JP2009226401A - Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding - Google Patents

Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding Download PDF

Info

Publication number
JP2009226401A
JP2009226401A JP2009046676A JP2009046676A JP2009226401A JP 2009226401 A JP2009226401 A JP 2009226401A JP 2009046676 A JP2009046676 A JP 2009046676A JP 2009046676 A JP2009046676 A JP 2009046676A JP 2009226401 A JP2009226401 A JP 2009226401A
Authority
JP
Japan
Prior art keywords
bark
volatile organic
organic compound
carbonized material
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009046676A
Other languages
Japanese (ja)
Other versions
JP5281926B2 (en
Inventor
Kensuke Kawarada
研介 瓦田
Jun Inoue
潤 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2009046676A priority Critical patent/JP5281926B2/en
Publication of JP2009226401A publication Critical patent/JP2009226401A/en
Application granted granted Critical
Publication of JP5281926B2 publication Critical patent/JP5281926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent for adsorbing volatile organic compounds, in which bark or its molding is utilized effectively and which is used for effectively adsorbing volatile organic compounds and to provide a method for producing the adsorbent for adsorbing volatile organic compounds and a method for utilizing bark or its molding. <P>SOLUTION: The adsorbent for adsorbing volatile organic compounds consists of a carbonized material obtained by carbonizing bark or its molding and activating the carbonized bark or molding thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、揮発性有機化合物吸着材とその製造方法、並びに樹皮又はその成型体の利用方法に関するものである。   The present invention relates to a volatile organic compound adsorbent, a method for producing the same, and a method for using a bark or a molded body thereof.

近年、大気汚染防止法が改正され、塗装工場や印刷工場などから排出される揮発性有機化合物(VOC)の排出規制が導入された。VOCを排出する各工場施設には、VOC処理装置の整備がより重要性を増し、さらにより安価で高性能な処理装置やVOC吸着材の開発が進められている。   In recent years, the Air Pollution Control Law has been amended to introduce regulations on the emission of volatile organic compounds (VOC) emitted from painting factories and printing factories. In each factory facility that discharges VOCs, the development of VOC treatment equipment has become more important, and development of cheaper and higher performance treatment equipment and VOC adsorbents is being promoted.

ところで、木質バイオマスによる熱生産の一環としてペレットストーブの普及が図られており、燃料には木部あるいは樹皮をペレットに成型した木質ペレットが使用されている。この木質ペレットには、主に樹皮を用いたバークペレットと樹皮を除いた木部を用いたペレットホワイトペレットとがある。このうちバークペレットについては、発熱量が低く、また発煙量が多いという問題があり、係る問題を解消するために様々な検討がされている(例えば、特許文献1及び2)。しかしながら、特許文献1及び2に記載の活性炭は、カーボン粉末や人口黒鉛等を別途添加する必要があり、また発熱量が低い、発煙量が多いという問題はいまだ解消されておらず、燃料としての利用が十分には進んでいない。したがって、例えば杉材の伐採により廃棄される樹皮やその樹皮から製造されるバークペレット等の成型体が大量に発生するが、現時点において、その有効な利用については、依然として十分に検討されていないのが実情である。   By the way, as a part of heat production using woody biomass, a pellet stove is widely used, and wood pellets obtained by molding a xylem or bark into pellets are used as fuel. This wood pellet mainly includes a bark pellet using a bark and a pellet white pellet using a xylem excluding the bark. Among these, the bark pellet has a problem that the calorific value is low and the amount of smoke generation is large, and various studies have been made to solve the problem (for example, Patent Documents 1 and 2). However, the activated carbons described in Patent Documents 1 and 2 require the addition of carbon powder, artificial graphite, etc., and the problems of low calorific value and high smoke generation have not yet been solved. Usage is not sufficiently advanced. Therefore, for example, a large amount of bark pellets and bark pellets produced from the bark discarded by logging of cedar are generated, but at present, their effective use has not yet been fully studied. Is the actual situation.

特開平6−128575号公報JP-A-6-128575 特開2006−306925号公報JP 2006-306925 A

本発明は、上記のとおりの背景から、従来の問題点を解消し、樹皮又はその成型体を有効利用できる新しい技術手段として、揮発性有機化合物を効果的に吸着する揮発性有機化合物吸着材とその製造方法、並びに樹皮又はその成型体の利用方法を提供することを課題としている。   From the background as described above, the present invention solves the conventional problems, and as a new technical means that can effectively use the bark or a molded body thereof, a volatile organic compound adsorbent that effectively adsorbs a volatile organic compound, An object of the present invention is to provide a manufacturing method thereof and a method of using a bark or a molded body thereof.

本発明は以下のことを特徴としている。   The present invention is characterized by the following.

第1には、樹皮又はその成型体を炭化及び賦活処理した炭化材料からなることを特徴とする。   1stly, it consists of the carbonized material which carbonized and activated the bark or the molded object.

第2には、第1の発明において、樹皮又はその成型体が、針葉樹の樹皮廃棄物由来であることを特徴とする。   Second, in the first invention, the bark or a molded body thereof is derived from a coniferous bark waste.

第3には、第1又は第2の発明において、針葉樹が杉であることを特徴とする。   Thirdly, in the first or second invention, the conifer is a cedar.

第4には、第1から第3のいずれかの発明において、炭化材料の比表面積が400m/g以上であることを特徴とする。 Fourth, in any one of the first to third inventions, the specific surface area of the carbonized material is 400 m 2 / g or more.

第5には、第1から第4のいずれかの発明において、炭化材料の表面が、酸の洗浄によって疎水化されていることを特徴とする。   Fifth, in any one of the first to fourth inventions, the surface of the carbonized material is hydrophobized by washing with an acid.

第6には、揮発性有機化合物吸着材の製造方法の発明として、少なくとも、下記の工程を含むことを特徴とする。   Sixth, the invention of a method for producing a volatile organic compound adsorbent includes at least the following steps.

(1)700℃から900℃の範囲で樹皮又はその成型体を加熱して炭化処理する工程
(2)炭化処理した樹皮又はその成型体を窒素と二酸化炭素の混合ガス雰囲気下もしくは空気雰囲気下で800℃から1200℃の範囲で加熱して賦活処理する工程
第7には、第6の発明において、炭化処理は窒素ガス雰囲気下で行うことを特徴とする。
(1) A step of heating and carbonizing a bark or a molded body thereof in a range of 700 ° C. to 900 ° C. (2) A carbonized bark or a molded body thereof in a mixed gas atmosphere of nitrogen and carbon dioxide or in an air atmosphere Step of performing activation treatment by heating in the range of 800 ° C. to 1200 ° C. Seventh, in the sixth invention, the carbonization treatment is performed in a nitrogen gas atmosphere.

第8には、第6又は第7の発明において、前記(2)の賦活処理工程の後、さらに酸で洗浄する工程を含むことを特徴とする。   Eighth, in the sixth or seventh invention, after the activation treatment step (2), further includes a step of washing with an acid.

第9には、樹皮又はその成型体の利用方法として、樹皮又はその成型体を炭化及び賦活処理して炭化材料とし、これを揮発性有機化合物の吸着材として利用することを特徴とする。   Ninthly, as a method of using the bark or a molded body thereof, the bark or the molded body thereof is carbonized and activated to obtain a carbonized material, which is used as an adsorbent for a volatile organic compound.

第10には、第9の発明において、炭化材料が、賦活処理した後、さらに酸で洗浄したものであることを特徴とする。   The tenth invention is characterized in that, in the ninth invention, the carbonized material is one that has been activated and then washed with an acid.

上記発明によれば、従来では有効利用が困難であった樹皮又はその樹皮から製造されるバークペレット等の成型体を活用して、揮発性有機化合物を効率よく吸着させることができる。特に揮発性有機化合物吸着材の製造に際して、賦活処理後に酸洗浄することにより、揮発性有機化合物であるトルエンやキシレン等の疎水性物質の吸着性能が向上する。   According to the above invention, volatile organic compounds can be efficiently adsorbed by utilizing a bark that has conventionally been difficult to effectively use or a molded body such as bark pellets produced from the bark. In particular, in the production of a volatile organic compound adsorbent, acid adsorption after the activation treatment improves the adsorption performance of hydrophobic substances such as toluene and xylene that are volatile organic compounds.

バークペレットから調製した炭化材料の収率と比表面積の関係を示した図である。It is the figure which showed the relationship between the yield and specific surface area of the carbonization material prepared from the bark pellet. バークペレットから調製した炭化材料の窒素吸脱着等温線からMP法により求めたミクロ孔分布である。It is the micropore distribution calculated | required by MP method from the nitrogen adsorption-and-desorption isotherm of the carbonization material prepared from the bark pellet. バークペレットから調製した炭化材料のトルエンの吸着等温線を示した図である。It is the figure which showed the adsorption isotherm of toluene of the carbonization material prepared from the bark pellet. 塩酸濃度を変えて酸(塩酸)洗浄した炭化材料の比表面積を測定した結果である。It is the result of measuring the specific surface area of the carbonized material washed with acid (hydrochloric acid) while changing the hydrochloric acid concentration. 実施例2においてバークペレットから調製した炭化材料の窒素吸着等温線を示した図である。It is the figure which showed the nitrogen adsorption isotherm of the carbonization material prepared from the bark pellet in Example 2. 実施例2においてバークペレットから調製した炭化材料のトルエンの吸着等温線を示した図である。It is the figure which showed the adsorption isotherm of toluene of the carbonization material prepared from the bark pellet in Example 2. FIG. 実施例2における酸処理前の炭化材料のXPS分析結果である。4 is an XPS analysis result of a carbonized material before acid treatment in Example 2. 実施例2における酸処理後の炭化材料のXPS分析結果である。4 is an XPS analysis result of a carbonized material after acid treatment in Example 2.

本発明の揮発性有機化合物吸着材は、樹皮又はその成型体を炭化及び賦活処理した炭化材料からなるものである。   The volatile organic compound adsorbent of the present invention is made of a carbonized material obtained by carbonizing and activating a bark or a molded body thereof.

樹皮は、針葉樹、広葉樹問わないが、資源の有効活用の観点から市場に豊富な杉の樹皮廃棄物を用いることができる。このような樹皮廃棄物は、森林の育成の中で伐採される間伐材等から生じるものである。また、本発明では前記樹皮を粉々に粉砕しこれを圧縮した成型体、例えば直径5〜10mm、長さ10〜25mmの円筒形に成型した木質ペレットであってもよい。このような樹皮を主原料とした木質ペレットは一般的にバークペレットと呼ばれており、市販されている。これに対して樹皮を除いた木部を主原料とした木質ペレットはホワイトペレットと呼ばれ、ペレットストーブの燃料として好適とされている。バークペレットはホワイトペレットに比べて一般的に発熱量が低く発煙量が多いことから、燃料としての利用が進んでいない。   The bark may be coniferous or hardwood, but cedar bark waste abundant in the market can be used from the viewpoint of effective utilization of resources. Such bark waste is generated from thinned timber and the like that is cut during forest growth. In the present invention, a molded body obtained by crushing the bark into pieces and compressing the bark, for example, a wood pellet molded into a cylindrical shape having a diameter of 5 to 10 mm and a length of 10 to 25 mm may be used. Wood pellets mainly made of such bark are generally called bark pellets and are commercially available. On the other hand, wood pellets made mainly of xylem excluding bark are called white pellets and are suitable as fuel for pellet stoves. Since bark pellets generally have a lower calorific value and higher smoke generation than white pellets, their use as fuel has not progressed.

本発明者等は樹皮又はその樹皮から製造されるバークペレット等の成型体がトルエン、キシレン、酢酸エチル等の揮発性有機化合物(以下、「VOC」ともいう)を効果的に吸着し得る吸着材として有効に活用できることを見出した。本発明はこのような発明者等の新規な知見に基づいてなされている。   The present inventors are an adsorbent capable of effectively adsorbing volatile organic compounds such as toluene, xylene and ethyl acetate (hereinafter also referred to as “VOC”), such as bark or a bark pellet produced from the bark. And found that it can be used effectively. The present invention has been made based on such novel findings of the inventors.

なお、以下の実施形態では揮発性有機化合物吸着材の原料としてバークペレットを用いた例を説明するが、本発明において適用される揮発性有機化合物吸着材の原料はこれに限定されるものではく、樹皮そのものやその粉砕品であってもよいし、樹皮から製造される各種の成型体を適用することができる。   In the following embodiment, an example in which bark pellets are used as the raw material for the volatile organic compound adsorbent will be described. However, the raw material for the volatile organic compound adsorbent applied in the present invention is not limited to this. The bark itself or a pulverized product thereof may be used, and various molded bodies produced from the bark can be applied.

本実施形態において、バークペレットの炭化及び賦活処理は、下記の炭化処理工程、賦活処理工程を経てなされる。   In the present embodiment, carbonization and activation treatment of bark pellets are performed through the following carbonization treatment step and activation treatment step.

まず、炭化処理工程では、上記バークペレットを炉内に設置し、これを700℃から900℃の範囲の所定温度で加熱して炭化させる。これにより多孔質の炭化材料を得る。700℃未満では炭化が十分に進行せず、逆に900℃を超えると炭化が進行しすぎて、VOC吸着のための十分な比表面積を確保することができない。このような所定温度での保持時間は、炭化処理温度によって異なるが、例えば1時間から3時間の範囲とし、バークペレットの炭化の進行に応じて適宜に設定する。本炭化処理工程では、例えば、窒素ガスを炉内に200ml/minで導入して炉内の酸素を置換した後、バークペレットの炭化処理を行うようにしてもよい。   First, in the carbonization process, the bark pellet is placed in a furnace, and is heated and carbonized at a predetermined temperature in the range of 700 ° C to 900 ° C. Thereby, a porous carbonized material is obtained. If it is less than 700 ° C., carbonization does not proceed sufficiently. Conversely, if it exceeds 900 ° C., carbonization proceeds excessively, and a sufficient specific surface area for VOC adsorption cannot be ensured. Although the holding time at such a predetermined temperature varies depending on the carbonization temperature, it is, for example, in the range of 1 hour to 3 hours, and is appropriately set according to the progress of carbonization of the bark pellet. In this carbonization treatment step, for example, nitrogen gas may be introduced into the furnace at 200 ml / min to replace oxygen in the furnace, and then the bark pellets may be carbonized.

次に賦活処理工程について説明する。この工程では、炭化処理したバークペレットを窒素と二酸化炭素の混合ガス雰囲気下で800℃から1200℃の範囲の所定温度で加熱する。これにより、細孔構造が発達して炭化材料の比表面積が増大する。800℃未満では炭化材料における孔の形成が不十分であり、1200℃を超えると炭化が進行しすぎて、VOC吸着のための十分な比表面積を確保することができない。このような所定温度での保持時間は、賦活処理温度によって異なるが、例えば1時間から2時間の範囲とし、炭化材料の孔の形成度合いや比表面積等に応じて適宜に設定するできる。賦活処理時間が長ければ長いほど、炭化材料の細孔直径が1nm以下のミクロ孔が発達してミクロ孔容積が増加する傾向にある。本賦活処理工程では、窒素と二酸化炭素の混合ガス雰囲気下で処理しているが、この混合ガスの比率(窒素ガス/二酸化炭素ガス)は、例えば、体積比で1/5〜5/1程度、好ましくは1/3〜3/1とすることができる。また、この賦活処理は空気を導入して賦活する方法(空気賦活法)により行ってもよい。   Next, the activation treatment process will be described. In this step, the carbonized bark pellets are heated at a predetermined temperature in the range of 800 ° C. to 1200 ° C. in a mixed gas atmosphere of nitrogen and carbon dioxide. Thereby, the pore structure develops and the specific surface area of the carbonized material increases. If it is less than 800 ° C., formation of pores in the carbonized material is insufficient, and if it exceeds 1200 ° C., carbonization proceeds excessively, and a sufficient specific surface area for VOC adsorption cannot be secured. Although the holding time at such a predetermined temperature varies depending on the activation treatment temperature, it can be set, for example, within a range of 1 hour to 2 hours, and can be appropriately set according to the degree of formation of pores of the carbonized material, the specific surface area, and the like. As the activation treatment time is longer, micropores having a pore diameter of the carbonized material of 1 nm or less develop and the micropore volume tends to increase. In this activation treatment step, the treatment is performed in a mixed gas atmosphere of nitrogen and carbon dioxide. The ratio of the mixed gas (nitrogen gas / carbon dioxide gas) is, for example, about 1/5 to 5/1 in volume ratio. Preferably, it can be 1/3 to 3/1. Moreover, you may perform this activation process by the method (air activation method) which introduces and activates air.

以上のようにして炭化及び賦活処理して製造した多孔質の炭化材料の比表面積は、BET法による比表面積で400m/g以上であり、より具体的には500〜700m/g、特に600〜700m/gである。なお、従来より知られているヤシガラ等を原料とするVOC吸着用活性炭の比表面積は1000m/g程度であり、本発明における炭化材料の比表面積の下限値は従来品よりも小さくなっている。 The specific surface area of the porous carbonized material produced by carbonization and activation treatment as described above is 400 m 2 / g or more in terms of the specific surface area according to the BET method, more specifically 500 to 700 m 2 / g, particularly 600-700 m 2 / g. In addition, the specific surface area of the activated carbon for VOC adsorption | suction which uses the coconut husk etc. conventionally known as a raw material is about 1000 m < 2 > / g, and the lower limit of the specific surface area of the carbonized material in this invention is smaller than the conventional product. .

本実施形態では、揮発性有機化合物であるトルエンやキシレン等の疎水性物質の吸着性能を向上させるために、炭化及び賦活処理して製造した炭化材料を酸で洗浄する(以下、酸処理ともいう)ことが望ましい(酸洗浄工程)。酸処理を施すと、炭化材料表面の酸素量が減少するとともに、炭化材料表面に親水性金属酸化物(灰分)として存在するCa(カルシウム)、Si(ケイ素)、Mg(マグネシウム)、P(リン)等の酸化物が除去される。炭化材料表面に存在する酸素は、一般的にはOH基、カルボニル基、カルボキシル基等の含酸素官能基として存在しており、これが水素結合等により水と容易に結合して親水性を示すと考えられる。このため、本実施形態のように酸処理を施すと炭化材料表面の含酸素官能基が減少し、また親水性金属酸化物(灰分)が除去されることによる効果をも併せると、炭化材料表面がより疎水化してトルエンやキシレン等の疎水性物質の吸着性能が向上する。   In this embodiment, in order to improve the adsorption performance of hydrophobic substances such as toluene and xylene which are volatile organic compounds, the carbonized material produced by carbonization and activation treatment is washed with an acid (hereinafter also referred to as acid treatment). ) Is desirable (acid cleaning step). When the acid treatment is performed, the amount of oxygen on the surface of the carbonized material is reduced, and Ca (calcium), Si (silicon), Mg (magnesium), P (phosphorus) existing as hydrophilic metal oxides (ash) on the surface of the carbonized material. ) And the like are removed. The oxygen present on the surface of the carbonized material is generally present as an oxygen-containing functional group such as an OH group, a carbonyl group, or a carboxyl group, and this is easily bonded to water by a hydrogen bond or the like to show hydrophilicity. Conceivable. For this reason, when the acid treatment is performed as in the present embodiment, the oxygenated functional groups on the surface of the carbonized material are reduced, and the effect of removing the hydrophilic metal oxide (ash) is also combined. Becomes more hydrophobic, improving the adsorption performance of hydrophobic substances such as toluene and xylene.

炭化材料の酸による洗浄は、例えば、0.2〜2.0mol/Lの濃度に調製された塩酸、硫酸、硝酸、フッ酸等の酸水溶液と炭化材料をビーカー等の容器に供給して、酸水溶液中に炭化材料を1時間〜24時間浸漬する、もしくはマグネチックスターラー等の攪拌手段を用いて1時間〜24時間程度攪拌することにより行う。酸で洗浄した後は、水洗又は湯洗し、次いで乾燥機で105〜115℃程度の温度で十分に乾燥させる。このような酸による洗浄は、複数種の酸を用いて行ってもよい。例えば、塩酸で洗浄後にフッ酸を用いて再度洗浄するようにしていもよい。また酸による洗浄工程を複数回繰り返して行ってもよい。   Washing the carbonized material with an acid, for example, supplying an aqueous acid solution such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid and the carbonized material prepared to a concentration of 0.2 to 2.0 mol / L to a container such as a beaker, The carbonized material is immersed in the acid aqueous solution for 1 to 24 hours, or by stirring for about 1 to 24 hours using a stirring means such as a magnetic stirrer. After washing with an acid, it is washed with water or hot water, and then sufficiently dried at a temperature of about 105 to 115 ° C. with a dryer. Such cleaning with an acid may be performed using a plurality of types of acids. For example, after cleaning with hydrochloric acid, it may be cleaned again using hydrofluoric acid. Moreover, you may repeat the washing | cleaning process by an acid in multiple times.

ところで本実施形態では、樹皮を主原料とするベークペレットを用いているが、樹皮あるいはこのバークペレットの特徴の一つとして木部を主原料とするホワイトペレットに比べて灰分を多く含有していることが挙げられる。灰分の構成成分は、例えばCa(カルシウム)、Si(ケイ素)、Fe(鉄)、K(カリウム)等である。このような構成成分からなる灰分の組成は、樹皮の産地により土壌中の無機成分構成に依存するものであり、一般的にはCa成分が灰分全体の5割以上を占めている。灰分は本実施形態における炭化材料の吸着能を妨げる要因の一つになっているため、VOC吸着能向上の観点から、本実施形態では、上記バークペレットを炭化及び賦活処理して製造した炭化材料中の灰分の比率が、炭化材料全体に対して重量比で例えば12%以下に調製されることが考慮される。炭化材料中の灰分の比率が低いほど吸着材としての吸着能が向上するため、好ましくは8%以下、さらには3%以下とすることが考慮される。炭化材料中の灰分の比率の下限値は好ましくは、0である。このような炭化材料中の灰分の含有量の調製は、例えば、上記酸洗浄工程における酸の洗浄によってなされる。特に灰分全体の5割以上を占めるCa成分やSi成分を溶解除去するために、酸としてフッ酸を用いることが好適である。酸洗浄を行うと、酸洗浄前に比べて比表面積が増加する傾向にあり、例えば最大で50%程度、具体的には35〜45%程度増加する傾向にあり、VOCの吸着に効果的である。   By the way, in this embodiment, although the baking pellet which uses a bark as a main raw material is used, it contains much ash compared with the white bark which uses a xylem as a main raw material as one of the characteristics of a bark or this bark pellet. Can be mentioned. The constituent components of ash are, for example, Ca (calcium), Si (silicon), Fe (iron), K (potassium), and the like. The composition of ash composed of such constituents depends on the composition of the inorganic constituents in the soil depending on the production area of the bark. In general, the Ca component accounts for 50% or more of the total ash. Since ash is one of the factors hindering the adsorption capacity of the carbonized material in the present embodiment, from the viewpoint of improving the VOC adsorption capacity, in this embodiment, the carbonized material produced by carbonizing and activating the bark pellets. It is considered that the ratio of the ash content therein is adjusted to, for example, 12% or less by weight with respect to the entire carbonized material. The lower the ratio of ash content in the carbonized material, the better the adsorbing ability as the adsorbent, and therefore it is considered that the adsorbing capacity is preferably 8% or less, and more preferably 3% or less. The lower limit of the ash content ratio in the carbonized material is preferably zero. The ash content in the carbonized material is adjusted by, for example, acid washing in the acid washing step. In particular, it is preferable to use hydrofluoric acid as the acid in order to dissolve and remove the Ca component and Si component occupying 50% or more of the entire ash. When acid cleaning is performed, the specific surface area tends to increase as compared to before acid cleaning, for example, it tends to increase by about 50% at the maximum, specifically by about 35 to 45%, and is effective for VOC adsorption. is there.

このように本実施形態の酸洗浄工程では、炭化材料表面の酸素量の減少と親水性金属酸化物(灰分)の除去によって疎水化し、さらに比表面積が増加するため、VOCの吸着能の向上がより簡易な方法で実現できる。   As described above, in the acid cleaning process of the present embodiment, hydrophobicity is obtained by reducing the amount of oxygen on the surface of the carbonized material and removing the hydrophilic metal oxide (ash), and the specific surface area is further increased. Therefore, the adsorption capacity of VOC is improved. It can be realized by a simpler method.

このようにして製造された炭化材料は、VOCの吸着に有効な揮発性有機化合物吸着材として、例えば粉末状で使用されてもよいし、使用形態に応じて板状体や筒状体等、任意の形状に成型して使用される。   The carbonized material thus produced may be used in the form of powder, for example, as a volatile organic compound adsorbent effective for VOC adsorption, or a plate-like body, a cylindrical body, etc., depending on the form of use. Used in any shape.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<実施例1>
<1> 炭化材料の調製
バークペレット(協同組合西川地域木質資源活用センター製、気乾含水率12.7%)50gを、活性炭製造炉((有)マツキ科学製)内に投入した。次いで、窒素を炉内に200ml/minで流し、炉内の酸素を置換した。その後、温度制御プログラムを用いて、昇温速度8℃/minで室温から800℃まで加熱し、800℃を2時間保持して炭化を行った。さらに、昇温速度10℃/minで1050℃まで加熱した後、窒素200ml/min、二酸化炭素300ml/minに混合した混合ガスを炉内に導入して賦活処理を60、90、120分間でそれぞれ行い、炭化材料(以下、「BPC」ともいう)を得た。賦活後は放置して炉内の温度が室温まで低下してから、BPCを取り出した。取り出したBPCを蒸留水で水洗した後、105℃の乾燥機に入れて十分乾燥させ、次いで秤量して、原料であるバークペレットに対するBPCの収率(%)を算出した。なお、BPCの収率は下記式で算出した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.
<Example 1>
<1> Preparation of carbonized material 50 g of bark pellets (manufactured by Cooperative Nishikawa region wood resource utilization center, air dry water content 12.7%) was put into an activated carbon production furnace (manufactured by Matsuki Science Co., Ltd.). Next, nitrogen was passed through the furnace at 200 ml / min to replace the oxygen in the furnace. Then, using the temperature control program, it heated from room temperature to 800 degreeC with the temperature increase rate of 8 degrees C / min, and carbonized by hold | maintaining 800 degreeC for 2 hours. Furthermore, after heating up to 1050 ° C. at a heating rate of 10 ° C./min, a mixed gas mixed with nitrogen 200 ml / min and carbon dioxide 300 ml / min is introduced into the furnace, and the activation treatment is performed for 60, 90 and 120 minutes, respectively. The carbonized material (hereinafter also referred to as “BPC”) was obtained. After activation, the BPC was taken out after the temperature in the furnace had dropped to room temperature. The BPC taken out was washed with distilled water, then put into a dryer at 105 ° C. and sufficiently dried, and then weighed to calculate the yield (%) of BPC relative to the raw bark pellets. In addition, the yield of BPC was calculated by the following formula.

収率(%)=(BPCの質量)/(バークペレットの質量)×100
<2> BPCの細孔分布及び比表面積測定
BPCを粉砕して前処理(減圧乾燥)で十分に表面を清浄にした。その後、液体窒素温度(77K)での窒素吸脱着等温線を、BELSORP18 Plus−T(日本ベル(株)製)を用いて容量法(吸着平衡圧力測定)で測定した。細孔径分布と比表面積は、解析ソフトBELSORP WINDOWS(登録商標)(日本ベル(株)製)を用いて算出した。なお、細孔構造などを比較するために、標準活性炭(和光純薬製粉末活性炭)も同様に測定した。また、塗装工場等から排出される代表的なVOCであるトルエンの吸着等温線図(25℃)を測定した。
<3> BPCの無機成分分析
BPCの原料として用いたバークペレットをるつぼに量り取り、電気炉内で室温から700℃に昇温し、1〜3時間保持して灰化した。灰化した試料を円盤状にプレス成形し、蛍光X線分析装置(理学電機工業(株)製RIX−3000)を用い、ファンダメンタル・パラメーター法によるオーダー分析を行った。スギ樹皮(東京都奥多摩産のスギ樹皮、気乾含水率16.7%)についても同様に灰化してオーダー分析を行った。
<4> 酸洗浄後の比表面積と灰分量の測定
塩酸濃度0.5mol/L、1.0mol/L、1.5mol/Lの各水溶液中でBPC(賦活処理時間が60分のもの)を攪拌した。次いで、BPCを塩酸水溶液から取り出して水洗し乾燥機で十分に乾燥して、比表面積と灰分量を測定した。なお、灰分量は塩酸濃度1.5mol/Lの水溶液で洗浄したもののみを測定した。
<5> BPCの評価結果
(1) 収率と比表面積
BPCの収率と比表面積の関係を図1に示す。収率が低下すると、比表面積が増加した。収率が6.3%の場合、比表面積は最も大きく685m/gを示した。標準活性炭の比表面積が約1000m/gであることから、比表面積で比較するとBPCは標準活性炭の7割程度の比表面積を有していることがわかった。
Yield (%) = (BPC mass) / (Bark pellet mass) × 100
<2> Pore distribution and specific surface area measurement of BPC BPC was pulverized and the surface was sufficiently cleaned by pretreatment (drying under reduced pressure). Thereafter, a nitrogen adsorption / desorption isotherm at a liquid nitrogen temperature (77 K) was measured by a volume method (adsorption equilibrium pressure measurement) using BELSORP18 Plus-T (manufactured by Nippon Bell Co., Ltd.). The pore size distribution and specific surface area were calculated using analysis software BELSORP WINDOWS (registered trademark) (manufactured by Nippon Bell Co., Ltd.). In order to compare the pore structure and the like, standard activated carbon (powder activated carbon manufactured by Wako Pure Chemical Industries) was also measured in the same manner. Moreover, the adsorption isotherm (25 degreeC) of toluene which is typical VOC discharged | emitted from a coating factory etc. was measured.
<3> Inorganic component analysis of BPC The bark pellet used as a raw material for BPC was weighed into a crucible, heated from room temperature to 700 ° C. in an electric furnace, and held for 1 to 3 hours to be incinerated. The ashed sample was press-molded into a disk shape, and order analysis was performed by a fundamental parameter method using a fluorescent X-ray analyzer (RIX-3000 manufactured by Rigaku Corporation). Cedar bark (cedar bark from Okutama, Tokyo, air dry water content 16.7%) was also ashed and analyzed for order.
<4> Measurement of specific surface area and ash content after acid cleaning BPC (with an activation treatment time of 60 minutes) in aqueous solutions of hydrochloric acid concentrations of 0.5 mol / L, 1.0 mol / L and 1.5 mol / L Stir. Next, the BPC was taken out from the hydrochloric acid aqueous solution, washed with water and sufficiently dried with a dryer, and the specific surface area and ash content were measured. The amount of ash was measured only after washing with an aqueous solution having a hydrochloric acid concentration of 1.5 mol / L.
<5> BPC Evaluation Results (1) Yield and Specific Surface Area The relationship between the yield of BPC and the specific surface area is shown in FIG. As the yield decreased, the specific surface area increased. When the yield was 6.3%, the specific surface area was the largest, showing 685 m 2 / g. Since the specific surface area of the standard activated carbon was about 1000 m 2 / g, it was found that BPC had a specific surface area of about 70% of the standard activated carbon when compared with the specific surface area.

また、各BPCの灰分量を測定(JIS K 1474 強熱残分(活性炭試験方法)に準拠)したところ12〜26%程度の範囲となり、各BPC間でばらつきがみられた。これは原料として用いたバークペレットが樹皮廃棄物由来であり、樹皮の産地によってバークペレット中の灰分量が異なるためと思われる。
(2) BPCの細孔構造
賦活処理時間(60分、90分、120分)別に調製したBPCの窒素吸脱着等温線からMP法により求めたミクロ孔分布をそれぞれ図2に示す。細孔直径1nm以下のミクロ孔が賦活処理によって発達し、賦活時間が60分から120分へ増加すると、ミクロ孔容積も増加しているのが確認された。
Moreover, when the amount of ash content of each BPC was measured (according to JIS K 1474 ignition residue (activated carbon test method)), it was in the range of about 12 to 26%, and variations were observed among the BPCs. This seems to be because the bark pellet used as a raw material is derived from bark waste, and the amount of ash in the bark pellet varies depending on the bark production area.
(2) BPC pore structure FIG. 2 shows the micropore distribution determined by the MP method from the nitrogen adsorption / desorption isotherm of BPC prepared separately for the activation treatment time (60 minutes, 90 minutes, 120 minutes). It was confirmed that micropores having a pore diameter of 1 nm or less developed by the activation treatment, and that the micropore volume increased as the activation time increased from 60 minutes to 120 minutes.

また、BPCと標準活性炭(和光純薬製粉末活性炭)の各特性値を表1に示す。   Table 1 shows the characteristic values of BPC and standard activated carbon (powder activated carbon manufactured by Wako Pure Chemical Industries, Ltd.).

Figure 2009226401
Figure 2009226401

表1より、BPCのメソ孔体積(cm/g)は標準活性炭と比べて大きいことが確認された。他方、BPCのマイクロ孔体積(cm/g)は標準活性炭よりも小さくなっていることが確認された。
(3) BPCのトルエン吸着特性
賦活処理時間(60分、90分、120分)別に調製したBPCにおける塗装工場等から排出される代表的なVOCであるトルエンの吸着等温線をそれぞれ図3に示す。賦活時間によって吸着等温線の形が異なっており、賦活時間が長くなると炭化材料単位質量当たりのトルエン平衡吸着量は多くなった。相対圧(P/P)=0.3(低濃度領域での吸着)におけるトルエン吸着量から前記標準活性炭とBPCのトルエン吸着量を比較したところ、BPCは標準活性炭の7割以上のトルエン吸着量があることがわかった。また、相対圧(P/P)=0.8(高濃度領域での吸着)におけるトルエン吸着量から標準活性炭とBPCのトルエン吸着量を比較したところ、BPCは標準活性炭と同等のトルエン吸着量があり、VOC吸着材として有効に活用できることが確認された。
(4)灰分の元素分析
BPCの原料として用いたバークペレットの灰分の元素分析結果を表2に示し、スギ樹皮(東京都奥多摩産のスギ樹皮、気乾含水率16.7%)の灰分の元素分析結果を表3に示す。
From Table 1, it was confirmed that the mesopore volume (cm 3 / g) of BPC was larger than that of standard activated carbon. On the other hand, it was confirmed that the micropore volume (cm 3 / g) of BPC was smaller than that of standard activated carbon.
(3) Toluene adsorption characteristics of BPC Fig. 3 shows the adsorption isotherms of toluene, which is a typical VOC discharged from a coating plant, etc., in a BPC prepared separately for the activation treatment time (60 minutes, 90 minutes, 120 minutes). . The shape of the adsorption isotherm differs depending on the activation time. As the activation time increased, the toluene equilibrium adsorption amount per unit mass of the carbonized material increased. When the toluene adsorption amount of the standard activated carbon and BPC was compared from the toluene adsorption amount at relative pressure (P / P 0 ) = 0.3 (adsorption in the low concentration region), BPC was adsorbed with toluene more than 70% of the standard activated carbon. I found that there was a quantity. Moreover, when the toluene adsorption amount of standard activated carbon and BPC was compared from the toluene adsorption amount at relative pressure (P / P 0 ) = 0.8 (adsorption in the high concentration region), BPC was equivalent to the toluene adsorption amount of standard activated carbon. It was confirmed that it can be effectively used as a VOC adsorbent.
(4) Elemental analysis of ash The results of elemental analysis of the ash content of the bark pellet used as the raw material for BPC are shown in Table 2, and the ash content of cedar bark (cedar bark from Okutama, Tokyo, air dry water content 16.7%) Table 3 shows the elemental analysis results.

Figure 2009226401
Figure 2009226401

Figure 2009226401
Figure 2009226401

表2、3より、バークペレットとスギ樹皮の元素構成が異なることがわかる。これは、樹皮の産地により土壌中の無機成分構成が異なることが原因であると推察される。   From Tables 2 and 3, it can be seen that the elemental composition of bark pellets and cedar bark are different. This is presumed to be due to the fact that the composition of inorganic components in the soil differs depending on the bark production area.

両試料とも、灰分の構成成分としてCaが7割近くを占めていることがわかる。灰分は活性炭の吸着能を妨げる要因の一つであることを考慮すると、まず、7割近くを占めたこのCa成分を塩酸等の酸洗浄で効率よく除去することにより、高品質の炭化材料を得ることができる。
(5)酸洗浄後のBPCの比表面積と灰分量
図4は、塩酸濃度を変えて酸(塩酸)洗浄したBPCの比表面積を測定した結果である。
It can be seen that in both samples, Ca accounts for nearly 70% as a constituent of ash. Considering that ash is one of the factors hindering the adsorption capacity of activated carbon, first, the high-quality carbonized material can be obtained by efficiently removing this Ca component, which accounted for nearly 70%, by acid cleaning such as hydrochloric acid. Obtainable.
(5) Specific surface area and ash content of BPC after acid cleaning FIG. 4 shows the results of measuring the specific surface area of BPC cleaned with acid (hydrochloric acid) while changing the hydrochloric acid concentration.

図4より、酸洗浄により、比表面積が35〜45%程度増加していることがわかる。また、塩酸1.5mol/Lの水溶液で洗浄したBPCの灰分量を測定(JIS K 1474 強熱残分(活性炭試験方法)に準拠)したところ、11.8%であった。このため灰分量が12%以下に調製されていることが確認できた。   FIG. 4 shows that the specific surface area is increased by about 35 to 45% by the acid cleaning. Moreover, when the amount of ash content of BPC washed with an aqueous solution of 1.5 mol / L hydrochloric acid was measured (based on JIS K 1474 ignition residue (activated carbon test method)), it was 11.8%. Therefore, it was confirmed that the ash content was adjusted to 12% or less.

また、酸洗浄後のBPCの炭化材料単位質量当たりのトルエン平衡吸着量は酸洗浄前のBPCよりも大きくなっていることが確認された。
<実施例2>
実施例1で用いたバークペレットを活性炭製造炉に投入し、窒素雰囲気下、700℃で2時間炭化処理を施した後、二酸化炭素400ml/minを導入して950℃で60分間、次いでAir200ml/minを導入して950℃で60分間賦活処理を施して炭化材料を得た。
Moreover, it was confirmed that the toluene equilibrium adsorption amount per unit mass of the carbonized material of BPC after acid cleaning is larger than that of BPC before acid cleaning.
<Example 2>
The bark pellets used in Example 1 were put into an activated carbon production furnace, subjected to carbonization treatment at 700 ° C. for 2 hours in a nitrogen atmosphere, carbon dioxide 400 ml / min was introduced, 950 ° C. for 60 minutes, and then Air 200 ml / Min was introduced and activated at 950 ° C. for 60 minutes to obtain a carbonized material.

得られた炭化材料について下記の酸処理(酸洗浄処理)を施した。
約3gの炭化材料を36%HCl−15mLに室温下に浸漬し一昼夜放置後、濾過して炭化材料を水洗いした後に乾燥した。次いで46%HF−15mLに室温下に浸漬し一昼夜放置後、濾過して炭化材料を水洗いした後に乾燥した。このサイクルを3回繰り返した。
The obtained carbonized material was subjected to the following acid treatment (acid cleaning treatment).
About 3 g of the carbonized material was immersed in 15% of 36% HCl at room temperature, allowed to stand overnight, filtered, washed with water, and then dried. Next, it was immersed in 15% of 46% HF at room temperature, allowed to stand overnight, filtered, washed with water, and dried. This cycle was repeated three times.

酸処理(酸洗浄処理)前後の炭化材料について、実施例1と同様にして比表面積、灰分量、トルエン吸着量を測定した。その結果を表4に示し、炭化材料の窒素吸着等温線とトルエン吸着等温線をそれぞれ図5、図6に示す。なお、表4中のトルエン吸着量は、相対圧(P/P)=0.3におけるトルエン吸着量を示している。また図5、図6の凡例中の「ADS」は吸着のデータを示し、「DES」は脱着のデータを示す。 With respect to the carbonized material before and after the acid treatment (acid washing treatment), the specific surface area, the ash content, and the toluene adsorption amount were measured in the same manner as in Example 1. The results are shown in Table 4, and the nitrogen adsorption isotherm and the toluene adsorption isotherm of the carbonized material are shown in FIGS. 5 and 6, respectively. The toluene adsorption amount in Table 4 indicates the toluene adsorption amount at a relative pressure (P / P 0 ) = 0.3. In the legends of FIGS. 5 and 6, “ADS” indicates adsorption data, and “DES” indicates desorption data.

Figure 2009226401
Figure 2009226401

以上の結果より、炭化材料に酸処理を施すことで比表面積が大きくなるとともに灰分量が少なくなり、トルエン吸着量が増大することが確認できた。   From the above results, it was confirmed that by subjecting the carbonized material to acid treatment, the specific surface area was increased, the ash content was decreased, and the toluene adsorption amount was increased.

また酸処理(酸洗浄処理)前後の炭化材料について、ESCA5600Ci(アルバックファイ製)(分析条件:X線源Al、電圧15V)を用いてXPS(X線光電子分光法)分析した結果を図7、図8に示す。   FIG. 7 shows the result of XPS (X-ray photoelectron spectroscopy) analysis of the carbonized material before and after the acid treatment (acid cleaning treatment) using ESCA5600Ci (manufactured by ULVAC-PHI) (analysis condition: X-ray source Al, voltage 15 V). As shown in FIG.

この結果から、酸処理によって除去された灰分がCa,Si,Mg,Pなどの親水性金属酸化物(灰分)であることが確認できた。またこのXPS分析によって炭化材料表面の酸素量を定量したところ、酸処理前は0.12%、酸処理後は0.07%であり、酸処理によって酸素量が減少していることが確認できた。これらの結果から、酸処理によって親水性金属酸化物(灰分)の除去と炭化材料表面の酸素量の減少、すなわち疎水化が起きており、トルエンやキシレン等の疎水性物質の吸着に有効な処理であることがわかった。   From this result, it was confirmed that the ash removed by the acid treatment was a hydrophilic metal oxide (ash) such as Ca, Si, Mg, P. Further, when the amount of oxygen on the surface of the carbonized material was quantified by XPS analysis, it was 0.12% before the acid treatment and 0.07% after the acid treatment, and it was confirmed that the oxygen amount was reduced by the acid treatment. It was. These results show that acid treatment removes hydrophilic metal oxides (ash) and reduces the amount of oxygen on the carbonized material surface, that is, hydrophobization, which is an effective treatment for adsorption of hydrophobic substances such as toluene and xylene. I found out that

Claims (10)

樹皮又はその成型体を炭化及び賦活処理した炭化材料からなることを特徴とする揮発性有機化合物吸着材。   A volatile organic compound adsorbent comprising a carbonized material obtained by carbonizing and activating a bark or a molded body thereof. 樹皮又はその成型体が、針葉樹の樹皮廃棄物由来であることを特徴とする請求項1に記載の揮発性有機化合物吸着材。   2. The volatile organic compound adsorbent according to claim 1, wherein the bark or a molded product thereof is derived from a coniferous bark waste. 針葉樹が、杉であることを特徴とする請求項1又は2に記載の揮発性有機化合物吸着材。   The volatile organic compound adsorbent according to claim 1 or 2, wherein the conifer is a cedar. 炭化材料の比表面積が400m/g以上であることを特徴とする請求項1から3のいずれか一項に記載の揮発性有機化合物吸着材。 The volatile organic compound adsorbent according to any one of claims 1 to 3, wherein the carbonized material has a specific surface area of 400 m 2 / g or more. 炭化材料の表面が、酸の洗浄によって疎水化されていることを特徴とする請求項1から4のいずれか一項に記載の揮発性有機化合物吸着材。   The volatile organic compound adsorbent according to any one of claims 1 to 4, wherein the surface of the carbonized material is hydrophobized by washing with an acid. 少なくとも、下記の工程を含むことを特徴とする揮発性有機化合物吸着材の製造方法。
(1)700℃から900℃の範囲で樹皮又はその成型体を加熱して炭化処理する工程
(2)炭化処理した樹皮又はその成型体を窒素と二酸化炭素の混合ガス雰囲気下もしくは空気雰囲気下で800℃から1200℃の範囲で加熱して賦活処理する工程
The manufacturing method of the volatile organic compound adsorbent characterized by including the following process at least.
(1) A step of heating and carbonizing a bark or a molded body thereof in a range of 700 ° C. to 900 ° C. (2) A carbonized bark or a molded body thereof in a mixed gas atmosphere of nitrogen and carbon dioxide or in an air atmosphere The process of heating and heating in the range of 800 ° C to 1200 ° C
炭化処理は、窒素ガス雰囲気下で行うことを特徴とする請求項6に記載の揮発性有機化合物吸着材の製造方法。   The method for producing a volatile organic compound adsorbent according to claim 6, wherein the carbonization is performed in a nitrogen gas atmosphere. 前記(2)の賦活処理工程の後、さらに酸で洗浄する工程を含むことを特徴とする請求項6又は7に記載の揮発性有機化合物質吸着材の製造方法。   The method for producing a volatile organic compound adsorbent according to claim 6 or 7, further comprising a step of washing with an acid after the activation treatment step (2). 樹皮又はその成型体を炭化及び賦活処理して炭化材料とし、これを揮発性有機化合物の吸着材として利用することを特徴とする樹皮又はその成型体の利用方法。   A method for using a bark or a molded body thereof, characterized by carbonizing and activating a bark or a molded body thereof to obtain a carbonized material, which is used as an adsorbent for a volatile organic compound. 炭化材料が、賦活処理した後、さらに酸で洗浄したものであることを特徴とする請求項9に記載の樹皮又はその成型体の利用方法。   The method for using a bark or a molded body thereof according to claim 9, wherein the carbonized material is activated and then washed with an acid.
JP2009046676A 2008-02-28 2009-02-27 Volatile organic compound adsorbent, method for producing the same, and method for using bark or molded article thereof Expired - Fee Related JP5281926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046676A JP5281926B2 (en) 2008-02-28 2009-02-27 Volatile organic compound adsorbent, method for producing the same, and method for using bark or molded article thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008048769 2008-02-28
JP2008048769 2008-02-28
JP2009046676A JP5281926B2 (en) 2008-02-28 2009-02-27 Volatile organic compound adsorbent, method for producing the same, and method for using bark or molded article thereof

Publications (2)

Publication Number Publication Date
JP2009226401A true JP2009226401A (en) 2009-10-08
JP5281926B2 JP5281926B2 (en) 2013-09-04

Family

ID=41242443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046676A Expired - Fee Related JP5281926B2 (en) 2008-02-28 2009-02-27 Volatile organic compound adsorbent, method for producing the same, and method for using bark or molded article thereof

Country Status (1)

Country Link
JP (1) JP5281926B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178641A (en) * 2010-03-03 2011-09-15 Tokyo Metropolitan Industrial Technology Research Institute Activated carbon and process of producing the same
WO2017146044A1 (en) * 2016-02-23 2017-08-31 ソニー株式会社 Solidified porous carbon material and production method thereof
WO2019172226A1 (en) * 2018-03-07 2019-09-12 サンコール株式会社 Method for producing activated carbon
WO2019172225A1 (en) * 2018-03-07 2019-09-12 サンコール株式会社 Method for producing activated carbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515294A (en) * 1974-07-04 1976-01-16 Yasuhiro Sanga Katsuseitanno seizohoho
JPS62108722A (en) * 1985-11-06 1987-05-20 Tonbo Enpitsu:Kk Carbonaceous composition having function of molecular sieve
JPH11228119A (en) * 1998-02-06 1999-08-24 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Adsorbent and its production
JP2003054926A (en) * 2001-08-22 2003-02-26 Univ Shimane Method for producing charcoal for adsorption
JP2004182511A (en) * 2002-12-02 2004-07-02 Ad'all Co Ltd Activated carbon and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515294A (en) * 1974-07-04 1976-01-16 Yasuhiro Sanga Katsuseitanno seizohoho
JPS62108722A (en) * 1985-11-06 1987-05-20 Tonbo Enpitsu:Kk Carbonaceous composition having function of molecular sieve
JPH11228119A (en) * 1998-02-06 1999-08-24 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Adsorbent and its production
JP2003054926A (en) * 2001-08-22 2003-02-26 Univ Shimane Method for producing charcoal for adsorption
JP2004182511A (en) * 2002-12-02 2004-07-02 Ad'all Co Ltd Activated carbon and method of manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178641A (en) * 2010-03-03 2011-09-15 Tokyo Metropolitan Industrial Technology Research Institute Activated carbon and process of producing the same
JP2020124710A (en) * 2016-02-23 2020-08-20 ソニー株式会社 Material to which functional material is attached and its production method, water cleaner and its production method, water cleaner cartridge and its production method, air cleaner and its production method, filter member and its production method, support member and its production method, foamed polyurethane foam and its production method, bottle and its production method, container and its production method, cap or member made of lid and its production method, solidified porous carbon material or material made of pulverized product of the porous carbon material and binder and its production method, and porous carbon material and its production method
CN108698833A (en) * 2016-02-23 2018-10-23 索尼公司 Solidified porous carbon materials and its manufacturing method
JPWO2017146044A1 (en) * 2016-02-23 2018-11-22 ソニー株式会社 Solidified porous carbon material, method for producing the same, and water purifier
JP2019131460A (en) * 2016-02-23 2019-08-08 ソニー株式会社 Solidified porous carbon material and method of manufacturing the same
WO2017146044A1 (en) * 2016-02-23 2017-08-31 ソニー株式会社 Solidified porous carbon material and production method thereof
US11707727B2 (en) 2016-02-23 2023-07-25 Sony Corporation Solidified porous carbon material and method of manufacturing the same
WO2019172226A1 (en) * 2018-03-07 2019-09-12 サンコール株式会社 Method for producing activated carbon
WO2019172225A1 (en) * 2018-03-07 2019-09-12 サンコール株式会社 Method for producing activated carbon
JP2019156649A (en) * 2018-03-07 2019-09-19 サンコール株式会社 Manufacturing method of active charcoal
JP2019156650A (en) * 2018-03-07 2019-09-19 サンコール株式会社 Manufacturing method of active charcoal
JP7152865B2 (en) 2018-03-07 2022-10-13 サンコール株式会社 Method for producing activated carbon
JP7195053B2 (en) 2018-03-07 2022-12-23 サンコール株式会社 Method for producing activated carbon

Also Published As

Publication number Publication date
JP5281926B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
Tan et al. Removal of elemental mercury by bamboo charcoal impregnated with H2O2
JP5400892B2 (en) Method for producing porous activated carbon
Özçimen et al. Adsorption of copper (II) ions onto hazelnut shell and apricot stone activated carbons
Joshi et al. Preparation and characterization of activated carbon from lapsi (Choerospondias axillaris) seed stone by chemical activation with potassium hydroxide
JP5781992B2 (en) Parenteral adsorbent provided with basic functional group and method for producing the same
WO2016072932A1 (en) Activated carbon, hydrochar and processes for making same
JP2012045538A (en) Nicotine absorbent, quinoline absorbent, benzopyrene absorbent, toluidine absorbent, and carcinogen absorbent
JP2017222547A (en) Method for producing activated carbon, and activated carbon production system
JP5281926B2 (en) Volatile organic compound adsorbent, method for producing the same, and method for using bark or molded article thereof
CN110015662A (en) A kind of CO absorption2With the preparation method of nitrogen-doped porous carbon material
CN110756168A (en) Preparation method and application of modified biochar for adsorbing tetracycline in wastewater
CN109647342A (en) Moisture-proof renewable active carbon of one kind and preparation method thereof
CN111203182A (en) Modified activated carbon for adsorbing phenol and preparation method and application thereof
JP5231294B2 (en) Volatile organic compound adsorbent and method for producing the same
JP5159970B1 (en) Activated carbon and manufacturing method thereof
CN113683089A (en) Layered porous biochar and preparation method and application thereof
KR101918652B1 (en) Activated carbon for removal of formaldehyde gas and the method thereof
Park et al. Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons
Chen et al. ADSORPTION OF CU (II) FROM AQUEOUS SOLUTION USING ACTIVATED CARBON DERIVED FROM MANGOSTEEN PEEL.
JP6288663B2 (en) Method for producing porous carbon material
CN107973295B (en) Preparation method of high-performance formaldehyde-removing activated carbon
Kongsomart et al. Preparation of activated carbons from teak sawdust using chicken dropping compost and empty fruit bunch
CN110302748A (en) A kind of sludge base charcoal preparation method
CN112645328B (en) Preparation method and application of nitrogen-containing porous carbon material
JP3138749B2 (en) Method for producing carbides having deodorizing ability, ion exchange ability, and catalytic ability using plant materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5281926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees