JP5652636B2 - Method for producing carbon material for electric double layer capacitor polarizable electrode - Google Patents

Method for producing carbon material for electric double layer capacitor polarizable electrode Download PDF

Info

Publication number
JP5652636B2
JP5652636B2 JP2010112721A JP2010112721A JP5652636B2 JP 5652636 B2 JP5652636 B2 JP 5652636B2 JP 2010112721 A JP2010112721 A JP 2010112721A JP 2010112721 A JP2010112721 A JP 2010112721A JP 5652636 B2 JP5652636 B2 JP 5652636B2
Authority
JP
Japan
Prior art keywords
carbon material
double layer
electric double
polarizable electrode
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010112721A
Other languages
Japanese (ja)
Other versions
JP2011243667A (en
Inventor
敏樹 坪田
敏樹 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2010112721A priority Critical patent/JP5652636B2/en
Publication of JP2011243667A publication Critical patent/JP2011243667A/en
Application granted granted Critical
Publication of JP5652636B2 publication Critical patent/JP5652636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電気二重層キャパシタ分極性電極用炭素材料の製造方法に関する。   The present invention relates to a method for producing a carbon material for an electric double layer capacitor polarizable electrode.

電気デバイスの一種である電気二重層キャパシタは、電気二重層を形成するための分極性電極、電気二重層に蓄積された電荷を出し入れするための集電極(集電体)、分極性電極との界面に電気二重層を形成するための電解液および分極性電極どうしの電子的なショートを防ぐためのセパレータと、これらの構成要素を実用デバイスとして機能させるための外装ケースで構成される。
このように構成される電気二重層キャパシタは、導電性材料からなる電極の界面にイオンを吸着させることで電気を充放電する。このとき、電気二重層キャパシタは一挙に大電流を放出できる。
このため、電気二重層キャパシタは、待機中に予熱することで電力を消費するレーザープリンタやコピー機に好適に用いることができ、また、ハイブリッド自動車への応用も期待されている。
An electric double layer capacitor, which is a kind of electric device, is composed of a polarizable electrode for forming an electric double layer, a collector electrode (current collector) for taking in and out charges accumulated in the electric double layer, and a polarizable electrode. It is composed of an electrolyte for forming an electric double layer at the interface and a separator for preventing an electronic short circuit between polarizable electrodes, and an outer case for causing these components to function as a practical device.
The electric double layer capacitor thus configured charges and discharges electricity by adsorbing ions to the interface of the electrode made of a conductive material. At this time, the electric double layer capacitor can discharge a large current all at once.
For this reason, the electric double layer capacitor can be suitably used for a laser printer or a copier that consumes electric power by preheating during standby, and is expected to be applied to a hybrid vehicle.

電気二重層キャパシタは、化学電池と比較してエネルギー密度は小さいものの(化学電池:数百Wh/kg, 電気二重層キャパシタ:数Wh/kg)、パワー密度が大きく(化学電池:数百W/kg, 電気二重層キャパシタ:数千W/kg)、また繰り返し寿命が長い(化学電池:数十回〜数千回、電気二重層キャパシタ:数万回)という利点を有する。
このため、高速充放電性、静電容量向上および低コスト化等を図ることができる電気二重層キャパシタについて、電解液材料や電極材料の改良を中心として種々の観点から検討されている。
Electric double layer capacitors have a lower energy density than chemical cells (chemical cells: several hundred Wh / kg, electric double layer capacitors: several Wh / kg), but have a large power density (chemical cells: several hundred W / kg). kg, electric double layer capacitor: several thousand W / kg), and has a long cycle life (chemical battery: several tens to several thousand times, electric double layer capacitor: tens of thousands of times).
For this reason, electric double layer capacitors that can achieve high-speed charge / discharge characteristics, increased capacitance, and reduced costs have been studied from various viewpoints, centering on improvements in electrolyte materials and electrode materials.

電極材料に関して、例えば、多糖類とフェノール類とを酸性触媒の存在下で反応させる一次反応を行った後、これにアルデヒド類を反応触媒の存在下で付加縮合反応させる二次反応を行って、電極材料等多様な用途に利用できる多糖類変性フェノール樹脂を得る方法が開示されている(特許文献1)。
また、天然に生じる炭水化物、コールタールから誘導されるピッチ、石油から誘導されるピッチおよびこれらのものの組み合わせから選択されるカーボン前駆体から誘導され、1質量%以上の元素性窒素を含有し、1,500m/gより大きな表面積を呈するカーボン材料を得る技術が開示されている(特許文献2)。このカーボン材料は、経済的に製造することができ、電気二重層キャパシタを含む各種のエネルギー貯蔵用途等に利用できるとされている。
また、1,000〜20,000ppmのリン原子を含有し、特定の細孔構造を有する電気二重層キャパシタ用リン化合物複合活性炭が開示されている(特許文献3)。この電気二重層キャパシタ用リン化合物複合活性炭は、高い充放電容量を有し、耐久性にも優れるとされている。
Regarding the electrode material, for example, after performing a primary reaction in which a polysaccharide and phenols are reacted in the presence of an acidic catalyst, a secondary reaction in which an aldehyde is subjected to an addition condensation reaction in the presence of a reaction catalyst is performed, A method for obtaining a polysaccharide-modified phenolic resin that can be used for various applications such as electrode materials has been disclosed (Patent Document 1).
It is derived from a carbon precursor selected from naturally occurring carbohydrates, pitches derived from coal tar, pitches derived from petroleum and combinations thereof, and contains 1% by weight or more of elemental nitrogen, , A technique for obtaining a carbon material exhibiting a surface area greater than 500 m 2 / g is disclosed (Patent Document 2). This carbon material can be produced economically and can be used for various energy storage applications including electric double layer capacitors.
Moreover, the phosphorus compound composite activated carbon for electric double layer capacitors which contains a 1,000-20,000 ppm phosphorus atom and has a specific pore structure is disclosed (patent document 3). This phosphorus compound composite activated carbon for electric double layer capacitors is said to have a high charge / discharge capacity and excellent durability.

特開2008−50543号公報JP 2008-50543 A 特開2006−160597号公報JP 2006-160597 A 特開2008−21966号公報JP 2008-21966 A

本発明は、より高性能な、新規の電気二重層キャパシタ分極性電極用炭素材料の製造方法を提供することを目的とする。   An object of the present invention is to provide a novel method for producing a novel carbon material for electric double layer capacitor polarizable electrodes.

本発明に係る電気二重層キャパシタ分極性電極用炭素材料の製造方法は、糖類を主成分とする炭素前駆体にリン酸グアニジンを配合し、炭化することを特徴とする。 The method for producing a carbon material for an electric double layer capacitor polarizable electrode according to the present invention is characterized in that guanidine phosphate is blended with a carbon precursor containing saccharide as a main component and carbonized.

本発明に係る電気二重層キャパシタ分極性電極用炭素材料の製造方法は、糖類を主成分とする炭素前駆体にリン酸グアニジンを配合し、炭化するため、この炭素材料を用いて得られる電気二重層キャパシタは静電容量が大きい。 In the method for producing a carbon material for an electric double layer capacitor polarizable electrode according to the present invention, guanidine phosphate is compounded with a carbon precursor containing saccharide as a main component and carbonized. The multilayer capacitor has a large capacitance.

図1は炭素材料調製例1、2の炭素材料粉末の熱重量-示差熱分析(Thermogravimetric - Differential thermal analysis:TG-DTA)結果を示す図である。FIG. 1 is a graph showing the results of thermogravimetric-differential thermal analysis (TG-DTA) of the carbon material powders of Preparation Examples 1 and 2 of the carbon material. 図2(A)は炭素材料調製例1、2の原料を走査型電子顕微鏡(SEM)で観察した写真を示す図である。FIG. 2A is a view showing a photograph of the raw materials of carbon material preparation examples 1 and 2 observed with a scanning electron microscope (SEM). 図2(B)は炭素材料調製例2の炭素材料粉末を走査型電子顕微鏡(SEM)で観察した写真を示す図である。FIG. 2B is a view showing a photograph of the carbon material powder of Carbon Material Preparation Example 2 observed with a scanning electron microscope (SEM). 図2(C)は炭素材料調製例1の炭素材料粉末を走査型電子顕微鏡(SEM)で観察した写真を示す図である。FIG. 2C is a view showing a photograph of the carbon material powder of Carbon Material Preparation Example 1 observed with a scanning electron microscope (SEM). 図2(D)は炭素材料調製例4の原料を走査型電子顕微鏡(SEM)で観察した写真を示す図である。FIG. 2D is a view showing a photograph of the raw material of the carbon material preparation example 4 observed with a scanning electron microscope (SEM). 図3は各実施例等の電極を用いて作製した電気二重層キャパシタの充放電曲線を示す図である。FIG. 3 is a diagram showing a charge / discharge curve of an electric double layer capacitor produced using electrodes of each example or the like. 図4は各実施例等の電極を用いて作製した電気二重層キャパシタのCV測定結果を示す図である。FIG. 4 is a diagram showing a CV measurement result of an electric double layer capacitor manufactured using electrodes of each example or the like.

本発明の実施の形態について、図を参照して、以下に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施の形態に係る電気二重層キャパシタ分極性電極用炭素材料の製造方法は、糖類を主成分とする炭素前駆体にリンおよび窒素のうちのいずれか一方または双方を含有する化合物を、例えばこれらの化合物の水溶液を炭素前駆体に含浸させる方法により配合し、炭化する。得られる炭化物を、分極性電極の活物質に用いる。   In the method for producing a carbon material for an electric double layer capacitor polarizable electrode according to the present embodiment, a compound containing one or both of phosphorus and nitrogen in a carbon precursor containing saccharide as a main component is used, for example. A carbon precursor is impregnated with an aqueous solution of the above compound and carbonized. The obtained carbide is used as an active material for a polarizable electrode.

糖類(炭水化物)は、その種類を限定するものではなく、単糖や複数の単糖分子を生じるオリゴ糖であってもよいが、1分子から多数の単糖分子を生じる多糖であることが好ましい。多糖として、でんぷんおよびセルロースのいずれか一方または双方を用いることは好適な実施の形態である。
糖類を主成分とする炭素前駆体は、糖類を主成分とする天然物、天然物の加工物あるいは天然物加工時の廃棄物を含む。例えばでんぷんを含む天然物として、じゃがいも、とうもろこし、小麦でんぷん、米でんぷん、ソラマメや小豆等の豆類等を挙げることができ、でんぷんを含む天然物の加工物として、コーンスターチ等を挙げることができる。また、例えばセルロースを含む天然物として、綿、パルプ等を挙げることができ、セルロースを含む天然物の加工物として、紙等を挙げることができ、セルロースを含む天然物の加工時の廃棄物として、おがくず等を挙げることができる。また、糖類を主成分とする炭素前駆体は、本発明の効果を奏する限り、糖類以外の成分、例えば、石炭系あるいは石油系のピッチその他の炭素前駆体を含んでいてもよい。
The type of saccharide (carbohydrate) is not limited, and may be a monosaccharide or an oligosaccharide that generates a plurality of monosaccharide molecules, but is preferably a polysaccharide that generates a large number of monosaccharide molecules from one molecule. . It is a preferred embodiment to use one or both of starch and cellulose as the polysaccharide.
The carbon precursor containing saccharide as a main component includes a natural product containing saccharide as a main component, a processed product of natural product, or a waste product during processing of natural product. Examples of natural products including starch include potatoes, corn, wheat starch, rice starch, beans such as broad beans and red beans, and examples of processed natural products containing starch include corn starch. In addition, for example, natural products containing cellulose can include cotton, pulp, and the like, processed products of natural products containing cellulose, paper and the like, and wastes during processing of natural products containing cellulose. , Sawdust and the like. Moreover, the carbon precursor which has saccharides as a main component may contain components other than saccharides, for example, coal-based or petroleum-based pitch and other carbon precursors as long as the effects of the present invention are exhibited.

リンおよび窒素のうちのいずれか一方または双方を含有する化合物は、リンおよび窒素双方を含有するものとして、リン酸グアニジン、リン酸メラミン、リン酸グアニル尿素等を挙げることができる。このうち、リン酸グアニジンを用いることは好適な実施の形態である。また、リンおよび窒素のうちのいずれか一方を含有するものとしては、周知の適宜の化合物、例えばリン酸や炭酸グアニジン等を用いることができる。   Examples of the compound containing either or both of phosphorus and nitrogen include guanidine phosphate, melamine phosphate, guanylurea phosphate and the like as those containing both phosphorus and nitrogen. Of these, the use of guanidine phosphate is a preferred embodiment. Moreover, as what contains any one of phosphorus and nitrogen, a well-known appropriate compound, for example, phosphoric acid, a guanidine carbonate, etc. can be used.

糖類100質量部に対してリンおよび窒素のうちのいずれか一方または双方を含有する化合物をリン基準で0.5〜3.0質量部および窒素基準で2.0〜6.0質量部の条件を満たす量配合することが好ましい。ここで、質量部は、乾燥質量の値である。リンおよび窒素の配合条件は、リンおよび窒素の含有量既知の化合物を糖類に所定量配合することで、上記条件を満たすことができる。また、糖類に化合物を配合した配合物について、例えば窒素についてはCHNコーダにより測定する等の適宜の分析方法により、配合条件を確認することができる。
リンおよび窒素のうちのいずれか一方または双方を含有する化合物の配合量が、糖類100質量部に対して、リン基準で0.5質量部あるいは窒素基準で2.0質量部を下回ると、本発明の効果が十分に得られないおそれがあり、一方リン基準で3.0質量部あるいは窒素基準で6.0質量部を上回っても配合量の増加に見合った本発明の効果が得られないおそれがある。
Conditions containing 0.5-3.0 parts by mass on the basis of phosphorus and 2.0-6.0 parts by mass on the basis of nitrogen for a compound containing either one or both of phosphorus and nitrogen with respect to 100 parts by mass of the saccharide It is preferable to blend in an amount satisfying the above. Here, a mass part is a value of dry mass. The compounding conditions of phosphorus and nitrogen can satisfy the above conditions by blending a predetermined amount of a compound with known contents of phosphorus and nitrogen into a saccharide. Moreover, about the compound which mix | blended the compound with saccharides, for example, about nitrogen, compounding conditions can be confirmed by appropriate analysis methods, such as measuring with a CHN coder.
When the compounding amount of the compound containing either one or both of phosphorus and nitrogen is less than 0.5 parts by mass on the basis of phosphorus or 2.0 parts by mass on the basis of nitrogen with respect to 100 parts by mass of the saccharide, There is a possibility that the effect of the invention may not be sufficiently obtained. On the other hand, even if it exceeds 3.0 parts by mass on the basis of phosphorus or 6.0 parts by mass on the basis of nitrogen, the effect of the present invention corresponding to the increase in the blending amount cannot be obtained. There is a fear.

本実施の形態に係る電気二重層キャパシタ分極性電極用炭素材料の製造方法は、上記糖類を主成分とする炭素前駆体と上記リンおよび窒素のうちのいずれか一方または双方を含有する化合物の配合物を、不活性雰囲気下で500〜1,000℃の温度で加熱して炭化することが好ましい。
不活性雰囲気は、炭化処理設備に内部にアルゴンや窒素等の不活性ガスを流通することにより実現することができる。
加熱温度が500℃を下回ると、炭化が十分に進行せず本発明の効果が十分に得られないおそれがある。加熱温度の上限は特にないが、1,000℃を大きく超える温度で加熱すると例えばエネルギーロスを無視できない等の問題を生じるおそれがある。
本実施の形態に係る電気二重層キャパシタ分極性電極用炭素材料の製造方法において、加熱して得られる炭化物を周知の適宜の方法で賦活してもよい。
得られる炭化物(炭素材料)は、例えば用いる炭素前駆体の寸法が大きい場合等、必要に応じて、例えば数μm程度のサイズに粉砕、分級してもよい。
得られる炭化物(炭素材料)は、分極性電極の正極および負極のいずれに用いてもよいが、正極に用いることがより好ましい。
The method for producing a carbon material for an electric double layer capacitor polarizable electrode according to the present embodiment includes a carbon precursor containing saccharide as a main component and a compound containing one or both of phosphorus and nitrogen. It is preferable to heat and carbonize the product at a temperature of 500 to 1,000 ° C. in an inert atmosphere.
The inert atmosphere can be realized by circulating an inert gas such as argon or nitrogen through the carbonization equipment.
If the heating temperature is lower than 500 ° C., carbonization does not proceed sufficiently and the effects of the present invention may not be sufficiently obtained. The upper limit of the heating temperature is not particularly limited, but heating at a temperature greatly exceeding 1,000 ° C. may cause a problem that energy loss cannot be ignored, for example.
In the method for manufacturing the carbon material for an electric double layer capacitor polarizable electrode according to the present embodiment, the carbide obtained by heating may be activated by a known appropriate method.
The obtained carbide (carbon material) may be pulverized and classified to a size of, for example, about several μm as necessary, for example, when the carbon precursor used has a large size.
The obtained carbide (carbon material) may be used for either the positive electrode or the negative electrode of the polarizable electrode, but is more preferably used for the positive electrode.

本実施の形態に係る電気二重層キャパシタ分極性電極用炭素材料の製造方法によって得られる炭化物(炭素材料)を用いて調製する分極性電極は、上記の炭化物とともに、結合剤(結着剤)や導電性助剤を含むことが好ましい。
結合剤は、特に限定するものではなく、電極製法の種類にもよるが、例えば、PTFE(ポリテトラフルオロエチレン)、PVA(ポリビニルアルコール)等を用いることができる。
導電性助剤は、特に限定するものではなく、例えばアセチレンブラック、黒鉛等を用いることができる。ただし、本実施の形態に係る電気二重層キャパシタ分極性電極用炭素材料の製造方法によって得られる炭化物(炭素材料)は導電性助剤を含まなくとも十分大きな導電性を示す。
分極性電極は、例えばシート状あるいは板状の成形体に形成する。
A polarizable electrode prepared using a carbide (carbon material) obtained by the method for producing a carbon material for an electric double layer capacitor polarizable electrode according to the present embodiment includes a binder (binder), It is preferable that a conductive auxiliary agent is included.
The binder is not particularly limited, and for example, PTFE (polytetrafluoroethylene), PVA (polyvinyl alcohol), or the like can be used although it depends on the type of electrode manufacturing method.
The conductive auxiliary agent is not particularly limited, and for example, acetylene black, graphite or the like can be used. However, the carbide (carbon material) obtained by the method for manufacturing the carbon material for electric double layer capacitor polarizable electrode according to the present embodiment exhibits sufficiently large conductivity even if it does not contain a conductive auxiliary.
For example, the polarizable electrode is formed in a sheet-like or plate-like molded body.

上記の分極性電極を用いる電気二重層キャパシタは、集電体を備える場合、集電体として、ステンレス、アルミニウム等の箔を用いることができる。
電気二重層キャパシタは、電解液として、水系電解液および非水系電解液のいずれを用いてもよい。このうち、水系電解液を用いることは好適な実施の形態である。
電気二重層キャパシタのセパレータとして、ポリエチレン多孔質膜、ガラス繊維不織布等を用いることができる。
When the electric double layer capacitor using the above polarizable electrode includes a current collector, a foil such as stainless steel or aluminum can be used as the current collector.
The electric double layer capacitor may use either an aqueous electrolyte or a non-aqueous electrolyte as the electrolyte. Of these, the use of an aqueous electrolyte is a preferred embodiment.
As the separator of the electric double layer capacitor, a polyethylene porous film, a glass fiber nonwoven fabric or the like can be used.

以上説明した本実施の形態に係る電気二重層キャパシタ分極性電極用炭素材料の製造方法により得られる炭素材料(炭化物)を分極性電極に用いる電気二重層キャパシタは、高い静電容量を得ることができる。   An electric double layer capacitor using a carbon material (carbide) obtained by the method for manufacturing a carbon material for an electric double layer capacitor polarizable electrode according to the present embodiment described above as a polarizable electrode can obtain a high capacitance. it can.

以下、本発明の実施例について説明する。本発明は、以下の実施例に限定されるものではない。   Examples of the present invention will be described below. The present invention is not limited to the following examples.

<炭素材料の調製>
(炭素材料調製例1)
球状セルロース(大東化成工業株式会社製 CELLULOBEADS D-100直径(粒度分布における中位径 100μm以下)にリンおよび窒素を含有する化合物(東京化成工業株式会社製 製品名リン酸グアニジン 主成分:リン酸グアニジン95.0容量% リン含有量14.33質量% 窒素有量6.48質量%)を球状セルロースに対して体積比で球状セルロース:リンおよび窒素を含有する化合物=1 :
0.75の割合で加え、室温で18時間攪拌処理をした。その後、濾過し、濾物を60℃の乾燥機で72時間乾燥させた。
得られた乾燥濾物を管状炉で窒素雰囲気下(流量 50ml/min)、800℃、1時間の条件で加熱処理を行い炭素材料粉末を得た。
(炭素材料調製例2)
球状セルロースにリンおよび窒素を含有する化合物を加えなかった点以外は炭素材料調製例1と同様の方法で調製して炭素材料粉末を得た。
(炭素材料調製例3)
球状セルロースに代えてでんぷんを用いた点以外は炭素材料調製例1と同様の方法で調製して炭素材料粉末を得た。でんぷんは市販のもの(和光純薬工業株式会社製 製品名でんぷん 水溶性 粉体)を用いた。なお、乾燥濾物についてCHNコーダで測定した結果、でんぷん100質量部に対して窒素基準で3.9質量部の配合比率であった。この測定値は、でんぷんと窒素含量既知の化合物の配合条件から算出した計算値と一致した。また、でんぷんとリン含量既知の化合物の配合条件から算出したリンの配合量(計算値)は、でんぷん100質量部に対してリン基準で1.4質量部であった。
(炭素材料調製例4)
でんぷんにリンおよび窒素を含有する化合物を加えなかった点以外は炭素材料調製例3と同様の方法で調製して炭素材料粉末を得た。
(炭素材料調製例5)
球状セルロースに代えて活性炭を用い、かつリン・窒素系難燃剤を加えなかった点以外は炭素材料調製例1と同様の方法で調製して炭素材料粉末を得た。活性炭は市販のもの(和光純薬工業株式会社製 粉体)を用いた。
<Preparation of carbon material>
(Carbon material preparation example 1)
Spherical cellulose (CELLULOBEADS D-100 manufactured by Daito Kasei Kogyo Co., Ltd.) Compound containing phosphorus and nitrogen in the diameter (median diameter of 100 μm or less in particle size distribution) (Product name: Guanidine Phosphate, manufactured by Tokyo Chemical Industry Co., Ltd. 95.0% by volume Phosphorus content 14.33% by mass Nitrogen content 6.48% by mass) Spherical cellulose in a volume ratio to spherical cellulose: Phosphorus and nitrogen containing compound = 1:
The mixture was added at a ratio of 0.75 and stirred at room temperature for 18 hours. Thereafter, the mixture was filtered and the residue was dried with a dryer at 60 ° C. for 72 hours.
The obtained dried residue was heat-treated in a tubular furnace under a nitrogen atmosphere (flow rate 50 ml / min) at 800 ° C. for 1 hour to obtain a carbon material powder.
(Carbon material preparation example 2)
A carbon material powder was obtained by the same method as in the carbon material preparation example 1 except that phosphorus and nitrogen-containing compounds were not added to the spherical cellulose.
(Carbon material preparation example 3)
A carbon material powder was obtained by preparing in the same manner as in Carbon Material Preparation Example 1 except that starch was used instead of spherical cellulose. A commercially available starch (product name: starch, water-soluble powder, manufactured by Wako Pure Chemical Industries, Ltd.) was used. In addition, as a result of measuring with CHN coder about the dried residue, it was a compounding ratio of 3.9 mass parts on the basis of nitrogen with respect to 100 mass parts of starch. This measured value coincided with the calculated value calculated from the blending conditions of the starch and the compound having a known nitrogen content. Moreover, the compounding quantity (calculated value) of phosphorus calculated from the compounding conditions of the starch and the compound having a known phosphorus content was 1.4 parts by mass on the basis of phosphorus with respect to 100 parts by mass of starch.
(Carbon Material Preparation Example 4)
A carbon material powder was obtained by the same method as in Carbon Material Preparation Example 3 except that the compound containing phosphorus and nitrogen was not added to the starch.
(Carbon Material Preparation Example 5)
Carbon material powder was obtained in the same manner as in Carbon Material Preparation Example 1 except that activated carbon was used instead of spherical cellulose and no phosphorus / nitrogen flame retardant was added. The activated carbon used was a commercially available product (powder manufactured by Wako Pure Chemical Industries, Ltd.).

<炭素材料粉末の評価>
(TG−DTA測定)
炭素材料調製例1、2の炭素材料粉末の熱重量-示差熱分析(Thermogravimetric- Differential thermal analysis:TG-DTA)結果を図1に示す。
セルロース(炭素材料調製例2)は、250℃~400℃の温度領域で、脱CO,脱CO2の分解が起こった。この分解は発熱を伴い、この温度領域で質量が減少した。リン酸グアニジンを加えたセルロース(炭素材料調製例1)は、セルロース(炭素材料調製例2)に比べ、この温度領域での発熱ピークが低温側に推移し、また、この温度領域での質量減少が軽減した。
<Evaluation of carbon material powder>
(TG-DTA measurement)
FIG. 1 shows the results of thermogravimetric-differential thermal analysis (TG-DTA) of the carbon material powders of the carbon material preparation examples 1 and 2.
In the cellulose (carbon material preparation example 2), the decomposition of de-CO and de-CO 2 occurred in the temperature range of 250 ° C to 400 ° C. This decomposition was exothermic and the mass decreased in this temperature range. Cellulose (carbon material preparation example 1) to which guanidine phosphate has been added has an exothermic peak in this temperature range on the low temperature side compared to cellulose (carbon material preparation example 2), and the mass decrease in this temperature range Reduced.

(SEM像観察)
炭素材料調製例1、2の炭素材料粉末およびその原料、炭素材料調製例4の原料を走査型電子顕微鏡(SEM)で観察したものを図2(A)〜図2(D)に示す。
セルロース(炭素材料調製例2)は、脱CO ,脱CO2により孔ができ、表面に凹凸ができている。一方、リン酸グアニジンを加えたセルロース(炭素材料調製例1)は、表面に凹凸がなく、脱CO ,脱CO2が抑制されていることがわかる。
(SEM image observation)
2A to 2D show the carbon material powders of the carbon material preparation examples 1 and 2 and the raw materials thereof, and the raw materials of the carbon material preparation example 4 observed with a scanning electron microscope (SEM).
Cellulose (carbon material preparation example 2) has pores formed by CO 2 removal and CO 2 removal, and has irregularities on the surface. On the other hand, cellulose (carbon material preparation example 1) to which guanidine phosphate has been added has no irregularities on the surface, and it can be seen that CO 2 removal and CO 2 removal are suppressed.

(BET比表面積および電気抵抗率測定)
炭素材料調製例1〜5の炭素材料粉末のBET比表面積および電気抵抗率を測定した結果を表1に示す。
糖を炭素前駆体とする炭素材料粉末(炭素材料調製例1〜4)のBET比表面積および電気抵抗率は、いずれも市販の活性炭(炭素材料調製例5)の電気抵抗率に比べ小さい。
(BET specific surface area and electrical resistivity measurement)
Table 1 shows the results of measuring the BET specific surface area and electrical resistivity of the carbon material powders of Carbon Material Preparation Examples 1 to 5.
The BET specific surface area and electrical resistivity of the carbon material powder (carbon material preparation examples 1 to 4) containing sugar as a carbon precursor are both smaller than the electrical resistivity of commercially available activated carbon (carbon material preparation example 5).

<分極性電極の調製>
(分極性電極調製実施例1〜4、比較例)
炭素材料調製例1−4、および炭素材料調製例5でそれぞれ得られた炭素材料粉末に、導電材としてアセチレンブラック(AB)、結着剤としてポリテトラフルオロエチレン(PTFE)を、質量比で炭素材料粉末:AB:PTFE =8:1:1となるように加え、厚さ0.5mmのシート状に成型して分極性電極(分極性電極調製実施例1、2、分極性電極調製参考例1、2、比較例)を得た。
<Preparation of polarizable electrode>
(Polarizable electrode preparation examples 1 to 4, comparative example)
Carbon material powders obtained in Carbon Material Preparation Examples 1-4 and Carbon Material Preparation Example 5 were respectively mixed with acetylene black (AB) as a conductive material, polytetrafluoroethylene (PTFE) as a binder, and carbon by mass ratio. In addition to material powder: AB: PTFE = 8: 1: 1, it is molded into a sheet of 0.5 mm thickness to form a polarizable electrode (polarizable electrode preparation examples 1 and 2, polarizable electrode preparation reference example 1) 2, Comparative Example) was obtained.

<電気二重層キャパシタの調製>
上記分極性電極の調製により得られた分極性電極(分極性電極調製実施例1、2、分極性電極調製参考例1、2、比較例)を正電極材料に用い、集電極にPt板、対電極(負極)にPt板、および電解液にArで10分間バブリングして溶存酸素を飛ばした1M H2SO4を用い、電気二重層キャパシタを調製した。電気二重層キャパシタは、テフロン製のセルを用い、集電極の上に分極性電極のシートを置き、それをガラス繊維ろ紙で挟み、その上から穴を開けたテフロン(商標名)の板を置いて固定したものである。
<Preparation of electric double layer capacitor>
Using the polarizable electrode obtained by preparing the polarizable electrode (polarizable electrode preparation examples 1 and 2, polarizable electrode preparation reference examples 1 and 2 and comparative example) as a positive electrode material, An electric double layer capacitor was prepared using a Pt plate as a counter electrode (negative electrode) and 1M H 2 SO 4 in which dissolved oxygen was blown off by bubbling with Ar for 10 minutes in an electrolytic solution. An electric double layer capacitor uses a cell made of Teflon, puts a sheet of polarizable electrode on the collector electrode, sandwiches it with glass fiber filter paper, and places a plate of Teflon (trade name) with a hole in it. It is fixed.

<電気二重層キャパシタの性能評価>
分極性電極調製実施例1、2、分極性電極調製参考例1、2、比較例で得られた分極性電極(分極性電極調製実施例1、2、分極性電極調製参考例1、2、比較例)を正電極材料に用いた電気二重層キャパシタについて、参照電極にAg/AgCl電極(+0.199 V (vs. NHE))を用いた3電極法により以下の性能評価を行った。
<Performance evaluation of electric double layer capacitor>
Polarized electrode preparation examples 1 and 2, polarizable electrode preparation reference examples 1 and 2, polarizable electrodes obtained in comparative examples (polarizable electrode preparation examples 1 and 2, polarizable electrode preparation reference examples 1 and 2, For the electric double layer capacitor using the comparative example as a positive electrode material, the following performance evaluation was performed by a three-electrode method using an Ag / AgCl electrode (+0.199 V (vs. NHE)) as a reference electrode.

(充放電測定)
充放電装置(北斗電工株式会社製 型番HJ-201B)を用いて、市販の活性炭(比較例)、セルロース(分極性電極調製参考例1)、セルロース+リン酸グアニジン(図3中、リン酸グアニジンをNで示す。以下、同じ。分極性電極調製実施例1)、デンプン(分極性電極調製参考例2)およびデンプン+リン酸グアニジン(分極性電極調製実施例2)をそれぞれ正極に用いた電気二重層キャパシタについて測定した。充放電電圧を0 〜 0.6 V(vs. Ag/AgCl)の範囲で測定を行い、50 mA/gの定電流で測定を行ったときの5サイクル目の充放電曲線を図3に示す。
(Charge / discharge measurement)
Commercially available activated carbon (comparative example), cellulose (polarized electrode preparation reference example 1), cellulose + guanidine phosphate (in FIG. 3, guanidine phosphate) The same applies hereinafter.Polarizable electrode preparation example 1), starch (polarizable electrode preparation reference example 2) and starch + guanidine phosphate (polarizable electrode preparation example 2) Measurements were made on double layer capacitors. FIG. 3 shows a charge / discharge curve at the fifth cycle when the charge / discharge voltage is measured in the range of 0 to 0.6 V (vs. Ag / AgCl) and measured at a constant current of 50 mA / g.

(静電容量測定)
分極性電極調製実施例1、2、分極性電極調製参考例1、2、比較例で得られた炭素材料粉末を正電極材料に用いた電気二重層キャパシタについて、静電容量測定の結果を表2に示す。
充放電測定の結果から、電圧Vを時間tで積分し、定電流50 mAg-1を掛けることでエネルギーUを求め、さらに、コンデンサのエネルギーU [J]と静電容量C[F g-1]と電圧V [V]の関係、U[J]=1/2C[F/G]V[V]の関係から、静電容量C [F/g]を求めた。
なお、表2には、アセチレンブラック添加無しの結果を併せて示した。
市販の活性炭の静電容量は、アセチレンブラック無しでは、アセチレンブラック有りのときの静電容量に比べて激減した。これに対し、セルロース及びデンプンから得られた炭素粉末は全て、アセチレンブラック無しでも、静電容量の値が激減せず、逆に増大した。これは、多糖類から得られた炭素粉末はアセチレンブラック無しでも電気抵抗率が小さく、静電容量に寄与しないアセチレンブラックが無くなることで、電極シート中の炭素の割合が80質量%から90質量%まで増大したことにより、静電容量の値も増大したものと考えられる。
(Capacitance measurement)
Table 1 shows the results of capacitance measurement for electric double layer capacitors using carbon material powders obtained in Polarized Electrode Preparation Examples 1 and 2, Polarizable Electrode Preparation Reference Examples 1 and 2 and Comparative Examples as positive electrode materials. It is shown in 2.
From the result of charge / discharge measurement, the voltage V is integrated over time t and multiplied by a constant current of 50 mAg-1 to obtain the energy U. Furthermore, the energy U [J] of the capacitor and the capacitance C [F g-1 ] And voltage V [V], U [J] = 1 / 2C [F / G] V 2 [V 2 ], capacitance C [F / g] was obtained.
Table 2 also shows the results without addition of acetylene black.
The capacitance of commercially available activated carbon was drastically reduced without acetylene black compared to the capacitance with acetylene black. In contrast, all the carbon powders obtained from cellulose and starch did not drastically decrease the capacitance value even without acetylene black, but increased. This is because the carbon powder obtained from the polysaccharide has a low electrical resistivity even without acetylene black, and acetylene black that does not contribute to electrostatic capacity is eliminated, so that the ratio of carbon in the electrode sheet is 80 mass% to 90 mass%. It is considered that the capacitance value has also increased due to the increase in the value.

(CV測定)
サイクリックボルタンメトリー(CV 北斗電工株式会社製 ファンクションジェネレーターおよびポテンショスタット 型番HB-305およびHAL3001)を用い、分極性電極調製実施例1、2、分極性電極調製参考例1、2、比較例で得られた炭素材料粉末を正電極材料に用いた電気二重層キャパシタについて、CV測定した結果を図4に示す。なお、図4中、ACは活性炭を、Celluloseはセルロースを、+Nはリン酸グアニジン添加を、Starchはデンプンを、それぞれ示す。
リン酸グアニジンを加えたものは、加えていないものに比べ、静電容量が増大している。
(CV measurement)
Using cyclic voltammetry (function generator and potentiostat model numbers HB-305 and HAL3001 manufactured by CV Hokuto Denko Co., Ltd.), polarizable electrode preparation examples 1 and 2, polarizable electrode preparation reference examples 1 and 2, and comparative examples FIG. 4 shows the result of CV measurement of the electric double layer capacitor using the carbon material powder used as the positive electrode material. In FIG. 4, AC indicates activated carbon, Cellulose indicates cellulose, + N indicates addition of guanidine phosphate, and Starch indicates starch.
What added the guanidine phosphate has an increased capacitance compared to the case where guanidine phosphate was not added.

Claims (1)

糖類を主成分とする炭素前駆体にリン酸グアニジンを配合し、炭化することを特徴とする電気二重層キャパシタ分極性電極用炭素材料の製造方法。 A method for producing a carbon material for an electric double layer capacitor polarizable electrode, wherein guanidine phosphate is blended with a carbon precursor containing saccharide as a main component and carbonized.
JP2010112721A 2010-05-16 2010-05-16 Method for producing carbon material for electric double layer capacitor polarizable electrode Active JP5652636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112721A JP5652636B2 (en) 2010-05-16 2010-05-16 Method for producing carbon material for electric double layer capacitor polarizable electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112721A JP5652636B2 (en) 2010-05-16 2010-05-16 Method for producing carbon material for electric double layer capacitor polarizable electrode

Publications (2)

Publication Number Publication Date
JP2011243667A JP2011243667A (en) 2011-12-01
JP5652636B2 true JP5652636B2 (en) 2015-01-14

Family

ID=45410053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112721A Active JP5652636B2 (en) 2010-05-16 2010-05-16 Method for producing carbon material for electric double layer capacitor polarizable electrode

Country Status (1)

Country Link
JP (1) JP5652636B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288663B2 (en) * 2013-07-04 2018-03-07 国立大学法人九州工業大学 Method for producing porous carbon material
CN114380289A (en) * 2021-12-13 2022-04-22 北方奥钛纳米技术有限公司 Preparation method and application of carbonized particle material and activated carbon electrode material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173459A (en) * 1985-01-28 1986-08-05 Kuraray Chem Kk Organic electrolyte battery
JP2748764B2 (en) * 1992-02-25 1998-05-13 富士電気化学株式会社 Electrode manufacturing method
JP3709267B2 (en) * 1997-02-26 2005-10-26 エア・ウォーター株式会社 Mesopore carbon and method for producing the same
JP2001040548A (en) * 1999-07-22 2001-02-13 Showa Denko Kk Active carbon fiber, active carbon fiber cloth and its production
TWI346406B (en) * 2006-02-16 2011-08-01 Lg Chemical Ltd Lithium secondary battery with enhanced heat-resistance

Also Published As

Publication number Publication date
JP2011243667A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
Wu et al. Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors
Cheng et al. Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches
Fuertes et al. One-pot synthesis of microporous carbons highly enriched in nitrogen and their electrochemical performance
Abouelamaiem et al. Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials
He et al. Engineering biorefinery residues from loblolly pine for supercapacitor applications
TWI620214B (en) Electrode, electric double-layer capacitor using the same, and manufacturing method of electrode
Zeiger et al. Quinone‐Decorated Onion‐Like Carbon/Carbon Fiber Hybrid Electrodes for High‐Rate Supercapacitor Applications
US8059389B2 (en) Composite containing carbonized biopolymers and carbon nanotubes and method of making the composite
Liu et al. Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors
Hu et al. Nanocomposite of Fe2O3@ C@ MnO2 as an efficient cathode catalyst for rechargeable lithium− oxygen batteries
KR20090057408A (en) Carbon nanotube nanocomposites, methods of making carbon nanotube nanocomposites, and devices comprising the nanocomposites
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
Su et al. RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor
Wang et al. Ultrafast high energy supercapacitors based on pillared graphene nanostructures
Sun et al. High‐performance activated carbons for electrochemical double layer capacitors: Effects of morphology and porous structures
JP5242090B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
KR20190131615A (en) Nonaqueous lithium storage element
EP3025360A1 (en) Electrodes of electrochemical double layer capacitor containing co2 activated coconut char
Shruthi et al. Functionalization of graphene with nitrogen using ethylenediaminetetraacetic acid and their electrochemical energy storage properties
JP2006004978A (en) Electrical double-layer capacitor
JP5652636B2 (en) Method for producing carbon material for electric double layer capacitor polarizable electrode
Quintero et al. Important factors for effective use of carbon nanotube matrices in electrochemical capacitor hybrid electrodes without binding additives
JP6914015B2 (en) Non-aqueous alkali metal type power storage element
Tang et al. Tailored properties of carbon for supercapacitors by blending lignin and cellulose to mimic biomass as carbonaceous precursor
JP5846575B2 (en) Manufacturing method of electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140503

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5652636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250