an acousto-optic or electro-optic element. In this case, the polarization direction is controlled by the acousto-optic element or the electro-optic element so that wavelength conversion does not occur even when the laser light L1 of the first wavelength is transmitted through the wavelength conversion element 13 .
  • information about the modulation of the second-wavelength laser light L2 by the modulation element 33 is related to the mechanical shutter cut-off control, acousto-optical element, or electrical Control of the polarization direction by the optical element is defined by laser control information.
  • Two or more of blocking, attenuation, and rotation of polarization of the laser light L1 of one wavelength may be combined.
  • at least one of blocking, attenuation, and polarization rotation of the laser beam L1 of the first wavelength may be included.
  • the laser processing apparatus 1 controls the output of the laser beam L2 of the second wavelength by the processing control unit 23, and synchronously operates between the laser scanning unit 22 and the stage 21 on which the processing target 50 is placed. Desired processing is performed by controlling.
  • the processing control unit 23 operates the laser scanning unit 22 and the stage 21 so as to discontinuously irradiate the processing object 50 with the laser light L2 of the second wavelength in processing such as drilling or cutting and thermal processing such as quenching. You may let At this time, the processing control unit 23 may realize discontinuous irradiation of the processing object 50 by performing control to increase or decrease the output of the laser light L2 of the second wavelength according to the purpose of processing.
  • the correction temperature T F added to the set temperature T C0 of the temperature adjuster 14 may be increased or decreased in accordance with the time timing of the off time ⁇ t off of the laser light L1 of the first wavelength. Therefore, the temperature control unit 16 that controls the correction temperature T F receives the switching timing between the ON time ⁇ t on and the OFF time ⁇ t off of the laser light L1 of the first wavelength from the laser control unit 12 or the processing control unit 23.
  • Switching between continuous oscillation and pulse oscillation in Embodiments 1 to 5, or switching between on-time ⁇ t on and off-time ⁇ t off of wavelength conversion shown in Embodiments 6 and 7 is performed by moving or machining the object 50.
  • the operation is interlocked with the scanning of the laser beam L2 of the second wavelength that matches the shape and the presence/absence of irradiation that matches the scanning.
  • the temperature control unit 16 simultaneously performs the temperature control shown in Embodiments 1 to 5, so that the wavelength conversion efficiency is continuously equal to or higher than the predetermined reference value while the laser processing is being performed.
  • the two-wavelength laser beam L2 can be stably emitted. As a result, highly efficient and stable laser processing can be realized.
  • Embodiment 9 In the laser processing apparatus 1 of Embodiment 8, when the laser light source 11 oscillates or changes its output in synchronization with the laser processing control, the processing control unit 23 determines the timing of the ON time ⁇ t on or the OFF time ⁇ t off . , to the temperature controller 16 or the laser controller 12 . As a result, the temperature adjustment section 14 can operate according to the command from the processing control section 23 without performing temperature control via temperature measurement by the temperature sensor 15 . As a result, the temperature can be controlled with the minimum necessary information transmission, and high-speed and highly efficient laser processing can be realized. That is, by performing temperature control in conjunction with the processing control unit 23, it is possible to control the temperature based on information from the processing control unit 23, and the efficiency of the laser processing apparatus 1 can be improved.
  • the laser control unit 12, the temperature control unit 16, and the processing control unit 23 of the laser processing apparatus 1 according to Embodiments 1 to 9 are implemented by processing circuits.
  • the processing circuit may be dedicated hardware, or may be a circuit with a processor.
  • FIG. 10 is a block diagram schematically showing an example of a hardware configuration of a laser control section, a temperature control section, and a processing control section provided in the laser processing apparatuses according to Embodiments 1 to 9.
  • the laser control unit 12 , the temperature control unit 16 and the processing control unit 23 each have a processor 501 and a memory 502 .
  • Processor 501 and memory 502 are connected via bus line 503 .
  • the laser control unit 12 , the temperature control unit 16 and the processing control unit 23 are implemented by the processor 501 executing programs stored in the memory 502 . Also, multiple processors and multiple memories may work together to achieve the above functions. Some of the functions of the laser control unit 12, the temperature control unit 16, and the processing control unit 23 are implemented as electronic circuits that are dedicated hardware, and other functions are realized using the processor 501 and the memory 502. You may do so. As an example, in the case of Embodiments 1 to 9, the laser control section 12 controls the operation of the laser light source 11 with an electrical signal, and the temperature control section 16 controls the operation of the temperature adjustment section 14 with an electrical signal. , the processing control unit 23 controls the operations of the stage 21 and the laser scanning unit 22 by electric signals.
  • 1 laser processing device 10 laser device, 11 laser light source, 12 laser control section, 13 wavelength conversion element, 13a incident surface, 14 temperature control section, 15 temperature sensor, 16 temperature control section, 21 stage, 22 laser scanning section, 23 Processing control unit, 31 heat diffusion plate, 32 incident position changing unit, 33 modulation element, 50 processing object, 131, 131a, 131b working area, 161 temperature setting information, L1 first wavelength laser light, L2 second wavelength laser light.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

A laser device (10) comprises a laser light source (11), a laser control unit (12), a wavelength converting element (13), and a temperature control unit (16). The laser light source (11) generates first-wavelength laser light (L1). The laser control unit (12) controls the laser light source (11) on the basis of laser control information, which is information relating to the control of the laser light source (11). The wavelength converting element (13) converts the first-wavelength laser light (L1) into second-wavelength laser light (L2) having a wavelength of 400 nm or less. The temperature control unit (16): acquires the laser control information for a second segment prior to a change time point of an output of the first-wavelength laser light (L1) in the second segment, wherein the second segment is a time segment in which a specific output is constant and is a time segment after a first segment, being a time segment before a change time point at which the specific output changes, and wherein the specific output is an output, from among the output of the first-wavelength laser light (L1), that contributes to the wavelength conversion to the second-wavelength laser light (L2); and controls a temperature of the wavelength converting element (13) in the second segment on the basis of the acquired laser control information for the second segment.

Description

レーザ装置およびレーザ加工装置Laser equipment and laser processing equipment
 本開示は、レーザ光源からのレーザ光を波長変換して出力するレーザ装置およびレーザ加工装置に関する。 The present disclosure relates to a laser device and a laser processing device that wavelength-convert and output laser light from a laser light source.
 特許文献1には、波長変換結晶の温度が変換効率の最も高い温度で維持されるように、波長変換される特定波長のレーザの出力変動に合わせて、光の出力変動と同程度の応答の早さの温調装置を局所的に利用し、レーザの出力変動と等しく高速な温度制御が可能な波長変換方法が開示されている。 In Patent Document 1, in order to maintain the temperature of the wavelength conversion crystal at the temperature with the highest conversion efficiency, it is possible to adjust the output power fluctuation of a laser of a specific wavelength to be wavelength-converted so that the response is similar to that of light output power fluctuation. A wavelength conversion method is disclosed in which a high-speed temperature control device is locally used to enable high-speed temperature control equivalent to laser output fluctuations.
 具体的には、特許文献1に記載の波長変換方法では、まず、温調装置を用いて波長変換素子を温調する第1温調工程が実施される。ついで、波長変換素子の温度変動に対処して高出力の波長変換出力を得るために、補助光源から波長変換に寄与しない波長域の補助光を作用領域に照射して波長変換素子に給熱する第2調温工程が実施される。そして、第1調温工程による波長変換素子への給熱量と、第2調温工程による波長変換素子への給熱量と、に基づいて、波長変換素子の温度が目標温度となるように、補助光源からの吸熱量を制御する温度制御工程が実施される。 Specifically, in the wavelength conversion method described in Patent Document 1, first, a first temperature control step is performed in which a temperature control device is used to control the temperature of the wavelength conversion element. Then, in order to cope with temperature fluctuations of the wavelength conversion element and obtain a high-power wavelength converted output, auxiliary light in a wavelength range that does not contribute to wavelength conversion is irradiated from the auxiliary light source to the working region to supply heat to the wavelength conversion element. A second temperature control step is performed. Then, based on the amount of heat supplied to the wavelength conversion element in the first temperature adjustment step and the amount of heat supplied to the wavelength conversion element in the second temperature adjustment step, the temperature of the wavelength conversion element is assisted to reach the target temperature. A temperature control step is performed to control the amount of heat absorbed from the light source.
特開2018-159896号公報JP 2018-159896 A
 しかしながら、特許文献1に記載の波長変換方法では、補助光源を別途用意する必要があり、また、補助光と特定波長のレーザ光との間の光軸のずれを補正する必要がある。このため、波長変換素子を有するレーザ装置の構成が複雑化してしまう。また、特定波長のレーザ光の出力変化が短時間の間に発生する場合または出力変動幅が大きい場合に、特定波長のレーザ光の出力変化に温度制御が追随できないという問題があった。つまり、特許文献1に記載の波長変換方法では、特定波長のレーザ光の出力が短い時間の間に大きく変化する場合に、波長変換されたレーザ光の出力変動、出力低下等が発生するという問題があった。また、このような出力変動、出力低下等を避けようとすると、レーザ装置の構成が複雑になるという問題があった。 However, in the wavelength conversion method described in Patent Document 1, it is necessary to separately prepare an auxiliary light source, and it is also necessary to correct the deviation of the optical axis between the auxiliary light and the laser light of the specific wavelength. This complicates the configuration of the laser device having the wavelength conversion element. In addition, there is a problem that temperature control cannot follow the output change of the laser light of the specific wavelength when the output change of the laser light of the specific wavelength occurs in a short period of time or the output fluctuation range is large. In other words, in the wavelength conversion method described in Patent Document 1, when the output of laser light with a specific wavelength changes greatly in a short period of time, there is a problem that the output of the wavelength-converted laser light fluctuates or decreases. was there. In addition, there is a problem that the configuration of the laser device becomes complicated when trying to avoid such output fluctuations, output reduction, and the like.
 本開示は、上記に鑑みてなされたものであって、特定波長のレーザ光の出力が短い時間の間に大きく変化する場合に、装置構成を複雑化することなく、波長変換されたレーザ光の出力変動、出力低下等を避けることができるレーザ装置を得ることを目的とする。 The present disclosure has been made in view of the above, and the wavelength-converted laser light can be output without complicating the device configuration when the output of the laser light with a specific wavelength changes greatly in a short time. It is an object of the present invention to obtain a laser device capable of avoiding output fluctuation, output decrease, and the like.
 上述した課題を解決し、目的を達成するために、本開示に係るレーザ装置は、レーザ光源と、レーザ制御部と、波長変換素子と、温度制御部と、を備える。レーザ光源は、第1波長のレーザ光を発生させる。レーザ制御部は、レーザ光源の制御についての情報であるレーザ制御情報に基づいてレーザ光源を制御する。波長変換素子は、第1波長のレーザ光を400nm以下の第2波長のレーザ光へ波長変換する。温度制御部は、第1波長のレーザ光の出力のうち第2波長のレーザ光への波長変換に寄与する出力である特定出力が変化する変化時点より前の時間区間である第1区間より後の時間区間であって、特定出力が一定の時間区間である第2区間のレーザ制御情報を、第2区間の出力の変化時点より前に取得し、取得した第2区間のレーザ制御情報に基づいて第2区間の波長変換素子の温度を制御する。 A laser device according to the present disclosure includes a laser light source, a laser control section, a wavelength conversion element, and a temperature control section in order to solve the above-described problems and achieve the object. The laser light source generates laser light of a first wavelength. The laser control unit controls the laser light source based on laser control information, which is information regarding control of the laser light source. The wavelength conversion element wavelength-converts laser light of a first wavelength into laser light of a second wavelength of 400 nm or less. After the first section, which is a time section before a change point at which the specific output, which is the output that contributes to the wavelength conversion to the second wavelength laser light, of the output of the first wavelength laser light, the temperature control unit changes. is a time interval in which the specific output is a constant time interval, the laser control information of the second interval is acquired before the output change point of the second interval, and based on the acquired laser control information of the second interval to control the temperature of the wavelength conversion element in the second section.
 本開示に係るレーザ装置は、特定波長のレーザ光の出力が短い時間の間に大きく変化する場合に、装置構成を複雑化することなく、波長変換されたレーザ光の出力変動、出力低下等を避けることができるという効果を奏する。 In the laser device according to the present disclosure, when the output of laser light with a specific wavelength changes significantly in a short period of time, the output fluctuation, output decrease, etc. of the wavelength-converted laser light can be corrected without complicating the device configuration. There is an effect that it can be avoided.
実施の形態1に係るレーザ装置を備えるレーザ加工装置の構成の一例を模式的に示す図1 is a diagram schematically showing an example of a configuration of a laser processing apparatus including a laser device according to Embodiment 1; FIG. 温度調整部での温度調整処理の一例を示す図FIG. 4 is a diagram showing an example of temperature adjustment processing in the temperature adjustment unit; 実施の形態1に係るレーザ装置の温度調整部での温調処理の一例を示す図FIG. 4 is a diagram showing an example of temperature control processing in the temperature control unit of the laser device according to Embodiment 1; 実施の形態3に係るレーザ装置における波長変換素子および温度調整部の構造の一例を模式的に示す斜視図FIG. 11 is a perspective view schematically showing an example of the structure of a wavelength conversion element and a temperature adjustment section in a laser device according to Embodiment 3; 実施の形態3に係るレーザ装置における波長変換素子の作用領域が図4の位置Aである場合の温度の計測値の変化の一例を示す図FIG. 5 is a diagram showing an example of changes in temperature measurement values when the active region of the wavelength conversion element in the laser device according to Embodiment 3 is position A in FIG. 4; 実施の形態3に係るレーザ装置における波長変換素子の作用領域が図4の位置Bである場合の温度の計測値の変化の一例を示す図FIG. 5 is a diagram showing an example of changes in temperature measurement values when the active region of the wavelength conversion element in the laser device according to Embodiment 3 is position B in FIG. 4; 実施の形態3に係るレーザ装置を備えるレーザ加工装置の構成の一例を模式的に示す図FIG. 11 is a diagram schematically showing an example of a configuration of a laser processing apparatus including a laser device according to Embodiment 3; 実施の形態3に係るレーザ装置での温度設定情報を用いた制御方法の概要を示す図FIG. 10 is a diagram showing an overview of a control method using temperature setting information in a laser device according to a third embodiment; 実施の形態7に係るレーザ装置の構成の一例を模式的に示す図A diagram schematically showing an example of a configuration of a laser device according to a seventh embodiment; 実施の形態1から9に係るレーザ加工装置に備えられるレーザ制御部、温度制御部および加工制御部のハードウェア構成の一例を模式的に示すブロック図A block diagram schematically showing an example of a hardware configuration of a laser control unit, a temperature control unit, and a processing control unit provided in the laser processing apparatuses according to Embodiments 1 to 9.
 以下に、本開示の実施の形態に係るレーザ装置およびレーザ加工装置を図面に基づいて詳細に説明する。以下に説明する実施の形態は例示であって、以下に説明する実施の形態によって本開示の範囲が限定されるものではない。 A laser device and a laser processing device according to embodiments of the present disclosure will be described in detail below with reference to the drawings. The embodiments described below are examples, and the scope of the present disclosure is not limited by the embodiments described below.
 また、本開示において、出力値に上限値および下限値を設け、出力変動値が左記の上限値と下限値との間を変動している状態を一定と称してもよい。また、第1区間から第2区間へと変化する際の出力変化は、上限値と下限値の差より大きくなるように上限値および下限値を設定してもよい。 Further, in the present disclosure, an upper limit value and a lower limit value are provided for the output value, and a state in which the output fluctuation value fluctuates between the upper limit value and the lower limit value described on the left may be called constant. Also, the upper limit and lower limit may be set such that the change in output when changing from the first section to the second section is greater than the difference between the upper limit and the lower limit.
実施の形態1.
 図1は、実施の形態1に係るレーザ装置を備えるレーザ加工装置の構成の一例を模式的に示す図である。レーザ加工装置1は、レーザ装置10と、ステージ21と、レーザ走査部22と、加工制御部23と、を備える。
Embodiment 1.
FIG. 1 is a diagram schematically showing an example of a configuration of a laser processing apparatus including a laser device according to Embodiment 1. FIG. The laser processing device 1 includes a laser device 10 , a stage 21 , a laser scanning section 22 and a processing control section 23 .
 レーザ装置10は、第2波長のレーザ光L2を出射する装置である。レーザ装置10は、レーザ光源11と、レーザ制御部12と、波長変換素子13と、温度調整部14と、温度センサ15と、温度制御部16と、を備える。 The laser device 10 is a device that emits a laser beam L2 of a second wavelength. The laser device 10 includes a laser light source 11 , a laser control section 12 , a wavelength conversion element 13 , a temperature adjustment section 14 , a temperature sensor 15 and a temperature control section 16 .
 レーザ光源11は、特定の波長である第1波長のレーザ光L1を発振する。一例では、第1波長のレーザ光L1は、波長が532nmの可視光である。レーザ光源11の一例は、レーザ発振器である。 The laser light source 11 oscillates laser light L1 of a first wavelength, which is a specific wavelength. In one example, the first wavelength laser light L1 is visible light with a wavelength of 532 nm. An example of the laser light source 11 is a laser oscillator.
 レーザ制御部12は、レーザ光源11の制御についての情報であるレーザ制御情報に基づいてレーザ光源11を制御する。ここでは、第1波長のレーザ光L1の出力のうち第2波長のレーザ光L2への波長変換に寄与する出力である特定出力が変化する変化時点より前の時間区間であるオン時間と、オン時間よりも後の時間区間であって、特定出力が一定の時間区間であるオフ時間と、を含むように、第1波長のレーザ光L1が波長変換素子13に入力される場合を例に挙げる。つまり、オン時間は、波長変換素子13で第1波長のレーザ光L1から第2波長のレーザ光L2への変換が行われる期間であり、オフ時間は、第2波長のレーザ光L2への変換が行われない休止時間である。オン時間は、第1区間に対応し、オフ時間は、第2区間に対応する。レーザ制御情報の一例は、第2波長のレーザ光L2のオフ時間に関わる、第1波長のレーザ光L1の平均出力、レーザ装置10の駆動電流、および第1波長のレーザ光L1の繰り返し周波数のうちの少なくともいずれか1つを含むレーザ光の特性である。 The laser control unit 12 controls the laser light source 11 based on laser control information, which is information regarding control of the laser light source 11 . Here, the on-time, which is a time interval before the change time point at which the specific output, which is the output contributing to the wavelength conversion to the second-wavelength laser light L2, of the output of the first-wavelength laser light L1, and the on-time A case where the laser light L1 of the first wavelength is input to the wavelength conversion element 13 so as to include an off time in which the specific output is a constant time interval after the time is taken as an example. . That is, the on-time is a period during which the wavelength conversion element 13 converts the laser light L1 of the first wavelength into the laser light L2 of the second wavelength, and the off-time is the conversion to the laser light L2 of the second wavelength. is a rest period during which no The on-time corresponds to the first interval and the off-time corresponds to the second interval. An example of the laser control information is the average output of the laser light L1 of the first wavelength, the drive current of the laser device 10, and the repetition frequency of the laser light L1 of the first wavelength, which are related to the OFF time of the laser light L2 of the second wavelength. It is a characteristic of laser light including at least one of them.
 一例では、オン時間とオフ時間とは、第1波長のレーザ光L1の平均出力、レーザ装置10の駆動電流、および第1波長のレーザ光L1の繰り返し周波数のうちの少なくともいずれか1つを変えることによって切り替えることができる。オン時間は、第1波長のレーザ光L1が予め定められた一定以上のピークパワーをもって波長変換素子13に入力されることで波長変換が行われる時間である。レーザ制御部12は、一例では、一定の出力での連続発振に切り替えて、ピークパワーを一定未満にすることで、オン時間からオフ時間への切り替えを行う。 In one example, the ON time and OFF time change at least one of the average power of the laser light L1 of the first wavelength, the driving current of the laser device 10, and the repetition frequency of the laser light L1 of the first wavelength. can be switched by The ON time is the time during which wavelength conversion is performed by inputting the laser light L1 of the first wavelength into the wavelength conversion element 13 with a predetermined peak power or higher. In one example, the laser control unit 12 switches from on-time to off-time by switching to continuous oscillation at a constant output and making the peak power less than a constant value.
 波長変換素子13は、レーザ光源11から発振された第1波長のレーザ光L1のすべてまたは一部を、非線形効果によって、第1波長よりも短い第2波長のレーザ光L2に変換する。一例では、波長変換素子13は、波長が400nm以下の紫外光のレーザ光L2に変換する。波長変換素子13は、一例では、CsLiB610(CLBO)結晶である。波長変換素子13がCLBO結晶である場合には、波長が532nmである可視光のレーザ光L1のすべてまたは一部は、波長変換素子13によって、波長が266nmのレーザ光L2に波長変換される。波長変換素子13は、変換された第2波長のレーザ光L2をレーザ走査部22に出射する。すなわち、レーザ装置10では、第2波長のレーザ光L2が発振されることになる。 The wavelength conversion element 13 converts all or part of the first wavelength laser light L1 emitted from the laser light source 11 into laser light L2 of a second wavelength shorter than the first wavelength by a nonlinear effect. In one example, the wavelength conversion element 13 converts the ultraviolet laser light L2 having a wavelength of 400 nm or less. The wavelength conversion element 13 is, for example, a CsLiB 6 O 10 (CLBO) crystal. When the wavelength conversion element 13 is a CLBO crystal, all or part of the visible laser light L1 with a wavelength of 532 nm is wavelength-converted by the wavelength conversion element 13 into laser light L2 with a wavelength of 266 nm. The wavelength conversion element 13 emits the converted laser light L<b>2 of the second wavelength to the laser scanning unit 22 . That is, the laser device 10 oscillates the laser light L2 of the second wavelength.
 温度調整部14は、第1波長のレーザ光L1が通過する波長変換素子13の領域である作用領域が予め定められた温度である目標温度に維持されるように温度調整を行う。目標温度は、加熱された作用領域が予め定められた基準値以上の波長変換効率で波長変換される温度である。温度調整部14は、一例では、熱の供給と吸収とを行う熱電素子であるペルチェ素子である。すなわち、温度調整部14は、波長変換素子13の温度を目標温度に近づけるように波長変換素子13に入熱および排熱の少なくとも一方を実行することによって温度調整を行う。 The temperature adjuster 14 adjusts the temperature so that the active region, which is the region of the wavelength conversion element 13 through which the laser light L1 of the first wavelength passes, is maintained at a predetermined target temperature. The target temperature is a temperature at which the heated active region is wavelength-converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value. The temperature adjustment unit 14 is, for example, a Peltier element that is a thermoelectric element that supplies and absorbs heat. That is, the temperature adjustment unit 14 adjusts the temperature by performing at least one of heat input and exhaust heat to the wavelength conversion element 13 so that the temperature of the wavelength conversion element 13 approaches the target temperature.
 温度センサ15は、波長変換素子13の温度を検知する。温度センサ15は、検知した波長変換素子13の温度を温度制御部16に出力する。 The temperature sensor 15 detects the temperature of the wavelength conversion element 13. The temperature sensor 15 outputs the detected temperature of the wavelength conversion element 13 to the temperature controller 16 .
 温度制御部16は、波長変換素子13の作用領域の温度が予め定められた温度範囲に保たれるように、温度センサ15で波長変換素子13の温度を計測しながら温度調整部14の目標温度を制御する。また、実施の形態1では、温度制御部16は、レーザ制御部12と接続され、オン時間中にレーザ制御部12から第1波長のレーザ光L1の現時点よりも後のオフ時間についてのレーザ制御情報を取得する。温度制御部16は、オフ時間における波長変換素子13の作用領域の温度が予め定められた温度範囲から外れないように目標温度を算出し、算出した目標温度を温度調整部14に設定する。温度制御部16による目標温度の算出については後述する。 The temperature control unit 16 adjusts the target temperature of the temperature adjustment unit 14 while measuring the temperature of the wavelength conversion element 13 with the temperature sensor 15 so that the temperature of the working region of the wavelength conversion element 13 is maintained within a predetermined temperature range. to control. Further, in Embodiment 1, the temperature control unit 16 is connected to the laser control unit 12, and the laser control unit 12 outputs the laser light L1 having the first wavelength from the laser control unit 12 during the ON time for the OFF time after the current time. Get information. The temperature control unit 16 calculates a target temperature so that the temperature of the active region of the wavelength conversion element 13 during the OFF time does not deviate from a predetermined temperature range, and sets the calculated target temperature in the temperature adjustment unit 14 . Calculation of the target temperature by the temperature control unit 16 will be described later.
 ステージ21は、レーザ加工の対象である加工対象50を保持する。一例では、ステージ21は、加工対象50を保持する面である保持面に平行な方向、保持面に垂直な方向、保持面に垂直な方向の軸の回りおよび保持面に平行な面内における一つの軸の回りに移動可能な構成を有する。すなわち、ステージ21には、保持面に平行な方向、保持面に垂直な方向、保持面に垂直な方向の軸の回りおよび保持面に平行な面内における一つの軸の回りにステージ21を移動可能とする図示しない駆動系が設けられる。 The stage 21 holds a processing target 50 that is a laser processing target. In one example, the stage 21 can move in a direction parallel to the holding surface that holds the workpiece 50, a direction perpendicular to the holding surface, around an axis perpendicular to the holding surface, and in a plane parallel to the holding surface. It has a configuration movable about one axis. That is, the stage 21 moves in a direction parallel to the holding surface, a direction perpendicular to the holding surface, around an axis perpendicular to the holding surface, and around one axis in a plane parallel to the holding surface. A drive system (not shown) is provided to enable this.
 レーザ走査部22は、レーザ装置10から出射される第2波長のレーザ光L2を走査する。レーザ走査部22の一例は、加工ヘッドである。レーザ走査部22は、一例ではステージ21の保持面に平行な方向および保持面に垂直な方向に移動可能な構成を有していてもよい。すなわち、レーザ走査部22には、保持面に平行な方向および垂直な方向にレーザ走査部22を移動可能とする図示しない駆動系が設けられていてもよい。 The laser scanning unit 22 scans the second wavelength laser light L2 emitted from the laser device 10 . An example of the laser scanning unit 22 is a processing head. In one example, the laser scanning unit 22 may have a configuration capable of moving in a direction parallel to the holding surface of the stage 21 and a direction perpendicular to the holding surface. That is, the laser scanning unit 22 may be provided with a driving system (not shown) that enables the laser scanning unit 22 to move in the direction parallel to and perpendicular to the holding surface.
 加工制御部23は、レーザ走査部22およびステージ21の動作を制御する。 The processing control unit 23 controls the operations of the laser scanning unit 22 and the stage 21 .
 実施の形態1のレーザ加工装置1では、レーザ装置10、ステージ21、レーザ走査部22および加工制御部23が図示されているが、ステージ21、レーザ走査部22および加工制御部23が伴われる必要はなく、これらを省くこともできる。 In the laser processing apparatus 1 of Embodiment 1, the laser device 10, the stage 21, the laser scanning section 22 and the processing control section 23 are illustrated, but the stage 21, the laser scanning section 22 and the processing control section 23 need to be accompanied. You can omit them instead.
 レーザ制御部12と温度制御部16と加工制御部23とは、互いに情報をやり取り可能に接続されている。これによって、レーザ制御部12、温度制御部16および加工制御部23は、レーザの発振状態と出力制御状態とを認識することができる。 The laser control unit 12, the temperature control unit 16, and the processing control unit 23 are connected so as to be able to exchange information with each other. Thereby, the laser control unit 12, the temperature control unit 16, and the processing control unit 23 can recognize the oscillation state and the output control state of the laser.
 つぎに、温度調整部14での温度調整処理について説明する。図2は、温度調整部での温度調整処理の一例を示す図である。図2には、波長変換素子13内の第1波長のレーザ光L1が通過する領域である作用領域の温度の計測値の一例を示すグラフ200と、第2波長のレーザ光L2の出力の変化の一例を示すグラフ210と、が対応付けて示されている。グラフ200において、横軸は時間であり、縦軸は波長変換素子13の作用領域の温度の計測値である。グラフ210において、横軸は時間であり、縦軸は第2波長のレーザ光L2の出力である。図2では、温度制御部16は、波長変換素子13の温度を設定温度TCに近づけるように温度制御を実行するものとする。図2に示されるように、設定温度TCは、一定値TC0である。 Next, temperature adjustment processing in the temperature adjustment unit 14 will be described. FIG. 2 is a diagram illustrating an example of temperature adjustment processing in the temperature adjustment unit. FIG. 2 shows a graph 200 showing an example of measured values of the temperature of the working area, which is the area through which the laser beam L1 of the first wavelength passes, in the wavelength conversion element 13, and changes in the output of the laser beam L2 of the second wavelength. are shown in association with a graph 210 showing an example of . In the graph 200 , the horizontal axis is time, and the vertical axis is the measured value of the temperature in the active region of the wavelength conversion element 13 . In the graph 210, the horizontal axis is time, and the vertical axis is the power of the second wavelength laser light L2. In FIG. 2, the temperature control unit 16 performs temperature control so that the temperature of the wavelength conversion element 13 approaches the set temperature TC . As shown in FIG. 2, the set temperature TC is a constant value TC0 .
 第1波長のレーザ光L1が波長変換素子13に入射するとき、波長変換素子13内の作用領域では波長変換が行われると同時に、波長変換された第2波長のレーザ光L2が通過することによる発熱が生じる。この発熱によって、作用領域が加熱される。波長変換素子13には温度調整部14が設けられており、温度調整部14は、加熱された作用領域が予め定められた基準値以上の波長変換効率で波長変換されるための温度に維持されるように温度調整を行う。例えば、温度調整部14の設定温度TCをTC0とし、第2波長のレーザ光L2による発熱での作用領域の温度上昇量をTdとすると、作用領域の温度はTC0+Tdとなる。なお、波長変換素子13、温度調整部14等の熱容量により、作用領域の温度を設定温度に追随させるのに時間がかかるため、温度調整部14の設定温度と作用領域の温度とは必ずしも一致しない。 When the laser beam L1 of the first wavelength is incident on the wavelength conversion element 13, the wavelength is converted in the active region in the wavelength conversion element 13, and at the same time, the wavelength-converted laser beam L2 of the second wavelength passes through. Fever develops. This heat generation heats the working area. The wavelength conversion element 13 is provided with a temperature adjustment section 14, and the temperature adjustment section 14 maintains a temperature at which the heated action region is wavelength-converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value. Adjust the temperature so that For example, if T C0 is the set temperature T C of the temperature adjustment unit 14 and T d is the amount of temperature rise in the action region due to the heat generated by the laser beam L2 of the second wavelength, the temperature of the action region is T C0 +T d . . Due to the heat capacity of the wavelength conversion element 13, the temperature adjustment section 14, etc., it takes time for the temperature of the action region to follow the set temperature, so the set temperature of the temperature adjustment section 14 and the temperature of the action region do not necessarily match. .
 第1波長のレーザ光L1の出力が予め定められた値以上の出力であり、このときの予め定められた基準値以上の波長変換効率で波長変換される温度で波長変換素子13の温度が維持されているものとする。このとき、温度調整部14の設定温度TC0に対して波長変換素子13の温度は、第2波長のレーザ光L2からの発熱による温度の上昇の値Tdを受け、TC0+Tdとなる。このときの温度TC0+Tdは、予め定められた基準値以上の波長変換効率で波長変換される温度となる。 The temperature of the wavelength conversion element 13 is maintained at a temperature at which the output of the laser light L1 of the first wavelength is equal to or higher than a predetermined value, and the wavelength is converted with a wavelength conversion efficiency equal to or higher than the predetermined reference value at this time. It shall be At this time, the temperature of the wavelength conversion element 13 with respect to the set temperature T C0 of the temperature adjustment unit 14 receives a temperature rise value T d due to heat generation from the laser beam L2 of the second wavelength, and becomes T C0 +T d . . The temperature T C0 +T d at this time is the temperature at which the wavelength is converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value.
 ここで、図2に示されるように第1波長のレーザ光L1の入力によって第1波長のレーザ光L1の一部が波長変換されている時間であるオン時間Δtonと、波長変換が全くされていない時間であるオフ時間Δtoffと、が設定されているものとする。すなわち、第1波長のレーザ光L1の出力のうち第2波長のレーザ光L2への波長変換に寄与する出力である特定出力が入力される時間区間であるオン時間Δtonと、特定出力が波長変換に寄与しない一定の時間区間であるオフ時間Δtoffと、が設定されているものとする。 Here, as shown in FIG. 2, the on-time Δt on is the time during which part of the laser light L1 of the first wavelength is wavelength-converted by the input of the laser light L1 of the first wavelength, and the wavelength is completely converted. It is assumed that an off time Δt off which is a time when the power supply is off is set. That is, the on-time Δt on is a time interval in which the specific output, which is the output that contributes to the wavelength conversion of the laser light L1 having the first wavelength to the laser light L2 having the second wavelength, is input, and the specific output is the wavelength It is assumed that off-time Δt off , which is a constant time interval that does not contribute to conversion, is set.
 時刻t21でオン時間Δtonからオフ時間Δtoffになった場合、第2波長のレーザ光L2が波長変換素子13に与える発熱が小さくなるか、またはなくなる。このことから、波長変換素子13の温度は徐々に低下し、一定の時間後である時刻t23には波長変換素子13の温度はTC0と一致する。そして、第1波長のレーザ光L1が再び入力されるオン時間Δtonの開始時刻t22となると、作用領域の温度は再びTC0からTC0+Tdへと推移する。TC0+Tdは予め定められた基準値以上の波長変換効率で波長変換される温度である。第1波長のレーザ光L1の入射直後の時刻t22から、温度TC0+Td、または予め定められた温度範囲に作用領域の温度が推移する時刻t24までの波長変換効率は、予め定められた基準値未満となる。時刻t22から時刻t24までの時間が、第2波長のレーザ光L2の出力の立ち上がりに要する時間Δt25となる。以下では立ち上がりに要する時間は、立ち上がり時間とも称される。立ち上がり時間Δt25は、作用領域の温度をTdだけ上昇させなければならないため、長くなってしまう。 When the on-time Δt on changes to the off-time Δt off at time t 21 , the heat generated by the laser light L2 of the second wavelength to the wavelength conversion element 13 is reduced or eliminated. As a result, the temperature of the wavelength conversion element 13 gradually decreases, and at time t 23 after a certain period of time, the temperature of the wavelength conversion element 13 coincides with T C0 . Then, at the start time t22 of the ON time Δt on at which the first wavelength laser beam L1 is input again, the temperature of the active region changes from T C0 to T C0 +T d again. T C0 +T d is the temperature at which the wavelength is converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value. The wavelength conversion efficiency from time t 22 immediately after incidence of the first wavelength laser beam L1 to time t 24 when the temperature of the active region changes to the temperature T C0 +T d or a predetermined temperature range is determined in advance. below the reference value. The time from time t22 to time t24 is the time Δt25 required for the output of the second wavelength laser light L2 to rise. In the following, the time required for rise is also referred to as rise time. The rise time Δt 25 is lengthened because the temperature of the active region must be increased by T d .
 芯材を残して穴加工を行うトレパニング加工などで同じ場所に打つパルス数が少ない加工において、出力の立ち上がりに時間を要する場合、加工不良が起きやすくなる。これは、立ち上がり時の出力が低いパルスレーザだけが加工を行うことになるからである。これを回避するには、立ち上がり時間Δt25に相当するレーザ出力で加工を行わないこと、あるいは立ち上がり時間Δt25においてのみ加工条件を変更することなどが考えられる。しかし、このようにした場合には、加工時間が行われない時間が延びたり、加工を行う時間が延びたりしてしまい、レーザ加工処理の能率が低下する。そこで、実施の形態1では、温度制御部16は、オフ時間Δtoffからオン時間Δtonに切り替わる場合の波長変換素子13から発振される第2波長のレーザ光L2の出力の立ち上がり時間が短くなるように、温度制御を行う。 In machining such as trepanning, in which a hole is drilled while leaving the core material, the number of pulses applied to the same place is small, and if it takes time for the output to rise, machining defects are likely to occur. This is because only a pulsed laser with a low output at the time of rising is used for processing. In order to avoid this, it is conceivable to not perform processing with a laser output corresponding to the rising time Δt25 , or to change the processing conditions only at the rising time Δt25 . However, in this case, the time during which no processing is performed is extended, or the time during which processing is performed is extended, and the efficiency of the laser processing is lowered. Therefore, in Embodiment 1, the temperature control unit 16 shortens the rise time of the output of the second wavelength laser light L2 emitted from the wavelength conversion element 13 when switching from the OFF time Δt off to the ON time Δt on . temperature control.
 図3は、実施の形態1に係るレーザ装置の温度調整部での温調処理の一例を示す図である。図3には、波長変換素子13内の第1波長のレーザ光L1が通過する領域である作用領域の温度の計測値の一例を示すグラフ300と、第2波長のレーザ光L2の出力変化の一例を示すグラフ310と、が対応付けて示されている。グラフ300において、横軸は時間であり、縦軸は波長変換素子13の作用領域の温度の計測値である。グラフ310において、横軸は時間であり、縦軸は第2波長のレーザ光L2の出力である。図3では、温度制御部16は、波長変換素子13の温度を設定温度TCに保つように温度制御を実行するものとする。図3に示されるように設定温度TCは、点線で示されており、図2の場合とは異なり、常に一定ではない。 FIG. 3 is a diagram showing an example of temperature control processing in the temperature control unit of the laser device according to Embodiment 1. FIG. FIG. 3 shows a graph 300 showing an example of measured values of the temperature of the working area, which is the area through which the laser beam L1 of the first wavelength passes, in the wavelength conversion element 13, and the output change of the laser beam L2 of the second wavelength. are shown in association with a graph 310 showing an example. In the graph 300 , the horizontal axis is time, and the vertical axis is the measured value of the temperature of the active region of the wavelength conversion element 13 . In the graph 310, the horizontal axis is time, and the vertical axis is the power of the second wavelength laser light L2. In FIG. 3, it is assumed that the temperature control unit 16 performs temperature control so as to keep the temperature of the wavelength conversion element 13 at the set temperature TC . As shown in FIG. 3, the set temperature T C is indicated by a dotted line, and unlike the case of FIG. 2, it is not always constant.
 温度制御部16は、レーザ制御部12からオフ時間Δtoffの開始時刻t31および終了時刻t32を、オフ時間Δtoffの開始時刻t31および終了時刻t32のそれぞれより前に、すなわち第1波長のレーザ光L1の特定出力が変化する変化時点よりも前に、取得する。言い換えれば、温度制御部16は、オフ時間Δtoffを先読みする。そして、温度制御部16は、先読みしたオフ時間Δtoffに応じて補正温度TFを算出する。補正温度TFは、波長変換がされていないオフ時間Δtoffにおける作用領域の設定温度TCを、第1波長のレーザ光L1が入射されたときに予め定められた基準値以上の波長変換効率となる温度以上となるように補正する温度である。 The temperature control unit 16 sets the start time t 31 and the end time t 32 of the off time Δt off from the laser control unit 12 before the start time t 31 and the end time t 32 of the off time Δt off . It is obtained before the change time point at which the specific output of the laser light L1 of the wavelength changes. In other words, the temperature controller 16 anticipates the OFF time Δt off . Then, the temperature control unit 16 calculates the corrected temperature T F according to the off-time Δt off read ahead. The correction temperature T F is the set temperature T C of the action region during the off time Δt off during which wavelength conversion is not performed, and the wavelength conversion efficiency equal to or higher than a predetermined reference value when the laser beam L1 of the first wavelength is incident. is the temperature to be corrected so as to be equal to or higher than the temperature at which
 例えば、温度制御部16は、設定温度TCがオン時間Δtonにおける設定温度TC0と補正温度TFとの和であるTC0+TFとなる場合において、第1波長のレーザ光L1が入射した際の作用領域の波長変換効率が予め定められた基準値以上となるように、補正温度TFを算出することができる。なお、補正温度TFは、時間ごとに変化させてもよい。一例では、図3に示されるように、オフ時間Δtoffの中で一定の休止時間Δtrが経過することで、作用領域の温度が下がった場合に、温度制御部16は温度調整部14の設定温度TC0に対してさらに補正温度TFを加えたTC0+TFを温度調整部14の新たな設定温度TCとする。 For example, when the set temperature T C is T C0 +T F , which is the sum of the set temperature T C0 and the correction temperature T F during the ON time Δt on , the temperature control unit 16 allows the laser beam L1 of the first wavelength to enter. The correction temperature TF can be calculated so that the wavelength conversion efficiency of the active region at the time of the above becomes equal to or higher than a predetermined reference value. Note that the correction temperature T F may be changed with time. In one example, as shown in FIG. 3, when the temperature of the action region drops due to the lapse of a certain rest time Δt r during the OFF time Δt off , the temperature control unit 16 changes the temperature adjustment unit 14 to A new set temperature T C of the temperature adjuster 14 is T C0 +T F obtained by adding the correction temperature T F to the set temperature T C0 .
 このとき、温度調整部14の設定温度TC0+TFは、第1波長のレーザ光L1が作用領域に入力した瞬間に予め定められた基準値以上の波長変換効率で波長変換される温度である。また、オフ時間Δtoffの設定温度TC0+TFは、第2区間設定温度に対応する。その後、時刻t32でオン時間Δtonとなり、第1波長のレーザ光L1が再び波長変換素子13に入力される。この場合に、第1波長のレーザ光L1の入力直後には、作用領域の温度が予め定められた基準値以上の波長変換効率で波長変換される温度であるため、立ち上がり時間Δt35が図2の場合の立ち上がり時間Δt25に比して短縮される。すなわち、第2波長のレーザ光L2の出力が、図2の場合に比してより短い時間で立ち上がる。この温度制御によって、第2波長のレーザ光L2を効率よく高出力で発振させることができるようになる。 At this time, the set temperature T C0 +T F of the temperature adjustment unit 14 is the temperature at which the wavelength is converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value at the moment when the laser light L1 of the first wavelength is input to the action region. . Also, the set temperature T C0 +T F for the off time Δt off corresponds to the second section set temperature. After that, at time t 32 , the ON time Δt on occurs, and the laser light L 1 of the first wavelength is input to the wavelength conversion element 13 again. In this case, immediately after the laser light L1 of the first wavelength is input, the temperature of the active region is the temperature at which the wavelength is converted with the wavelength conversion efficiency equal to or higher than the predetermined reference value, so the rise time Δt 35 is as shown in FIG. is shortened compared to the rise time Δt 25 for . That is, the output of the second wavelength laser light L2 rises in a shorter time than in the case of FIG. This temperature control makes it possible to efficiently oscillate the laser beam L2 of the second wavelength at a high output.
 波長が400nm以下の紫外光のレーザ光L2が波長変換素子13を通過する場合には、赤外光、可視光等の400nmを超える波長のレーザ光L2に比べて吸収が大きくなる。このため、実施の形態1のレーザ装置10における温度調整部14は、波長400nmを超える波長のレーザ光L2を発生させる場合等に比べて、立ち上がり時間をより短くすることができる。 When the ultraviolet laser light L2 with a wavelength of 400 nm or less passes through the wavelength conversion element 13, the absorption is greater than that of the laser light L2 with a wavelength over 400 nm such as infrared light or visible light. Therefore, the temperature adjustment unit 14 in the laser device 10 of Embodiment 1 can shorten the rise time as compared with the case of generating the laser light L2 having a wavelength exceeding 400 nm.
 以上のように、温度制御部16は、オフ時間Δtoffのレーザ光源11のレーザ制御情報を、オフ時間Δtoffの出力変化時点である時刻t31,t32よりも前に取得し、オフ時間Δtoffのレーザ制御情報に基づいて、オフ時間Δtoffの波長変換素子13の温度を制御する。このとき、温度制御部16は、レーザ制御情報を用いて、オフ時間Δtoffにおける作用領域の温度の変化を算出する。そして、温度制御部16は、第1波長のレーザ光L1が入力した瞬間の作用領域の温度が、予め定められた基準値以上の波長変換効率で波長変換される温度となるように、オン時間Δton時の設定温度TC0を補正する補正温度TFを算出し、TC0+TFを用いて波長変換素子13の温度を制御する。 As described above, the temperature control unit 16 acquires the laser control information of the laser light source 11 for the off time Δt off before the times t 31 and t 32 at which the output changes during the off time Δt off . Based on the laser control information for Δt off , the temperature of the wavelength conversion element 13 during the off time Δt off is controlled. At this time, the temperature control unit 16 uses the laser control information to calculate the change in the temperature of the active region during the off time Δt off . Then, the temperature control unit 16 adjusts the ON time so that the temperature of the active region at the moment when the laser light L1 of the first wavelength is input becomes a temperature at which the wavelength is converted with a wavelength conversion efficiency equal to or higher than a predetermined reference value. A correction temperature T F for correcting the set temperature T C0 at Δt on is calculated, and the temperature of the wavelength conversion element 13 is controlled using T C0 +T F .
 レーザ制御情報は、オフ時間Δtoffからオン時間Δtonへの切り替え時における波長変換素子13の温度の変化を算出することができる情報であればよい。つまり、レーザ制御情報は、第2波長のレーザ光L2による発熱と相関がある情報であればよい。一例では、レーザ制御情報は、波長変換素子13における単位時間あたりの発熱量と相関を有する量とすることができる。これによって、レーザ制御情報を用いて、オフ時間Δtoffにおける補正温度TFを算出することができる。このようなレーザ制御情報を用いることで、温度制御部16は、オン時間Δtonの発熱量とオフ時間Δtoffの発熱量との比較に基づいてオフ時間Δtoffの波長変換素子13の温度を制御することができる。具体的には、温度制御部16は、温度センサ15で計測された波長変換素子13の温度である素子温度を取得し、素子温度を目標温度に近づけるように波長変換素子13に入熱、排熱の少なくともいずれか一方を実行することによって温度の制御を実行する。このように、レーザ制御情報が第2波長のレーザ光L2の発熱と相関があることで、波長変換素子13の制御が可能となる。 The laser control information may be any information that can calculate the change in temperature of the wavelength conversion element 13 at the time of switching from the OFF time Δt off to the ON time Δt on . In other words, the laser control information may be any information that has a correlation with the heat generated by the laser beam L2 of the second wavelength. In one example, the laser control information can be an amount that correlates with the amount of heat generated per unit time in the wavelength conversion element 13 . This makes it possible to calculate the correction temperature T F at the off time Δt off using the laser control information. By using such laser control information, the temperature control unit 16 adjusts the temperature of the wavelength conversion element 13 during the off time Δt off based on a comparison between the amount of heat generated during the on time Δt on and the amount of heat generated during the off time Δt off . can be controlled. Specifically, the temperature control unit 16 acquires the element temperature, which is the temperature of the wavelength conversion element 13 measured by the temperature sensor 15, and heats the wavelength conversion element 13 so that the element temperature approaches the target temperature. Temperature control is performed by implementing heat and/or heat. Thus, the wavelength conversion element 13 can be controlled because the laser control information has a correlation with the heat generation of the laser beam L2 of the second wavelength.
 また、温度制御部16は、オフ時間Δtoffの開始よりも前に、オフ時間Δtoffでの波長変換素子13の発熱量に基づいて、オフ時間Δtoffでの波長変換素子13の発熱量の下で目標温度である設定温度TCを算出し、オン時間Δtonの終了時点に、波長変換素子13の温度が設定温度TCに近づくようにオン時間Δtonの波長変換素子13の温度制御を実行する。レーザ制御情報が第2波長のレーザ光L2による波長変換素子13の発熱と相関があるので、温度制御部16は、レーザ制御情報によって第2波長のレーザ光L2による波長変換素子13の発熱の変化を先読みすることができる。この結果、波長変換素子13の温度を予め定められた温度範囲内で制御することができるようになる。 Further, before the start of the off-time Δt off , the temperature control unit 16 determines the amount of heat generated by the wavelength conversion element 13 during the off-time Δt off based on the amount of heat generated by the wavelength conversion element 13 during the off-time Δt off . Then, the temperature of the wavelength conversion element 13 is controlled for the on-time Δt on so that the temperature of the wavelength conversion element 13 approaches the set temperature TC at the end of the on - time Δt on . to run. Since the laser control information has a correlation with the heat generation of the wavelength conversion element 13 by the laser light L2 of the second wavelength, the temperature control unit 16 controls the change in the heat generation of the wavelength conversion element 13 by the laser light L2 of the second wavelength according to the laser control information. can be read ahead. As a result, the temperature of the wavelength conversion element 13 can be controlled within a predetermined temperature range.
 実施の形態1では、レーザ装置10は、第1波長のレーザ光L1を出射するレーザ光源11と、レーザ光源11における第1波長のレーザ光L1の出射の制御についてのレーザ制御情報に従って、レーザ光源11を制御するレーザ制御部12と、レーザ光源11からの第1波長のレーザ光L1を、第1波長よりも短い第2波長のレーザ光L2に波長変換する波長変換素子13と、波長変換素子13の温度調整を行う温度調整部14と、温度調整部14による波長変換素子13が維持する温度を制御する温度制御部16と、を備える。温度制御部16は、オフ時間Δtoffのレーザ制御情報を、オフ時間Δtoffへ遷移する出力変化時点より前に取得し、オフ時間Δtoffのレーザ制御情報に基づいてオフ時間Δtoffの波長変換素子13の温度を制御する。具体的には、オン時間Δtonにおける設定温度TC0と、補正温度TFと、の和TC0+TFにおいて、第1波長のレーザ光L1が入射した際の作用領域の波長変換効率が予め定められた値以上となるように、オフ時間Δtoffにおける温度調整部14の補正温度TFを算出し、温度調整部14に設定する。温度調整部14は、オフ時間Δtoffにおける温度を設定温度TC0に補正温度TFを足した温度となるように温調する。これによって、オフ時間Δtoffからオン時間Δtonに遷移したときに、第2波長のレーザ光L2の立ち上がり時間を従来に比して短くすることができるという効果を有する。つまり、レーザ制御部12側からのレーザ制御情報によりレーザ出力変化の先読みを行うことで、温度制御タイミングを先読みして実行することができ、波長変換素子13の温度を目標温度に対してより近づけることができる。この結果、特定波長のレーザ光L1の出力が短い時間の間に大きく変化する場合に、装置構成を複雑化することなく、波長変換されたレーザ光L2の出力変動、出力低下等を避けることができるレーザ装置10を得ることができる。 In the first embodiment, the laser device 10 includes a laser light source 11 that emits a laser beam L1 of a first wavelength, and a laser light source 11 according to laser control information for controlling the emission of the laser beam L1 of the first wavelength from the laser light source 11. 11, a wavelength conversion element 13 for wavelength-converting laser light L1 of a first wavelength from the laser light source 11 into laser light L2 of a second wavelength shorter than the first wavelength, and a wavelength conversion element. and a temperature controller 16 that controls the temperature maintained by the wavelength conversion element 13 by the temperature controller 14 . The temperature control unit 16 acquires the laser control information for the off time Δt off before the output change point of transition to the off time Δt off , and performs wavelength conversion for the off time Δt off based on the laser control information for the off time Δt off . Control the temperature of the element 13 . Specifically, at the sum T C0 +T F of the set temperature T C0 and the correction temperature T F in the ON time Δt on , the wavelength conversion efficiency of the action region when the laser beam L1 of the first wavelength is incident is determined in advance. The correction temperature T F of the temperature adjustment unit 14 during the OFF time Δt off is calculated and set in the temperature adjustment unit 14 so as to be equal to or higher than a predetermined value. The temperature adjustment unit 14 adjusts the temperature during the OFF time Δt off to a temperature obtained by adding the correction temperature T F to the set temperature T C0 . This has the effect of shortening the rise time of the laser beam L2 of the second wavelength when the off-time Δt off transitions to the on-time Δt on compared to the conventional art. In other words, the temperature control timing can be pre-read and executed by pre-reading the laser output change based on the laser control information from the laser control unit 12 side, and the temperature of the wavelength conversion element 13 can be brought closer to the target temperature. be able to. As a result, when the output of the laser light L1 of the specific wavelength changes greatly in a short time, it is possible to avoid output fluctuations, output reduction, etc. of the wavelength-converted laser light L2 without complicating the device configuration. It is possible to obtain a laser device 10 capable of
実施の形態2.
 実施の形態1の図3において、オン時間Δtonの開始時刻t32に第2波長のレーザ光L2が予め定められた値以上の出力で出射されたとき、波長変換素子13には第2波長のレーザ光L2による発熱を受けて作用領域の温度が上昇し、予め定められた温度範囲から離れていく。一例では、予め定められた温度TC0+Tdよりも高くなってしまう。そこで、オン時間Δtonの開始時刻t32の後に作用領域の温度が予め定められた温度範囲から外れないように、温度制御部16は、第2波長のレーザ光L2の立ち上がりから一定の時間をかけて徐々に補正温度TFが0になるようにしてもよい。一定の時間の一例は、立ち上がり時間Δt35とすることができる。
Embodiment 2.
In FIG. 3 of Embodiment 1, when the laser light L2 of the second wavelength is emitted at the start time t32 of the ON time Δt on with an output power equal to or greater than a predetermined value, the wavelength conversion element 13 receives the second wavelength The temperature of the active area rises due to the heat generated by the laser beam L2, and the temperature moves away from the predetermined temperature range. In one example, it becomes higher than the predetermined temperature T C0 +T d . Therefore, the temperature control unit 16 sets a constant time from the rise of the laser beam L2 of the second wavelength so that the temperature of the active region does not deviate from the predetermined temperature range after the start time t32 of the ON time Δt on . The correction temperature TF may be gradually set to 0 over time. An example of a constant time can be the rise time Δt 35 .
 実施の形態2では、オン時間Δtonの開始時刻t32に、温度制御部16は第2波長のレーザ光L2の立ち上がりから一定の時間をかけて徐々に補正温度TFが0になるようにした。この温度制御によって、温度制御部16は作用領域の温度が予め定められた基準値以上の波長変換効率で波長変換される温度に対して予め定められた温度範囲から外れないようにすることができる。この結果、第2波長のレーザ光L2の出力を安定して効率よく発振させることができるようになるという効果を有する。 In the second embodiment, at the start time t 32 of the on-time Δt on , the temperature control unit 16 gradually reduces the correction temperature T F to 0 over a certain period of time from the rise of the second-wavelength laser beam L 2 . did. By this temperature control, the temperature control unit 16 can prevent the temperature of the active region from deviating from the predetermined temperature range with respect to the temperature at which the wavelength is converted with the wavelength conversion efficiency equal to or higher than the predetermined reference value. . As a result, there is an effect that the output of the laser light L2 of the second wavelength can be stably and efficiently oscillated.
実施の形態3.
 図4は、実施の形態3に係るレーザ装置における波長変換素子および温度調整部の構造の一例を模式的に示す斜視図である。図4に示される例では、波長変換素子13は、温度調整部14上に熱拡散板31を介して配置されている。熱拡散板31は、波長変換素子13での温度分布を均一化する部材である。波長変換素子13の第1波長のレーザ光L1が入射される面である入射面13aの面積は、第1波長のレーザ光L1が通過する作用領域131a,131bの面積に比して十分に大きい。このため、作用領域131a,131bの位置は、波長変換素子13の入射面13a内で任意の位置とすることができる。作用領域131a,131bの位置A,Bは、相対的に、温度調整部14に近い場合もあれば、温度調整部14から遠い場合もある。図4では、温度調整部14から遠い位置Aに設けられる作用領域131aと、温度調整部14に近い位置Bに設けられる作用領域131bと、が例示されている。なお、以下では、作用領域131a,131bは、個々に区別する必要がない場合には、単に作用領域131と表記される。
Embodiment 3.
FIG. 4 is a perspective view schematically showing an example of the structure of the wavelength conversion element and the temperature adjustment section in the laser device according to Embodiment 3. FIG. In the example shown in FIG. 4, the wavelength conversion element 13 is arranged above the temperature adjustment section 14 with a heat diffusion plate 31 interposed therebetween. The thermal diffusion plate 31 is a member that makes the temperature distribution in the wavelength conversion element 13 uniform. The area of the incident surface 13a of the wavelength conversion element 13, which is the surface on which the laser beam L1 of the first wavelength is incident, is sufficiently larger than the areas of the active regions 131a and 131b through which the laser beam L1 of the first wavelength passes. . Therefore, the positions of the active regions 131 a and 131 b can be set at arbitrary positions within the incident surface 13 a of the wavelength conversion element 13 . Positions A and B of action regions 131 a and 131 b may be relatively close to temperature adjustment section 14 or may be relatively far from temperature adjustment section 14 . FIG. 4 illustrates an action area 131a provided at a position A far from the temperature adjustment section 14 and an action area 131b provided at a position B close to the temperature adjustment section 14. As shown in FIG. In the following description, the action regions 131a and 131b are simply referred to as the action region 131 when there is no need to distinguish them individually.
 図5は、実施の形態3に係るレーザ装置における波長変換素子の作用領域が図4の位置Aである場合の温度の計測値の変化の一例を示す図である。図6は、実施の形態3に係るレーザ装置における波長変換素子の作用領域が図4の位置Bである場合の温度の計測値の変化の一例を示す図である。図5および図6において、横軸は時間であり、縦軸は波長変換素子13の作用領域の温度の計測値である。 FIG. 5 is a diagram showing an example of changes in temperature measurement values when the active region of the wavelength conversion element in the laser device according to Embodiment 3 is position A in FIG. FIG. 6 is a diagram showing an example of changes in temperature measurement values when the active region of the wavelength conversion element in the laser device according to Embodiment 3 is position B in FIG. In FIGS. 5 and 6, the horizontal axis is time, and the vertical axis is the measured value of the temperature in the working region of the wavelength conversion element 13. In FIG.
 波長変換素子13を通過する第2波長のレーザ光L2は、波長変換素子13の位置A,Bによって温度調整部14との距離が異なる。第2波長のレーザ光L2によって同様に発熱した場合でも温度調整部14との距離が異なると、図5および図6に示されるように、温度調整部14による作用領域131a,131bへの温度調整効果が異なるため上昇する温度である上昇温度Tdに違いが生じる場合がある。また、通過する第2波長のレーザ光L2の、周波数および予め定められた出力の値によっても上昇温度Tdに違いが生じる場合がある。さらに、波長変換素子13の物性値が異なる場合にも、波長変換素子13に対する第2波長のレーザ光L2での発熱量が異なる場合があり、これによっても上昇温度Tdに違いが生じる場合がある。このように、設定温度TCおよび上昇温度Tdに違いが生じると、実施の形態1で説明した補正温度TFもそれぞれの場合で異なってくる。 The second wavelength laser light L<b>2 passing through the wavelength conversion element 13 has a different distance from the temperature adjustment section 14 depending on the positions A and B of the wavelength conversion element 13 . Even if heat is similarly generated by the laser beam L2 of the second wavelength, if the distance from the temperature adjustment unit 14 is different, the temperature adjustment of the action regions 131a and 131b by the temperature adjustment unit 14 is performed as shown in FIGS. There may be a difference in the rising temperature Td , which is the rising temperature due to different effects. In addition, the temperature rise Td may differ depending on the frequency and predetermined output value of the passing laser light L2 of the second wavelength. Furthermore, even when the physical properties of the wavelength conversion element 13 are different, the amount of heat generated by the laser light L2 of the second wavelength with respect to the wavelength conversion element 13 may also differ, which may also cause a difference in the temperature rise Td . be. As described above, when the set temperature T C and the rising temperature T d are different, the corrected temperature T F described in the first embodiment is also different in each case.
 そこで、温度制御部16は、作用領域131a,131bの位置A,B、第2波長のレーザ光L2の周波数および予め定められた出力の値、波長変換素子13の物性値などによって決まる適切な設定温度TCおよび補正温度TFをテーブル化した温度設定情報を有していてもよい。この場合、温度制御部16は、温度設定情報を記憶する図示しない記憶部を有することになる。 Therefore, the temperature control unit 16 performs appropriate settings determined by the positions A and B of the active regions 131a and 131b, the frequency and predetermined output value of the laser light L2 of the second wavelength, the physical property values of the wavelength conversion element 13, and the like. It may have temperature setting information in which the temperature T C and the correction temperature T F are tabulated. In this case, the temperature control section 16 has a storage section (not shown) that stores the temperature setting information.
 図7は、実施の形態3に係るレーザ装置を備えるレーザ加工装置の構成の一例を模式的に示す図である。なお、図1と同一の構成要素には同一の符号を付して、その説明を省略する。図7では、レーザ装置10は、入射位置変更部32をさらに備える。入射位置変更部32は、レーザ光源11から発振された第1波長のレーザ光L1の波長変換素子13への入射位置を変更する。入射位置変更部32は、レーザ光源11における第1波長のレーザ光L1の出射端および波長変換素子13の第1波長のレーザ光L1が入射される入射面の相対的な位置を変更可能なものであればよい。一例では、入射位置変更部32は、レーザ光源11および波長変換素子13の少なくとも一方に設けられる駆動系である。入射位置変更部32は、一例ではレーザ制御部12によって制御される。レーザ制御部12は、入射面の予め定められた位置を基準とした座標系上で、レーザ光源11の出射端の位置が所望の位置となるように、レーザ光源11および波長変換素子13の少なくとも一方の位置を変更するように制御する。 FIG. 7 is a diagram schematically showing an example of the configuration of a laser processing apparatus equipped with a laser device according to Embodiment 3. FIG. In addition, the same code|symbol is attached|subjected to the component same as FIG. 1, and the description is abbreviate|omitted. In FIG. 7 , the laser device 10 further includes an incident position changing section 32 . The incident position changing unit 32 changes the incident position of the laser light L<b>1 of the first wavelength emitted from the laser light source 11 to the wavelength conversion element 13 . The incident position changing unit 32 is capable of changing the relative positions of the emission end of the laser light L1 of the first wavelength in the laser light source 11 and the incident surface of the wavelength conversion element 13 on which the laser light L1 of the first wavelength is incident. If it is In one example, the incident position changing section 32 is a drive system provided in at least one of the laser light source 11 and the wavelength conversion element 13 . The incident position changer 32 is controlled by the laser controller 12 in one example. The laser control unit 12 controls at least the laser light source 11 and the wavelength conversion element 13 so that the output end of the laser light source 11 is positioned at a desired position on a coordinate system based on a predetermined position on the incident surface. Control to change one position.
 温度制御部16は、オン時間Δton中に、波長変換素子13への第1波長のレーザ光L1の入射位置をレーザ制御部12から予め取得し、取得した入射位置に基づいて波長変換素子13の温度を制御する。図8は、実施の形態3に係るレーザ装置での温度設定情報を用いた制御方法の概要を示す図である。温度設定情報161は、作用領域131の位置並びに第2波長のレーザ光L2の周波数および出力といったパラメータである波長変換素子13の材料特性の情報に対して設定温度TCおよび補正温度TFを対応付けた情報である。図8では、第2波長のレーザ光L2の通過する位置、すなわち作用領域131の位置ごとに設定温度TCおよび補正温度TFが対応付けられたデータテーブルが、波長変換素子13の物性値ごとに設けられる場合を示している。 The temperature control unit 16 obtains in advance from the laser control unit 12 the incident position of the laser beam L1 of the first wavelength to the wavelength conversion element 13 during the ON time Δt on , and adjusts the wavelength conversion element 13 based on the obtained incident position. to control the temperature of FIG. 8 is a diagram showing an outline of a control method using temperature setting information in the laser device according to the third embodiment. The temperature setting information 161 corresponds the set temperature T C and the correction temperature T F to the material characteristic information of the wavelength conversion element 13, which is parameters such as the position of the active region 131 and the frequency and output of the second wavelength laser light L2. This is the information attached. In FIG. 8, a data table in which the set temperature T C and the correction temperature T F are associated with each position through which the laser beam L2 of the second wavelength passes, that is, each position of the action region 131 is shown for each physical property value of the wavelength conversion element 13. It shows the case where it is provided in
 温度制御部16は、実動作の際には、温度設定情報161内の条件、すなわち作用領域131の位置、第2波長のレーザ光L2の周波数および出力、並びに波長変換素子13の物性値の組み合わせに該当する設定温度TCおよび補正温度TFを、温度設定情報161から読み出す。温度制御部16は、読み出した、設定温度TCおよび補正温度TFを温度調整部14に設定する。このようにすることで、第2波長のレーザ光L2のパラメータおよび作用領域131の位置が変わった場合、あるいは波長変換素子13の交換による物性値の変化があった場合でも、実施の形態1で説明した温度調整部14による制御を行うことができる。すなわち、温度制御部16は、常に作用領域131の温度が予め定められた基準値以上の波長変換効率で波長変換される温度になるような補正温度TFで補正された設定温度TCに制御することができる。これによってさらに、第2波長のレーザ光L2の出力を安定して効率よく発振させることができるようになる。 During actual operation, the temperature control unit 16 controls the combination of the conditions in the temperature setting information 161, that is, the position of the active region 131, the frequency and output of the laser beam L2 of the second wavelength, and the physical property values of the wavelength conversion element 13. from the temperature setting information 161 . The temperature control unit 16 sets the read setting temperature T C and correction temperature T F in the temperature adjustment unit 14 . By doing so, even if the parameters of the laser beam L2 of the second wavelength and the position of the active region 131 are changed, or if the physical property value is changed due to the replacement of the wavelength conversion element 13, the first embodiment can be used. Control by the temperature adjustment unit 14 described above can be performed. That is, the temperature control unit 16 controls the set temperature T C corrected by the correction temperature T F such that the temperature of the action region 131 is always a temperature at which wavelength conversion is performed with a wavelength conversion efficiency equal to or higher than a predetermined reference value. can do. As a result, the output of the laser light L2 of the second wavelength can be stably and efficiently oscillated.
 温度設定情報161は、作用領域131の位置および周波数、出力を変えた複数の組み合わせにおいて実際に動作をさせ、作用領域131の温度が予め定められた温度範囲内で動作するように、設定温度TCおよび補正温度TFの値を網羅的に確かめることによって作成される。この結果に基づいて、作用領域131の位置、第2波長のレーザ光L2の周波数および出力、並びに波長変換素子13の物性値の組み合わせと、設定温度TCおよび補正温度TFと、を対応付けた温度設定情報161が作成され、温度制御部16に記憶される。 The temperature setting information 161 actually operates in a plurality of combinations in which the position, frequency, and output of the action area 131 are changed, and sets the temperature T so that the temperature of the action area 131 operates within a predetermined temperature range. It is created by exhaustively ascertaining the values of C and correction temperature T F . Based on this result, the combination of the position of the active region 131, the frequency and output of the second wavelength laser light L2, and the physical property value of the wavelength conversion element 13 is associated with the set temperature T C and the correction temperature T F. The temperature setting information 161 is created and stored in the temperature control unit 16 .
 実施の形態3では、作用領域131の位置並びに第2波長のレーザ光L2の周波数および出力といったパラメータに対応する設定温度TCおよび補正温度TFを温度設定情報161から読み出し、読み出した設定温度TCおよび補正温度TFを温度調整部14に設定する。波長変換素子13への第1波長のレーザ光L1の入射位置が変更されるような使用状況の変化に対しても、これに対応する設定温度TCおよび補正温度TFの値を温度設定情報161から取得して、取得した設定温度TCおよび補正温度TFの値に基づいて、温度制御部16は、波長変換素子13の温度の制御を行う。これによって、予め定められた期間で作用領域131の位置を変えることができるので、波長変換素子13の作用領域131の位置が固定されることがない。この結果、波長変換素子13の特定の箇所ヘの第1波長のレーザ光L1の照射および第2波長のレーザ光L2の通過による劣化を抑えることができ、波長変換素子13が長寿命化されるという効果を有する。 In the third embodiment, the set temperature T C and the correction temperature T F corresponding to the parameters such as the position of the active region 131 and the frequency and output of the second-wavelength laser beam L2 are read from the temperature setting information 161, and the read set temperature T C and the correction temperature T F are set in the temperature adjuster 14 . Even when the operating conditions change such that the incident position of the laser beam L1 of the first wavelength to the wavelength conversion element 13 is changed, the values of the set temperature TC and the correction temperature TF corresponding to this change are stored in the temperature setting information. 161, and the temperature control unit 16 controls the temperature of the wavelength conversion element 13 based on the values of the set temperature T C and the correction temperature T F that have been obtained. As a result, the position of the active region 131 of the wavelength conversion element 13 is not fixed because the position of the active region 131 can be changed in a predetermined period. As a result, deterioration due to irradiation of the laser light L1 of the first wavelength and passage of the laser light L2 of the second wavelength to a specific portion of the wavelength conversion element 13 can be suppressed, and the wavelength conversion element 13 has a long life. has the effect of
 また、温度制御部16は、波長変換素子13への入射位置だけではなく、第2波長のレーザ光L2の周波数、予め定められた出力値、波長変換素子13の物性値が変更されたりするような使用状況の変化に対しても、これに対応する設定温度TCおよび補正温度TFの値を温度設定情報161から取得する。そして、温度制御部16は、補正温度TFの計算をすることなく、取得した設定温度TCおよび補正温度TFの値に基づいて、温度制御部16は、波長変換素子13の温度の制御を行うことができる。また、その都度、温度制御のための事前計測を行うことなく、温度制御部16の記憶部にある情報から制御温度を求めることができるので、レーザ装置10を効率よく稼働することができる。また、温度設定情報161をデータテーブル化することで、温度制御のための情報をデータテーブルから算出することができるようになる。 Further, the temperature control unit 16 changes not only the incident position to the wavelength conversion element 13 but also the frequency of the laser light L2 of the second wavelength, the predetermined output value, and the physical property value of the wavelength conversion element 13. Also for such a change in usage conditions, the values of the set temperature T C and the correction temperature T F corresponding to this change are obtained from the temperature setting information 161 . Then, the temperature control unit 16 controls the temperature of the wavelength conversion element 13 based on the acquired set temperature T C and correction temperature T F without calculating the correction temperature T F. It can be performed. In addition, since the control temperature can be obtained from the information stored in the storage section of the temperature control section 16 without performing pre-measurement for temperature control each time, the laser device 10 can be operated efficiently. Also, by converting the temperature setting information 161 into a data table, information for temperature control can be calculated from the data table.
実施の形態4.
 実施の形態3で作成した温度設定情報161を用いた温度制御で、補正温度TFを温度設定情報161から参照する場合に、作用領域131の位置または波長変換素子13の物性値が温度設定情報161にない場合がある。実施の形態4に係るレーザ装置10では、このような場合に、温度制御部16は、温度設定情報161の作用領域131の位置または波長変換素子13の物性値から、温度設定情報161にない値を、例えば線形補間などの補間方法を用いて求めるようにしてもよい。これによって、温度設定情報161にない作用領域131の位置または波長変換素子13の物性値を用いて補正温度TFを決定することができる。
Embodiment 4.
In temperature control using the temperature setting information 161 created in Embodiment 3, when referring to the correction temperature TF from the temperature setting information 161, the position of the active region 131 or the physical property value of the wavelength conversion element 13 is the temperature setting information. 161 may not. In the laser device 10 according to the fourth embodiment, in such a case, the temperature control unit 16 determines a value not included in the temperature setting information 161 based on the position of the active region 131 of the temperature setting information 161 or the physical property value of the wavelength conversion element 13. may be obtained using an interpolation method such as linear interpolation. Thereby, the correction temperature T F can be determined using the position of the active region 131 or the physical property value of the wavelength conversion element 13 that is not included in the temperature setting information 161 .
 実施の形態4では、温度制御部16が、温度設定情報161に存在しない補正温度TFを温度設定情報161中のデータを用いた補間によって決定する。これによって、温度設定情報161にない作用領域131または物性値の波長変換素子13を用いることができるようになる。この結果、波長変換素子13を動かした場合、あるいは波長変換素子13を交換した場合などを含む、温度設定情報161を直接参照できない状況においても、予め定められた値以上の出力の第2波長のレーザ光L2の出射を実現することができるようになるという効果を有する。 In Embodiment 4, the temperature control unit 16 determines the correction temperature T F that does not exist in the temperature setting information 161 by interpolation using data in the temperature setting information 161 . As a result, it becomes possible to use the wavelength conversion element 13 having the active region 131 or the physical property value not included in the temperature setting information 161 . As a result, even in situations where the temperature setting information 161 cannot be directly referred to, including when the wavelength conversion element 13 is moved or when the wavelength conversion element 13 is replaced, the output of the second wavelength equal to or greater than the predetermined value is detected. There is an effect that it becomes possible to realize the emission of the laser light L2.
実施の形態5.
 オン時間Δtonからオフ時間Δtoffに切り替わった直後で、オフ時間Δtoffが経過するほど、波長変換素子13の温度は温度調整部14によって設定温度TCへと近づく。波長変換素子13の作用領域131の温度を補正温度TFを加えた温度にするためには、オフ時間Δtoffが長くなればなるほど温度調整部14による多くの発熱を要することとなる。作用領域131の温度が設定温度TCと等しくなるほどオフ時間Δtoffが長くなったとき、補正温度TFを加えるための温度調整部14の発熱量は最大となり、それ以上のオフ時間Δtoffでは温度調整部14の発熱量は一定となる。
Embodiment 5.
Immediately after switching from the on-time Δt on to the off-time Δt off , the temperature of the wavelength conversion element 13 approaches the set temperature T C by the temperature adjuster 14 as the off-time Δt off elapses. In order to bring the temperature of the active region 131 of the wavelength conversion element 13 to the temperature to which the correction temperature T F is added, the longer the OFF time Δt off is, the more heat is generated by the temperature adjustment section 14 . When the off -time Δt off becomes longer so that the temperature of the action area 131 becomes equal to the set temperature T C , the amount of heat generated by the temperature adjustment unit 14 for applying the correction temperature T F becomes maximum. The amount of heat generated by the temperature control unit 14 is constant.
 オフ時間Δtoffの長さに対して補正温度TFと補正温度TFを与えるまでに要する発熱量とを事前にデータテーブル化し、オフ時間Δtoffの長さに応じて発熱量を決定してもよい。これによって、作用領域131の温度が設定温度TCで一定となる前に温度調整部14が温度制御部16からのデータテーブルの参照によって補正温度TFを加えることができるようになる。また、これは温度センサ15による温度計測と、温度計測の結果を用いた温度制御を介すことを不要とすることが可能になる。これによって、温度計測を介したフィードバックを要する温度制御よりも時間を短縮して波長変換素子13に補正温度TFを加えることができるようになる。 The correction temperature T F and the amount of heat generation required to give the correction temperature T F for the length of the off time Δt off are made into a data table in advance, and the heat generation amount is determined according to the length of the off time Δt off . good too. This allows the temperature adjuster 14 to add the correction temperature T F by referring to the data table from the temperature controller 16 before the temperature of the action region 131 becomes constant at the set temperature T C . In addition, this makes it possible to eliminate the need for temperature measurement by the temperature sensor 15 and temperature control using the temperature measurement results. This makes it possible to apply the correction temperature T F to the wavelength conversion element 13 in a shorter time than in temperature control that requires feedback via temperature measurement.
 これらの効果により、オフ時間Δtoffになった後に作用領域131の温度が設定温度TCとなる前にオン時間Δtonが再びくるほど短い場合を含むような、オフ時間Δtoffの時間変更がある場合でも波長変換素子13に補正温度TFを加えることができるようになる。オフ時間Δtoffの長さは温度制御部16がレーザ制御部12と協働して、レーザ制御情報を先読みすることで認識することができる。これらにより、第2波長のレーザ光L2の出力を安定して効率よく発振させることができるようになる。 These effects prevent the off-time Δt off from changing in time, including when the on-time Δt on is again short before the temperature of the active region 131 reaches the set temperature T C after the off-time Δt off . Even in some cases, the correction temperature T F can be applied to the wavelength conversion element 13 . The length of the off time Δt off can be recognized by the temperature control section 16 cooperating with the laser control section 12 and reading the laser control information in advance. As a result, the output of the laser light L2 of the second wavelength can be stably and efficiently oscillated.
実施の形態6.
 実施の形態1から5では、オン時間Δtonでは、第1波長のレーザ光L1が予め定められた一定以上のピークパワーをもって波長変換素子13に入力されることで波長変換が行われる。また、オン時間Δtonからオフ時間Δtoffへの切り替えでは、レーザ制御部12によって一定の出力での連続発振に切り替えられることで、ピークパワーが一定未満になるようにしていた。しかし、オフ時間Δtoffへの切り替えは、この方法に限定されるものではない。
Embodiment 6.
In Embodiments 1 to 5, wavelength conversion is performed by inputting the laser light L1 of the first wavelength into the wavelength conversion element 13 with a predetermined peak power or higher during the ON time Δt on . Further, in switching from the on-time Δt on to the off-time Δt off , the laser control unit 12 switches to continuous oscillation at a constant output so that the peak power becomes less than a constant. However, switching to the off time Δt off is not limited to this method.
 このほかにオフ時間Δtoffへの切り替えは、パルス発振している第1波長のレーザ光L1を一定の出力で周波数だけ大きくしていくことでも可能である。この場合には、1パルスあたりのエネルギが小さくなり、ピークパワーが低下することで波長変換が行われなくなる。レーザ制御情報には、第1波長のレーザ光L1を一定の出力で周波数だけ大きくしていくようにすることが規定される。これによるオン時間Δtonおよびオフ時間Δtoffの動作切り替えでもオフ時間Δtoffでは第2波長のレーザ光L2による波長変換素子13での発熱は低下することから、実施の形態1から5で行われる温度制御は有効であり、第2波長のレーザ光L2の出力を安定して効率よく発振させることができるようになる。 In addition, switching to the off time Δt off can also be performed by increasing the frequency of the pulse-oscillated laser light L1 of the first wavelength at a constant output. In this case, the energy per pulse becomes small and the peak power is lowered, so wavelength conversion is not performed. The laser control information defines that the laser light L1 of the first wavelength is increased by the frequency at a constant output. Even when the operation is switched between the ON time Δt on and the OFF time Δt off , the heat generation in the wavelength conversion element 13 due to the laser light L2 of the second wavelength is reduced during the OFF time Δt off . Temperature control is effective, and the output of the laser light L2 of the second wavelength can be stably and efficiently oscillated.
実施の形態7.
 実施の形態6では、オフ時間Δtoffに切り替える機構が、第1波長のレーザ光L1をパルス発振から連続発振へと切り替えて第1波長のレーザ光L1を減衰させる場合を示した。しかし、オン時間Δtonからオフ時間Δtoffに切り替える機構は、これに限定されるものではない。
Embodiment 7.
In the sixth embodiment, the mechanism for switching to the OFF time Δt off switches the laser light L1 of the first wavelength from pulse oscillation to continuous oscillation to attenuate the laser light L1 of the first wavelength. However, the mechanism for switching from the ON time Δt on to the OFF time Δt off is not limited to this.
 図9は、実施の形態7に係るレーザ装置の構成の一例を模式的に示す図である。なお、図1と同一の構成要素には同一の符号を付して、その説明を省略する。図9では、レーザ装置10は、レーザ光源11と波長変換素子13との間に変調素子33をさらに備える。変調素子33は、レーザ光源11から波長変換素子13に入射させる第1波長のレーザ光L1の停止、減衰または偏光の回転を行うことができる素子の総称である。 FIG. 9 is a diagram schematically showing an example of the configuration of a laser device according to Embodiment 7. FIG. In addition, the same code|symbol is attached|subjected to the component same as FIG. 1, and the description is abbreviate|omitted. In FIG. 9, the laser device 10 further includes a modulation element 33 between the laser light source 11 and the wavelength conversion element 13. In FIG. The modulation element 33 is a general term for elements that can stop, attenuate, or rotate the polarization of the laser light L1 of the first wavelength that is incident on the wavelength conversion element 13 from the laser light source 11 .
 一例では、変調素子33は、レーザ光源11と波長変換素子13との間に配置されるメカニカルシャッタであってもよい。この場合には、メカニカルシャッタによって、第1波長のレーザ光L1を遮断し、波長変換素子13を通過させなくすることができる。あるいは、変調素子33は、音響光学素子または電気光学素子であってもよい。この場合には、音響光学素子または電気光学素子による偏光方向の制御によって、第1波長のレーザ光L1が波長変換素子13を透過した場合にも波長変換を起こさないようにされる。これらの場合でも、変調素子33による第2波長のレーザ光L2の変調についての情報、すなわち第2波長のレーザ光L2のオフ時間Δtoffに関わる、メカニカルシャッタの遮断の制御、音響光学素子または電気光学素子による偏光方向の制御は、レーザ制御情報で規定される。これらの方法によるオン時間Δtonとオフ時間Δtoffとの動作切り替えでも、オフ時間Δtoffでは第2波長のレーザ光L2による波長変換素子13での発熱は低下する。このため、実施の形態1から5で行われる温度制御は有効であり、第2波長のレーザ光L2の出力を安定して効率よく発振させることができるようになる。 In one example, the modulating element 33 may be a mechanical shutter arranged between the laser light source 11 and the wavelength converting element 13 . In this case, the mechanical shutter can block the laser beam L1 of the first wavelength and prevent it from passing through the wavelength conversion element 13 . Alternatively, the modulating element 33 may be an acousto-optic or electro-optic element. In this case, the polarization direction is controlled by the acousto-optic element or the electro-optic element so that wavelength conversion does not occur even when the laser light L1 of the first wavelength is transmitted through the wavelength conversion element 13 . In these cases, information about the modulation of the second-wavelength laser light L2 by the modulation element 33, that is, the off-time Δt off of the second-wavelength laser light L2, is related to the mechanical shutter cut-off control, acousto-optical element, or electrical Control of the polarization direction by the optical element is defined by laser control information. Even when the operation is switched between the on-time Δt on and the off-time Δt off by these methods, the heat generation in the wavelength conversion element 13 due to the laser light L2 of the second wavelength is reduced during the off-time Δt off . Therefore, the temperature control performed in Embodiments 1 to 5 is effective, and the output of the laser light L2 of the second wavelength can be stably and efficiently oscillated.
 なお、実施の形態6での第1波長のレーザ光L1の減衰、並びに実施の形態7での第1波長のレーザ光L1の遮断および偏光の回転のうちいずれかを用いる場合だけではなく、第1波長のレーザ光L1の遮断、減衰および偏光の回転のうち2つ以上を組み合わせてもよい。すなわち、第1波長のレーザ光L1の遮断、減衰および偏光の回転のうち少なくともいずれか1つを含むものであればよい。 In addition to the case of using either the attenuation of the laser light L1 of the first wavelength in the sixth embodiment or the blocking of the laser light L1 of the first wavelength and the rotation of the polarized light in the seventh embodiment, Two or more of blocking, attenuation, and rotation of polarization of the laser light L1 of one wavelength may be combined. In other words, at least one of blocking, attenuation, and polarization rotation of the laser beam L1 of the first wavelength may be included.
実施の形態8.
 図1において、レーザ加工装置1は、加工制御部23により第2波長のレーザ光L2の出力を制御しながら、レーザ走査部22と加工対象50を載置するステージ21との間で同期的に制御することで所望の加工を行う。加工制御部23は、穴あけまたは切断といった加工から焼き入れなどの熱加工において、第2波長のレーザ光L2を不連続的に加工対象50に照射させるように、レーザ走査部22およびステージ21を動作させてもよい。このとき、加工制御部23は、加工の目的に合わせて第2波長のレーザ光L2の出力を増減させる制御を行うことで、加工対象50に対する不連続な照射を実現させてもよい。
Embodiment 8.
In FIG. 1, the laser processing apparatus 1 controls the output of the laser beam L2 of the second wavelength by the processing control unit 23, and synchronously operates between the laser scanning unit 22 and the stage 21 on which the processing target 50 is placed. Desired processing is performed by controlling. The processing control unit 23 operates the laser scanning unit 22 and the stage 21 so as to discontinuously irradiate the processing object 50 with the laser light L2 of the second wavelength in processing such as drilling or cutting and thermal processing such as quenching. You may let At this time, the processing control unit 23 may realize discontinuous irradiation of the processing object 50 by performing control to increase or decrease the output of the laser light L2 of the second wavelength according to the purpose of processing.
 温度調整部14の設定温度TC0に対して加える補正温度TFは、第1波長のレーザ光L1のオフ時間Δtoffの時間タイミングに合わせて増減させてもよい。このため、補正温度TFを制御する温度制御部16は、第1波長のレーザ光L1のオン時間Δtonとオフ時間Δtoffとの切り替えのタイミングをレーザ制御部12または加工制御部23から受け取ってもよい。 The correction temperature T F added to the set temperature T C0 of the temperature adjuster 14 may be increased or decreased in accordance with the time timing of the off time Δt off of the laser light L1 of the first wavelength. Therefore, the temperature control unit 16 that controls the correction temperature T F receives the switching timing between the ON time Δt on and the OFF time Δt off of the laser light L1 of the first wavelength from the laser control unit 12 or the processing control unit 23. may
 実施の形態1から5にある連続発振とパルス発振の切り替え、または実施の形態6,7で示した波長変換のオン時間Δtonとオフ時間Δtoffとの切り替えが、加工対象50の移動または加工形状に合わせた第2波長のレーザ光L2の走査と合わせた照射の有無と連動して動作される。このとき、同時に実施の形態1から5に示した温度制御を温度制御部16が行うことで、レーザ加工をしている間に継続して、予め定められた基準値以上の波長変換効率で第2波長のレーザ光L2を安定して出射できるようになる。これによって、高効率で安定したレーザ加工を実現することができるようになる。 Switching between continuous oscillation and pulse oscillation in Embodiments 1 to 5, or switching between on-time Δt on and off-time Δt off of wavelength conversion shown in Embodiments 6 and 7 is performed by moving or machining the object 50. The operation is interlocked with the scanning of the laser beam L2 of the second wavelength that matches the shape and the presence/absence of irradiation that matches the scanning. At this time, the temperature control unit 16 simultaneously performs the temperature control shown in Embodiments 1 to 5, so that the wavelength conversion efficiency is continuously equal to or higher than the predetermined reference value while the laser processing is being performed. The two-wavelength laser beam L2 can be stably emitted. As a result, highly efficient and stable laser processing can be realized.
実施の形態9.
 実施の形態8のレーザ加工装置1において、レーザ加工の制御に同期してレーザ光源11の発振または出力変化をさせるとき、オン時間Δtonまたはオフ時間Δtoffのタイミングを加工制御部23が決定し、温度制御部16またはレーザ制御部12に伝えてもよい。これによって、温度センサ15による温度測定を介する温度制御をせずに、加工制御部23からの指令によって温度調整部14が動作することができるようになる。この結果、必要最小限の情報伝達で温度制御ができることになり、高速かつ高効率なレーザ加工を実現することができるようになる。つまり、加工制御部23と連動して温度制御を行うことで、加工制御部23からの情報によっても温度制御が可能となり、かつレーザ加工装置1の効率を向上させることができるようになる。
Embodiment 9.
In the laser processing apparatus 1 of Embodiment 8, when the laser light source 11 oscillates or changes its output in synchronization with the laser processing control, the processing control unit 23 determines the timing of the ON time Δt on or the OFF time Δt off . , to the temperature controller 16 or the laser controller 12 . As a result, the temperature adjustment section 14 can operate according to the command from the processing control section 23 without performing temperature control via temperature measurement by the temperature sensor 15 . As a result, the temperature can be controlled with the minimum necessary information transmission, and high-speed and highly efficient laser processing can be realized. That is, by performing temperature control in conjunction with the processing control unit 23, it is possible to control the temperature based on information from the processing control unit 23, and the efficiency of the laser processing apparatus 1 can be improved.
 実施の形態1から9に係るレーザ加工装置1のレーザ制御部12、温度制御部16および加工制御部23は、処理回路によって実現される。処理回路は専用のハードウェアであってもよいし、プロセッサを備える回路であってもよい。図10は、実施の形態1から9に係るレーザ加工装置に備えられるレーザ制御部、温度制御部および加工制御部のハードウェア構成の一例を模式的に示すブロック図である。レーザ制御部12、温度制御部16および加工制御部23は、プロセッサ501と、メモリ502と、を有する。プロセッサ501とメモリ502とは、バスライン503を介して接続される。レーザ制御部12、温度制御部16および加工制御部23は、メモリ502に記憶されたプログラムをプロセッサ501が実行することによって実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、レーザ制御部12、温度制御部16および加工制御部23の機能のうちの一部を専用のハードウェアである電子回路として実装し、他の部分をプロセッサ501およびメモリ502を用いて実現するようにしてもよい。一例では、実施の形態1から9の場合には、レーザ制御部12は、レーザ光源11の動作を電気信号によって制御し、温度制御部16は、温度調整部14の動作を電気信号によって制御し、加工制御部23は、ステージ21およびレーザ走査部22の動作を電気信号によって制御する。 The laser control unit 12, the temperature control unit 16, and the processing control unit 23 of the laser processing apparatus 1 according to Embodiments 1 to 9 are implemented by processing circuits. The processing circuit may be dedicated hardware, or may be a circuit with a processor. FIG. 10 is a block diagram schematically showing an example of a hardware configuration of a laser control section, a temperature control section, and a processing control section provided in the laser processing apparatuses according to Embodiments 1 to 9. FIG. The laser control unit 12 , the temperature control unit 16 and the processing control unit 23 each have a processor 501 and a memory 502 . Processor 501 and memory 502 are connected via bus line 503 . The laser control unit 12 , the temperature control unit 16 and the processing control unit 23 are implemented by the processor 501 executing programs stored in the memory 502 . Also, multiple processors and multiple memories may work together to achieve the above functions. Some of the functions of the laser control unit 12, the temperature control unit 16, and the processing control unit 23 are implemented as electronic circuits that are dedicated hardware, and other functions are realized using the processor 501 and the memory 502. You may do so. As an example, in the case of Embodiments 1 to 9, the laser control section 12 controls the operation of the laser light source 11 with an electrical signal, and the temperature control section 16 controls the operation of the temperature adjustment section 14 with an electrical signal. , the processing control unit 23 controls the operations of the stage 21 and the laser scanning unit 22 by electric signals.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
 1 レーザ加工装置、10 レーザ装置、11 レーザ光源、12 レーザ制御部、13 波長変換素子、13a 入射面、14 温度調整部、15 温度センサ、16 温度制御部、21 ステージ、22 レーザ走査部、23 加工制御部、31 熱拡散板、32 入射位置変更部、33 変調素子、50 加工対象、131,131a,131b 作用領域、161 温度設定情報、L1 第1波長のレーザ光、L2 第2波長のレーザ光。 1 laser processing device, 10 laser device, 11 laser light source, 12 laser control section, 13 wavelength conversion element, 13a incident surface, 14 temperature control section, 15 temperature sensor, 16 temperature control section, 21 stage, 22 laser scanning section, 23 Processing control unit, 31 heat diffusion plate, 32 incident position changing unit, 33 modulation element, 50 processing object, 131, 131a, 131b working area, 161 temperature setting information, L1 first wavelength laser light, L2 second wavelength laser light.

Claims (9)

  1.  第1波長のレーザ光を発生させるレーザ光源と、
     前記レーザ光源の制御についての情報であるレーザ制御情報に基づいて前記レーザ光源を制御するレーザ制御部と、
     前記第1波長のレーザ光を400nm以下の第2波長のレーザ光へ波長変換する波長変換素子と、
     前記第1波長のレーザ光の出力のうち第2波長のレーザ光への波長変換に寄与する出力である特定出力が変化する変化時点より前の時間区間である第1区間より後の時間区間であって、前記特定出力が一定の時間区間である第2区間の前記レーザ制御情報を、前記第2区間の出力の変化時点より前に取得し、取得した前記第2区間の前記レーザ制御情報に基づいて前記第2区間の前記波長変換素子の温度を制御する温度制御部と、
     を備えることを特徴とするレーザ装置。
    a laser light source that generates laser light of a first wavelength;
    a laser control unit that controls the laser light source based on laser control information that is information about control of the laser light source;
    a wavelength conversion element that wavelength-converts the laser light of the first wavelength to the laser light of the second wavelength of 400 nm or less;
    In the time interval after the first interval, which is the time interval before the change point at which the specific output, which is the output that contributes to the wavelength conversion to the second wavelength laser light, among the outputs of the first wavelength laser light wherein the laser control information for a second section in which the specific output is a constant time section is acquired before the point of time when the output of the second section changes, and the laser control information for the acquired second section is obtained. a temperature control unit that controls the temperature of the wavelength conversion element in the second section based on
    A laser device comprising:
  2.  前記レーザ制御情報は、前記第2波長のレーザ光の休止時間に関わる、前記第1波長のレーザ光の平均出力、前記レーザ装置の駆動電流、および前記第1波長のレーザ光の繰り返し周波数のうちの少なくともいずれか1つを含むレーザ光の特性を示す情報であり、
     前記温度制御部は、前記レーザ制御情報を用いて前記第2波長のレーザ光の前記休止時間を先読みすることを特徴とする請求項1に記載のレーザ装置。
    The laser control information is an average output of the laser light of the first wavelength, a driving current of the laser device, and a repetition frequency of the laser light of the first wavelength, which are related to the pause time of the laser light of the second wavelength. Information indicating characteristics of laser light including at least one of
    2. The laser device according to claim 1, wherein the temperature control unit uses the laser control information to read ahead the pause time of the laser light of the second wavelength.
  3.  前記第2波長のレーザ光の休止時間に関わる、前記第1波長のレーザ光の停止、減衰および偏光の回転のうち少なくともいずれか1つを実行して前記第1波長のレーザ光の変調を実行する変調素子をさらに備え、
     前記レーザ制御情報は、前記変調素子による前記第2波長のレーザ光の変調についての情報であり、
     前記温度制御部は、前記レーザ制御情報を用いて前記第2波長のレーザ光の前記休止時間を先読みすることを特徴とする請求項1に記載のレーザ装置。
    Modulation of the laser light of the first wavelength is performed by performing at least one of stopping, attenuation, and rotation of polarization of the laser light of the first wavelength, which is related to the pause time of the laser light of the second wavelength. further comprising a modulating element for
    The laser control information is information about modulation of the laser light of the second wavelength by the modulation element,
    2. The laser device according to claim 1, wherein the temperature control unit uses the laser control information to read ahead the pause time of the laser light of the second wavelength.
  4.  前記レーザ制御情報は、前記波長変換素子における単位時間あたりの発熱量と相関を有する量であり、
     前記温度制御部は、前記第1区間の発熱量と前記第2区間の発熱量との比較に基づいて前記第2区間の前記波長変換素子の温度を制御することを特徴とする請求項1から3のいずれか1つに記載のレーザ装置。
    The laser control information is an amount correlated with the amount of heat generated per unit time in the wavelength conversion element,
    2. The temperature control unit controls the temperature of the wavelength conversion element in the second section based on a comparison between the amount of heat generated in the first section and the amount of heat generated in the second section. 4. The laser device according to any one of 3.
  5.  前記波長変換素子の温度である素子温度を計測する温度センサをさらに備え、
     温度制御部は、
     前記波長変換素子の温度を設定温度に近づけるように前記波長変換素子に入熱および排熱の少なくとも一方を実行することによって、前記波長変換素子の温度の制御を実行し、
     前記第2区間の開始より前に、前記第2区間での前記波長変換素子の発熱量に基づいて、前記第2区間での前記波長変換素子の設定温度である第2区間設定温度を算出し、
     前記第1区間の終了時点に、前記波長変換素子の温度が前記第2区間設定温度に近づくように前記波長変換素子の温度制御を実行することを特徴とする請求項1から4のいずれか1つに記載のレーザ装置。
    further comprising a temperature sensor for measuring an element temperature, which is the temperature of the wavelength conversion element;
    The temperature control part
    controlling the temperature of the wavelength conversion element by performing at least one of heat input and exhaust heat from the wavelength conversion element so that the temperature of the wavelength conversion element approaches a set temperature;
    before the start of the second section, a second section set temperature, which is the set temperature of the wavelength conversion element in the second section, is calculated based on the amount of heat generated by the wavelength conversion element in the second section; ,
    5. The temperature control of the wavelength conversion element is executed so that the temperature of the wavelength conversion element approaches the set temperature of the second section at the end of the first section. 1. The laser device according to 1.
  6.  前記レーザ制御部からの指示に従って、前記波長変換素子への前記第1波長のレーザ光の入射位置を変更する入射位置変更部をさらに備え、
     前記温度制御部は、前記第1区間での前記入射位置を予め取得し、取得した前記入射位置に基づいて前記波長変換素子の温度を制御することを特徴とする請求項1から5のいずれか1つに記載のレーザ装置。
    further comprising an incident position changing unit that changes an incident position of the laser light of the first wavelength to the wavelength conversion element according to an instruction from the laser control unit;
    6. The temperature control unit according to any one of claims 1 to 5, wherein the temperature control unit previously acquires the incident position in the first section, and controls the temperature of the wavelength conversion element based on the acquired incident position. 1. A laser device according to claim 1.
  7.  温度制御部は、複数の前記入射位置の各々と前記レーザ制御情報との関係を示す温度設定情報に基づいて前記波長変換素子の温度制御を行うことを特徴とする請求項6に記載のレーザ装置。 7. The laser device according to claim 6, wherein the temperature control unit controls the temperature of the wavelength conversion element based on temperature setting information indicating a relationship between each of the plurality of incident positions and the laser control information. .
  8.  前記温度設定情報は、複数の前記入射位置の各々と前記レーザ制御情報との関係を示すテーブルであることを特徴とする請求項7に記載のレーザ装置。 8. The laser device according to claim 7, wherein the temperature setting information is a table showing the relationship between each of the plurality of incident positions and the laser control information.
  9.  請求項1から8のいずれか1つに記載のレーザ装置と、
     前記レーザ装置から出射されるレーザ光を加工対象に照射するレーザ光走査部と、
     を備えることを特徴とするレーザ加工装置。
    a laser device according to any one of claims 1 to 8;
    a laser beam scanning unit that irradiates a laser beam emitted from the laser device onto an object to be processed;
    A laser processing device comprising:
PCT/JP2021/016768 2021-04-27 2021-04-27 Laser device, and laser processing device WO2022230045A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016768 WO2022230045A1 (en) 2021-04-27 2021-04-27 Laser device, and laser processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016768 WO2022230045A1 (en) 2021-04-27 2021-04-27 Laser device, and laser processing device

Publications (1)

Publication Number Publication Date
WO2022230045A1 true WO2022230045A1 (en) 2022-11-03

Family

ID=83846809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016768 WO2022230045A1 (en) 2021-04-27 2021-04-27 Laser device, and laser processing device

Country Status (1)

Country Link
WO (1) WO2022230045A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025888A (en) * 1999-07-09 2001-01-30 Ushio Sogo Gijutsu Kenkyusho:Kk Laser beam device for machining
JP2001042372A (en) * 1999-07-27 2001-02-16 Ushio Sogo Gijutsu Kenkyusho:Kk Processing laser device
JP2008186888A (en) * 2007-01-29 2008-08-14 Seiko Epson Corp Light source equipment, image display device, projector, and drive method of monitoring device and light source equipment
WO2011132385A1 (en) * 2010-04-20 2011-10-27 パナソニック株式会社 Laser light source and laser machining machine
US20130250979A1 (en) * 2012-03-20 2013-09-26 Martin H. Muendel Stabilizing beam pointing of a frequency-converted laser system
US9083146B1 (en) * 2014-03-14 2015-07-14 Shimadzu Corporation Solid state laser device
JP2020501368A (en) * 2016-12-04 2020-01-16 ニューポート コーポレーション High power mode locked laser system and method of use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025888A (en) * 1999-07-09 2001-01-30 Ushio Sogo Gijutsu Kenkyusho:Kk Laser beam device for machining
JP2001042372A (en) * 1999-07-27 2001-02-16 Ushio Sogo Gijutsu Kenkyusho:Kk Processing laser device
JP2008186888A (en) * 2007-01-29 2008-08-14 Seiko Epson Corp Light source equipment, image display device, projector, and drive method of monitoring device and light source equipment
WO2011132385A1 (en) * 2010-04-20 2011-10-27 パナソニック株式会社 Laser light source and laser machining machine
US20130250979A1 (en) * 2012-03-20 2013-09-26 Martin H. Muendel Stabilizing beam pointing of a frequency-converted laser system
US9083146B1 (en) * 2014-03-14 2015-07-14 Shimadzu Corporation Solid state laser device
JP2020501368A (en) * 2016-12-04 2020-01-16 ニューポート コーポレーション High power mode locked laser system and method of use

Similar Documents

Publication Publication Date Title
JP4677392B2 (en) Pulse laser heat treatment apparatus and control method thereof
US7599407B2 (en) Laser control method, laser apparatus, laser treatment method used for the same, laser treatment apparatus
KR101272407B1 (en) Laser processing apparatus, laser light source apparatus, and controlling method of laser light source apparatus
JP6355496B2 (en) Laser processing apparatus and pulse laser beam output method
US9089927B2 (en) Laser pulse generation method and apparatus
CN111801190B (en) Laser power control device, laser processing device, and laser power control method
JP2009130143A (en) Laser oscillation apparatus and method of controlling the same
JP2011014685A (en) Laser irradiation device and laser irradiation method
CN112053943A (en) Laser annealing method and laser control device
JP2011224618A (en) Laser beam welding method
WO2022230045A1 (en) Laser device, and laser processing device
US10312659B1 (en) Controlling laser beam parameters by crystal shifting
JP2019104046A5 (en)
JP6341308B2 (en) Solid state pulse laser equipment
JP2001042372A (en) Processing laser device
WO2001004698A1 (en) Laser for laser machining
JP3968868B2 (en) Solid state laser equipment
JP2003298160A (en) Solid laser device
JP5834981B2 (en) Solid state laser equipment
TWM610274U (en) Laser system for reducing welding sputtering
JP2014225542A (en) Solid-state pulse laser device
JP5769774B2 (en) Laser processing equipment
TWI738558B (en) Laser system with reduced welding spatter and method of using the same
JP2010179325A (en) Laser machining apparatus
WO2024024338A1 (en) Laser processing device, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP