JP2001031413A - Method for producing activated carbon raw material whose surface is activated - Google Patents

Method for producing activated carbon raw material whose surface is activated

Info

Publication number
JP2001031413A
JP2001031413A JP11206069A JP20606999A JP2001031413A JP 2001031413 A JP2001031413 A JP 2001031413A JP 11206069 A JP11206069 A JP 11206069A JP 20606999 A JP20606999 A JP 20606999A JP 2001031413 A JP2001031413 A JP 2001031413A
Authority
JP
Japan
Prior art keywords
activated carbon
raw material
organic polymer
carbon raw
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11206069A
Other languages
Japanese (ja)
Inventor
Michiya Nakajima
道也 中嶋
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
International Center for Environmental Technology Transfer
Original Assignee
International Center for Environmental Technology Transfer
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Center for Environmental Technology Transfer, Dainippon Ink and Chemicals Co Ltd filed Critical International Center for Environmental Technology Transfer
Priority to JP11206069A priority Critical patent/JP2001031413A/en
Publication of JP2001031413A publication Critical patent/JP2001031413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a surface-improved activated carbon raw material, by which the adsorption performance of the activated raw material is improved, by coating an activated carbon raw material with an organic polymer in a specific amount range based on the activated carbon raw material, wherein the organic polymer has an actual carbon ratio in a specific wt.% range, when calcined at a specified temperature in a non-oxidative atmosphere. SOLUTION: This method for producing a surface-improved activated carbon raw material comprises coating an activated carbon raw material with an organic polymer in an amount of 10 to 20 wt.% based on the activated carbon raw material and then calcining the coated activated carbon raw material at 500 to 1,200 deg.C. The organic polymer has an actual carbon ratio of 0 to 30 wt.%, when calcined in a non-oxidative atmosphere at 600 deg.C. For example, the surface-improved activated carbon raw material is obtained by adding dry crushed activated carbon in the homogeneous solution of ethyl cellulose with acetone under stirring, thus immersing the activated carbon in the solution, removing the supernatant, holding the downward precipitated activated carbon in stationary air at room temperature for 15 hours to remove the residual acetone, thus obtaining the composite material comprising activated carbon whose periphery is coated with the ethyl cellulose, heating the obtained composite material up to 600 deg.C at a temperature-rising rate of 2.5 deg.C/min in a nitrogen atmosphere, holding the composite material in the state for 3 hours, and then standing the composite material to cool.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸着性能が改良さ
れた活性炭素材の製造方法に関する。この活性炭素材
は、例えば空気浄化用フィルター、ガスマスク等に使用
することができる。
[0001] The present invention relates to a method for producing an activated carbon material having improved adsorption performance. This activated carbon material can be used for, for example, an air purification filter, a gas mask, and the like.

【0002】[0002]

【従来の技術】活性炭素材は優れた吸着性能を有するた
めに、吸着剤として幅広く用いられている。活性炭素材
の吸着特性を改良する方法として、従来、水酸化カリウ
ム溶液や塩酸等の塩基性または酸性溶液を用いて活性炭
素材の化学的処理を行うことが知られている。しかし、
これらの方法は活性炭表面に強力な塩基性もしくは酸性
を付与するため、吸着種によっては吸着性能が低下した
り、また耐熱性が大きく低下する問題がある。
2. Description of the Related Art Activated carbon materials are widely used as adsorbents because of their excellent adsorption performance. As a method for improving the adsorption characteristics of the activated carbon material, conventionally, it has been known to chemically treat the activated carbon material using a basic or acidic solution such as a potassium hydroxide solution or hydrochloric acid. But,
Since these methods impart strong basicity or acidity to the activated carbon surface, there are problems in that the adsorption performance is lowered depending on the adsorbed species and the heat resistance is largely lowered.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、塩基もしくは酸性の溶液による化学的表面
処理を行うことなく、吸着性能を改良した表面改質活性
炭素材の製造方法を提供するものである。
An object of the present invention is to provide a method for producing a surface-modified activated carbon material having improved adsorption performance without performing a chemical surface treatment with a base or an acidic solution. Things.

【0004】[0004]

【課題を解決する手段】これらの課題を解決すべく研究
を行った結果、活性炭素材に、焼成時低残炭率を示す有
機高分子を所定量被覆し、非酸化性雰囲気で焼成するこ
とにより吸着性能を著しく向上させうることを見出し
た。即ち、本発明は非酸化性雰囲気下600℃で焼成した
際の残炭率が0〜30重量%である有機高分子を、活性炭
素材に活性炭素材の10〜200重量%被覆して得られる複
合体を、非酸化性雰囲気下500℃〜1200℃で焼成するこ
とを特徴とする表面改質活性炭素材の製造方法である。
As a result of conducting research to solve these problems, it has been found that an activated carbon material is coated with a predetermined amount of an organic polymer exhibiting a low residual carbon ratio during firing, and fired in a non-oxidizing atmosphere. It has been found that the adsorption performance can be significantly improved. That is, the present invention relates to a composite obtained by coating an activated carbon material with 10 to 200% by weight of an activated carbon material with an organic polymer having a residual carbon ratio of 0 to 30% by weight when fired at 600 ° C. in a non-oxidizing atmosphere. A method for producing a surface-modified activated carbon material, characterized by firing a body at 500 ° C to 1200 ° C in a non-oxidizing atmosphere.

【0005】[0005]

【発明の実施の形態】以下に本発明を更に詳細に説明す
る本発明の表面改質活性炭素材の製造方法に用いる活性
炭素材は従来よく知られている活性炭、活性炭素繊維等
の比表面積の高い炭素材全般が用いられる。用いる活性
炭素材の原料には特に制限はなく、椰子殻、石炭系、セ
ルロース系、ピッチ系、フェノール樹脂、ポリアクリル
ニトリル系等の活性炭素材が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The activated carbon material used in the method for producing a surface-modified activated carbon material of the present invention, which will be described in further detail below, has a high specific surface area such as conventionally known activated carbon and activated carbon fiber. General carbon materials are used. There is no particular limitation on the raw material of the activated carbon material to be used, and an activated carbon material such as coconut shell, coal-based, cellulose-based, pitch-based, phenolic resin, or polyacrylonitrile-based is used.

【0006】また用いる活性炭素材料の形態も特に制限
は無く、粒状、粉末状、繊維状の他ハニカム状などに成
形したものが用いられる。本発明において用いる有機高
分子は、溶媒に可溶又は均一懸濁するものであり、且つ
非酸化性雰囲気下600℃焼成した際の残炭率が0〜30重量
%、好ましくは0〜10重量%であるものである。
[0006] The form of the activated carbon material to be used is not particularly limited, and may be formed into a granular, powdery, fibrous, or honeycomb shape. The organic polymer used in the present invention is soluble or uniformly suspended in a solvent, and has a residual carbon ratio of 0 to 30% by weight, preferably 0 to 10% by weight, when calcined at 600 ° C. in a non-oxidizing atmosphere. %.

【0007】具体的に該有機高分子はメチルセルロー
ス、エチルセルロース、酢酸セルロース、等のセルロー
ス誘導体、ポリメタクリル酸メチル、ポリメタクリル酸
エチル、ポリメタクリル酸ブチル、ポリアクリル酸メチ
ル、ポリアクリル酸等のアクリル系樹脂、エポキシ樹脂
等が用いられるが、これらに限定されるものではない。
Specifically, the organic polymer is a cellulose derivative such as methylcellulose, ethylcellulose or cellulose acetate, or an acrylic polymer such as polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate or polyacrylic acid. A resin, an epoxy resin, or the like is used, but is not limited thereto.

【0008】焼成における残炭率が30重量%を越える
と、残存した有機高分子由来の炭素が活性炭素材の微細
孔を塞ぎやすく吸着性能が低下し、本発明による改良効
果が小さくなる。一方、残炭率が0重量%でも実施例2に
示すように本発明における改質効果が発現する。
[0008] If the residual carbon ratio in the firing exceeds 30% by weight, the carbon derived from the organic polymer remaining tends to block the fine pores of the activated carbon material, and the adsorption performance is reduced, and the improvement effect of the present invention is reduced. On the other hand, even when the residual carbon ratio is 0% by weight, the reforming effect of the present invention is exhibited as shown in Example 2.

【0009】本発明で被覆される有機高分子の量として
は活性炭素材料の10重量%〜200重量%の量が好ましく
用いられる。10重量%以下では本発明における表面改質
改良効果が小さくなる。また、200重量%以上では、焼
成後残存した有機高分子により活性炭素材量の微細孔が
塞がれ、本発明による改良効果が小さくなる場合があ
る。
The amount of the organic polymer coated in the present invention is preferably from 10% by weight to 200% by weight of the activated carbon material. When the content is 10% by weight or less, the effect of improving the surface modification in the present invention becomes small. On the other hand, if the content is 200% by weight or more, the fine pores of the activated carbon material may be closed by the organic polymer remaining after the firing, and the improvement effect of the present invention may be reduced.

【0010】本発明で有機高分子を被覆させるために用
いる溶媒としては、有機高分子を溶解又は均質懸濁させ
るものである。例えばメタノール、エタノール、プロパ
ノール、アセトン、トルエン等の非水系溶剤及び水が用
いられるが、好ましくは非水系溶剤が用いられる。本発
明における被覆は、有機高分子が常温下で液体の場合は
有機高分子をそのまま用い、有機高分子が常温下で固体
の場合はこれを溶解又は懸濁させた溶液を用いて活性炭
の表面に複合させ、含浸、浸漬、ディップコート、噴霧
等の手法が用いられる。
The solvent used for coating the organic polymer in the present invention is one in which the organic polymer is dissolved or homogeneously suspended. For example, a non-aqueous solvent such as methanol, ethanol, propanol, acetone, and toluene and water are used, but a non-aqueous solvent is preferably used. The coating in the present invention uses the organic polymer as it is when the organic polymer is liquid at room temperature, and uses a solution in which the organic polymer is dissolved or suspended when the organic polymer is solid at room temperature to form a surface of activated carbon. And methods such as impregnation, dipping, dip coating, and spraying are used.

【0011】また複合体の調製は、上記の方法で活性炭
に有機高分子の被覆を生じさせた後、濾過、常温下での
乾燥もしくは200℃以下の加熱により過剰な溶媒を除去
することにより行われる。本発明における焼成は真空下
もしくは窒素やアルゴン、ヘリウム等の非酸化性雰囲気
で行われる。ここで言う非酸化性雰囲気とは雰囲気中に
含まれる酸素の量が少なく、炭素材を大きく消耗するこ
とのない雰囲気を意味し、具体的には酸素濃度が1%以
下の雰囲気である。雰囲気中の酸素濃度が高いと、有機
高分子及び活性炭素材が酸素によって消耗、劣化し本発
明による改良効果が小さくなる。
The preparation of the complex is carried out by coating the activated carbon with an organic polymer by the above-mentioned method and then removing the excess solvent by filtration, drying at room temperature or heating at 200 ° C. or lower. Will be The firing in the present invention is performed under vacuum or in a non-oxidizing atmosphere such as nitrogen, argon, helium, or the like. Here, the non-oxidizing atmosphere means an atmosphere in which the amount of oxygen contained in the atmosphere is small and the carbon material is not largely consumed, and specifically, an atmosphere having an oxygen concentration of 1% or less. When the oxygen concentration in the atmosphere is high, the organic polymer and the activated carbon material are consumed and deteriorated by oxygen, and the improvement effect according to the present invention is reduced.

【0012】本発明による焼成温度は500〜1200℃好ま
しくは600〜800℃で行われる。焼成温度が500℃以下で
は、改質が完全に行われず、被覆した有機高分子が活性
炭素材の微細孔を塞ぎ吸着性能が低下し、本発明による
改良効果が小さくなる。1200℃以上では活性炭素材の細
孔が閉気孔化し吸着能が低下し、且つエネルギー的にも
不利である。
The sintering temperature according to the present invention is from 500 to 1200 ° C, preferably from 600 to 800 ° C. If the sintering temperature is 500 ° C. or lower, the modification is not completely performed, and the coated organic polymer blocks the fine pores of the activated carbon material, lowering the adsorption performance, and the improvement effect of the present invention is reduced. At 1200 ° C. or higher, the pores of the activated carbon material become closed pores, lowering the adsorbing ability and disadvantageous in energy.

【0013】[0013]

【実施例】次いで本発明を実施例によって更に説明す
る。 (実施例1)エチルセルロース(ハーキュレス社製セル
ロースN−200)10gをアセトン100gと室温で撹拌
し、半透明、乳白色の均質液を得た。破砕状活性炭(川
研ファインケミカル製、原料破砕炭、粒径0.5〜1.2m
m、比表面積1500m2/g)35gを120℃で1時間乾燥の
後、上記均質液に室温下で撹拌しながら混合し、全ての
活性炭が完全に溶液に浸漬するまで撹拌を行った。
The present invention will be further described with reference to examples. Example 1 10 g of ethylcellulose (Cellulose N-200 manufactured by Hercules) was stirred with 100 g of acetone at room temperature to obtain a translucent, milky white homogeneous liquid. Crushed activated carbon (Kawaken Fine Chemical, raw material crushed carbon, particle size 0.5-1.2m
m, specific surface area: 1500 m 2 / g) 35 g was dried at 120 ° C. for 1 hour, mixed with the above-mentioned homogeneous liquid at room temperature with stirring, and stirred until all the activated carbon was completely immersed in the solution.

【0014】撹拌を中止し放置すると活性炭が下部に沈
殿した。上澄み液を取り除き、生成した活性炭/エチル
セルロース複合体をトレイ上に薄く敷き詰め、静止空
気、室温下で15時間保持した。これにより残存していた
アセトンは除去され、活性炭周囲にエチルセルロースが
被覆した複合体が得られた。このときの高分子被覆量は
炭素材の28.6重量%である。得られた複合体を、窒素雰
囲気下で2.5℃/分の昇温速度で600℃迄昇温し3時間保
持した後、放冷する条件で焼成を行い、目的とする表面
改質活性炭素材を得た。尚、本エチルセルロースを同一
条件下、単独焼成した場合の残炭率は5.7重量%であっ
た。
When the stirring was stopped and the mixture was allowed to stand, activated carbon precipitated at the bottom. The supernatant was removed, and the activated carbon / ethylcellulose composite formed was spread thinly on a tray, and kept for 15 hours in still air at room temperature. As a result, the remaining acetone was removed, and a complex in which ethyl cellulose was coated around the activated carbon was obtained. The polymer coating amount at this time is 28.6% by weight of the carbon material. The obtained composite was heated to 600 ° C. at a rate of 2.5 ° C./min in a nitrogen atmosphere and maintained for 3 hours, and then calcined under the condition of cooling to obtain a target surface-modified activated carbon material. Obtained. In addition, when this ethyl cellulose was baked independently under the same conditions, the residual carbon ratio was 5.7% by weight.

【0015】吸着能を測定する一例として低濃度NOの
吸着試験を行った。得られた表面改質活性炭素材の2g
を図1に示す固定床吸着試験装置に充填し、低濃度NO
含有ガス(NO 5ppm、相対湿度50%、30℃、空気ベー
ス)を空間速度25000 h-1の条件で流通させ、炭素材通
過後のNOx濃度を微量NOx計(アナティック・ヤナコ
社製ECL−88US型)を用いて測定し窒素酸化物の
除去特性を評価した。表面改質活性炭素材の吸着特性を
図2に示す。図2中の縦軸はNO濃度(ppm)、横軸は
時間(分)及び破過率を示す。その結果、図2及び表1に
示すように吸着時間が20分まで除去率100%、60分まで
除去率80%の優れた吸着特性を示した。なお、出口側で
計測されたNOxは全て一酸化窒素であった。
As an example of measuring the adsorption capacity, an adsorption test of low concentration NO was performed. 2 g of the obtained surface-modified activated carbon material
Was filled in a fixed bed adsorption test apparatus shown in FIG.
Contained gas (NO 5 ppm, relative humidity 50%, 30 ° C., air base) is circulated under the condition of space velocity 25000 h −1 , and the NOx concentration after passing through the carbon material is measured with a trace NOx meter (ECL-analytic Yanaco). 88US type), and the nitrogen oxide removal characteristics were evaluated. FIG. 2 shows the adsorption characteristics of the surface-modified activated carbon material. In FIG. 2, the vertical axis indicates NO concentration (ppm), and the horizontal axis indicates time (minute) and breakthrough rate. As a result, as shown in FIG. 2 and Table 1, excellent adsorption characteristics were obtained with a removal rate of 100% for up to 20 minutes and an 80% removal rate for up to 60 minutes. The NOx measured at the outlet was all nitric oxide.

【0016】(実施例2)有機高分子をポリメチルメタ
クリレート(三菱レイヨン製アクリコン)とする以外は
実施例1と同様にして、表面改質活性炭素材を調製し、
低濃度NO含有ガスの吸着除去特性を評価した。エチル
セルロースを用いたときと同様、高い吸着特性を示した
(図2及び表1)。尚、本ポリメチルメタクリレートを同
一条件下、単独焼成した場合の残炭率はほぼ0重量%で
あった。
Example 2 A surface-modified activated carbon material was prepared in the same manner as in Example 1 except that the organic polymer was changed to polymethyl methacrylate (Acrycon, manufactured by Mitsubishi Rayon Co., Ltd.).
The adsorption removal characteristic of the low concentration NO-containing gas was evaluated. As in the case where ethyl cellulose was used, high adsorption characteristics were exhibited (FIG. 2 and Table 1). When the polymethyl methacrylate was baked independently under the same conditions, the residual carbon ratio was almost 0% by weight.

【0017】(実施例3)有機高分子をエポキシ樹脂
(大日本インキ化学工業製850)とし、樹脂溶解用の溶
媒を用いない以外は実施例1と同様にして表面改質活性
炭素材を調製し、低濃度NO含有ガスの吸着除去特性を
評価した。エチルセルロース、ポリメチルメタクリレー
トを用いたときと同様高い吸着特性を示した(表1)。
尚、本エポキシ樹脂を同一条件下、単独焼成した場合の
残炭率は6.5重量%であった。
Example 3 A surface-modified activated carbon material was prepared in the same manner as in Example 1 except that the organic polymer was an epoxy resin (850, manufactured by Dainippon Ink and Chemicals, Inc.) and a solvent for dissolving the resin was not used. The adsorption removal characteristics of the low concentration NO-containing gas were evaluated. As in the case where ethyl cellulose and polymethyl methacrylate were used, high adsorption characteristics were exhibited (Table 1).
In addition, when this epoxy resin was baked independently under the same conditions, the residual carbon ratio was 6.5% by weight.

【0018】(比較例1)エチルセルロースを全くを複
合化しない以外は、実施例1と同様な焼成処理を行った
活性炭素材料での低濃度NO含有ガスの吸着除去特性を
評価した(表2)。測定開始直後より、NOが通過し十
分な吸着特性を示さなかった。
(Comparative Example 1) Adsorption and removal characteristics of a low-concentration NO-containing gas on an activated carbon material which was subjected to the same calcination treatment as in Example 1 except that ethyl cellulose was not combined at all were evaluated (Table 2). . Immediately after the start of measurement, NO passed and did not show sufficient adsorption characteristics.

【0019】(比較例2)焼成温度が400℃である以外は
実施例1と同様に調製を行った表面改質活性炭素材での
低濃度NO含有ガスの吸着除去特性を評価した。良好な
吸着特性は示さなかった(表2)。
(Comparative Example 2) The adsorption and removal characteristics of a low-concentration NO-containing gas on a surface-modified activated carbon material prepared in the same manner as in Example 1 except that the firing temperature was 400 ° C. were evaluated. No good adsorption properties were shown (Table 2).

【0020】(比較例3)焼成温度が1300℃である以外
は実施例1と同様に調製を行った表面改質炭素材での低
濃度NO含有ガスの吸着除去特性を評価した。良好な吸
着特性は示さなかった(表2)。
Comparative Example 3 The adsorption and removal characteristics of a low-concentration NO-containing gas on a surface-modified carbon material prepared in the same manner as in Example 1 except that the firing temperature was 1300 ° C. were evaluated. No good adsorption properties were shown (Table 2).

【0021】(比較例4)有機高分子をレゾール系フェ
ノール樹脂(大日本インキ化学工業製J325)とし、溶媒
をメタノールとした以外は実施例1と同様にして表面改
質活性炭素材を調製し、低濃度NO含有ガスの吸着除去
特性を評価した。良好な吸着特性は示さなかった(表
2)。尚、本フェノール樹脂を同一条件下、単独焼成し
た場合の残炭率は58.5重量%であった。
(Comparative Example 4) A surface-modified activated carbon material was prepared in the same manner as in Example 1 except that the organic polymer was a resole phenol resin (J325 manufactured by Dainippon Ink and Chemicals, Inc.) and the solvent was methanol. The adsorption removal characteristic of the low concentration NO-containing gas was evaluated. It did not show good adsorption properties (see Table
2). When the present phenol resin was baked independently under the same conditions, the residual carbon ratio was 58.5% by weight.

【0022】(比較例5)基材として球状活性アルミナ
(ナカライテスク社製、直径2〜4mm、比表面積368m2
/g)を用いた以外は、実施例1と同様に調製を行った
活性アルミナ/エチルセルロース複合体焼成物での、低
濃度NO含有ガスの吸着除去特性を評価した。殆どNO
吸着特性を示さなかった(表2)。
Comparative Example 5 Spherical activated alumina (manufactured by Nacalai Tesque, diameter 2-4 mm, specific surface area 368 m 2 ) as a substrate
/ G) was evaluated for the adsorption and removal characteristics of low-concentration NO-containing gas in the fired activated alumina / ethylcellulose composite prepared in the same manner as in Example 1 except for using / g). Almost NO
No adsorption characteristics were shown (Table 2).

【0023】(比較例6)基材として天然黒鉛(富士黒
鉛工業製、BF8A−0、比表面積1m2/g)を用いた
以外は、実施例1と同様に調製を行った表面改質炭素材
での低濃度NO含有ガスの吸着除去特性を評価した。殆
どNO吸着特性を示さなかった(表2)。実施例及び比
較例のNO導入30分後のNO除去率を表1及び表2に
示す。
(Comparative Example 6) Surface-modified carbon prepared in the same manner as in Example 1 except that natural graphite (BF8A-0, specific surface area: 1 m 2 / g) was used as a base material. The adsorption and removal characteristics of the low-concentration NO-containing gas in the material were evaluated. It showed almost no NO adsorption characteristics (Table 2). Tables 1 and 2 show the NO removal rates 30 minutes after NO introduction in the examples and comparative examples.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【本発明の効果】本発明は、塩基もしくは酸性の溶液に
よる化学的表面処理を行うことなく、吸着性能を改良し
た表面改質活性炭素材の製造方法を提供できる。
The present invention can provide a method for producing a surface-modified activated carbon material having improved adsorption performance without performing a chemical surface treatment with a base or an acidic solution.

【0027】[0027]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例、及び比較例で用いた活性炭素材の吸
着特性を評価する試験装置の模式図である。
FIG. 1 is a schematic view of a test apparatus for evaluating the adsorption characteristics of an activated carbon material used in Examples and Comparative Examples.

【図2】 本発明の表面改質活性炭素材の吸着特性を示
す図である。
FIG. 2 is a view showing the adsorption characteristics of a surface-modified activated carbon material of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 HA03 HC01 HC12 4G066 AA05A AA05B AA10D AB05D AC02A AC17A AC22A BA05 BA36 CA28 DA03 FA11 FA22 FA34 FA37  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4G046 HA03 HC01 HC12 4G066 AA05A AA05B AA10D AB05D AC02A AC17A AC22A BA05 BA36 CA28 DA03 FA11 FA22 FA34 FA37

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 活性炭素材に、非酸化性雰囲気下600℃
で焼成した残炭率が0〜30重量%である有機高分子を活
性炭素材の10〜200重量%被覆した複合体を、非酸化性
雰囲気下で500℃〜1200℃で焼成することを特徴とする
表面改質活性炭素材の製造方法。
1. An activated carbon material is heated to 600 ° C. in a non-oxidizing atmosphere.
A composite in which an organic polymer having a residual carbon ratio of 0 to 30% by weight and coated with an activated carbon material of 10 to 200% by weight is fired at 500 ° C to 1200 ° C in a non-oxidizing atmosphere. For producing a surface-modified activated carbon material.
JP11206069A 1999-07-21 1999-07-21 Method for producing activated carbon raw material whose surface is activated Pending JP2001031413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11206069A JP2001031413A (en) 1999-07-21 1999-07-21 Method for producing activated carbon raw material whose surface is activated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11206069A JP2001031413A (en) 1999-07-21 1999-07-21 Method for producing activated carbon raw material whose surface is activated

Publications (1)

Publication Number Publication Date
JP2001031413A true JP2001031413A (en) 2001-02-06

Family

ID=16517328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11206069A Pending JP2001031413A (en) 1999-07-21 1999-07-21 Method for producing activated carbon raw material whose surface is activated

Country Status (1)

Country Link
JP (1) JP2001031413A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113694A2 (en) * 2006-03-31 2007-10-11 Philip Morris Products S.A. Method of making modified activated carbon
US8114475B2 (en) 2002-07-26 2012-02-14 Philip Morris Usa Inc. Adsorbents for smoking articles comprising a non-volatile organic compound applied using a supercritical fluid
CN106430188A (en) * 2016-09-05 2017-02-22 中国林业科学研究院林产化学工业研究所 Method for improving strength and surface hydrophobicity of granular active carbon

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114475B2 (en) 2002-07-26 2012-02-14 Philip Morris Usa Inc. Adsorbents for smoking articles comprising a non-volatile organic compound applied using a supercritical fluid
WO2007113694A2 (en) * 2006-03-31 2007-10-11 Philip Morris Products S.A. Method of making modified activated carbon
WO2007113694A3 (en) * 2006-03-31 2008-02-21 Philip Morris Prod Method of making modified activated carbon
JP2009531268A (en) * 2006-03-31 2009-09-03 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Method for producing modified activated carbon
EA013882B1 (en) * 2006-03-31 2010-08-30 Филип Моррис Продактс С.А. Method of making modified activated carbon
US9394179B2 (en) 2006-03-31 2016-07-19 Philip Morris Usa Inc. Method of making modified activated carbon
US20160302479A1 (en) * 2006-03-31 2016-10-20 Philip Morris Usa Inc. Method of making modified activated carbon
CN106430188A (en) * 2016-09-05 2017-02-22 中国林业科学研究院林产化学工业研究所 Method for improving strength and surface hydrophobicity of granular active carbon

Similar Documents

Publication Publication Date Title
JP5542146B2 (en) Very porous activated carbon with controlled oxygen content
JP2001152025A (en) Coated active carbon
JP5037843B2 (en) Method for producing photocatalyst-supported gas-adsorbing filter medium
Farhadi et al. Synthesis and characterization of a series of novel perovskite-type LaMnO 3/Keggin-type polyoxometalate hybrid nanomaterials for fast and selective removal of cationic dyes from aqueous solutions
WO2016057361A1 (en) Non-extruded activated carbon honeycomb structures
Betke et al. Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials
CN108744997A (en) A kind of electrostatic self-assembled crystal seed painting method being used to prepare molecular screen membrane
CN107303484B (en) A kind of preparation method and hydrotreating catalyst of siliceous macropore alumina supporter
CN111203182A (en) Modified activated carbon for adsorbing phenol and preparation method and application thereof
CN115193420A (en) Graphene material and preparation method thereof
CN108745326A (en) The preparation process of 3-D ordered multiporous Carbon Materials and its preparation process of intermediate
JP6443003B2 (en) Temperature-responsive hygroscopic material and method for producing the same
CN109529845B (en) Preparation method of cobalt modified porous charcoal catalyst for demercuration
JP2001031413A (en) Method for producing activated carbon raw material whose surface is activated
JP2009172574A (en) Metal particle carrying catalyst and its manufacturing method
JP2009226401A (en) Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding
JP2006327857A (en) Silicon carbide-based porous body and its manufacturing method
KR102589123B1 (en) Method for fabricating impregnated activated carbon
CN106396386B (en) A kind of photochromic health-care ceramic and preparation method thereof
CN115573168A (en) MOF @ activated carbon fiber composite material and preparation method and application thereof
KR101568998B1 (en) Method for carbon aerogel for co_2 adsorption
CN105457635A (en) Photocatalytic filter for degrading mixed gas and manufacturing method thereof
JP6264859B2 (en) Siloxane removal agent and siloxane removal filter using the same
JPS59227704A (en) Honeycomb device made of activated carbon
JP4724937B2 (en) Adsorbent and method for producing the same