JP2001040548A - Active carbon fiber, active carbon fiber cloth and its production - Google Patents

Active carbon fiber, active carbon fiber cloth and its production

Info

Publication number
JP2001040548A
JP2001040548A JP11207045A JP20704599A JP2001040548A JP 2001040548 A JP2001040548 A JP 2001040548A JP 11207045 A JP11207045 A JP 11207045A JP 20704599 A JP20704599 A JP 20704599A JP 2001040548 A JP2001040548 A JP 2001040548A
Authority
JP
Japan
Prior art keywords
carbon fiber
activated carbon
cloth
weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11207045A
Other languages
Japanese (ja)
Inventor
Shigeru Murakami
繁 村上
Tsutomu Masuko
努 増子
Yoichi Nanba
洋一 南波
Kazunori Maeta
一則 前多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11207045A priority Critical patent/JP2001040548A/en
Publication of JP2001040548A publication Critical patent/JP2001040548A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To produce an active carbon fiber and an active carbon fiber cloth good in volume resistivity, density and specific surface area suitable for an electric double layer capacitor according to a simple process at a low cost. SOLUTION: The active carbon fiber or active carbon fiber cloth is produced by baking a cellulosic fiber or its woven cloth together with calcium carbonate containing magnesium carbonate at >=800 deg.C at <=10 deg.C/h heat-up rate for >=1 weeks. Otherwise, the active carbon fiber or active carbon fiber cloth is produced by dipping the cellulosic fiber or its woven cloth in an aqueous solution of a phosphoric salt or an aqueous boric acid and baking the dipped cellulosic fiber or woven cloth according to the same method or dipping the cellulosic fiber woven cloth in water or the same aqueous solution, hot pressing the dipped cellulosic fiber or woven fabric and then baking the hot pressed cellulosic fiber woven cloth by the same method. According to the method, the active carbon fiber cloth having >=0.2 g/cm3 density, <=0.2 Ωcm volume resistivity and >=900 m2/g specific surface area is produced and a sufficient capacity usable as a carbon sheet for an electric double layer capacitor is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気伝導性、ガス
透過性、強度、生産性等に優れ、比表面積が大きい活性
炭素繊維、活性炭素繊維布及びその製造法に関するもの
であり、特に電気二重層コンデンサ、リチウムイオン二
次電池、亜鉛空気電池、溶剤回収用、等々に有用なる活
性炭素繊維、活性炭素繊維布及びその製造法に関する。
また、それを使用した電池用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activated carbon fiber having a large specific surface area, an activated carbon fiber cloth, and a method for producing the same, which are excellent in electric conductivity, gas permeability, strength, productivity and the like. The present invention relates to an activated carbon fiber, an activated carbon fiber cloth, and a method for producing the same, which are useful for a double-layer capacitor, a lithium ion secondary battery, a zinc-air battery, a solvent recovery and the like.
Further, the present invention relates to a battery electrode using the same.

【0002】[0002]

【従来の技術】活性炭素繊維は、粒状活性炭と比較し、
外表面積が大きく、細孔が表面に存在するために吸着性
能が優れ、繊維状のため紙状、織布状等多様な形態に加
工できることとも合わせ、多くの商品に使用されてい
る。近年、特にその電気伝導性と加工のしやすさから、
電気二重層コンデンサの電極シート、亜鉛空気電池用負
極、等の電子機器用材料、あるいは吸着性から溶剤回収
用等の様々な分野で活用されている。
2. Description of the Related Art Activated carbon fiber is compared with granular activated carbon,
It is used for many products in addition to its large external surface area and excellent adsorption performance due to the presence of pores on its surface, and its ability to be processed into various forms such as paper and woven fabric due to its fibrous form. In recent years, especially due to its electrical conductivity and ease of processing,
It is used in various fields such as materials for electronic devices such as electrode sheets for electric double layer capacitors and negative electrodes for zinc-air batteries, or for solvent recovery due to its adsorptivity.

【0003】活性炭素繊維は、各社により様々な原料、
製法にて製造されており、セルロース系の活性炭素繊維
として東洋紡績から商品名「K−フィルター」、ポリア
クリロニトリル(PAN)系として東邦レーヨンから商
品名「ファインガード」、フェノール・ノボラック系と
してクラレケミカルより商品名「クラクティブ」、ピッ
チ系として大阪ガスより商品名「リノベス」等の各商品
が市販されている。しかしながら、これらの炭素繊維か
らなるシートについてみると、シートとして使用するた
めに、抄紙したり樹脂等のバインダーで成形したりする
必要がある。この場合、活性炭素繊維以外のバインダー
を混ぜたものは、バインダーの含有分だけ吸着等の性能
が低下する。また、活性炭素繊維のみからなるシートに
ついてみると、セルロース系の活性炭素繊維を用いると
強度が低く、ポリアクリルニトリル系、フェノール・ノ
ボラック系活性炭素繊維を用いたものは強度は強いもの
の、体積固有抵抗が高いという欠点がある。電極材とし
て大電流を流すために重要な体積固有抵抗を下げるため
には、焼成温度を上げざるをえず、そうすると活性炭機
能が低下してしまうというじれんまがある。また、シー
トとしての体積固有抵抗を下げるため、電気伝導度の良
い黒鉛粉を混ぜる等の考案も数多く出されているが、混
合したもののシート化の段階で、先に述べたようなバイ
ンダーあるいは黒鉛粉の含有分だけ活性炭含有量が減る
為、シートとしての活性炭機能が低下するので問題であ
る。
[0003] Activated carbon fibers are produced by various companies,
Manufactured by the manufacturing method, "K-FILTER" (trade name) from TOYOBO as cellulose-based activated carbon fiber, "FINE GARD" (trade name) from Toho Rayon as polyacrylonitrile (PAN), and Kuraray Chemical as phenol novolak Each product is marketed under the trade name "Cractive" and as a pitch system from Osaka Gas under the trade name "Renoves". However, regarding sheets made of these carbon fibers, in order to use them as sheets, it is necessary to make paper or mold them with a binder such as a resin. In this case, in the case where a binder other than activated carbon fiber is mixed, the performance such as adsorption is reduced by the content of the binder. In the case of sheets made of activated carbon fibers only, the strength is low when cellulose-based activated carbon fibers are used, and the strength is strong when using polyacrylonitrile-based or phenol-novolak-based activated carbon fibers, but the volume-specific There is a disadvantage that the resistance is high. In order to lower the volume resistivity, which is important for allowing a large current to flow as an electrode material, the firing temperature must be increased, and as a result, the activated carbon function is reduced. In order to reduce the volume specific resistance of the sheet, there have been many proposals such as mixing graphite powder having good electrical conductivity.However, at the stage of forming the sheet into a sheet, the binder or graphite described above is used. Since the activated carbon content is reduced by the content of the powder, the activated carbon function as a sheet is reduced, which is a problem.

【0004】近年、電気二重層コンデンサの電極関連、
特に大容量用の電極として高密度、体積固有抵抗の低
い、比表面積の大きいことと同時に、安価な活性炭シー
トが求められている。このためには、原料として混抄、
シート化工程等が必要なく、安価に容易に使用できる原
料であること、その後の活性炭化工程が簡単なこと等か
ら、原料として、あらかじめ織られた織布、その中でも
容易に入手できるセルロース繊維織布を使用することが
考えられる。
In recent years, electrodes related to electric double layer capacitors,
In particular, there is a demand for an inexpensive activated carbon sheet having high density, low volume resistivity, and large specific surface area as a large capacity electrode. For this purpose, mixed raw materials,
Because it is a raw material that does not require a sheeting step and can be used easily at low cost, and the subsequent activated carbonization step is simple, as a raw material, a woven fabric that has been woven in advance, among which cellulose fiber woven that can be easily obtained, It is conceivable to use a cloth.

【0005】電気二重層コンデンサへの炭素繊維シート
としてセルロース系活性炭素繊維に注目したものに関し
ては、例えば特開昭58−206116では、渦巻き状
に巻かれた電気二重層キャパシターの電極として使用す
る例が開示されており、その原料としてセルローズ系繊
維からなる不織布または織布を炭化後、賦活活性化させ
た炭素繊維シートを使用する旨が開示されている。しか
し、例示されているシートの嵩密度、比表面積等は、現
在の大容量化にあっては、かなり小さなものである。ま
た、セルロース繊維織布を従来技術でそのまま炭化後、
水蒸気等の賦活を試みると、布の収縮による亀裂、しわ
が発生し、大面積のものを得ることが困難であった。
[0005] As for a carbon fiber sheet for an electric double layer capacitor, which focuses on cellulosic activated carbon fibers, for example, Japanese Patent Application Laid-Open No. 58-206116 discloses an example in which a spirally wound electric double layer capacitor is used as an electrode. It discloses that a carbon fiber sheet obtained by carbonizing a non-woven fabric or woven fabric made of a cellulose-based fiber and then activating the raw material is used as the raw material. However, the bulk density, specific surface area, and the like of the exemplified sheet are considerably small in the current large capacity. Also, after carbonizing cellulose fiber woven fabric as it is in the prior art,
If activation of water vapor or the like is attempted, cracks and wrinkles are generated due to shrinkage of the cloth, and it is difficult to obtain a large-area one.

【0006】賦活の方法については、現状、水蒸気、炭
酸ガス等のガスによる賦活方法が一般的に用いられてい
る。しかし、この方法では、大量の炭素繊維布を処理す
るためには、賦活のために炉内で高温下、上記ガスと接
触反応させることが必要であり、反応炉のような大掛か
りな設備が必要となる。
At present, an activation method using a gas such as water vapor or carbon dioxide gas is generally used. However, in this method, in order to treat a large amount of carbon fiber cloth, it is necessary to contact and react with the above gas at a high temperature in a furnace for activation, and large-scale equipment such as a reaction furnace is required. Becomes

【0007】[0007]

【発明が解決しようとする課題】セルロース繊維織布
は、市販に大量に出回っており容易に購入できる。更
に、これを出発原料として利用し、炭化、更には賦活す
ることにより上記電極に適する活性炭素繊維布が得られ
れば、出発原料を新たに加工作成することなく、そのま
ま原料形状を残した活性炭素繊維布が、大量に安価な活
性炭シートとして使用できる。しかし、先に述べたよう
に、セルロース系繊維織布を出発原料とした活性炭シー
ト用に適した特性を有する活性炭素繊維布を安価に、簡
単な工程、にて製造することは、現状技術では困難であ
った。
SUMMARY OF THE INVENTION Cellulose fiber woven fabrics are commercially available in large quantities and can be easily purchased. Furthermore, if this is used as a starting material and carbonized and further activated to obtain an activated carbon fiber cloth suitable for the above-mentioned electrode, the activated carbon having the raw material shape as it is without processing the starting material newly Fiber cloth can be used in large quantities as an inexpensive activated carbon sheet. However, as described above, it is difficult to manufacture an activated carbon fiber cloth having characteristics suitable for an activated carbon sheet starting from a cellulosic fiber woven fabric at low cost and in a simple process. It was difficult.

【0008】活性炭素繊維布の性能としては、一般にセ
ル内に詰め込まれる活性炭の量が多いほど、コンデンサ
としての性能はアップするため、シート状電極として使
用する場合は、シートの見掛密度は、電解液の注入に支
障の無い限り、大きいほど容量が上がり好ましい。コン
デンサとしては、比表面積が大きいほど良いことは勿論
である。更に、シート状電極としては、捲回して締め上
げられて使用されるため、強度、柔軟性とともに更なる
体積固有抵抗の低減が求められている。
In general, the performance of an activated carbon fiber cloth is such that the larger the amount of activated carbon packed in a cell, the higher the performance as a capacitor. Therefore, when used as a sheet electrode, the apparent density of the sheet is as follows: As long as the injection of the electrolyte is not hindered, the larger the capacity, the better the capacity. Of course, the larger the specific surface area, the better the capacitor. Further, since the sheet-shaped electrode is used after being wound up and tightened, further reduction in volume resistivity as well as strength and flexibility is required.

【0009】これらの各種特性を確保した活性炭素繊維
布について、セルロース質繊維、その織布から製造する
ことは、新たなる発想の飛躍が必要であった。
The production of cellulosic fibers and their woven fabrics from activated carbon fiber cloths having these various properties required a new leaps and bounds.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記状況
に鑑み鋭意検討した結果、セルロール質繊維又はセルロ
ース質炭素繊維織布を、炭酸マグネシウムを5重量%以
上含んだ炭酸カルシウムとともに昇温速度10℃/hr
以下で1週間以上の時間をかけて800℃以上に焼成す
ることを特徴とする活性炭素繊維の製造法。水分を1重
量%以上含んだセルロース質繊維織布を、圧力100g
/cm2以上、温度100℃以上で加熱プレス後、該織
布を炭酸マグネシウムを5重量%以上含んだ炭酸カルシ
ウムとともに昇温速度10℃/hr以下で1週間以上の
時間をかけて800℃以上に焼成することを特徴とする
活性炭素繊維布の製造法。セルロース質繊維又はセルロ
ース質繊維織布にリン酸塩水溶液をリン酸塩換算1〜1
0重量%含浸後、該繊維を炭酸マグネシウムを5重量%
以上含んだ炭酸カルシウムとともに昇温速度10℃/h
r以下で1週間以上の時間をかけて800℃以上に焼成
することを特徴とする活性炭素繊維の製造法。セルロー
ス質繊維織布にリン酸塩水溶液をリン酸塩換算1〜10
重量%含浸し、圧力100g/cm2以上、温度100
℃以上で加熱プレス後、該織布を炭酸マグネシウムを5
重量%以上含んだ炭酸カルシウムとともに昇温速度10
℃/hr以下で1週間以上の時間をかけて800℃以上
に焼成することを特徴とする活性炭素繊維布の製造法。
セルロース質繊維又はセルロース質繊維織布にホウ酸水
をホウ酸換算0.05〜5重量%含浸後、該繊維を炭酸
マグネシウムを5重量%以上含んだ炭酸カルシウムとと
もに昇温速度10℃/hr以下で1週間以上の時間をか
けて800℃以上に焼成することを特徴とする活性炭素
繊維の製造法。セルロース質繊維織布にホウ酸水をホウ
酸換算0.05〜5重量%含浸し、圧力100g/cm
2以上、温度100℃以上で加熱プレス後、該織布を炭
酸マグネシウムを5重量%以上含んだ炭酸カルシウムと
ともに昇温速度10℃/hr以下で1週間以上の時間を
かけて800℃以上に焼成することを特徴とする活性炭
素繊維布の製造法。を発明した。また、これらの製法に
より、電気二重層コンデンサ用の電極シート用に適した
セルロース質繊維の織布を炭化、賦活処理して得られる
密度0.2g/cm3以上、体積固有抵抗0.2Ω・c
m以下、比表面積900m2/g以上の活性炭素繊維
布。および上記7)の活性炭素繊維布に樹脂粉末を充填
後、樹脂粉末の溶融する温度にて加熱処理してなる樹脂
含有率が3〜20重量%の活性炭素繊維布。を新たに発
明した。更に9)これらを使用した電池用電極。が好特
性を発揮することを見いだした。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above-mentioned situation, and as a result, have raised the temperature of cellulose fiber or cellulosic carbon fiber woven fabric together with calcium carbonate containing 5% by weight or more of magnesium carbonate. Speed 10 ° C / hr
A method for producing activated carbon fiber, comprising firing at 800 ° C. or higher over a period of one week or longer. 100 g of a cellulosic fiber woven fabric containing 1% by weight or more of water
/ Cm 2 or more, at a temperature of 100 ° C. or higher, and then press the woven fabric together with calcium carbonate containing 5% by weight or more of magnesium carbonate at a temperature rising rate of 10 ° C./hr or less over 800 ° C. for 1 week or more. A method for producing an activated carbon fiber cloth characterized by firing. An aqueous phosphate solution is added to a cellulosic fiber or a cellulosic fiber woven fabric in terms of a phosphate equivalent of 1 to 1.
After impregnation of 0% by weight, the fibers were mixed with 5% by weight of magnesium carbonate.
With the calcium carbonate contained above, the heating rate is 10 ° C / h
A method for producing activated carbon fiber, comprising firing at 800 ° C. or higher over 1 week or longer at r or lower. Phosphate solution is added to cellulosic fiber woven fabric in terms of phosphate 1 to 10
% By weight, pressure 100 g / cm 2 or more, temperature 100
After hot pressing at a temperature of at least
Heating rate 10 with calcium carbonate containing more than 10% by weight
A method for producing an activated carbon fiber cloth, which comprises firing at 800 ° C. or higher at a temperature of not higher than 1 ° C./hr over a period of 1 week or more.
After impregnating a cellulosic fiber or a cellulosic fiber woven fabric with boric acid water in an amount of 0.05 to 5% by weight in terms of boric acid, the fiber is heated at a rate of 10 ° C./hr or less together with calcium carbonate containing 5% by weight or more of magnesium carbonate. Baking at 800 ° C. or higher over 1 week or more. A cellulose fiber woven fabric is impregnated with boric acid water in an amount of 0.05 to 5% by weight in terms of boric acid, and the pressure is 100 g / cm.
After heating and pressing at a temperature of at least 2 and at a temperature of at least 100 ° C, the woven fabric is fired at a temperature-increasing rate of at most 10 ° C / hr and at a temperature of at least 800 ° C over a period of at least one week with calcium carbonate containing at least 5% by weight of magnesium carbonate. A method for producing an activated carbon fiber cloth. Was invented. Further, by these production methods, a density of 0.2 g / cm 3 or more and a volume resistivity of 0.2 Ω · obtained by carbonizing and activating a cellulosic fiber woven fabric suitable for an electrode sheet for an electric double layer capacitor are obtained. c
m and a specific surface area of 900 m 2 / g or more. And an activated carbon fiber cloth having a resin content of 3 to 20% by weight, which is obtained by filling the activated carbon fiber cloth with the resin powder and heating at a temperature at which the resin powder melts. Was newly invented. 9) Battery electrodes using these. Exhibited good characteristics.

【0011】[0011]

【発明の実施の形態】更に詳細に本発明について説明す
る。セルロース質の繊維は、固相炭化する繊維であり、
本発明の製法に適している。本発明は、活性炭素繊維布
及びその上位概念の活性炭素繊維についての発明である
が、実際には、シート状で使用される活性炭素繊維布が
主眼であるので、活性炭素繊維布について主として説明
する。また、その原料としてのセルロース質繊維は、セ
ルロース質繊維織布の上位概念であり、加熱プレス工程
を除けば同様の製法の製造原料となり得る。従って、本
発明の原料は、必ずしもセルロース質繊維織布に限定さ
れるものではない。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail. Cellulosic fibers are fibers that solidify in solid phase,
Suitable for the production method of the present invention. The present invention is an invention on activated carbon fiber cloth and activated carbon fiber of the superordinate concept, but in fact, the main focus is on activated carbon fiber cloth used in a sheet form. I do. In addition, cellulosic fiber as a raw material thereof is a superordinate concept of cellulosic fiber woven fabric, and can be a production raw material of a similar production method except for a heating press step. Therefore, the raw material of the present invention is not necessarily limited to cellulosic fiber woven fabric.

【0012】本発明の製法の第一の発明であるととも
に、以下の製法発明の基本となっている原料、焼成、賦
活方法について説明する。出発原料のセルロース質繊維
は、綿、麻等の天然セルロース繊維でも、ビスコース繊
維でも、ビスコース人絹、アセテート人絹等の人造セル
ロース繊維でもかまわない。セルロース質繊維織布は、
平織り、綾織り、繻子織り等種々の織り方があるが、活
性炭シート用に活性炭素繊維布を得ようとする場合は、
平織り布を用いることが強度的に好ましく、また、面内
の均一性にも優れている。セルロース質の繊維からなる
平織り布は厚さ方向の繊維の配向成分が多く、固相炭化
することで、この配向成分が製品に反映されるため、圧
縮強度も大きい製品が得られる。
The raw material, firing and activation methods which are the first invention of the production method of the present invention and which are the basis of the following production invention will be described. The starting cellulosic fiber may be natural cellulose fiber such as cotton or hemp, viscose fiber, or artificial cellulose fiber such as viscose silk or acetate silk. Cellulosic fiber woven fabric
There are various weaves such as plain weave, twill weave, satin weave, etc.When trying to obtain activated carbon fiber cloth for activated carbon sheet,
It is preferable to use a plain woven fabric in terms of strength, and it is also excellent in in-plane uniformity. A plain woven fabric composed of cellulosic fibers has a large orientation component of the fiber in the thickness direction, and solidified carbonization reflects this orientation component in the product, so that a product having high compressive strength can be obtained.

【0013】次に、本製法の特徴である賦活方法につい
て述べる。本製法第1の発明の賦活の特徴は、炭化のた
めの昇温中において、繊維(繊維織布)と共に炭酸カル
シウム及び炭酸マグネシウムにより発する炭酸ガスを利
用することにあり、また、その昇温速度に特徴がある。
炭酸カルシウムを熱分解すると、約900℃にて熱分解
ガスである炭酸ガスを放出するが、単に炭酸カルシウム
と一緒にセルロース質繊維を焼成するよりは、より低温
で炭酸ガスに晒されたほうが、より多孔質の活性炭素繊
維になることを本発明者等は知見した。
Next, an activation method which is a feature of the present production method will be described. A feature of the activation of the first invention of the present production method is that, during heating for carbonization, carbon dioxide gas generated by calcium carbonate and magnesium carbonate is used together with fibers (fiber woven fabric). There is a feature.
When calcium carbonate is thermally decomposed, carbon dioxide gas, which is a pyrolysis gas, is released at about 900 ° C., but it is better to be exposed to carbon dioxide gas at a lower temperature than simply firing cellulosic fibers together with calcium carbonate. The present inventors have found that a more porous activated carbon fiber is obtained.

【0014】この知見に基づき鋭意検討を重ねた結果、
炭酸カルシウムに炭酸マグネシウムを少量混ぜることに
よって、より低温で炭酸カルシウムの熱分解が起こり炭
酸ガスを発生させることができることがわかった。炭酸
マグネシウムは、炭酸カルシウムに比べて、熱分解温度
が低く、同じように熱分解し、炭酸ガスを発生するが、
高価である。炭酸カルシウムに少量の炭酸マグネシウム
を混ぜて使用することで安価に高性能の活性炭素繊維を
得ることができる。
As a result of intensive studies based on this finding,
It was found that by adding a small amount of magnesium carbonate to calcium carbonate, thermal decomposition of calcium carbonate occurs at a lower temperature and carbon dioxide gas can be generated. Magnesium carbonate has a lower pyrolysis temperature than calcium carbonate and pyrolyzes in the same way to generate carbon dioxide gas.
Expensive. By using a mixture of calcium carbonate and a small amount of magnesium carbonate, high-performance activated carbon fibers can be obtained at low cost.

【0015】炭酸マグネシウムの量は、炭酸カルシウム
と合わせた重量の5重量%以下では、炭酸カルシウム単
独の場合と得られる特性は殆ど変わらない。また、50
重量%以上では、効果は変わらず、これ以上の炭酸マグ
ネシウムの添加は無駄であるので、好ましくは5〜50
重量%である。炭酸カルシウムと炭酸マグネシウムの量
は、セルロース質繊維に対して重量比で1〜5倍量が好
ましい。5倍量を超えては、賦活が進みすぎて活性炭収
量が少なくなり、また性能も低下する。1倍量未満で
は、充分な比表面積が得られない。なお、上記は装置に
より変動があるので、事前に適正値を定めておく必要が
ある。また、ドロマイト(CaCO3・MgCO3)のよ
うな結晶形のものも併用して使用することが可能であ
る。
When the amount of magnesium carbonate is 5% by weight or less of the total weight of calcium carbonate, the obtained properties are almost the same as those of calcium carbonate alone. Also, 50
If the amount is more than 5% by weight, the effect is not changed, and addition of magnesium carbonate more than this is useless.
% By weight. The amount of calcium carbonate and magnesium carbonate is preferably 1 to 5 times the weight of the cellulosic fiber. If the amount exceeds 5 times, the activation will proceed too much, and the activated carbon yield will decrease, and the performance will also decrease. If the amount is less than 1 time, a sufficient specific surface area cannot be obtained. Note that the above values vary depending on the device, so it is necessary to determine an appropriate value in advance. Crystalline forms such as dolomite (CaCO 3 .MgCO 3 ) can also be used in combination.

【0016】本発明においては、セルロース質繊維と炭
酸マグネシウムを少量含んだ炭酸カルシウムを同じ容器
に詰め、昇温速度10℃/hr以下で一週間以上の時間
をかけ、800℃以上に昇温することにより炭化と賦活
を一工程で行おうとするものである。長時間かけ焼成す
ることにより、炭化歩留まりが上がり、また長時間かけ
て賦活することにより、電気抵抗が低く、強度の大きい
高性能の活性炭素繊維とすることが出来る。
In the present invention, calcium carbonate containing a small amount of cellulosic fiber and magnesium carbonate is packed in the same container, and the temperature is raised to 800 ° C. or higher at a temperature raising rate of 10 ° C./hr or less over one week or more. In this way, carbonization and activation are performed in one step. By firing over a long period of time, the carbonization yield increases, and by activating over a long period of time, a high-performance activated carbon fiber having low electric resistance and high strength can be obtained.

【0017】本発明においては、炭酸マグネシウムを含
む炭酸カルシウムは、該繊維と混合して、あるいは繊維
織布と積層して密閉容器に入れ加熱する。従って、加熱
炉は、容器の大きさ、個数等を勘案して決めれば良いの
であって、前記昇温条件を満足していれば、電気炉、ア
チソン炉、ガス炉等、既存のいかなる装置、炉も利用す
ることが出来る。
In the present invention, calcium carbonate containing magnesium carbonate is mixed with the fibers or laminated with a fiber woven fabric and placed in a closed container and heated. Therefore, the heating furnace may be determined in consideration of the size of the container, the number, and the like.If the heating condition is satisfied, any existing equipment such as an electric furnace, an Acheson furnace, and a gas furnace may be used. Furnaces can also be used.

【0018】なお、この炭酸ガスに繊維が晒され始める
温度は、750℃以下が、高性能活性炭素繊維を得るに
は、好ましい。この方法により、比較的低温から長時間
かけて賦活反応を進めることにより、通常の800℃以
上での焼成後、賦活を行う方法に比較して、比表面積お
よびコンデンサとしての容量は2割以上の向上が見られ
た。焼成温度が低すぎると電気伝導性、強度が不足す
る。また、1300℃を超えるとカーボンの結晶化が進
み、比表面積が低下し、結果として、コンデンサに用い
た時の容量が劣ってくる。活性炭素繊維としては、80
0〜1300℃、好ましくは800〜1100℃で焼成
することが好ましい。
The temperature at which the fibers begin to be exposed to the carbon dioxide gas is preferably 750 ° C. or less in order to obtain high-performance activated carbon fibers. By this method, by activating the activation reaction from a relatively low temperature for a long time, the specific surface area and the capacity as a capacitor are more than 20% as compared with the method of activating after normal firing at 800 ° C. or more. Improvements were seen. If the firing temperature is too low, the electrical conductivity and strength will be insufficient. On the other hand, when the temperature exceeds 1300 ° C., the crystallization of carbon proceeds, and the specific surface area decreases. As a result, the capacity when used for a capacitor becomes poor. As the activated carbon fiber, 80
It is preferable to bake at 0 to 1300 ° C, preferably 800 to 1100 ° C.

【0019】次に第2の発明として、前記したように、
電気二重層コンデンサ用あるいはリチウムイオン二次電
池用等の電極シートとして使用する場合、電解液の充填
に支障のないかぎり、電極シートの見掛け密度は、高い
ほうがより容量を上げることができ好ましい。このた
め、本発明者らは、セルロース質繊維の織布に水分を含
ませた状態で熱プレスし、焼成前の布の見掛け密度を上
げると、前記同様に焼成、賦活を行った後、得られる活
性炭素繊維布の見掛け密度が上がることを見出し、本製
法を案出した。このセルロース質繊維織布は、先に述べ
たように、強度、及び面内均一性の点で、平織り布が好
ましい。水分は、1%以上含まなせないと加熱プレス効
果が小さい。温度は、水分を蒸発させるため、100℃
以上が好ましいが、上げすぎると繊維の酸化が起こり、
強度が低下するので、100〜300℃の温度が適当で
ある。プレスの圧力は、布を引き締め密度を上げるため
のものである。本法では、このため100g/cm2
上の圧が必要である。圧は、布が所定の密度になれば良
いのであって、布の種類により異なる。また、加圧時間
は、5分以上程度が必要である。
Next, as a second invention, as described above,
When the electrode sheet is used as an electrode sheet for an electric double layer capacitor or a lithium ion secondary battery, the higher the apparent density of the electrode sheet is, the higher the capacity is. For this reason, the present inventors performed hot pressing in a state where moisture was contained in the woven fabric of cellulosic fibers, and increased the apparent density of the fabric before firing. The present inventors have found that the apparent density of activated carbon fiber cloth increases, and devised the present production method. As described above, this woven cellulosic fabric is preferably a plain woven fabric in terms of strength and in-plane uniformity. Unless the water content is 1% or more, the heat press effect is small. The temperature is 100 ° C to evaporate water.
The above is preferable, but if it is raised too much, fiber oxidation occurs,
A temperature of 100 to 300 ° C. is suitable because the strength is reduced. The pressure of the press is to tighten the fabric and increase the density. In the present method, a pressure of 100 g / cm 2 or more is required for this purpose. The pressure only needs to be a predetermined density of the cloth, and varies depending on the type of the cloth. The pressurization time needs to be about 5 minutes or more.

【0020】第3の発明として、本原料のセルロース質
繊維にリン酸塩水溶液を含浸させた後、同様の焼成、賦
活を行うことにより炭化歩留まりが極めて向上し、得ら
れる活性炭素繊維の電気抵抗の低減、強度の向上に大き
な効果が見られる。リン酸塩としては、リン酸アルミニ
ウム、リン酸カリウム、リン酸ナトリウム、等使用でき
るが、水溶液として含浸させるには、リン酸アルミニウ
ムが水溶性で取り扱いが楽であり好ましい。リン酸塩水
溶液は、リン酸塩量としてリン酸塩換算で1重量%以上
を含浸させないと効果が少なく、10重量%を超えると
上記効果が飽和する。先の第2の発明にて述べたと同じ
ように、本発明でもセルロース質繊維織布にリン酸塩水
溶液を含浸させた後、同条件の加熱プレスを行いその
後、本基本発明の焼成、賦活を行うことにより、得られ
た活性炭素繊維布の密度の向上が期待できる。
As a third invention, after impregnating the cellulosic fiber of the present raw material with a phosphate aqueous solution, the same baking and activation are carried out to significantly improve the carbonization yield, and the electric resistance of the obtained activated carbon fiber A great effect is seen in the reduction of strength and improvement in strength. As the phosphate, aluminum phosphate, potassium phosphate, sodium phosphate and the like can be used. However, for impregnation as an aqueous solution, aluminum phosphate is preferable because it is water-soluble and easy to handle. The effect of the aqueous phosphate solution is small unless the amount of the phosphate is 1% by weight or more in terms of phosphate, and the effect is saturated when the amount exceeds 10% by weight. As described in the second aspect of the present invention, in the present invention, the cellulosic fiber woven fabric is impregnated with the aqueous phosphate solution, and then heated and pressed under the same conditions. By doing so, an increase in the density of the obtained activated carbon fiber cloth can be expected.

【0021】第4の発明として、セルロース質繊維にホ
ウ酸水を含浸させ、その後本発明の基本製法にて焼成、
賦活をおこなうことにより、コンデンサとしての容量向
上が期待できる。ホウ素は、炭素材に混ぜ焼成、黒鉛化
する場合の黒鉛化度を向上させるものとして知られてい
るが(特開平8−314422)、本法では、電気抵抗
の低減に伴い、電極用シートとして使用したときの容量
特性の向上が見られた。ホウ酸水の含浸量は、ホウ酸換
算で0.05重量%以下では効果が少なく、5重量%以
上では、逆に容量性能が低下する。先の発明で述べた加
圧プレスの効果は、このホウ酸水の含浸においても見ら
れ、セルロース質繊維織布にホウ酸水含浸後、前記と同
条件の加熱プレスを行い、その後本基本発明法による焼
成、賦活を行えば、更に密度の向上それに伴う強度の向
上が見られる。
As a fourth invention, a cellulosic fiber is impregnated with boric acid water, and then calcined by the basic production method of the present invention.
By performing the activation, an improvement in the capacity of the capacitor can be expected. Boron is known to improve the degree of graphitization when it is mixed with a carbon material and then baked and graphitized (Japanese Patent Laid-Open No. 8-314422). An improvement in the capacitance characteristics when used was observed. When the amount of boric acid water impregnation is 0.05% by weight or less in terms of boric acid, the effect is small, and when it is 5% by weight or more, the capacity performance is conversely reduced. The effect of the pressure press described in the previous invention is also observed in this boric acid water impregnation, and after impregnating the cellulosic fiber woven fabric with the boric acid water, the heat press is performed under the same conditions as above, and then the basic invention If firing and activation are performed by the method, the density is further improved, and the strength is further improved.

【0022】本製法により製造された活性炭素繊維布
は、セルロース質繊維織布を炭化、賦活したもので、セ
ルロース質繊維織布は平織りが好ましい。これにより製
造された活性炭素繊維布は、密度0.2g/cm3
上、体積固有抵抗0.2Ωcm以下、かつ比表面積90
0m2/g以上の特性をそなえており、電気二重層コン
デンサ、リチウムイオン二次電池等の電極シートとして
好適である。密度は、いわゆる嵩密度であり、比表面積
は、いわゆる窒素ガスによるBET法にての測定値であ
る。
The activated carbon fiber cloth produced by this method is obtained by carbonizing and activating a cellulosic fiber woven cloth, and the cellulosic fiber woven cloth is preferably plain woven. The activated carbon fiber cloth thus produced has a density of 0.2 g / cm 3 or more, a volume resistivity of 0.2 Ωcm or less, and a specific surface area of 90
It has characteristics of 0 m 2 / g or more, and is suitable as an electrode sheet for electric double layer capacitors, lithium ion secondary batteries, and the like. The density is a so-called bulk density, and the specific surface area is a value measured by a so-called nitrogen gas BET method.

【0023】本発明のもうひとつの形態としては、上記
特性の活性炭素繊維布に樹脂粉末を充填後、樹脂粉末の
溶融する温度にて加熱処理した活性炭素繊維布で樹脂含
有率が3〜20重量%の布である。本発明活性炭素繊維
布に更に樹脂を溶融含浸させることにより強度の大幅な
向上が期待でき、かつ樹脂含浸による電気抵抗の増加や
比表面積の低下等の特性の低下がみられない。樹脂は、
熱硬化性、熱可塑性のものどちらでも良く、例えばテフ
ロン系のポリテトラフルオロエチレン(PTFE)、そ
のヘキサフルオロプロピレン共重合体(FEP)やペル
フルオロアルキルビニールエーテル共重合体(PF
A)、ポリふつ化ビニリデン(PVDF)、やポリプロ
ピレン(PP),フェノール樹脂等の粉末樹脂を分散液
中で含浸させた後、溶融温度に加熱し溶融含浸させる。
樹脂は、3重量%未満では効果が少なく、20重量%を
超えると活性炭機能が低下する。
In another embodiment of the present invention, an activated carbon fiber cloth having the above properties is filled with a resin powder and then heated at a temperature at which the resin powder melts, and the resin content is 3 to 20%. Weight percent cloth. By further impregnating the activated carbon fiber cloth of the present invention with a resin, a significant improvement in strength can be expected, and no impairment of properties such as an increase in electric resistance or a decrease in specific surface area due to impregnation with the resin is observed. The resin is
Either thermosetting or thermoplastic may be used. For example, Teflon-based polytetrafluoroethylene (PTFE), its hexafluoropropylene copolymer (FEP), or perfluoroalkyl vinyl ether copolymer (PF)
A), a resin such as polyvinylidene fluoride (PVDF), polypropylene (PP), or a phenol resin is impregnated in the dispersion, and then heated to a melting temperature to be melt-impregnated.
If the resin is less than 3% by weight, the effect is small, and if it exceeds 20% by weight, the activated carbon function is reduced.

【0024】本発明による活性炭素繊維布は、セルロー
ス質繊維からなる平織り織布を焼成しているため、もと
の繊維の糸自体が柔らかく、剛直な炭素繊維を織った炭
素繊維布に比べ繊維が寝ておらず、貫層方向の配向度合
いが大きく、貫層方向の電気伝導性、強度特性にも優れ
る。セルロース質炭素繊維は、固層炭化するため焼成炭
化前の布の有する繊維形態をそのまま製品である活性炭
素繊維布に反映するのでハンドリンクしやすい。また長
時間焼成を実施しているために、体積固有抵抗が低くな
り電極材料として好適である。本発明の他の形態は、上
記の活性炭素繊維布を使用した電池用電極であり、本発
明による活性炭素繊維布を電極シートとして活用でき
る。
Since the activated carbon fiber cloth according to the present invention is obtained by firing a plain woven cloth made of cellulosic fiber, the fiber itself is softer and the fiber itself is softer than a carbon fiber cloth woven with rigid carbon fiber. It does not lie down, has a high degree of orientation in the trans-layer direction, and has excellent electrical conductivity and strength characteristics in the trans-layer direction. Since the cellulosic carbon fiber is solid-layer carbonized, the fiber form of the cloth before calcining and carbonization is directly reflected on the activated carbon fiber cloth as a product, so that hand linking is easy. In addition, since the firing is performed for a long time, the volume specific resistance is low, which is suitable as an electrode material. Another embodiment of the present invention is a battery electrode using the above activated carbon fiber cloth, and the activated carbon fiber cloth according to the present invention can be used as an electrode sheet.

【0025】[0025]

【実施例】以下、実施例により本発明を更に詳細に説明
する。なお、本実施例においては、本発明による効果を
明確にするため平織り布を原料に用いた例を示すが、当
然他のセルロース質繊維、及び繊維織布についても用い
ることが可能である。
The present invention will be described in more detail with reference to the following examples. In the present embodiment, an example is shown in which a plain woven fabric is used as a raw material in order to clarify the effect of the present invention. However, it is needless to say that other cellulosic fibers and fiber woven fabrics can also be used.

【0026】(実施例1)原料として厚さ0.3mmの
市販平織り綿布(糸は2本撚りしたもので、太さは約1
5μm)を用いてテスト用グリーンサンプルとした。グ
リーンサンプルを400mm角に裁断し黒鉛板に挟持し
た状態で炭酸マグネシウムを10重量%含んだ炭酸カル
シウムの粉末に埋めて、ステンレスサガー(寸法500
×500×200mm)内にセットし、電気炉にてアル
ゴン雰囲気下、一週間かけて該サガーを加熱し、800
℃、900℃、1100℃の各温度に焼成し、処理温度
の異なる3種の活性炭素繊維布を作った。得られた炭素
繊維布は、いずれも厚さ約0.2mm、サイズ約330
mm角の外観良好なもので、焼成前のグリーンサンプル
である平織り綿布の形態を残していた。これら各温度に
焼成された活性炭素繊維布を20×110mmに切断し
引張強さ、体積固有抵抗等の諸物性を測定した。嵩密度
は、マイクロメーター、ノギスにて寸法測定し、化学天
秤による重量測定値とから計算した。
Example 1 A commercially available plain woven cotton cloth having a thickness of 0.3 mm as a raw material (two twisted yarns having a thickness of about 1
5 μm) to obtain a test green sample. A green sample was cut into a 400 mm square, embedded in a calcium carbonate powder containing 10% by weight of magnesium carbonate in a state of being sandwiched between graphite plates, and a stainless steel sagger (dimensions: 500
× 500 × 200 mm), and the sagar was heated in an electric furnace under an argon atmosphere for one week,
C., 900.degree. C., and 1100.degree. C. were fired to produce three types of activated carbon fiber cloths having different treatment temperatures. Each of the obtained carbon fiber cloths had a thickness of about 0.2 mm and a size of about 330
It had a good appearance of mm square, and remained in the form of a plain-woven cotton cloth as a green sample before firing. The activated carbon fiber cloth fired at each of these temperatures was cut into 20 × 110 mm and various physical properties such as tensile strength and volume resistivity were measured. The bulk density was measured with a micrometer and a vernier caliper, and calculated from the weight measured by an analytical balance.

【0027】引張強さは、20×110mm角サンプル
を0.5mm/min速度で引張り、最大の耐荷重を測
定し断面積あたりの強さを計算した。体積固有抵抗は、
4端子法により、比表面積は、窒素ガスによるBET法
により測定した。更に活性炭素繊維布を20mm角に切
断した後、有機電解液(2M−テトラエチルメチルアン
モニウム4フッ化ボライド/プロピレンカーボネイト
液)に真空含浸し、電極シートとした。この電極シート
を2枚使用し、ガラス繊維セパレータを介し、白金集電
板にて単セルを作製し20mA/cm2で2.5Vの充
電を行った後、20mA/cm2で放電し、電圧降下と
流れた電気量からコンデンサ容量を計算し、1対の電極
シートの合計重量乾燥重量で割って単位重量あたりの容
量を求めた。これらの結果を表1に示す。
As for the tensile strength, a 20 × 110 mm square sample was pulled at a rate of 0.5 mm / min, the maximum load capacity was measured, and the strength per sectional area was calculated. The volume resistivity is
The specific surface area was measured by a four-terminal method by a BET method using nitrogen gas. Further, the activated carbon fiber cloth was cut into a 20 mm square, and then vacuum impregnated with an organic electrolytic solution (2M-tetraethylmethylammonium tetrafluoride boride / propylene carbonate solution) to obtain an electrode sheet. Using two electrode sheets, a single cell was prepared with a platinum current collector through a glass fiber separator, charged at 20 mA / cm 2 at 2.5 V, discharged at 20 mA / cm 2 , and discharged. The capacity of the capacitor was calculated from the drop and the amount of electricity flowing, and the capacity per unit weight was determined by dividing by the total dry weight of the pair of electrode sheets. Table 1 shows the results.

【0028】(実施例2)実施例1と同じ平織り綿布に
水を霧吹きして、水分を7%含ませた後、150℃、1
kg/cm2,10分の条件で加熱プレスした。ついで実
施例1と同様に焼成炭化賦活処理し外観良好な活性炭素
繊維布を得た。これも実施例1同様に諸物性の測定を行
った。その結果を表1に示す。
(Example 2) The same plain woven cotton fabric as in Example 1 was sprayed with water to contain 7% of water, and then heated at 150 ° C and 1 ° C.
Heat press was performed under the conditions of kg / cm 2 and 10 minutes. Then, the carbonized carbon was activated in the same manner as in Example 1 to obtain an activated carbon fiber cloth having a good appearance. Also in this case, various physical properties were measured in the same manner as in Example 1. Table 1 shows the results.

【0029】(実施例3)実施例1と同じ平織り綿布に
リン酸アルミニウム水溶液を含浸し、リン酸アルミニウ
ムを4重量%染み込ませた。ついで、実施例1と同様に
焼成炭化賦活処理し外観良好な活性炭素繊維布を得た。
活性炭素繊維布中に残ったリン酸アルミニウム熱処理物
を酸洗、水洗、乾燥して除去してから、実施例1と同様
にして諸物性を測定した結果を表1に示す。
Example 3 The same plain woven cotton cloth as in Example 1 was impregnated with an aqueous solution of aluminum phosphate and impregnated with 4% by weight of aluminum phosphate. Then, the carbonized carbon was activated in the same manner as in Example 1 to obtain an activated carbon fiber cloth having a good appearance.
After removing the heat-treated aluminum phosphate remaining in the activated carbon fiber cloth by pickling, washing with water and drying, the physical properties were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0030】(実施例4)実施例1と同じ平織り綿布に
リン酸アルミニウム水溶液を含浸し、リン酸アルミニウ
ムを5重量%含有させた後、150℃、1kg/cm
2、10分間の条件で加熱プレスした。ついで、実施例
1と同様に焼成炭化賦活処理し、外観良好な活性炭素繊
維布を得た。活性炭素繊維布中に残ったリン酸アルミニ
ウム熱処理物を酸洗、水洗、乾燥して除去してから、実
施例1と同様にして諸物性を測定した。その結果を表1
に示す。
Example 4 The same plain woven cotton cloth as in Example 1 was impregnated with an aqueous solution of aluminum phosphate to contain 5% by weight of aluminum phosphate.
It was heated and pressed under the conditions of 2, 10 minutes. Then, the carbonized carbon fiber was activated in the same manner as in Example 1 to obtain an activated carbon fiber cloth having a good appearance. The heat-treated aluminum phosphate remaining in the activated carbon fiber cloth was pickled, washed with water, dried and removed, and various physical properties were measured in the same manner as in Example 1. Table 1 shows the results.
Shown in

【0031】(実施例5)実施例1と同じ平織り綿布に
ホウ酸水を含浸し、ホウ酸を0.5重量%染み込ませ
た。ついで、実施例1と同様に焼成炭化賦活処理し、外
観良好な活性炭素繊維布を得た。これを実施例1と同様
にして諸物性を測定した。その結果を表1に示す。
Example 5 The same plain woven cotton cloth as in Example 1 was impregnated with boric acid water and impregnated with 0.5% by weight of boric acid. Then, the carbonized carbon fiber was activated in the same manner as in Example 1 to obtain an activated carbon fiber cloth having a good appearance. Various properties were measured in the same manner as in Example 1. Table 1 shows the results.

【0032】(実施例6)実施例1と同じ平織り綿布に
ホウ酸水を含浸し、ホウ酸を0.5重量%染み込ませた
後、150℃、1kg/cm2、10分間の条件で加熱
プレスした。ついで、実施例1と同様に焼成炭化賦活処
理し、外観良好な活性炭素繊維布を得た。これを実施例
1と同様にして諸物性を測定した。その結果を表1に示
す。
Example 6 The same plain woven cotton cloth as in Example 1 was impregnated with boric acid water and impregnated with 0.5% by weight of boric acid, and then heated and pressed at 150 ° C., 1 kg / cm 2 for 10 minutes. did. Then, the carbonized carbon fiber was activated in the same manner as in Example 1 to obtain an activated carbon fiber cloth having a good appearance. Various properties were measured in the same manner as in Example 1. Table 1 shows the results.

【0033】(実施例7)実施例1で得られた活性炭素
繊維布に三井デュポンフロロケミカル(株)製FEPテ
フロンディスパージョン水溶液を含浸し、テフロンを5
重量%含有させた後、黒鉛板にはさみ、大気中320
℃、100g/cm2の荷重下30分間プレスし、テフ
ロン樹脂を溶融させた。これにより、外観良好な、活性
炭素繊維布を得た。これも、実施例1と同様にして諸物
性を測定した。その結果を表1に示す。
(Example 7) The activated carbon fiber cloth obtained in Example 1 was impregnated with an aqueous solution of FEP Teflon dispersion manufactured by DuPont-Mitsui Fluorochemicals Co., Ltd.
Weight percent, sandwiched between graphite plates, and
Pressing at 100 ° C. under a load of 100 g / cm 2 for 30 minutes melted the Teflon resin. Thus, an activated carbon fiber cloth having a good appearance was obtained. Also in this case, various physical properties were measured in the same manner as in Example 1. Table 1 shows the results.

【0034】(比較例1)市販のフェノール樹脂系の活
性炭素繊維シートについて、実施例1と同様な方法にて
諸物性を測定した。その結果を表1に示す。 (比較例2)市販のポリアクリルニトリル系活性炭素繊
維シートについて、実施例1と同様な方法にて諸物性を
測定した。その結果を表1に示す。
(Comparative Example 1) Various physical properties of a commercially available phenolic resin-based activated carbon fiber sheet were measured in the same manner as in Example 1. Table 1 shows the results. Comparative Example 2 Various physical properties of a commercially available polyacrylonitrile-based activated carbon fiber sheet were measured in the same manner as in Example 1. Table 1 shows the results.

【0035】[0035]

【発明の効果】本発明により得られる活性炭素繊維布
は、安価な市販のセルロース質繊維織布等を用いて、高
性能かつ大量生産可能な低コスト製法により、電気二重
層コンデンサ用の電極シート等に使用可能な材料であ
る。
The activated carbon fiber cloth obtained by the present invention can be produced by using an inexpensive commercially available cellulosic fiber woven cloth or the like by a high-performance and mass-production low-cost production method for an electrode sheet for an electric double layer capacitor. It is a material that can be used for such purposes.

【表1】 [Table 1]

フロントページの続き (72)発明者 南波 洋一 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 (72)発明者 前多 一則 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 Fターム(参考) 4G046 HA02 HB05 HB06 HC03 HC05 HC06 4L048 AA05 AA42 AA46 AA48 AC09 BA01 CA01 CA15 DA24 DA40 EB05 5H003 AA01 BA01 BA02 BA05 BB01 BC02 BD00 BD01 BD04 BD05Continued on the front page. (72) Inventor Yoichi Nanba 6850 Omachi Omachi, Omachi City, Nagano Prefecture Showa Denko Corporation Omachi Plant (72) Inventor Kazunori Maeda 6850 Omachi Omachi Plant, Omachi City, Nagano Prefecture Showa Denko Corporation Omachi Plant F Terms (reference) 4G046 HA02 HB05 HB06 HC03 HC05 HC06 4L048 AA05 AA42 AA46 AA48 AC09 BA01 CA01 CA15 DA24 DA40 EB05 5H003 AA01 BA01 BA02 BA05 BB01 BC02 BD00 BD01 BD04 BD05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】セルロース質繊維の織布を炭化、賦活処理
して得られる密度0.2g/cm3以上、体積固有抵抗
0.2Ω・cm以下、比表面積900m2/g以上の活
性炭素繊維布。
An activated carbon fiber having a density of 0.2 g / cm 3 or more, a volume resistivity of 0.2 Ω · cm or less, and a specific surface area of 900 m 2 / g or more obtained by carbonizing and activating a woven fabric of cellulosic fibers. cloth.
【請求項2】セルロール質繊維を、炭酸マグネシウムを
5重量%以上含んだ炭酸カルシウムとともに昇温速度1
0℃/hr以下で1週間以上の時間をかけて800℃以
上に焼成することを特徴とする活性炭素繊維の製造法。
2. A heating rate of cellulose fiber together with calcium carbonate containing 5% by weight or more of magnesium carbonate.
A method for producing an activated carbon fiber, comprising firing at 800C or more at 0C / hr or less over 1 week or more.
【請求項3】水分を1重量%以上含んだセルロース質繊
維織布を、圧力100g/cm2以上、温度100℃以
上で加熱プレス後、該織布を炭酸マグネシウムを5重量
%以上含んだ炭酸カルシウムとともに昇温速度10℃/
hr以下で1週間以上の時間をかけて800℃以上に焼
成することを特徴とする活性炭素繊維布の製造法。
3. A cellulosic fiber woven fabric containing 1% by weight or more of water is heat-pressed at a pressure of 100 g / cm 2 or more and a temperature of 100 ° C. or more, and the woven fabric is carbonated with 5% by weight or more of magnesium carbonate. Heating rate 10 ° C / with calcium
A method for producing an activated carbon fiber cloth, comprising firing at 800 ° C. or higher for 1 week or longer at hr or less.
【請求項4】セルロース質繊維にリン酸塩水溶液をリン
酸塩換算1〜10重量%含浸後、該繊維を炭酸マグネシ
ウムを5重量%以上含んだ炭酸カルシウムとともに昇温
速度10℃/hr以下で1週間以上の時間をかけて80
0℃以上に焼成することを特徴とする活性炭素繊維の製
造法。
4. A cellulosic fiber is impregnated with an aqueous solution of phosphate in an amount of 1 to 10% by weight in terms of phosphate, and the fiber is impregnated with calcium carbonate containing 5% by weight or more of magnesium carbonate at a heating rate of 10 ° C./hr or less. 80 over a week
A method for producing activated carbon fiber, characterized by firing at 0 ° C or higher.
【請求項5】セルロース質繊維織布にリン酸塩水溶液を
リン酸塩換算1〜10重量%含浸し、圧力100g/c
2以上、温度100℃以上で加熱プレス後、該織布を
炭酸マグネシウムを5重量%以上含んだ炭酸カルシウム
とともに昇温速度10℃/hr以下で1週間以上の時間
をかけて800℃以上に焼成することを特徴とする活性
炭素繊維布の製造法。
5. A cellulosic fiber woven fabric is impregnated with an aqueous phosphate solution in an amount of 1 to 10% by weight in terms of phosphate, and a pressure of 100 g / c.
m 2 or more, after the heat-pressing at a temperature 100 ° C. or higher, woven and magnesium carbonate with calcium carbonate containing 5 wt% or more in the following heating rate 10 ° C. / hr above 800 ° C. over a period of 1 week or more times A method for producing activated carbon fiber cloth, characterized by firing.
【請求項6】セルロース質繊維にホウ酸水をホウ酸換算
0.05〜5重量%含浸後、該繊維を炭酸マグネシウム
を5重量%以上含んだ炭酸カルシウムとともに昇温速度
10℃/hr以下で1週間以上の時間をかけて800℃
以上に焼成することを特徴とする活性炭素繊維の製造
法。
6. A cellulosic fiber is impregnated with boric acid water in an amount of 0.05 to 5% by weight in terms of boric acid, and the fiber is impregnated with calcium carbonate containing 5% by weight or more of magnesium carbonate at a heating rate of 10 ° C./hr or less. 800 ℃ over 1 week
A method for producing activated carbon fibers, characterized by firing as described above.
【請求項7】セルロース質繊維織布にホウ酸水をホウ酸
換算0.05〜5重量%含浸し、圧力100g/cm2
以上、温度100℃以上で加熱プレス後、該織布を炭酸
マグネシウムを5重量%以上含んだ炭酸カルシウムとと
もに昇温速度10℃/hr以下で1週間以上の時間をか
けて800℃以上に焼成することを特徴とする活性炭素
繊維布の製造法。
7. A woven cellulosic fiber cloth is impregnated with boric acid water in an amount of 0.05 to 5% by weight in terms of boric acid, and a pressure of 100 g / cm 2.
After heating and pressing at a temperature of 100 ° C. or more, the woven fabric is fired at 800 ° C. or more at a heating rate of 10 ° C./hr or less over 1 week with calcium carbonate containing 5% by weight or more of magnesium carbonate. A method for producing an activated carbon fiber cloth.
【請求項8】セルロース質繊維がセルロース質繊維織布
状である請求項2、4、6いずれか記載の方法により活
性炭素繊維布を製造する方法。
8. The method for producing an activated carbon fiber cloth by the method according to claim 2, wherein the cellulosic fiber is in the form of a woven cellulosic fiber.
【請求項9】請求項1記載の活性炭素繊維布に樹脂粉末
を充填後、樹脂粉末の溶融する温度にて加熱処理してな
る樹脂含有率が3〜20重量%の活性炭素繊維布。
9. An activated carbon fiber cloth having a resin content of 3 to 20% by weight, wherein the activated carbon fiber cloth according to claim 1 is filled with the resin powder and then heated at a temperature at which the resin powder melts.
【請求項10】請求項1または9記載の活性炭素繊維布
を使用した電池用電極。
10. An electrode for a battery using the activated carbon fiber cloth according to claim 1.
JP11207045A 1999-07-22 1999-07-22 Active carbon fiber, active carbon fiber cloth and its production Pending JP2001040548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11207045A JP2001040548A (en) 1999-07-22 1999-07-22 Active carbon fiber, active carbon fiber cloth and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11207045A JP2001040548A (en) 1999-07-22 1999-07-22 Active carbon fiber, active carbon fiber cloth and its production

Publications (1)

Publication Number Publication Date
JP2001040548A true JP2001040548A (en) 2001-02-13

Family

ID=16533302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11207045A Pending JP2001040548A (en) 1999-07-22 1999-07-22 Active carbon fiber, active carbon fiber cloth and its production

Country Status (1)

Country Link
JP (1) JP2001040548A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043859A3 (en) * 2002-11-13 2004-10-21 Showa Denko Kk Active carbon, production method thereof and polarizable electrode
JP2007103069A (en) * 2005-09-30 2007-04-19 Denso Corp Electrode for lithium secondary battery and its manufacturing method as well as lithium secondary battery
JP2007158068A (en) * 2005-12-06 2007-06-21 Gunma Univ Carbon material for electric double layer capacitor and electric double layer capacitor using the material
KR100901846B1 (en) * 2007-09-11 2009-06-09 한국에너지기술연구원 Manufacturing method for platinum nano-catalyst supported on carbon nanotubes directly grown on cellulose electrodes used for fuel cell, cellulose electrodes of the same, and use of cellulose fiber as for fuel cell electrodes
JP2011243667A (en) * 2010-05-16 2011-12-01 Kyushu Institute Of Technology Method for producing carbon material for electric double layer capacitor polarizable electrode
WO2012160354A1 (en) * 2011-05-20 2012-11-29 British American Tobacco (Investments) Limited Method of preparing enhanced porous carbon
US8465874B2 (en) 2005-04-07 2013-06-18 Sharp Kabushiki Kaisha Lithium-ion secondary battery and manufacturing method thereof
WO2014038005A1 (en) * 2012-09-05 2014-03-13 東洋炭素株式会社 Porous carbon and method for producing same
JP2017039137A (en) * 2011-03-28 2017-02-23 メグテック ターボソニック インコーポレイテッドMegtec Turbosonic Inc. Erosion-resistant conductive composite material collecting electrode for wet electrostatic precipitator
WO2017104630A1 (en) * 2015-12-15 2017-06-22 株式会社パワージャパンプリュス Positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for manufacturing same
JP2020531405A (en) * 2017-08-14 2020-11-05 トカイ カーボン コリア カンパニー,リミティド Manufacturing method of activated carbon for electrode material
CN114808536A (en) * 2022-04-25 2022-07-29 上海大学 Carbon paper and preparation method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691782B2 (en) 2002-11-13 2010-04-06 Showa Denko K.K. Active carbon, production method thereof and polarizable electrode
US8273683B2 (en) 2002-11-13 2012-09-25 Showa Denko K.K. Active carbon, production method thereof and polarizable electrode
WO2004043859A3 (en) * 2002-11-13 2004-10-21 Showa Denko Kk Active carbon, production method thereof and polarizable electrode
US8465874B2 (en) 2005-04-07 2013-06-18 Sharp Kabushiki Kaisha Lithium-ion secondary battery and manufacturing method thereof
JP2007103069A (en) * 2005-09-30 2007-04-19 Denso Corp Electrode for lithium secondary battery and its manufacturing method as well as lithium secondary battery
JP2007158068A (en) * 2005-12-06 2007-06-21 Gunma Univ Carbon material for electric double layer capacitor and electric double layer capacitor using the material
KR100901846B1 (en) * 2007-09-11 2009-06-09 한국에너지기술연구원 Manufacturing method for platinum nano-catalyst supported on carbon nanotubes directly grown on cellulose electrodes used for fuel cell, cellulose electrodes of the same, and use of cellulose fiber as for fuel cell electrodes
US8221830B2 (en) 2007-09-11 2012-07-17 Korea Institue of Energy Research Method of manufacturing cellulose electrode for fuel cells, cellulose electrode manufactured thereby, and use of cellulose fibers as fuel cell electrodes
JP2011243667A (en) * 2010-05-16 2011-12-01 Kyushu Institute Of Technology Method for producing carbon material for electric double layer capacitor polarizable electrode
JP2017039137A (en) * 2011-03-28 2017-02-23 メグテック ターボソニック インコーポレイテッドMegtec Turbosonic Inc. Erosion-resistant conductive composite material collecting electrode for wet electrostatic precipitator
WO2012160354A1 (en) * 2011-05-20 2012-11-29 British American Tobacco (Investments) Limited Method of preparing enhanced porous carbon
CN104520233A (en) * 2012-09-05 2015-04-15 东洋炭素株式会社 Porous carbon and method for producing same
EP2894128A4 (en) * 2012-09-05 2016-04-20 Toyo Tanso Co Porous carbon and method for producing same
WO2014038005A1 (en) * 2012-09-05 2014-03-13 東洋炭素株式会社 Porous carbon and method for producing same
WO2017104630A1 (en) * 2015-12-15 2017-06-22 株式会社パワージャパンプリュス Positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for manufacturing same
JP2020531405A (en) * 2017-08-14 2020-11-05 トカイ カーボン コリア カンパニー,リミティド Manufacturing method of activated carbon for electrode material
CN114808536A (en) * 2022-04-25 2022-07-29 上海大学 Carbon paper and preparation method thereof
CN114808536B (en) * 2022-04-25 2023-02-28 上海大学 Carbon paper and preparation method thereof

Similar Documents

Publication Publication Date Title
Ji et al. Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries
Ji et al. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries
KR100569188B1 (en) Carbon-porous media composite electrode and preparation method thereof
CN106941167A (en) A kind of porous composite negative pole material of lithium ion battery and preparation method thereof
KR101348202B1 (en) Metaloxide-carbonparticle-carbon nanofiber composites, preparation method for the same, and their application products from the same
KR20120091178A (en) Carbon fiber nonwoven fabric, carbon fibers, method for producing the carbon fiber nonwoven fabric, method for producing carbon fibers, electrode, battery, and filter
JP2001040548A (en) Active carbon fiber, active carbon fiber cloth and its production
US20170110735A1 (en) Conductive porous material, polymer electrolyte fuel cell, and method of manufacturing conductive porous material
Kwon et al. Porous SnO2/C nanofiber anodes and LiFePO4/C nanofiber cathodes with a wrinkle structure for stretchable lithium polymer batteries with high electrochemical performance
Zhang et al. Effects of sodium alginate on the composition, morphology, and electrochemical properties of electrospun carbon nanofibers as electrodes for supercapacitors
WO2015141853A1 (en) Carbon molding for electrode, and method for producing same
KR101209847B1 (en) Fibrous Current Collector Comprising Carbon Nano Fiber, Electrode Using the Same, and Method of Manufacturing the Same
JP2009283259A (en) Porous carbon electrode base material
Li et al. Synthesis and characterization of PVDF‐coated cotton‐derived hard carbon for anode of Li‐ion batteries
Meng et al. Nitrogen and Oxygen dual self-doped flexible PPTA nanofiber carbon paper as an effective interlayer for lithium–sulfur batteries
JP3332980B2 (en) Manufacturing method of polarizable electrode material
JP2004214072A (en) Carbon fiber sheet and its manufacturing method
JPH11340103A (en) Manufacture of activated carbon material
JPH09231984A (en) Carbon fiber for porous electrode base board for phosphoric acid fuel cell
JP2780987B2 (en) Manufacturing method of carbon plate
JP2001525595A (en) Electrodes for secondary batteries
JP2021084830A (en) Carbon sheet
JPH06671B2 (en) Highly graphitized porous carbon fiber sheet and method for producing the same
JP2008044201A (en) Carbon fiber sheet and its manufacturing method
JP2002299185A (en) Method of manufacturing activated carbon cloth, activated carbon cloth and electric double-layer capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021