JP2001039715A - Production of zirconia fine powder - Google Patents

Production of zirconia fine powder

Info

Publication number
JP2001039715A
JP2001039715A JP11208992A JP20899299A JP2001039715A JP 2001039715 A JP2001039715 A JP 2001039715A JP 11208992 A JP11208992 A JP 11208992A JP 20899299 A JP20899299 A JP 20899299A JP 2001039715 A JP2001039715 A JP 2001039715A
Authority
JP
Japan
Prior art keywords
zirconia
powder
zirconium
compound
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11208992A
Other languages
Japanese (ja)
Other versions
JP4186319B2 (en
Inventor
Tetsuro Ikegaki
哲朗 生垣
Masanori Sawano
雅典 沢野
Nobuo Eto
伸生 衛藤
Takashi Mori
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP20899299A priority Critical patent/JP4186319B2/en
Publication of JP2001039715A publication Critical patent/JP2001039715A/en
Application granted granted Critical
Publication of JP4186319B2 publication Critical patent/JP4186319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce zirconia powder to obtain a compound for injection molding which has excellent flowability and which does not require a large amount of a binder even though it has a large specific surface area. SOLUTION: The zirconia fine powder is obtained by drying and calcining a hydrated zirconia sol containing a zirconium salt or a mixture of a stabilizer and the hydrated zirconia sol containing the zirconium salt. In this method for producing the zirconia fine powder, the hydrated zirconia sol containing the zirconium salt, or the mixture of the stabilizer and the hydrated zirconia sol containing the zirconium salt is dried and calcined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、ジルコニアセラ
ミックスの製造に用いられるジルコニア微粉末の製造法
に関するものであり、特に、有機バインダーとジルコニ
ア粉末のコンパウンドにおいて該コンパウンドが良好な
流動性を有し、射出成形において良好な成形特性を示す
コンパウンドを得ることが可能なジルコニア微粉末の製
造法の提供を目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing zirconia fine powder used for producing zirconia ceramics. In particular, the compound has good fluidity in a compound of an organic binder and zirconia powder. An object of the present invention is to provide a method for producing zirconia fine powder capable of obtaining a compound exhibiting good molding characteristics in injection molding.

【0002】[0002]

【従来技術】ジルコニア焼結体の製造方法の一つとして
射出成形法が良く知られている。この射出成形法では、
ジルコニア微粉末と各種の有機物を混合した有機バイン
ダーとの混合物即ちコンパウンドを成形用組成物とし、
これを金型内に射出しグリーン成形体を成形した後、脱
脂、焼成を行ってジルコニア焼結体を得る。
2. Description of the Related Art An injection molding method is well known as one of the methods for producing a zirconia sintered body. In this injection molding method,
A mixture of an organic binder obtained by mixing zirconia fine powder and various organic substances, that is, a compound as a molding composition,
This is injected into a mold to form a green molded body, which is then degreased and fired to obtain a zirconia sintered body.

【0003】ジルコニア微粉末の製造方法として、ジル
コニウム塩水溶液或いは該水溶液にY、Ce、Ca等の安定
化剤を共存させた水溶液を加熱、加水分解し、生じた水
和ジルコニアゾルを乾燥、焼成する方法(加水分解法)
や安定化剤を共存させたジルコニウム塩水溶液を中和
し、得られた沈殿物を乾燥、焼成する方法(中和法)が
広く知られている。また、水和ジルコニウムゾルを限外
ろ過膜等でろ過する事により、不純物のろ過と濃縮を同
時に行い乾燥の効率を上げる方法も良く知られている。
また、この方法によれば不純物と共に加水分解反応の未
反応成分も同時に除去できる為に、高純度、高反応率の
ジルコニア微粉末が製造出来る。
As a method for producing zirconia fine powder, a hydrated zirconia sol is dried by heating and hydrolyzing an aqueous solution of a zirconium salt or an aqueous solution in which a stabilizer such as Y, Ce or Ca coexists. Method (hydrolysis method)
A method of neutralizing an aqueous solution of a zirconium salt in which a zirconium salt and a stabilizer coexist, and drying and calcining the obtained precipitate (neutralization method) is widely known. It is also well known that hydrated zirconium sol is filtered through an ultrafiltration membrane or the like, thereby simultaneously filtering and concentrating impurities to increase drying efficiency.
Further, according to this method, since unreacted components of the hydrolysis reaction together with impurities can be removed at the same time, zirconia fine powder having a high purity and a high conversion can be produced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、射出成
形による成形にはコンパウンドの流動性が良好である事
が重要な条件である。射出成形においては、射出成形機
の高温のシリンダー内で溶融されたコンパウンドが金型
内のキャビティに射出されるが、この時、流動性の不十
分なコンパウンドを用いた場合は、成形圧力が金型内に
射出されたコンパウンドの隅々にまで十分均等に行き渡
らない為、成形体内に不均一な応力分布を生じて、成形
体の密度が不均一になり、その結果、成形体にヒケとい
われる現象を生ずる。また、極端な場合は、溶融コンパ
ウンドがキャビティ内に十分充填されず、ショートと呼
ばれる成形不良を生ずることがある。
However, in molding by injection molding, it is an important condition that the compound has good fluidity. In injection molding, a compound melted in a high-temperature cylinder of an injection molding machine is injected into a cavity in a mold. At this time, when a compound having insufficient fluidity is used, the molding pressure is increased. Since the compound injected into the mold is not evenly distributed to every corner, uneven stress distribution occurs in the molded body, resulting in uneven density of the molded body. As a result, the molded body is said to have sink marks Cause a phenomenon. In an extreme case, the molten compound is not sufficiently filled in the cavity, and a molding defect called a short circuit may occur.

【0005】従来、プラスチック類と比べ、ジルコニア
等のセラミックス粉末を含有したコンパウンドはせん断
応力に対する降伏値が高く、流動性に優れない傾向があ
った。そのため、この流動性の改善を図るさまざまな手
法が取られてきた。例えば、最も簡単には、コンパウン
ドにおけるバインダーの配合比率を大きくする方法があ
る。しかしこの場合、成形体の粉末密度が低下し、焼成
後の収縮変形が大きくなるため精度の高い焼結体が得ら
れず好ましくない。また、バインダーの構成成分の中で
アクリル系樹脂、脂肪酸などの可塑性の強い成分量を増
加させる事が考えられるが、一般にこれらは脱脂時の発
熱が大きく、脱脂後の成形体にひび割れを生じさせる事
等が多くなり好ましくない。
Conventionally, compounds containing ceramic powder such as zirconia tend to have a high yield value against shear stress and are not excellent in fluidity as compared with plastics. Therefore, various methods for improving the liquidity have been taken. For example, the simplest method is to increase the compounding ratio of the binder in the compound. However, in this case, the powder density of the molded body is reduced, and the shrinkage deformation after firing is increased, so that a highly accurate sintered body cannot be obtained, which is not preferable. Further, among the constituent components of the binder, it is conceivable to increase the amount of strongly plastic components such as an acrylic resin and a fatty acid. However, generally, these components generate a large amount of heat at the time of degreasing and cause cracks in the molded body after degreasing. It is not preferable because the number of things increases.

【0006】次に、BET法による比表面積(以後、BET比
表面積と言う。)の小さなジルコニア粉末を用いてコン
パウンドを構成する方法がある。ジルコニア粉末を製造
する場合、仮焼工程においてその仮焼温度を高くする事
によってBET比表面積の小さな粉末を製造する事が出来
る。このような粉末では、その平均粒径は大きくなり、
粒子間の相互作用が小さくなるのでコンパウンドの流動
性は向上するが、焼結体密度が低下する傾向があり、必
ずしも好ましくない。
Next, there is a method of forming a compound using zirconia powder having a small specific surface area (hereinafter, referred to as a BET specific surface area) by a BET method. When producing zirconia powder, a powder having a small BET specific surface area can be produced by increasing the calcining temperature in the calcining step. In such powders, the average particle size is large,
Since the interaction between particles becomes small, the fluidity of the compound is improved, but the density of the sintered body tends to decrease, which is not always preferable.

【0007】一般に焼結体の特性、例えば、焼結体密度
や低温での焼結性を改善する為にはBET比表面積は大き
く、しかも単分散の粒子からなる粉末が望ましい。
Generally, in order to improve the characteristics of the sintered body, for example, the density of the sintered body and the sinterability at a low temperature, a powder having a large BET specific surface area and monodispersed particles is desirable.

【0008】このようにコンパウンドの流動性は射出成
形において成形特性を左右する重要な因子であるが、前
述の加水分解法や中和法を用いて作成した高純度のジル
コニア粉末を用いて作成したコンパウンドは、焼結体特
性は優れているものの、流動性が十分でなく、射出成形
用途に適さないという問題があった。
[0008] As described above, the fluidity of the compound is an important factor influencing the molding characteristics in injection molding, and the compound was prepared using high-purity zirconia powder prepared by the above-mentioned hydrolysis method or neutralization method. Although the compound has excellent properties of the sintered body, there is a problem that the compound has insufficient fluidity and is not suitable for use in injection molding.

【0009】本願発明は高い比表面積でありながら多量
のバインダーを必要とせず、流動性に優れた射出成形用
コンパウンドを与えるジルコニア粉末の製造法を提供す
ることを目的とする。
It is an object of the present invention to provide a method for producing a zirconia powder which provides a compound for injection molding which has a high specific surface area, does not require a large amount of binder, and has excellent fluidity.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記課題を
解決するために、ジルコニア粉末の製造法を鋭意検討し
た結果、ジルコニウム塩を部分的に含ませた水和ジルコ
ニアゾル乾燥粉を仮焼することにより、高いBET比表面
積を保持しながら流動性の優れた射出成形用コンパウン
ドを与えるジルコニア粉末が得られることを発見し、本
願発明を成すに至った。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted intensive studies on a method for producing zirconia powder. The inventor has found that sintering can provide a zirconia powder that gives a compound for injection molding having excellent fluidity while maintaining a high BET specific surface area, and has accomplished the present invention.

【0011】以下に本願発明を加水分解法を例にして詳
細に述べる。
Hereinafter, the present invention will be described in detail using a hydrolysis method as an example.

【0012】本願発明ではジルコニウム塩の水溶液を加
水分解して得られる水和ジルコニウムゾルをジルコニア
源として用いた。より具体的にはオキシ塩化ジルコニウ
ムの0.3mol/l溶液を常圧下で加熱、煮沸し、ジルコニア
転化率98%以上の水和ジルコニアゾルを得た。電子顕微
鏡による観察の結果、本ゾルは主として直径1000ナの水
和ジルコニア粒子から構成されていることが分かった。
In the present invention, a hydrated zirconium sol obtained by hydrolyzing an aqueous solution of a zirconium salt is used as a zirconia source. More specifically, a 0.3 mol / l solution of zirconium oxychloride was heated and boiled under normal pressure to obtain a hydrated zirconia sol having a zirconia conversion of 98% or more. As a result of observation with an electron microscope, it was found that the sol was mainly composed of hydrated zirconia particles having a diameter of 1,000 nm.

【0013】このようにして得られた水和ジルコニアゾ
ルを限外ろ過により濃縮する。このろ過を複数回繰り返
すことによって、濃縮を行うと同時に液中に含まれる2%
以下の未反応のZr成分及び不純物をろ別することが出来
る。この時、ろ液をICP発光分析することによって、未
反応Zr成分量をモニターし、最終的にジルコニア添加率
100%の水和ジルコニアゾルを得た。
The hydrated zirconia sol thus obtained is concentrated by ultrafiltration. By repeating this filtration several times, concentration is performed and at the same time 2% contained in the liquid.
The following unreacted Zr components and impurities can be filtered out. At this time, the amount of unreacted Zr component was monitored by ICP emission analysis of the filtrate, and the zirconia addition rate was finally determined.
A 100% hydrated zirconia sol was obtained.

【0014】得られた濃縮ゾルを、溶液中の固形分濃度
が35%になるように濃度を調節し、スプレードライヤー
を用いた乾燥させた。ここで固形分とは水和ジルコニア
ゾルを1000℃で2時間乾燥した結果、残存する灰分のこ
とである。本発明の特徴はこうして得られた濃縮ゾルに
再度ジルコニウム塩を加えることにある。添加されるジ
ルコニウム塩としては特にオキシ塩化ジルコニウムに限
定されるものでなく、塩化ジルコニウム、硝酸ジルコニ
ウム等でもよい。また、加水分解におけるジルコニア転
化率の低い水和ジルコニウムゾルを用いて、濃縮ゾル中
に未反応Zr成分を残留させる方法を用いても良いが、こ
の場合は残存するZr量を正確に調整することが困難な欠
点がある。
The concentration of the obtained concentrated sol was adjusted so that the solid concentration in the solution became 35%, and dried using a spray drier. Here, the solid content refers to ash remaining after drying the hydrated zirconia sol at 1000 ° C. for 2 hours. A feature of the present invention is that the zirconium salt is added again to the concentrated sol thus obtained. The zirconium salt to be added is not particularly limited to zirconium oxychloride, but may be zirconium chloride, zirconium nitrate, or the like. Alternatively, a method of leaving unreacted Zr components in the concentrated sol using a hydrated zirconium sol having a low zirconia conversion rate in hydrolysis may be used, but in this case, the amount of remaining Zr must be adjusted accurately. There are difficult disadvantages.

【0015】このようにしてジルコニウム塩を含んだ濃
縮ゾルを作成し、スプレードライヤーを用いて噴霧乾燥
することによってジルコニウム塩含有水和ジルコニウム
ゾル乾燥粉を作成する。次に、該乾燥粉を850℃で2時
間、大気雰囲気において仮焼する。昇温速度は約100℃
/時間であった。更に、該仮焼粉をデカンテーション法
によって水洗し、その後ボールミルを用いて粉砕する。
こうして得られた粉砕粉を再度スプレードライヤーで乾
燥し、コンパウンドの作成に用いる。
Thus, a concentrated sol containing a zirconium salt is prepared and spray-dried using a spray drier to prepare a dried zirconium salt-containing hydrated zirconium sol powder. Next, the dried powder is calcined at 850 ° C. for 2 hours in an air atmosphere. Heating rate is about 100 ° C
/ Hour. Further, the calcined powder is washed with water by a decantation method, and then pulverized using a ball mill.
The pulverized powder thus obtained is dried again with a spray drier and used for preparing a compound.

【0016】前記ジルコニア粉末と有機バインダーの混
練には通常の加圧式二軸ニーダーを用いた。温度は高温
では有機バインダーの燃焼、揮発が生じ、低温ではバイ
ンダーの軟化が妨げられるので80℃〜160℃が好まし
い。混練時間は長いほどコンパウンドの流動性は向上す
るが現実的な時間として1〜5時間が好ましい。有機バイ
ンダーとして通常のセラミックスの射出成形に用いられ
るアクリル系バインダー、スチレン系バインダー、脂肪
酸類等を用いることが出来る。
For the kneading of the zirconia powder and the organic binder, a usual pressurized biaxial kneader was used. The temperature is preferably from 80 ° C to 160 ° C because combustion and volatilization of the organic binder occur at a high temperature, and softening of the binder is hindered at a low temperature. As the kneading time is longer, the fluidity of the compound is improved, but a practical time of 1 to 5 hours is preferable. As the organic binder, an acrylic binder, a styrene-based binder, a fatty acid, and the like, which are used in usual injection molding of ceramics, can be used.

【0017】ジルコニア粉末に対する有機バインダーの
混合割合は約20重量%とした、この時約50体積%に当た
る。しかし、本発明の場合、コンパウンドの作成は以下
に述べる流動性の評価の用に供するためであり、その成
分構成、作成法は一定かつ一般性があれば詳細は重要で
ない。
The mixing ratio of the organic binder to the zirconia powder was about 20% by weight, which corresponds to about 50% by volume. However, in the case of the present invention, the preparation of the compound is for use in the evaluation of liquidity described below, and the details of the composition and the preparation method are not important as long as they are constant and general.

【0018】コンパウンドの流動性の評価はJIS K 7210
に規定されたメルトフローレート(MFR)測定によった。
試料としては、粒度の揃った粉末が望ましく、機械的に
粉砕したコンパウンドを、分級したものが適当である。
一回の測定に用いる試料量は10〜15gが望ましい。溶融
温度が高いほどコンパウンドの粘度は低下するが、使用
する有機バインダーの耐熱性から自ずと限界がある。通
常200℃以下が望ましい。シリンダー内に試料を投入し
た後、シリンダーと試料温度が安定するまで保持する必
要がある。その後、ピストンを挿入し、重りを載せ荷重
で溶融コンパウンドを押出す。ピストンが一定の位置か
ら25mm押し下げられるまでの時間を測定し以下の数式に
したがってMFRを算出した。尚、この時間測定操作は全
て自動的に行われる。
The fluidity of the compound was evaluated according to JIS K 7210
Melt flow rate (MFR) measurement as specified in
As the sample, a powder having a uniform particle size is desirable, and a compound obtained by classifying a mechanically pulverized compound is suitable.
The sample amount used for one measurement is preferably 10 to 15 g. The higher the melting temperature, the lower the viscosity of the compound, but there is naturally a limit due to the heat resistance of the organic binder used. Usually, 200 ° C or lower is desirable. After the sample is put into the cylinder, it is necessary to hold the temperature of the cylinder and the sample until the temperature is stabilized. Thereafter, a piston is inserted, a weight is placed, and a molten compound is extruded with a load. The time required for the piston to be pushed down by 25 mm from a certain position was measured, and the MFR was calculated according to the following formula. This time measurement operation is all performed automatically.

【0019】 MFR(T,M,B)=(426×L×ρ)÷t この式において、T:測定温度、M:試験荷重、B:操作B
法を示す、L:ピストンの移動距離、ρ:試料温度にお
けるコンパウンドの密度、t:ピストンが長さLを移動す
るのに要する時間の平均値、426:ピストンとシリンダ
ーの面積(cm2)の平均値×600(10分間の秒数)を表
す。
MFR (T, M, B) = (426 × L × ρ) ÷ t In this equation, T: measured temperature, M: test load, B: operation B
L: distance traveled by piston, ρ: density of compound at sample temperature, t: average time required for piston to travel length L, 426: area of piston and cylinder (cm 2 ) Average value x 600 (number of seconds in 10 minutes).

【0020】一方、このようなジルコニア粉末は、それ
らを用いて作成した焼結体が十分な密度を示すものであ
る必要がある。その為、得られた粉末の焼結体を作成し
その密度を測定した。
On the other hand, such a zirconia powder needs to have a sintered body made of the zirconia powder having a sufficient density. Therefore, a sintered body of the obtained powder was prepared and its density was measured.

【0021】以下に本発明の実施例をあげて更に具体的
に説明する。
Now, the present invention will be described in further detail with reference to Examples.

【0022】[0022]

【実施例】実施例1 オキシ塩化ジルコニウム0.3モル/リットル溶液(以
下、原料液という。)を還流状態において約200時間煮
沸することによって、ジルコニア転化率90%のジルコニ
アゾルを得た。続いて煮沸状態において本ゾルの5体積%
部を抜き出し、同体積の原料液を補充する。この操作を
30分毎に繰り返す。繰り返しの回数を重ねるにつれてジ
ルコニア転化率は徐々に上昇し、約100回の繰り返しの
後、約98%の転化率で定常状態に達した。この時のジル
コニアゾル粒子の大きさは約1000オングストロームであ
った。定常状態下で同様に抜き出し、供給操作を繰り返
し、約100リットルのジルコニアゾルを回収、生成し
た。
EXAMPLE 1 A zirconia sol having a zirconia conversion rate of 90% was obtained by boiling a 0.3 mol / liter solution of zirconium oxychloride (hereinafter, referred to as a raw material liquid) in a reflux state for about 200 hours. Subsequently, 5% by volume of the sol in the boiling state
Extract the part and replenish the same volume of the stock solution. This operation
Repeat every 30 minutes. As the number of repetitions increased, the zirconia conversion gradually increased and reached a steady state at about 98% conversion after about 100 repetitions. The size of the zirconia sol particles at this time was about 1000 angstroms. Under a steady state, the zirconia sol was withdrawn in the same manner, and the supply operation was repeated to collect and produce about 100 liters of zirconia sol.

【0023】続いて、限外ろ過操作によってこのゾルを
約20リットルに濃縮した。ろ過には円筒形の限外ろ過膜
モジュールを用い、この膜モジュール内にゾルを循環さ
せることによって脱水、濃縮を行った。次に、この濃縮
されたジルコニアゾルに2.5モル/リットルのオキシ塩
化ジルコニウム溶液をジルコニア量換算で10重量%にな
るように添加した。
Subsequently, the sol was concentrated to about 20 liters by an ultrafiltration operation. For the filtration, a cylindrical ultrafiltration membrane module was used, and dehydration and concentration were performed by circulating the sol in the membrane module. Next, a 2.5 mol / liter zirconium oxychloride solution was added to the concentrated zirconia sol so as to be 10% by weight in terms of the amount of zirconia.

【0024】更に、イットリアを比Y2O3/(Y2O3+ZrO2)が
3モル%になるように添加し、一昼夜攪拌した。イット
リアは完全に溶解し、pH=0.5の混合溶液を得た。この
混合溶液をスプレー乾燥し、約8キロの乾燥粉を得た。
この乾燥粉を管状炉中大気雰囲気において870℃で2時間
仮焼した後、水洗して8時間粉砕し、再乾燥させて部分
安定化ジルコニア(PSZ)粉末を作成した。こうして得
られたPSZ粉末のBET比表面積は15.4m2/gであった。
Furthermore, the ratio of yttria Y 2 O 3 / (Y 2 O 3 + ZrO 2 )
It was added so as to have a concentration of 3 mol% and stirred for a day. Yttria was completely dissolved to obtain a mixed solution having a pH of 0.5. This mixed solution was spray-dried to obtain about 8 kg of dry powder.
The dried powder was calcined at 870 ° C. for 2 hours in an air atmosphere in a tubular furnace, washed with water, pulverized for 8 hours, and dried again to prepare a partially stabilized zirconia (PSZ) powder. The BET specific surface area of the PSZ powder thus obtained was 15.4 m 2 / g.

【0025】このPSZ粉末1505gを秤量し、150℃で1時
間以上乾燥させ、1500gの乾燥粉を得た。この乾燥粉を3
37gの有機バインダーと共に140℃に予熱したニーダー
(森山製作所製MS加圧型ニーダー)の混合槽に投入し、
混練した。混練開始と共にバインダーは軟化し、粉末と
交じり合う。数分の混練の後、ニーダーのヒーターを切
るとその後はコンパウンド自身のせん断発熱で120℃〜1
40℃の温度が保たれたまま混練が進行する。この様にし
て1時間混練した後、取り出したコンパウンドを冷却、
粉砕し、0.5mm目篩下を篩分けた。
1505 g of this PSZ powder was weighed and dried at 150 ° C. for 1 hour or more to obtain 1500 g of dry powder. 3 pieces of this dry powder
Put it into a mixing tank of a kneader (Moriyama Seisakusho type MS kneader) preheated to 140 ° C with 37g of organic binder,
Kneaded. The binder softens with the start of kneading and mixes with the powder. After kneading for several minutes, turn off the heater of the kneader.
Kneading proceeds while the temperature of 40 ° C. is maintained. After kneading for one hour in this way, the compound taken out is cooled,
It was pulverized and sieved under a 0.5 mm mesh sieve.

【0026】次に、上記粉末を13g秤量し、予め150℃で
十分予熱したメルトインデクサー(東洋精機製作所製)
のシリンダー内に投入し、つき固めることによって内部
の空気を抜き、ピストンを装着する。そのままの状態を
3分間保持し、試料、シリンダー及びピストンの温度が
平衡に達した後、10kgの荷重を掛け溶融したコンパウン
ドを押出した。その後の押出し時間の測定とMFRの計算
は装置が自動的に行う。この測定を3回行い、平均値を
測定値として採用した。この様にして測定したオキシ塩
化ジルコニウム10%添加ジルコニア粉末コンパウンドの
MFRは252g/10分であった。また、このPSZ粉末を金型プ
レスで成形し、焼結体を作成してその密度を測定した。
成形圧力は700kgf/cm2、焼結温度は1450℃である。得ら
れた密度は6.03(相対密度98.8%)であった。
Next, a melt indexer (manufactured by Toyo Seiki Seisaku-sho, Ltd.) weighing 13 g of the above powder and sufficiently preheating it at 150 ° C.
Into the cylinder, squeeze out the air inside, and attach the piston. As it is
The mixture was held for 3 minutes, and after the temperature of the sample, cylinder and piston reached equilibrium, a molten compound was extruded under a load of 10 kg. The subsequent measurement of the extrusion time and the calculation of the MFR are performed automatically by the apparatus. This measurement was performed three times, and the average value was adopted as the measured value. The 10% zirconium oxychloride-added zirconia powder compound thus measured
The MFR was 252 g / 10 minutes. Further, this PSZ powder was molded by a mold press to prepare a sintered body, and its density was measured.
The molding pressure is 700 kgf / cm 2 and the sintering temperature is 1450 ° C. The resulting density was 6.03 (98.8% relative density).

【0027】実施例2〜5 オキシ塩化ジルコニウムの添加量を0、5、8、及び20重
量%とし、その他の手順は実施例1と同様にしてPSZ粉末
を作成した。これらのコンパウンドのMFR、BET比表面積
及び粉末の焼結体密度を実施例1と併せて表1に示す。
Examples 2 to 5 PSZ powders were prepared in the same manner as in Example 1 except that the addition amounts of zirconium oxychloride were 0, 5, 8, and 20% by weight. Table 1 shows the MFR, BET specific surface area, and sintered powder density of these compounds together with Example 1.

【0028】[0028]

【表1】 [Table 1]

【0029】オキシ塩化ジルコニウムの添加はBET比表
面積には影響しないが、流動性の改善に優れた効果を示
すことが確認された。また、20重量%添加粉末では焼結
体密度の低下が生じ、これ以上の添加量は望ましくない
ことも確認された。
It has been confirmed that the addition of zirconium oxychloride does not affect the BET specific surface area, but exhibits an excellent effect of improving fluidity. Also, it was confirmed that the density of the sintered body was reduced with the powder added at 20% by weight, and it was confirmed that the addition amount more than this was not desirable.

【0030】実施例6、7 実施例1〜5では安定化剤として3mol%のY2O3を用いたP
SZ(3Y)を例示した。3Yは粉末の結晶相の70−95%が正
方晶である。一方、安定化剤を用いないジルコニア(0
Y)は100%が単斜晶である。0Yにおいてもオキシ塩化ジ
ルコニウムの添加が流動性の改善に効果的であることを
確認するために、0Y粉末についてオキシ塩化ジルコニウ
ムを0%、10%をそれぞれ添加した粉末を実施例1と同様
にして作成し、同様の測定を行った。測定結果を表2に
示す。
Examples 6 and 7 In Examples 1 to 5, P using 3 mol% of Y 2 O 3 as a stabilizer was used.
SZ (3Y) was exemplified. In 3Y, 70-95% of the crystal phase of the powder is tetragonal. On the other hand, zirconia (0
Y) is 100% monoclinic. In order to confirm that the addition of zirconium oxychloride is effective in improving the fluidity also in 0Y, a powder obtained by adding 0% and 10% of zirconium oxychloride to 0Y powder in the same manner as in Example 1 was used. The same measurement was performed. Table 2 shows the measurement results.

【0031】[0031]

【表2】 [Table 2]

【0032】0Y粉末についてもオキシ塩化ジルコニウ
ムの添加は有効であることが確認された。
It was confirmed that the addition of zirconium oxychloride was also effective for the 0Y powder.

【0033】実施例8 加水分解反応においてジルコニア添加率90%の水和ジル
コニアゾルを減圧加熱することにより濃縮した。このよ
うにして得られた濃縮ゾルを実施例1と同様に乾燥、焼
成して得られたジルコニア微粉末を用いて作成したコン
パウンドの測定結果を表3に示す。
Example 8 In a hydrolysis reaction, a hydrated zirconia sol having a zirconia addition rate of 90% was concentrated by heating under reduced pressure. Table 3 shows the measurement results of a compound prepared using the zirconia fine powder obtained by drying and calcining the concentrated sol thus obtained in the same manner as in Example 1.

【0034】[0034]

【表3】 [Table 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ジルコニウム塩を含有する水和ジルコニア
ゾル、或いは、ジルコニウム塩を含有する水和ジルコニ
アゾルと安定化剤の混合物を乾燥し仮焼することを特徴
とするジルコニア微粉末の製造法。
1. A method for producing zirconia fine powder, comprising drying and calcining a hydrated zirconia sol containing a zirconium salt or a mixture of a hydrated zirconia sol containing a zirconium salt and a stabilizer.
【請求項2】請求項1に記載のジルコニウム塩がオキシ
塩化ジルコニウム、塩化ジルコニウム、硝酸ジルコニウ
ム、及び、硫酸ジルコニウムの中から選ばれる1つ以上
のジルコニウム塩である事を特徴とするジルコニア微粉
末の製造法。
2. The zirconia fine powder according to claim 1, wherein the zirconium salt according to claim 1 is at least one zirconium salt selected from zirconium oxychloride, zirconium chloride, zirconium nitrate, and zirconium sulfate. Manufacturing method.
【請求項3】請求項1及び請求項2に記載のジルコニウ
ム塩に含有されるZr量が全Zr量の3重量%以上30重量%以
下である事を特徴とするジルコニア微粉末の製造法。
3. A method for producing a fine zirconia powder, characterized in that the amount of Zr contained in the zirconium salt according to claim 1 or 2 is 3% by weight or more and 30% by weight or less of the total Zr amount.
【請求項4】請求項1〜3のいずれかの請求項に記載の
製造法により得られるジルコニア微粉末。
4. A zirconia fine powder obtained by the production method according to claim 1.
JP20899299A 1999-07-23 1999-07-23 Production method of fine zirconia powder Expired - Lifetime JP4186319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20899299A JP4186319B2 (en) 1999-07-23 1999-07-23 Production method of fine zirconia powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20899299A JP4186319B2 (en) 1999-07-23 1999-07-23 Production method of fine zirconia powder

Publications (2)

Publication Number Publication Date
JP2001039715A true JP2001039715A (en) 2001-02-13
JP4186319B2 JP4186319B2 (en) 2008-11-26

Family

ID=16565541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20899299A Expired - Lifetime JP4186319B2 (en) 1999-07-23 1999-07-23 Production method of fine zirconia powder

Country Status (1)

Country Link
JP (1) JP4186319B2 (en)

Also Published As

Publication number Publication date
JP4186319B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
KR101323697B1 (en) Zirconium oxide and method for the production thereof
DE2810134A1 (en) ZIRCONIUM OXIDE CERAMICS WITH A FINE-GRAY AND THERMALLY STABLE STRUCTURE AND HIGH THERMAL SHOCK RESISTANCE, MOLDED BODIES MANUFACTURED FROM THEM, METHOD FOR MANUFACTURING THE MOLDED BODIES AND THEIR USE
CN102757222B (en) Composite stable microcrystal zirconium oxide ceramic mixed powder and manufacturing process
US20180282225A1 (en) Zirconia fine powder and production method therefor
CN105254282B (en) A kind of preparation method of building ceramics
CN109111760A (en) A kind of alumina ceramic of black color toner and its preparation method and application
CN111233468B (en) Preparation method of yttrium-stabilized zirconium powder for structural component
JP4470001B2 (en) Production method of fine zirconia powder
JP6456241B2 (en) Method for producing lithium-containing composite oxide powder
EP2168936B1 (en) Method for producing a fine powder material
CN108358624A (en) A kind of low bulk phosphate ceramic material and preparation method thereof
JP4961322B2 (en) Alumina substrate for zeolite membrane and method for producing the same
JP4186319B2 (en) Production method of fine zirconia powder
JP4320852B2 (en) Hydrated zirconia dry powder, production method thereof and use thereof
CN106278308B (en) A method of addition magnesium-rich spinel micro mist prepares zirconium oxide metering nozzle
JPH07126061A (en) Magnesia-based sintered material and production thereof
JPS61132510A (en) Production of heat-resistant conjugated oxide powder
JP2001080962A (en) Zirconia sintered compact and its production
CN105347793B (en) It is a kind of to be injection moulded the method for preparing anti-aging tetragonal phase zirconium oxide ceramics
KR960012722B1 (en) Process for preparing composite powder of zirconia-alumina
JP2880123B2 (en) Slurry for manufacturing porous ceramics
JP4831945B2 (en) Zirconia-alumina ceramics and process for producing the same
JP3100549B2 (en) Porous ceramics
JPH0834613A (en) Production of high homogeneity and high purity yttrium-containing zirconia powder
CN110304926B (en) Silicon nitride pug, preparation method thereof and silicon nitride ceramic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R151 Written notification of patent or utility model registration

Ref document number: 4186319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

EXPY Cancellation because of completion of term