JP6288663B2 - Method for producing porous carbon material - Google Patents

Method for producing porous carbon material Download PDF

Info

Publication number
JP6288663B2
JP6288663B2 JP2013140432A JP2013140432A JP6288663B2 JP 6288663 B2 JP6288663 B2 JP 6288663B2 JP 2013140432 A JP2013140432 A JP 2013140432A JP 2013140432 A JP2013140432 A JP 2013140432A JP 6288663 B2 JP6288663 B2 JP 6288663B2
Authority
JP
Japan
Prior art keywords
porous carbon
lignin
carbon material
plant
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013140432A
Other languages
Japanese (ja)
Other versions
JP2015013767A (en
Inventor
敏樹 坪田
敏樹 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2013140432A priority Critical patent/JP6288663B2/en
Publication of JP2015013767A publication Critical patent/JP2015013767A/en
Application granted granted Critical
Publication of JP6288663B2 publication Critical patent/JP6288663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、多孔質炭素材料の製造方法に関する。   The present invention relates to a method for producing a porous carbon material.

多孔質炭素材料の代表例として活性炭が挙げられる。活性炭として一般的なヤシ殻活性炭は、比表面積が1200 m2 /g程度である。 A typical example of the porous carbon material is activated carbon. Coconut shell activated carbon, which is common as activated carbon, has a specific surface area of about 1200 m 2 / g.

1800 m2 /g程度以上の大きな比表面積を有する高性能な活性炭を作製する場合、一般に、水酸化カリウムや炭酸カリウムを使用した薬品賦活が行われる。これらの薬品の添加量は原料と同程度かそれ以上の質量の比率で混合した状態で加熱処理される。
しかし、これらの薬品を用いた賦活は、賦活のための加熱処理において金属カリウムが生成してしまう可能性があり、取り扱いには十分な配慮が必要となる。
When producing a high-performance activated carbon having a large specific surface area of about 1800 m 2 / g or more, chemical activation using potassium hydroxide or potassium carbonate is generally performed. The amount of these chemicals added is heat-treated in the state of being mixed at a mass ratio equal to or higher than that of the raw material.
However, activation using these chemicals may generate metal potassium in the heat treatment for activation, and sufficient consideration is required for handling.

多孔質炭素材料に関し、本発明者は、先に、糖類を主成分とする炭素前駆体にリンおよび窒素のうちのいずれか一方または双方を含有する化合物を配合し、炭化することで電気二重層キャパシタ分極性電極用炭素材料を得る技術を開示している(特許文献1参照)。この技術によれば、静電容量が大きい電気二重層キャパシタを得ることができる。   Regarding the porous carbon material, the present inventor previously blended and carbonized a compound containing either one or both of phosphorus and nitrogen into a carbon precursor mainly composed of saccharide, and carbonized the electric double layer. A technique for obtaining a carbon material for capacitor polarizable electrodes is disclosed (see Patent Document 1). According to this technique, an electric double layer capacitor having a large capacitance can be obtained.

ところで、活性炭の製造技術として、リグニンを原料とする比表面積が大きな活性炭が開示されている(特許文献2参照)。また、バイオマスを蒸煮してリグニンを可溶化し、熱可塑性を発現して成形したものを炭素前駆体として用いて活性炭を得る技術が開示されている(特許文献3参照)。また、特許文献3と同様の狙いで、リグニンが細胞壁中に内包されている木質系原料を加圧して細胞壁から放出させたリグニンをバインダの代わりとして利用して成形したものを炭素前駆体として用いて活性炭を得る技術が開示されている(特許文献4参照)。
一方、リグニンを原料として利用し、あるいはリグニンの特性を利用するこれらの技術とは逆に、リグニンを除去した草木をゲル状の糖質材料に調整し、これに金属化合物を添加して賦活して活性炭を得る技術が開示されている(特許文献5参照)。この場合、例えば硫酸に草木質を投入し、リグニン質を固体として析出させるとともにセルロース等の糖質を水溶液中に溶解し、糖質を酸により炭化処理した後に酸を除去し、ゲルに調製する。この技術によれば、活性炭を賦活処理する際にリグニンが細孔を閉塞する不具合を防止できるとされている。
By the way, activated carbon with a large specific surface area using lignin as a raw material has been disclosed as a technique for producing activated carbon (see Patent Document 2). In addition, a technique is disclosed in which activated carbon is obtained using steamed biomass to solubilize lignin and develop thermoplasticity as a carbon precursor (see Patent Document 3). Further, for the same purpose as that of Patent Document 3, a material obtained by molding a lignin released from a cell wall by pressurizing a wooden material in which lignin is encapsulated in the cell wall is used as a carbon precursor. A technique for obtaining activated carbon is disclosed (see Patent Document 4).
On the other hand, in contrast to these technologies that use lignin as a raw material or use the characteristics of lignin, the lignin-free vegetation is prepared into a gel-like saccharide material, which is then activated by adding a metal compound. A technique for obtaining activated carbon is disclosed (see Patent Document 5). In this case, for example, vegetation is added to sulfuric acid, lignin is precipitated as a solid, and saccharides such as cellulose are dissolved in an aqueous solution. The saccharide is carbonized with an acid, and then the acid is removed to prepare a gel. . According to this technique, it is said that the problem that lignin blocks pores when activated carbon is activated.

特開2011−243667号公報JP 2011-243667 A 特開2011−162369号公報JP 2011-162369 A 特開2007−153684号公報JP 2007-153684 A 特開2008−50230号公報JP 2008-50230 A 特開2005−126292号公報JP 2005-126292 A

解決しようとする課題は、特許文献1の技術を改良して、より比表面積の大きな多孔質炭素材料を得ることができる多孔質炭素材料の製造方法を提供することである。   The problem to be solved is to provide a method for producing a porous carbon material capable of improving the technique of Patent Document 1 and obtaining a porous carbon material having a larger specific surface area.

本発明に係る多孔質炭素材料の製造方法は、植物からリグニンを溶出する工程と、リグニンを溶出した植物にリンおよび窒素のうちのいずれか一方または双方を含有する化合物を加えて炭化する工程を有することを特徴とする。   The method for producing a porous carbon material according to the present invention includes a step of eluting lignin from a plant, and a step of adding a compound containing either one or both of phosphorus and nitrogen to a plant eluting lignin and carbonizing it. It is characterized by having.

また、本発明に係る多孔質炭素材料の製造方法は、好ましくは、過酸化水素水と酢酸の混液を用いて植物からリグニンを溶出することを特徴とする。   Moreover, the method for producing a porous carbon material according to the present invention is preferably characterized in that lignin is eluted from a plant using a mixed solution of hydrogen peroxide and acetic acid.

また、本発明に係る多孔質炭素材料の製造方法は、好ましくは、リンおよび窒素のうちのいずれか一方または双方を含有する化合物がリン酸グアニジンであることを特徴とする。   Moreover, the method for producing a porous carbon material according to the present invention is preferably characterized in that the compound containing one or both of phosphorus and nitrogen is guanidine phosphate.

また、本発明に係る多孔質炭素材料の製造方法は、好ましくは、炭化する工程の後に、二酸化炭素ガスにより賦活する工程をさらに有することを特徴とする。   In addition, the method for producing a porous carbon material according to the present invention preferably further includes a step of activating with carbon dioxide gas after the step of carbonizing.

本発明に係る多孔質炭素材料の製造方法は、植物からリグニンを溶出する工程と、リグニンを溶出した植物にリンおよび窒素のうちのいずれか一方または双方を含有する化合物を加えて炭化する工程を有するため、比表面積の大きな多孔質炭素材料を得ることができる。   The method for producing a porous carbon material according to the present invention includes a step of eluting lignin from a plant, and a step of adding a compound containing either one or both of phosphorus and nitrogen to a plant eluting lignin and carbonizing it. Therefore, a porous carbon material having a large specific surface area can be obtained.

本発明の実施の形態(以下、本実施の形態例という。)について、以下に説明する。   An embodiment of the present invention (hereinafter referred to as this embodiment) will be described below.

本実施の形態例に係る多孔質炭素材料の製造方法は、植物からリグニンを溶出する工程と、リグニンを溶出した植物にリンおよび窒素のうちのいずれか一方または双方を含有する化合物を加えて炭化する工程を有する。   The method for producing a porous carbon material according to the present embodiment includes a step of eluting lignin from a plant, and adding a compound containing either or both of phosphorus and nitrogen to the plant from which lignin has been eluted. The process of carrying out.

植物は、天然資源として大量に賦存する。植物は、セルロース、ヘミセルロースおよびリグニンを大量に含む。
本実施の形態例において、植物として、竹粉末を好適に用いることができるが、これに限定するものではない。
Plants exist in large quantities as natural resources. Plants contain large amounts of cellulose, hemicellulose and lignin.
In the present embodiment, bamboo powder can be suitably used as the plant, but is not limited thereto.

植物からリグニンを溶出する方法は、例えばパルプ業界等において種々の技術が広く知られており、これらの技術のなかから適宜選択して用いることができる。過酸化水素水と酢酸の混液を用いて植物からリグニンを溶出することは、好適な実施態様である。
過酸化水素水と酢酸の混液を用いて植物からリグニンを溶出する場合、植物100質量部に対して、過酸化水素水および酢酸をそれぞれ純物質基準で300〜800質量部用いることが好ましい。過酸化水素水および酢酸は、ほぼ等量用いることがより好ましい。温度60〜110℃で4〜24時間攪拌しながら処理することが好ましい。植物からリグニンを溶出した後は、例えば、濾過等によりリグニンを含む混液を植物から分離除去し、植物を洗浄した後、乾燥する。
Various techniques for eluting lignin from plants are widely known, for example, in the pulp industry and the like, and can be appropriately selected and used from these techniques. It is a preferred embodiment to elute lignin from plants using a mixture of hydrogen peroxide and acetic acid.
When lignin is eluted from a plant using a mixed solution of hydrogen peroxide and acetic acid, it is preferable to use 300 to 800 parts by mass of hydrogen peroxide and acetic acid, respectively, on a pure substance basis with respect to 100 parts by mass of the plant. It is more preferable to use approximately equal amounts of hydrogen peroxide solution and acetic acid. The treatment is preferably performed at a temperature of 60 to 110 ° C. with stirring for 4 to 24 hours. After the lignin is eluted from the plant, for example, the mixed solution containing lignin is separated and removed from the plant by filtration or the like, and the plant is washed and dried.

リンおよび窒素のうちのいずれか一方または双方を含有する化合物は、リンおよび窒素双方を含有するものとして、リン酸グアニジン、リン酸メラミン、リン酸グアニル尿素等を挙げることができる。このうち、リン酸グアニジンを用いることは好適な実施の形態である。また、リンおよび窒素のうちのいずれか一方を含有するものとしては、周知の適宜の化合物、例えばリン酸や炭酸グアニジン等を用いることができる。
リン酸グアニジンを用いる場合、植物からリグニンを溶出した後の乾燥植物100質量部に対して、リン酸グアニジンを純物質基準で1〜20質量部加えることが好ましい。
リグニンを溶出した後の乾燥植物にリン酸グアニジンを含浸法等によって加えて加熱して炭化する条件は、600〜1000℃の加熱温度で0.5〜2時間の加熱時間とすることが好ましい。このとき、窒素等の不活性ガス雰囲気下で処理することが好ましい。
リグニンを溶出した後の乾燥植物を炭化した後、好ましくは、600〜1000℃の加熱温度で、二酸化炭素ガスで1〜5時間処理し、その後不活性ガス雰囲気下で室温まで冷却して賦活することが好ましい。加熱温度は、700〜900℃であると、より好ましい。処理時間は、2〜4時間であると、より好ましい。
Examples of the compound containing either or both of phosphorus and nitrogen include guanidine phosphate, melamine phosphate, guanylurea phosphate and the like as those containing both phosphorus and nitrogen. Of these, the use of guanidine phosphate is a preferred embodiment. Moreover, as what contains any one of phosphorus and nitrogen, a well-known appropriate compound, for example, phosphoric acid, a guanidine carbonate, etc. can be used.
When using guanidine phosphate, it is preferable to add 1 to 20 parts by mass of guanidine phosphate on a pure substance basis with respect to 100 parts by mass of the dried plant after eluting lignin from the plant.
The conditions for adding guanidine phosphate to the dried plant after elution of lignin by the impregnation method, etc., and heating and carbonizing are preferably set at a heating temperature of 600 to 1000 ° C. for a heating time of 0.5 to 2 hours. At this time, it is preferable to process in inert gas atmosphere, such as nitrogen.
After carbonizing the dried plant after eluting lignin, it is preferably treated with carbon dioxide gas at a heating temperature of 600 to 1000 ° C. for 1 to 5 hours, and then cooled to room temperature in an inert gas atmosphere to activate. It is preferable. The heating temperature is more preferably 700 to 900 ° C. The treatment time is more preferably 2 to 4 hours.

以上説明した本実施の形態例に係る多孔質炭素材料の製造方法により得られる多孔質炭素材料は、特許文献1の発明の製造方法により得られる炭素材料よりも大きく、かつ市販の電気二重層キャパシタと同程度の比表面積を有する。   The porous carbon material obtained by the method for producing a porous carbon material according to this embodiment described above is larger than the carbon material obtained by the production method of the invention of Patent Document 1 and is a commercially available electric double layer capacitor. Specific surface area of the same level.

本実施の形態例に係る多孔質炭素材料の製造方法により得られる多孔質炭素材料は、活性炭や電気二重層キャパシタ電極等の用途に好適に使用できる。
活性炭としては、揮発性ガスに対する吸着剤、メタンガスの運搬や貯蔵材料、色素含有廃液の脱色剤、バイオエタノールの回収材、脱臭剤として使用できる。また、電気二重層キャパシタ電極としては、回路部品、レーザープリンタ、コピー機等の大容量蓄電や急速加熱用途やハイブリッド自動車に使用できる。
The porous carbon material obtained by the method for producing a porous carbon material according to this embodiment can be suitably used for applications such as activated carbon and electric double layer capacitor electrodes.
As activated carbon, it can be used as an adsorbent for volatile gases, a material for transporting and storing methane gas, a decolorizer for dye-containing waste liquid, a bioethanol recovery material, and a deodorizer. Moreover, as an electric double layer capacitor electrode, it can be used for high capacity | capacitance electrical storage, rapid heating uses, such as a circuit component, a laser printer, a copy machine, and a hybrid vehicle.

本発明の実施例を説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。   Examples of the present invention will be described. In addition, this invention is not limited to the Example demonstrated below.

(多孔質炭素材料の調製:実施例)
原料として500μm以下の竹粉末(バンブーケミカル社製自動竹粉作製装置で製造)を用いた。
得られた竹粉末20gを容器に入れて、30w/v%過酸化水素水100mlおよび酢酸100mlをそれぞれ含浸し、85℃の温度で8時間攪拌した。ついで、吸引濾過、蒸留水による洗浄および恒量となるまでの乾燥処理を行い、リグニンを溶出した竹粉末(以下、これを脱リグニン竹粉末という。)を得た。なお、脱リグニン処理前後の竹粉末のリグニン量を硫酸法で測定したところ、処理前の竹粉末が21.4wt%、処理後の竹粉末が0wt%であった。
得られた脱リグニン竹粉末に、リン酸グアニジン(東京化成工業株式会社製、製品名リン酸グアニジン 主成分:リン酸グアニジン95.0容量% リン含有量14.33質量% 窒素有量6.48質量%)を、質量比で脱リグニン竹粉末:リン酸グアニジン=20:1の割合で混合し、1日放置して乾燥した。
管状炉(アズワン社製、ARF-50K)に乾燥後のリン酸グアニジン添着脱リグニン竹粉末を配置し、窒素ガスを9リットル/hrの流速で流通して加熱炉内を窒素ガス雰囲気として800℃の温度で1時間加熱、焼成して、リン酸グアニジン添着脱リグニン竹粉末を炭化した。さらに、800℃の温度を保持しながら加熱炉に二酸化炭素ガスを9リットル/hrの流速で流通し、炭化物を賦活した。賦活時間は、0時間(実施例1)、1時間(実施例2)、2時間(実施例3)、3時間(実施例4)および4時間(実施例5)の5水準とした。その後、窒素ガス雰囲気に戻し、室温まで冷却して多孔質炭素材料を得た。
(Preparation of porous carbon material: Examples)
As a raw material, bamboo powder of 500 μm or less (manufactured by an automatic bamboo powder production apparatus manufactured by Bamboo Chemical Co., Ltd.) was used.
20 g of the obtained bamboo powder was put in a container, impregnated with 100 ml of 30 w / v% hydrogen peroxide water and 100 ml of acetic acid, and stirred at a temperature of 85 ° C. for 8 hours. Subsequently, suction filtration, washing with distilled water, and drying to a constant weight were performed to obtain bamboo powder eluting lignin (hereinafter referred to as delignified bamboo powder). In addition, when the amount of lignin of the bamboo powder before and after the delignification treatment was measured by the sulfuric acid method, the bamboo powder before the treatment was 21.4 wt% and the bamboo powder after the treatment was 0 wt%.
To the resulting delignified bamboo powder, guanidine phosphate (manufactured by Tokyo Chemical Industry Co., Ltd., product name: guanidine phosphate, main component: guanidine phosphate 95.0% by volume, phosphorus content 14.33% by mass, nitrogen content 6.48% by mass), mass The ratio of delignified bamboo powder: guanidine phosphate was mixed at a ratio of 20: 1 and left to dry for one day.
Arranged lignin bamboo powder with guanidine phosphate attached and dried in a tubular furnace (ARF-50K, manufactured by ASONE Co., Ltd.), nitrogen gas was circulated at a flow rate of 9 liters / hr, and the inside of the heating furnace was set to a nitrogen gas atmosphere at 800 ° C. The lignin bamboo powder added and detached with guanidine phosphate was carbonized by heating and firing at a temperature of 1 hour. Furthermore, carbon dioxide gas was circulated through the heating furnace at a flow rate of 9 liter / hr while maintaining a temperature of 800 ° C. to activate the carbide. The activation time was set to 5 levels of 0 hour (Example 1), 1 hour (Example 2), 2 hours (Example 3), 3 hours (Example 4) and 4 hours (Example 5). Then, it returned to nitrogen gas atmosphere and cooled to room temperature, and obtained the porous carbon material.

(多孔質炭素材料の調製:比較例1)
脱リグニン処理および賦活処理を行わなかったほかは実施例1と同様の加熱条件で竹粉末を炭化して多孔質炭素材料(比較例1)を得た。
(Preparation of porous carbon material: Comparative Example 1)
Bamboo powder was carbonized under the same heating conditions as in Example 1 except that delignification treatment and activation treatment were not performed to obtain a porous carbon material (Comparative Example 1).

(多孔質炭素材料の調製:比較例2)
蒸留水を入れた容器に、球状セルロース(大東化成工業株式会社製 CELLULOBEADS D-100直径(粒度分布における中位径 100μm以下)にリン酸グアニジン(東京化成工業株式会社製 製品名リン酸グアニジン 主成分:リン酸グアニジン95.0容量% リン含有量14.33質量% 窒素有量6.48質量%)を球状セルロースに対して質量比で球状セルロース:リン酸グアニジン =20:1の割合で加え、1日放置して乾燥した。
管状炉に乾燥後のリン酸グアニジン添着球状セルロースを配置し、窒素ガスを9リットル/hrの流速で流通して加熱炉内を窒素ガス雰囲気として850℃の温度で1時間加熱、焼成して、リン酸グアニジン添着球状セルロースを炭化した後、室温まで冷却して多孔質炭素材料(比較例2)を得た。
(Preparation of porous carbon material: Comparative Example 2)
In a container containing distilled water, spherical cellulose (CELLULOBEADS D-100 diameter manufactured by Daito Kasei Kogyo Co., Ltd.) (Guanidine phosphate manufactured by Tokyo Chemical Industry Co., Ltd.) : Guanidine phosphate 95.0% by volume Phosphorus content 14.33% by mass Nitrogen content 6.48% by mass) Spherical cellulose by mass ratio with respect to spherical cellulose: guanidine phosphate = 20: 1 did.
Place the dried guanidine phosphate-impregnated spherical cellulose in a tubular furnace, circulate nitrogen gas at a flow rate of 9 liters / hr and heat and calcinate at 850 ° C. for 1 hour in a nitrogen gas atmosphere, After carbonizing the guanidine phosphate-impregnated spherical cellulose, it was cooled to room temperature to obtain a porous carbon material (Comparative Example 2).

(多孔質炭素材料の物性等評価)
実施例および各比較例について、比表面積等の物性を測定、評価した結果をまとめて表1に示す。
(Evaluation of physical properties of porous carbon materials)
Table 1 summarizes the results of measurement and evaluation of physical properties such as specific surface area for the examples and comparative examples.

Figure 0006288663
Figure 0006288663

Claims (4)

植物からリグニンを溶出する工程と、リグニンを溶出した植物にリンおよび窒素のうちのいずれか一方または双方を含有する化合物を加えた後に600〜1000℃の加熱温度で炭化する工程と、炭化する工程の後に二酸化炭素ガスにより賦活する工程を有することを特徴とする多孔質炭素材料の製造方法。 A step of eluting lignin from a plant, a step of carbonizing at a heating temperature of 600 to 1000 ° C. after adding a compound containing either one or both of phosphorus and nitrogen to the plant eluting lignin, and a step of carbonizing A method for producing a porous carbon material, comprising a step of activating with carbon dioxide gas after the step. 過酸化水素水と酢酸の混液を用いて植物からリグニンを溶出することを特徴とする請求項1記載の多孔質炭素材料の製造方法。   2. The method for producing a porous carbon material according to claim 1, wherein lignin is eluted from the plant using a mixed solution of hydrogen peroxide and acetic acid. リンおよび窒素のうちのいずれか一方または双方を含有する化合物がリン酸グアニジン、リン酸メラミン、およびリン酸グアニル尿素から選択される一種以上であることを特徴とする請求項1記載の多孔質炭素材料の製造方法。2. The porous carbon according to claim 1, wherein the compound containing one or both of phosphorus and nitrogen is at least one selected from guanidine phosphate, melamine phosphate, and guanylurea phosphate. Material manufacturing method. 植物が竹粉末であることを特徴とする請求項1記載の多孔質炭素材料の製造方法。
The method for producing a porous carbon material according to claim 1, wherein the plant is bamboo powder.
JP2013140432A 2013-07-04 2013-07-04 Method for producing porous carbon material Active JP6288663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013140432A JP6288663B2 (en) 2013-07-04 2013-07-04 Method for producing porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013140432A JP6288663B2 (en) 2013-07-04 2013-07-04 Method for producing porous carbon material

Publications (2)

Publication Number Publication Date
JP2015013767A JP2015013767A (en) 2015-01-22
JP6288663B2 true JP6288663B2 (en) 2018-03-07

Family

ID=52435827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140432A Active JP6288663B2 (en) 2013-07-04 2013-07-04 Method for producing porous carbon material

Country Status (1)

Country Link
JP (1) JP6288663B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106744789A (en) * 2016-11-14 2017-05-31 天津工业大学 A kind of utilization lignin prepares porous charcoal and the application in ultracapacitor
KR20210089643A (en) * 2018-11-09 2021-07-16 주식회사 쿠라레 Carbonaceous material, its manufacturing method, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
CN112794324B (en) * 2019-11-14 2022-10-25 华南理工大学 High-mesoporosity lignin hierarchical pore carbon material and preparation method and application thereof
CN114804100B (en) * 2022-05-13 2023-10-27 中南大学 Porous carbon with ultrahigh specific surface area and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047724A (en) * 2003-07-30 2005-02-24 Araco Corp Production method for molded active carbon
JP2005126292A (en) * 2003-10-24 2005-05-19 Araco Corp Manufacturing method of active carbon
JP2007269555A (en) * 2006-03-31 2007-10-18 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Activated carbon molded product and method for manufacturing the same
JP5652636B2 (en) * 2010-05-16 2015-01-14 国立大学法人九州工業大学 Method for producing carbon material for electric double layer capacitor polarizable electrode
JP5846575B2 (en) * 2011-09-16 2016-01-20 国立大学法人九州工業大学 Manufacturing method of electric double layer capacitor
JP2013087132A (en) * 2011-10-13 2013-05-13 Oji Holdings Corp Method for producing fine fibrous cellulose

Also Published As

Publication number Publication date
JP2015013767A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
CN101648707B (en) Preparation method of activated carbon with high pore volume
CN107108232B (en) Activated carbon, hydrothermal carbon and preparation method thereof
Sevilla et al. A green approach to high‐performance supercapacitor electrodes: the chemical activation of hydrochar with potassium bicarbonate
JP5400892B2 (en) Method for producing porous activated carbon
JP6513401B2 (en) Active carbon fiber having high active surface area
JP6288663B2 (en) Method for producing porous carbon material
RU2562285C2 (en) Method for production of filter for tobacco smoke filtering
Mueller et al. Influence of the nanofiber dimensions on the properties of nanocellulose/poly (vinyl alcohol) aerogels
JP5781992B2 (en) Parenteral adsorbent provided with basic functional group and method for producing the same
JP6760583B2 (en) How to make activated carbon
JP2012507470A5 (en)
Shen et al. Hollow porous carbon fiber from cotton with nitrogen doping
Khan et al. Developments in activated functionalized carbons and their applications in water decontamination: a review
Kang et al. Hierarchically Porous Carbons Derived from Cotton Stalks for High‐Performance Supercapacitors
Ding et al. Novel Biomass‐Derived Adsorbents Grafted Sodium Titanium Silicate with High Adsorption Capacity for Rb+ and Cs+ in the Brine
Wang et al. Activated carbon preparation from cassava residue using a two-step KOH activation: preparation, micropore structure and adsorption capacity
JP5231294B2 (en) Volatile organic compound adsorbent and method for producing the same
JP2006225231A (en) Activated carbon from chitinous matter as raw material and its manufacturing method
CN107051383A (en) A kind of preparation method of carbon material for sewage disposal
JP2009226401A (en) Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding
RU2620404C1 (en) Method of obtaining mesoporous carbon
JP2005126292A (en) Manufacturing method of active carbon
JP6624993B2 (en) Activated carbon production method
JP2016026985A (en) Method for producing activated carbon
JP7097683B2 (en) Method for manufacturing chemically activated carbon

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180131

R150 Certificate of patent or registration of utility model

Ref document number: 6288663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250