JP2001027601A - Infrared gas analyzer - Google Patents

Infrared gas analyzer

Info

Publication number
JP2001027601A
JP2001027601A JP19977199A JP19977199A JP2001027601A JP 2001027601 A JP2001027601 A JP 2001027601A JP 19977199 A JP19977199 A JP 19977199A JP 19977199 A JP19977199 A JP 19977199A JP 2001027601 A JP2001027601 A JP 2001027601A
Authority
JP
Japan
Prior art keywords
infrared
gas
light
gas analyzer
absorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19977199A
Other languages
Japanese (ja)
Inventor
Katsuhiko Araya
克彦 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19977199A priority Critical patent/JP2001027601A/en
Publication of JP2001027601A publication Critical patent/JP2001027601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized infrared gas analyzer high in the stability of accuracy. SOLUTION: In an infrared gas analyzer, a multilayered membrane filter 16 is cylindrically changed in angles with respect to an optical axis by a moving mechanism 17 in such a state that infrared rays are allowed to be incident on a sample cell 5 from a light source to permit infrared rays absorbed by the gas to be measured in sample gas and infrared rays not absorbed by the sample gas to transmit and these infrared rays are detected by a detector 7. The detection value of infrared rays not absorbed by the gas to be measured is divided by the detection value of infrared rays not absorbed by the sample gas to be corrected to remove the error contained in measured concn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス成分の濃度測
定に用いる赤外線ガス分析計、特にガス分子の赤外線吸
収効果を利用して試料ガス中の特定成分の濃度を連続し
て測定する赤外線ガス分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared gas analyzer used for measuring the concentration of a gas component, and more particularly to an infrared gas analyzer for continuously measuring the concentration of a specific component in a sample gas by utilizing the infrared absorption effect of gas molecules. For analyzers.

【0002】[0002]

【従来の技術】図5にCOガス濃度を測定する単光源
式の従来の赤外線ガス分析計を示す。1はニクロム線な
どの抵抗体に電流を流して加熱した光源で、その光源1
から出射した赤外線は、モータ3と連動して回転する回
転セクタ2により一定周期で断続され光学的に変調され
る。この変調光に含まれている4.25μm波長の赤外
線は、試料セル5中のCO を透過する過程でランベル
ト−ベアの法則にしたがってその一部が吸収され、多層
膜フィルタ6を透過して半導体赤外センサなどの検出器
7で検出され電気信号に変換される。その電気信号は信
号変換器8により指示記録入力信号に変換され、指示計
等の受信器9でCOガス濃度が指示される。
2. Description of the Related Art FIG.2Single light source for measuring gas concentration
1 shows a conventional infrared gas analyzer of the type. 1 is Nichrome wire
A light source heated by applying an electric current to any resistor.
The infrared light emitted from the
Intermittently and periodically optically modulated by the
You. 4.25 μm wavelength infrared light contained in this modulated light
The line indicates the CO in the sample cell 5. 2Rambell in the process of transmitting
Some are absorbed according to Tovea's law,
A detector such as a semiconductor infrared sensor that passes through the membrane filter 6
7 and is converted into an electric signal. The electrical signal
Is converted into an instruction record input signal by the
Etc. at the receiver 92The gas concentration is indicated.

【0003】図6は回転セクタ2(図5)に同期して断
続された4.25μmの赤外線が検出器7によって変換
された電気信号の波形を示したものである。図6のA
0、Ax、A100は試料ガス中のCOガス濃度が0
%、x%、100%におけるピーク値であり、x%での
出力信号は信号変換器8で演算され出力される。このよ
うな赤外線ガス分析計の校正は、スパン調整ガスとゼロ
調整ガスを試料セル5に交互に流通し、信号変換器8に
設けられたスパン、ゼロ調整器を調節して行われる。
FIG. 6 shows a waveform of an electric signal obtained by converting a 4.25 μm infrared ray intermittently synchronized with the rotating sector 2 (FIG. 5) by the detector 7. A in FIG.
0, Ax, and A100 indicate that the CO 2 gas concentration in the sample gas is 0.
%, X%, and the peak value at 100%, and the output signal at x% is calculated and output by the signal converter 8. Calibration of such an infrared gas analyzer is performed by alternately flowing the span adjustment gas and the zero adjustment gas through the sample cell 5 and adjusting the span and the zero adjuster provided in the signal converter 8.

【0004】[0004]

【発明が解決しようとする課題】従来の赤外線ガス分析
計は上記のように構成されているが、周囲温度の変化、
光源の光強度及び検出器感度の変化、あるいは試料セル
の汚れ等によって出力のゼロ、スパンが変動する。特
に、従来のような方式では、回転セクタにより光が遮断
される期間を生じるため、ゼロ点の変動が大きいという
問題がある。すなわち、この方式では誤差を補正する要
素がなく、長期間にわたり赤外線ガス分析計の精度を維
持するには、測定前と測定中でのゼロ調整ガス及びスパ
ン調整ガスを用いた実校正をできるだけ多く行う必要が
あり、それが測定開始時間を遅らせたり、有効測定時間
を減少させる要因となっていた。
The conventional infrared gas analyzer is constructed as described above.
The output zero and span fluctuate due to changes in the light intensity of the light source and detector sensitivity, or contamination of the sample cell. In particular, in the conventional method, there is a problem in that a period during which light is blocked by the rotating sector occurs, so that the fluctuation of the zero point is large. In other words, there is no element for correcting errors in this method, and in order to maintain the accuracy of the infrared gas analyzer for a long time, the actual calibration using the zero adjustment gas and span adjustment gas before and during the measurement should be performed as much as possible. This has to be done, which has been a factor in delaying the measurement start time and reducing the effective measurement time.

【0005】また、回転セクタ2とモータ3からなるチ
ョッパ機構は他の構成要素に比べ大きく、赤外線ガス分
析計の小型化を困難にし、測定場所への携帯移動に不便
をきたしていた。なお、試料セルと比較セルを用いてゼ
ロ点等の安定度を向上させた複光束式の赤外線ガス分析
計も使われているが、比較セルならびに回転セクタを必
要とすることから装置の小型化は困難である。本発明
は、このような事情に鑑みてなされたものであって、環
境条件や長時間の使用における使用部品の特性変化に対
しても安定した精度を維持し、小型化が可能な赤外線ガ
ス分析計を提供することを目的とする。
Further, the chopper mechanism comprising the rotating sector 2 and the motor 3 is larger than other components, making it difficult to reduce the size of the infrared gas analyzer and causing inconvenience in portable movement to the measurement location. A double-flux infrared gas analyzer that uses a sample cell and a comparison cell to improve the stability of the zero point, etc., is also used. It is difficult. The present invention has been made in view of such circumstances, and it is possible to maintain a stable accuracy with respect to a change in the characteristics of a used component in environmental conditions and a long-time use, and to reduce the size of an infrared gas analyzer. The purpose is to provide a total.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の赤外線ガス分析計は、赤外線を出射する光
源と、試料ガスを流通し該赤外線を照射する試料セル
と、波長を選択するための多層膜フィルタと、赤外線を
検出する赤外検出器を備えた赤外線ガス分析計におい
て、多層膜フィルタの入射面を光軸に対し一定の角度で
周期的に移動させる移動手段を備え、該多層膜フィルタ
を透過した試料ガス成分吸収光と非吸収光を検出し、試
料ガス中の成分濃度を測定するようにしたことを特徴と
する。
In order to achieve the above object, an infrared gas analyzer according to the present invention comprises a light source for emitting infrared light, a sample cell for circulating a sample gas and irradiating the infrared light, and selecting a wavelength. In the infrared gas analyzer provided with an infrared detector for detecting infrared light, a moving means for periodically moving the incident surface of the multilayer filter at a constant angle with respect to the optical axis, The method is characterized in that the sample gas component absorption light and the non-absorption light transmitted through the multilayer filter are detected, and the component concentration in the sample gas is measured.

【0007】本発明の赤外線ガス分析計は上記のように
構成されており、光軸に対する多層膜フィルタの角度移
動により、試料ガス濃度検出光と試料ガス濃度非検出光
が得られ、その変動要因は両光線に影響することを利用
して信号処理することにより、小形でゼロ点が安定した
赤外線ガス分析計を得ることができる。
The infrared gas analyzer of the present invention is constructed as described above. By moving the angle of the multilayer filter with respect to the optical axis, sample gas concentration detection light and sample gas concentration non-detection light are obtained, By performing signal processing utilizing the influence on both light beams, a small infrared gas analyzer with a stable zero point can be obtained.

【0008】[0008]

【発明の実施の形態】以下、本発明の赤外線ガス分析計
の実施例を図面に基づき説明する。図1は本発明の赤外
線ガス分析計の実施例の構造図である。なお、図中図5
と同じ機能を有する構成素子には同一の記号番号が用い
られている。本赤外線ガス分析計は、赤外波長帯の光源
1と、試料ガスを流通させる試料セル5と、多層膜フィ
ルタ16及びその多層膜フィルタ16を固定し、周期的
に一定角度間を移動させる移動機構17と、半導体赤外
センサなどの赤外線光強度を電気信号に変換する検出器
7と、その電気信号を受信器用信号に変換するための信
号変換器8と、指示計や記録計等の受信器9から構成さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the infrared gas analyzer of the present invention will be described below with reference to the drawings. FIG. 1 is a structural view of an embodiment of the infrared gas analyzer of the present invention. Note that FIG.
The same reference numerals are used for constituent elements having the same functions as in FIG. This infrared gas analyzer comprises a light source 1 in the infrared wavelength band, a sample cell 5 through which a sample gas flows, a multilayer filter 16 and a movable filter that fixes the multilayer filter 16 and periodically moves through a certain angle. A mechanism 17, a detector 7 for converting infrared light intensity into an electric signal such as a semiconductor infrared sensor, a signal converter 8 for converting the electric signal into a signal for a receiver, and reception of an indicator, a recorder, and the like. It comprises a vessel 9.

【0009】前記移動機構17は図2に示されるよう
に、ジョイント17aで連結されたレバー(A)17b
の他端をジョイント17cを介してソレノイド17dに
連結し、レバー(B)17eの他端を支点17fを介し
て固定具17gに連結している。また、支点17h、ソ
レノイド17d及び固定具17gはいずれも適宜必要場
所に固定されている。
As shown in FIG. 2, the moving mechanism 17 includes a lever (A) 17b connected by a joint 17a.
Is connected to a solenoid 17d via a joint 17c, and the other end of the lever (B) 17e is connected to a fixture 17g via a fulcrum 17f. In addition, the fulcrum 17h, the solenoid 17d, and the fixture 17g are all appropriately fixed to necessary places.

【0010】前記ソレノイド17dの励磁電源を制御部
18(図1)により一定周期でオンオフすると、ソレノ
イド17dの移動軸が水平方向に往復移動し、レバー
(B)17eに搭載固定された前記多層膜フィルタ16
は角度θ範囲内を往復移動する。この角度θはおよそ0
〜45°の範囲内で透過させるに必要な波長光により決
められる。図3は多層膜フィルタ16が光軸に対して角
度θ1およびθ2における透過率特性を示したものであ
る。例えば、CO濃度を分析する場合は、角度θ1の
ピーク透過率を4.25μm、角度θ2を3.7μmに
なるように位置決めする。
When the excitation power supply of the solenoid 17d is turned on and off at a constant cycle by the control unit 18 (FIG. 1), the moving axis of the solenoid 17d reciprocates in the horizontal direction, and the multilayer film mounted and fixed to the lever (B) 17e. Filter 16
Reciprocates within the angle θ range. This angle θ is approximately 0
It is determined by light having a wavelength necessary for transmission within a range of ~ 45 °. FIG. 3 shows transmittance characteristics of the multilayer filter 16 at angles θ1 and θ2 with respect to the optical axis. For example, when analyzing the CO 2 concentration, positioning is performed so that the peak transmittance at the angle θ1 is 4.25 μm and the angle θ2 is 3.7 μm.

【0011】上記構成において、光源1より赤外線を試
料セルに入射し、流通する試料ガス中のCO分子に照
射すると4.25μmの波長光線はCO濃度に比例し
て吸収され、多層膜フィルタ16に入射される。多層膜
フィルタ16が角度θ1にあるとき、4.25μmの波
長光は多層膜フィルタ16を透過し、検出器7によって
その光強度は電気信号に変換される。また、多層膜フィ
ルタ16が角度θ2にあるときは、3.7μmの波長光
のみが多層膜フィルタ16を透過する。
In the above configuration, when infrared rays are incident on the sample cell from the light source 1 and irradiate the CO 2 molecules in the flowing sample gas, the 4.25 μm wavelength light is absorbed in proportion to the CO 2 concentration. 16 is incident. When the multilayer filter 16 is at the angle θ1, light having a wavelength of 4.25 μm passes through the multilayer filter 16, and the light intensity is converted by the detector 7 into an electric signal. When the multilayer filter 16 is at the angle θ2, only light having a wavelength of 3.7 μm passes through the multilayer filter 16.

【0012】図4は本実施例における検出器7の出力信
号の波形図である。図において、A0、Ax、A100
は、4.25μmの波長光のCO濃度が0%、x%、
100%における検出器7のピーク出力値、Bは3.7
μmの波長光のピーク出力値である。光源1の光強度が
変化したことにより、AxがAx+axに変化したとす
るとBもまたB+bに変化する。これらの誤差は、同一
光源からの赤外線に生じるものであるので両方の誤差率
(ax/Axとb/B)は大きさはほぼ等しく、正負の
符号は一致する。信号変換器8は次式に示すようにBを
校正時の値として、Axの測定値(Ax+ax)をBの
測定値(B+b)で除算を行う。 (Ax+ax)/(b+B)=Ax/B すなわち、ax/Ax=b/Bなる変動要因に対して
は、上式の左辺は右辺に等しくなり、誤差axが取除か
れる。さらにこのAx/Bは、信号変換器8で受信器用
信号に変換して出力される。
FIG. 4 is a waveform diagram of the output signal of the detector 7 in this embodiment. In the figure, A0, Ax, A100
Means that the CO 2 concentration of the 4.25 μm wavelength light is 0%, x%,
The peak output value of the detector 7 at 100%, B is 3.7
It is a peak output value of light having a wavelength of μm. If Ax changes to Ax + ax due to a change in the light intensity of the light source 1, B also changes to B + b. Since these errors occur in infrared rays from the same light source, both error rates (ax / Ax and b / B) are almost equal in magnitude, and the positive and negative signs match. The signal converter 8 divides the measured value of Ax (Ax + ax) by the measured value of B (B + b), using B as a value at the time of calibration as shown in the following equation. (Ax + ax) / (b + B) = Ax / B That is, for the fluctuation factor of ax / Ax = b / B, the left side of the above equation becomes equal to the right side, and the error ax is removed. Further, this Ax / B is converted into a signal for a receiver by the signal converter 8 and output.

【0013】上記演算処理方法は、ディジタル信号を用
いているが、例えば、角度θ1とθ2のそれぞれの周期
ごとに同期整流し、その信号をアナログ徐算器で徐算す
ることにより、アナログ信号を用いて処理することもで
きる。なお、前記移動機構17は、レバー(A)17b
を小型パルスモータと直結して、一定のパルス数ごとに
回転方向を変えて角度θを変化させる方法を用いること
も可能である。また、多層膜フィルタ16において膜厚
を楔形にして、光軸に対して直線移動によって、波長を
選択するようにしてもよい。
The above-mentioned arithmetic processing method uses a digital signal. For example, synchronous rectification is performed for each cycle of the angles θ1 and θ2, and the analog signal is divided by an analog divider to convert the analog signal. Can also be used. The moving mechanism 17 includes a lever (A) 17b
May be directly connected to a small pulse motor, and the rotation direction may be changed for each fixed number of pulses to change the angle θ. Further, the wavelength may be selected by making the film thickness in the multilayer filter 16 into a wedge shape and moving linearly with respect to the optical axis.

【0014】[0014]

【発明の効果】本発明の赤外線ガス分析計は上記のよう
に構成されており、試料ガス中の測定成分ガスに吸収さ
れる赤外線と試料ガスに吸収されない赤外線を周期的に
検出し、成分ガスに吸収される赤外線の検出値を吸収さ
れない赤外線の検出値で補正することにより、測定濃度
を補正し誤差を減らすことができる。これにより長期間
安定して測定でき、また回転セクタを無くすことにより
装置の小形化が可能となる。
The infrared gas analyzer of the present invention is constructed as described above, and periodically detects infrared light absorbed by the measurement component gas and infrared light not absorbed by the sample gas in the sample gas. By correcting the detection value of the infrared ray absorbed by the infrared ray with the detection value of the infrared ray not absorbed, the measured density can be corrected and the error can be reduced. As a result, stable measurement can be performed for a long period of time, and the apparatus can be downsized by eliminating the rotating sector.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の赤外線ガス分析計の実施例の構成図で
ある。
FIG. 1 is a configuration diagram of an embodiment of an infrared gas analyzer of the present invention.

【図2】本発明の実施例における多層膜フィルタの移動
機構の側面図である。
FIG. 2 is a side view of a moving mechanism of the multilayer filter in the embodiment of the present invention.

【図3】本発明の実施例における多層膜フィルタの透過
率特性図である。
FIG. 3 is a transmittance characteristic diagram of the multilayer filter according to the embodiment of the present invention.

【図4】本発明の実施例における検出器の出力波形図で
ある。
FIG. 4 is an output waveform diagram of a detector according to the embodiment of the present invention.

【図5】従来の赤外線ガス分析計の構成図である。FIG. 5 is a configuration diagram of a conventional infrared gas analyzer.

【図6】従来の赤外線ガス分析計における検出器の出力
波形図である。
FIG. 6 is an output waveform diagram of a detector in a conventional infrared gas analyzer.

【符号の説明】[Explanation of symbols]

1・・・光源 2・・・回転セクタ 3・・・モータ 5・・・試料セル 6、16・・・多層膜フィルタ 7・・・検出器 8・・・信号変換器 9・・・受信器 17・・・移動機構 17a、17c・・・ジョイント 17b・・・レバー(A) 17d・・・ソレノイド 17e・・・レバー(B) 17f、17h・・・支点 17g・・・固定具 18・・・制御部 DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Rotating sector 3 ... Motor 5 ... Sample cell 6, 16 ... Multilayer film filter 7 ... Detector 8 ... Signal converter 9 ... Receiver 17 moving mechanism 17a, 17c joint 17b lever (A) 17d solenoid 17e lever (B) 17f, 17h fulcrum 17g fixture 18 ...・ Control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】赤外線を出射する光源と、試料ガスを流通
し該赤外線を照射する試料セルと、波長を選択する多層
膜フィルタと、赤外線を検出する赤外検出器を備えた赤
外線ガス分析計において、多層膜フィルタの入射面を光
軸に対し一定の角度で周期的に移動させる移動手段を備
え、該多層膜フィルタを透過した試料ガス成分吸収光と
非吸収光を検出し、試料ガス中の成分濃度を測定するよ
うにしたことを特徴とする赤外線ガス分析計。
1. An infrared gas analyzer comprising a light source for emitting infrared light, a sample cell for flowing a sample gas and irradiating the infrared light, a multilayer filter for selecting a wavelength, and an infrared detector for detecting infrared light. A moving means for periodically moving the incident surface of the multilayer filter at a fixed angle with respect to the optical axis, detecting sample gas component absorbed light and non-absorbed light transmitted through the multilayer filter, and An infrared gas analyzer characterized by measuring the concentration of a component.
JP19977199A 1999-07-14 1999-07-14 Infrared gas analyzer Pending JP2001027601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19977199A JP2001027601A (en) 1999-07-14 1999-07-14 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19977199A JP2001027601A (en) 1999-07-14 1999-07-14 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JP2001027601A true JP2001027601A (en) 2001-01-30

Family

ID=16413351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19977199A Pending JP2001027601A (en) 1999-07-14 1999-07-14 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP2001027601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351954B2 (en) 2005-08-12 2008-04-01 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for detecting gas concentration with infrared absorption characteristics
JP2015137863A (en) * 2014-01-20 2015-07-30 パナソニックIpマネジメント株式会社 infrared gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351954B2 (en) 2005-08-12 2008-04-01 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for detecting gas concentration with infrared absorption characteristics
JP2015137863A (en) * 2014-01-20 2015-07-30 パナソニックIpマネジメント株式会社 infrared gas sensor

Similar Documents

Publication Publication Date Title
CN101231240B (en) Apparatus and method for measuring carbon monoxide concentration
EP0146781A2 (en) Photometric apparatus with multi-wavelength excitation
CN106769939A (en) The real-time calibration system and measurement calibration method of a kind of Multi-axial differential absorption spectrometer
JPH07151684A (en) Infrared ray type gas analyzer
JP2001027601A (en) Infrared gas analyzer
JPH06249779A (en) Gas analyzer
JPS59208445A (en) Method and device for measuring absorptive component quantity of sample
JP2002098631A (en) Smaller sample concentration measuring apparatus
US4586026A (en) Infrared gas analyzer using count quadrature sampling
JP3341928B2 (en) Dichroic dispersion meter
JP4790330B2 (en) Gas concentration measuring device
CN107796771A (en) Absorb device and measuring method that alanysis instrument eliminates external stray light interference
JPS6138448A (en) Photometer for analyzing gas or liquid
JPH03103751A (en) Measuring instrument for geological time by zirconium color measurement
JPS58218639A (en) Open light path system infrared-ray gas analyzer
JPH09236542A (en) Optical active body detecting device
JPH05203573A (en) Infrared ray gas analyzer
JPS63159736A (en) Concentration measuring method for uranium or plutonium
JPH05332933A (en) Portable co2 concentration measuring device
JPS594654B2 (en) I can't wait to see you
JPH06273330A (en) Turbidimeter
JPS5666738A (en) Spectrometer for gas measurement
JPH0943056A (en) Instrument for measuring intensity of light
JP2001235419A (en) Infrared gas analyzer
JPH08304278A (en) Infrared absorption humidity variation meter