JP2001027460A - Refrigeration cycle system - Google Patents

Refrigeration cycle system

Info

Publication number
JP2001027460A
JP2001027460A JP2000193121A JP2000193121A JP2001027460A JP 2001027460 A JP2001027460 A JP 2001027460A JP 2000193121 A JP2000193121 A JP 2000193121A JP 2000193121 A JP2000193121 A JP 2000193121A JP 2001027460 A JP2001027460 A JP 2001027460A
Authority
JP
Japan
Prior art keywords
refrigerant
accumulator
compressor
refrigeration cycle
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000193121A
Other languages
Japanese (ja)
Other versions
JP3439178B2 (en
Inventor
Masahiro Nakayama
雅弘 中山
Hitoshi Iijima
等 飯島
Takayuki Yoshida
孝行 吉田
Masao Nagano
雅夫 永野
Atsushi Edayoshi
敦史 枝吉
Masaru Konishi
勝 小西
Toshihide Koda
利秀 幸田
Yoshihiro Sumida
嘉裕 隅田
Takashi Okazaki
多佳志 岡崎
Yoshihisa Kitora
善久 木藤良
Osamu Morimoto
修 森本
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP05334283A external-priority patent/JP3104513B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000193121A priority Critical patent/JP3439178B2/en
Publication of JP2001027460A publication Critical patent/JP2001027460A/en
Application granted granted Critical
Publication of JP3439178B2 publication Critical patent/JP3439178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2108Temperatures of a receiver

Abstract

PROBLEM TO BE SOLVED: To protect a compressor against damage by making the compressor to suck refrigerant gas and lubricant separated in an accumulator efficiently and preventing insufficient lubrication thereby ensuring reliability of the compressor. SOLUTION: Wet refrigerant from an evaporator fed through a suction pipe 56 is subjected to gas/liquid separation and lubricant forms an upper layer while liquid refrigerant forms a lower layer at the bottom of an accumulator 55 because of the difference of specific gravity. The liquid refrigerant is heated above saturation temperature by means of a heater 60 provided on the bottom of the accumulator 55 and evaporated. It is then sucked through a delivery pipe 57 into a compressor and only lubricant stands on the bottom of the accumulator 55. Subsequently, a valve 61 in a delivery pipe 59 laid on the bottom of the accumulator 55 is opened and the lubricant is sucked therefrom into the compressor. The series of operations is controlled by detection signals from a liquid level detector 63, a refrigerant saturation temperature detector 64 and a refrigerant temperature detector 65 mounted on the accumulator 55.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、空気調和機あるいは
冷凍機に使用されるアキュムレータに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an accumulator used for an air conditioner or a refrigerator.

【0002】また、この発明は、圧縮機、凝縮器、減圧
装置、蒸発器およびアキュムレータを順次冷媒配管で接
続した冷凍サイクル装置に関するものである。
[0002] The present invention also relates to a refrigeration cycle apparatus in which a compressor, a condenser, a decompression device, an evaporator, and an accumulator are sequentially connected by refrigerant piping.

【0003】また、この発明は、圧縮機、四方弁、室内
熱交換器、逆止弁、レシーバ、減圧装置、室外熱交換器
及びアキュムレータを順次冷媒配管で接続した冷凍サイ
クル装置に関するものである。
[0003] The present invention also relates to a refrigeration cycle apparatus in which a compressor, a four-way valve, an indoor heat exchanger, a check valve, a receiver, a pressure reducing device, an outdoor heat exchanger, and an accumulator are sequentially connected by refrigerant piping.

【0004】[0004]

【従来の技術】一般の冷凍サイクルは図9に示す如く、
圧縮機(14)、凝縮器(15)、減圧器(16)、蒸発器(17)、ア
キュムレータ(18)を配管により環状に連結することによ
り構成されている。例えば特公昭57−17187号お
よび特公昭62−52230号公報に記述された周知の
アキュムレータ(18)は図10に示すように、筒状密閉容
器(1)の中間部に吸入配管(2)が、底部に吐出配管(7)が
それぞれ取り付けられている。吐出配管(7)は、一方の
開口が筒状密閉容器(1)に突出され、かつ筒状密閉容器
(1)を貫通する付近に小孔(8)が設けられている。
2. Description of the Related Art A general refrigeration cycle is shown in FIG.
The compressor (14), the condenser (15), the pressure reducer (16), the evaporator (17), and the accumulator (18) are connected in a ring shape by piping. For example, a known accumulator (18) described in JP-B-57-17187 and JP-B-62-52230 has a suction pipe (2) at an intermediate portion of a cylindrical closed vessel (1) as shown in FIG. A discharge pipe (7) is attached to the bottom. The discharge pipe (7) has one opening protruding into the cylindrical closed container (1), and the cylindrical closed container.
A small hole (8) is provided in the vicinity passing through (1).

【0005】従来のアキュムレータは、以上のように構
成されているので、筒状密閉容器(1)の底部に溜った潤
滑油および冷媒液の混合液体は、小孔(8)より吐出配管
(7)に吸入されて圧縮機(14)に送られる。
[0005] Since the conventional accumulator is configured as described above, the mixed liquid of the lubricating oil and the refrigerant liquid collected at the bottom of the cylindrical closed container (1) is discharged from the small hole (8) through the discharge pipe.
It is sucked into (7) and sent to the compressor (14).

【0006】また、一般に冷凍サイクル装置において、
アキュムレータは圧縮機吸入側の手前に設けられ、気液
混合冷媒を気液分離し、圧縮機が液冷媒を吸入するのを
防止すると共に、冷媒と一緒に流れている圧縮機の潤滑
油をアキュムレータ内に滞留させることなく、円滑に圧
縮機に返すことが要求される。従来の冷凍サイクルは図
11に示すように、圧縮機(51)、凝縮器(52)、減圧装置
(53)、蒸発器(54)、アキュムレータ(55)を順次冷媒配管
で接続したものであり、例えば、実開昭59−1080
4号公報に掲載されたアキュムレータ(55)は図12に示
すように、冷媒吸入管(56)および冷媒吐出管(57)を備
え、この冷媒吐出管(57)に油戻し管(58)を設け、さらに
このアキュムレータ(55)内に液冷媒を加熱するための加
熱装置(60)および液レベルを検知する検知装置(63)を備
えた構成となっている。
[0006] Generally, in a refrigeration cycle apparatus,
The accumulator is provided in front of the compressor suction side, separates the gas-liquid refrigerant into gas and liquid, prevents the compressor from inhaling the liquid refrigerant, and accumulates the compressor lubricating oil flowing with the refrigerant. It is required to return to the compressor smoothly without staying in the inside. As shown in FIG. 11, a conventional refrigeration cycle includes a compressor (51), a condenser (52), and a decompression device.
(53), an evaporator (54), and an accumulator (55) which are sequentially connected by refrigerant piping.
As shown in FIG. 12, the accumulator (55) disclosed in Japanese Patent Publication No. 4 includes a refrigerant suction pipe (56) and a refrigerant discharge pipe (57), and an oil return pipe (58) is attached to the refrigerant discharge pipe (57). The accumulator (55) further includes a heating device (60) for heating the liquid refrigerant and a detection device (63) for detecting the liquid level in the accumulator (55).

【0007】このような従来の冷凍サイクル装置におい
て、湿った状態の冷媒が吸入管(56)から流入した場合、
アキュムレータ(55)の底部に液冷媒が溜り込み、吐出管
(57)からは、ガス冷媒のみが流出する。アキュムレータ
(55)の底部には潤滑油も溜まり込み、液冷媒と溶け合
い、潤滑油と液冷媒の混合流体が油戻し管(58)から吐出
管(57)に吸入され、圧縮機摺動部の潤滑を行っている。
そしてアキュムレータ(55)内の液レベルが一定値以上に
上昇すると、レベル検知装置(63)によりこれを検知し、
加熱装置(60)により液冷媒が加熱され、ガス冷媒とな
り、吐出管(57)より圧縮機に吸入されていく。
In such a conventional refrigeration cycle apparatus, when the wet refrigerant flows from the suction pipe (56),
The liquid refrigerant accumulates at the bottom of the accumulator (55), and the discharge pipe
From (57), only the gas refrigerant flows out. accumulator
Lubricating oil also accumulates at the bottom of (55), dissolves with the liquid refrigerant, and a mixed fluid of the lubricating oil and liquid refrigerant is sucked into the discharge pipe (57) from the oil return pipe (58) to lubricate the sliding parts of the compressor. It is carried out.
Then, when the liquid level in the accumulator (55) rises above a certain value, this is detected by the level detector (63),
The liquid refrigerant is heated by the heating device (60), becomes a gas refrigerant, and is sucked into the compressor through the discharge pipe (57).

【0008】また、従来のもう一つの冷凍サイクルは、
図13に示すように、圧縮機(71)、四方弁(72)、室内熱
交換器(73)、逆止弁(74a)(74b)、レシーバ(75)、減圧装
置(76a)(76b)、室外熱交換器(77)、アキュムレータ(78)
を順次冷媒配管により機能的に接続したものである。
Another conventional refrigeration cycle is as follows:
As shown in FIG. 13, a compressor (71), a four-way valve (72), an indoor heat exchanger (73), a check valve (74a) (74b), a receiver (75), a pressure reducing device (76a) (76b) , Outdoor heat exchanger (77), accumulator (78)
Are sequentially and functionally connected by a refrigerant pipe.

【0009】このような従来の冷凍サイクル装置におい
て、圧縮機(71)を正常に作動させるために必要な潤滑油
はアキュムレータ(78)より供給している。潤滑油はアキ
ュムレータ(78)内において冷媒と溶け合って存在し、液
冷媒との混合流体としてアキュムレータの底部に溜ま
り、アキュムレータの吐出管に設けられた油戻し孔より
冷凍サイクルに戻り、圧縮機に送られ、圧縮機摺動部の
潤滑が行われる。
In such a conventional refrigeration cycle apparatus, lubricating oil necessary for normal operation of the compressor (71) is supplied from an accumulator (78). The lubricating oil is present in the accumulator (78) in a state of being dissolved with the refrigerant, accumulates as a mixed fluid with the liquid refrigerant at the bottom of the accumulator, returns to the refrigerating cycle through an oil return hole provided in the discharge pipe of the accumulator, and is sent to the compressor. The lubrication of the sliding part of the compressor is performed.

【0010】[0010]

【発明が解決しようとする課題】図11に示すような従
来のアキュムレータは、圧縮機の吸入側の手前に設けら
れ、圧縮機内に冷媒液が流入するのを防止すると共に、
潤滑油が円滑に流入することが要求されるが、冷媒液よ
りも比重の小さい潤滑油を使用した場合、湿った状態の
冷媒ガスが吸入管(2)を経て筒状密閉容器(1)内に流入し
た際、筒状密閉容器(1)の底部に溜まった混合液は、上
部に潤滑油、下部に冷媒液と層別されるため、小孔(8)
から冷媒液のみが吸入され、潤滑油が圧縮機に戻らなく
なり、圧縮機の摩耗等により、破損する等の問題があっ
た。
A conventional accumulator as shown in FIG. 11 is provided in front of the suction side of a compressor to prevent refrigerant liquid from flowing into the compressor.
It is required that the lubricating oil flows smoothly, but if a lubricating oil having a specific gravity smaller than the refrigerant liquid is used, the moist refrigerant gas will flow through the suction pipe (2) into the cylindrical closed vessel (1). The liquid mixture collected at the bottom of the cylindrical closed container (1) when it flows into the small closed hole (8) is divided into lubricating oil at the top and refrigerant liquid at the bottom.
, The lubricating oil cannot return to the compressor, and the compressor may be damaged due to wear or the like.

【0011】また、図11に示すような従来の冷凍サイ
クル装置を構成する図12に示すようなアキュムレータ
(55)では、アキュムレータ(55)の底部に溜まる液冷媒と
潤滑油の混合液は両者の比重の関係上、上層部に潤滑油
の豊富な層が、下層部には液冷媒の豊富な層が溜まりや
すく、油戻し管(58)の上下方向の位置によっては、油戻
し管(58)より液冷媒のみを吸入し、潤滑油が圧縮機に戻
らず摩耗により圧縮機の損傷を引き起すおそれがあっ
た。上記の説明では、アキュムレータ(55)は冷媒と潤滑
油が互いに溶け合うことを前提としているが、潤滑油に
冷媒が全く溶けない場合には、アキュムレータ(55)内で
冷媒と潤滑油は完全に分離してしまい、両者の比重の関
係で潤滑油は液冷媒の上層側に溜まり込むことになり、
油戻し管(58)の位置に潤滑油がない限り潤滑油は圧縮機
に戻らずアキュムレータ(55)内に潤滑油が滞留し、圧縮
機の損傷を引き起すおそれがあった。
An accumulator as shown in FIG. 12 constituting a conventional refrigeration cycle apparatus as shown in FIG.
In (55), the mixture of liquid refrigerant and lubricating oil stored at the bottom of the accumulator (55) has a layer rich in lubricating oil in the upper layer and a layer rich in liquid refrigerant in the lower layer due to the specific gravity of the two. Depending on the vertical position of the oil return pipe (58), only liquid refrigerant is sucked from the oil return pipe (58), lubricating oil does not return to the compressor, and wear may cause damage to the compressor due to wear. was there. In the above description, the accumulator (55) is based on the assumption that the refrigerant and the lubricating oil are mutually soluble.If the refrigerant does not dissolve in the lubricating oil at all, the refrigerant and the lubricating oil are completely separated in the accumulator (55). The lubricating oil will accumulate in the upper layer of the liquid refrigerant due to the specific gravity of both.
As long as there is no lubricating oil at the position of the oil return pipe (58), the lubricating oil does not return to the compressor, and the lubricating oil stays in the accumulator (55), possibly causing damage to the compressor.

【0012】また、図13に示すような従来の冷凍サイ
クル装置を構成するアキュムレータにおいても上記と全
く同様に潤滑油が圧縮機に戻らず、圧縮機の損傷を引き
起すおそれがあった。
Further, in the accumulator constituting the conventional refrigeration cycle apparatus as shown in FIG. 13, the lubricating oil does not return to the compressor in the same manner as described above, and there is a possibility that the compressor may be damaged.

【0013】この発明は、上記のような問題点を解消す
るためになされたもので、潤滑油と冷媒とが相溶する場
合又は潤滑油に冷媒が全く溶けない場合でもアキュムレ
ータ内に潤滑油を滞留させることなく、冷媒ガスと潤滑
油を効率良く圧縮機に吸入させ、潤滑不全を防ぐことに
より、圧縮機の信頼性を確保し、圧縮機の破損を防止す
るアキュムレータ及び冷凍サイクル装置を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. Even when lubricating oil and refrigerant are compatible with each other or when refrigerant is not completely dissolved in lubricating oil, lubricating oil is stored in the accumulator. Provided are an accumulator and a refrigeration cycle device that ensure refrigerant reliability and prevent compressor damage by preventing refrigerant gas and lubricating oil from being efficiently sucked into a compressor without stagnation and preventing lubrication failure. The purpose is to do so.

【0014】[0014]

【課題を解決するための手段】請求項1の発明に係る冷
凍サイクル装置は、圧縮機、凝縮器、減圧装置、蒸発器
およびアキュムレータを順次冷媒配管で接続し、上記ア
キュムレータの底部に調整弁を介して圧縮機吸入側に潤
滑油を注入する吐出配管を接続した冷凍サイクル装置に
おいて、上記アキュムレータ底部を加熱する加熱装置、
上記アキュムレータの液面レベルを検出する液面レベル
検出器、上記アキュムレータ内の冷媒温度を検出する冷
媒温度検出器、および上記アキュムレータ内の冷媒飽和
温度を検出する冷媒飽和温度検出器を設け、上記液面レ
ベル検出器の所定レベル以上の検出に応じ上記加熱装置
を動作させ、上記冷媒温度検出器の検出温度が上記冷媒
飽和温度検出器の検出温度より高くなったときに上記加
熱装置の動作を終了させるとともに、上記調整弁を一定
時間開くようにしたことを主要な構成としている。
According to a first aspect of the present invention, there is provided a refrigeration cycle apparatus in which a compressor, a condenser, a decompression device, an evaporator, and an accumulator are sequentially connected by a refrigerant pipe, and an adjustment valve is provided at the bottom of the accumulator. In a refrigeration cycle device connected to a discharge pipe for injecting lubricating oil to the compressor suction side via a heating device for heating the bottom of the accumulator,
A liquid level detector for detecting a liquid level of the accumulator, a refrigerant temperature detector for detecting a refrigerant temperature in the accumulator, and a refrigerant saturation temperature detector for detecting a refrigerant saturation temperature in the accumulator; Operate the heating device in response to detection of a predetermined level or more by the surface level detector, and terminate the operation of the heating device when the detected temperature of the refrigerant temperature detector becomes higher than the detected temperature of the refrigerant saturation temperature detector. The main configuration is that the regulating valve is opened for a certain period of time.

【0015】請求項2の発明に係る冷凍サイクル装置
は、請求項1の構成に加え、冷凍サイクルを構成する凝
縮器と減圧装置の間に液溜め装置を備えたものである。
According to a second aspect of the present invention, there is provided a refrigeration cycle apparatus comprising, in addition to the configuration of the first aspect, a liquid storage device between a condenser and a pressure reducing device constituting the refrigeration cycle.

【0016】請求項3の発明に係る冷凍サイクル装置
は、圧縮機、凝縮器、レシーバ、第1の減圧装置、蒸発
器およびアキュムレータを順次冷媒配管で接続した冷凍
サイクル装置において、上記レシーバの下部を貫通し、
かつ圧縮機吸入側に接続する吐出配管を設け、この吐出
配管のレシーバと圧縮機吸入側の間に第2の減圧装置を
設け、上記第2の減圧装置の吐出側の配管と、上記凝縮
器及び蒸発器と上記レシーバとを接続する配管とを熱交
換させ、上記第2の減圧装置の開度調整により、上記レ
シーバから上記第2の減圧装置を介して上記圧縮機吸入
側に合流するまでにガス冷媒となるようにしたことを主
要な構成としている。
A refrigeration cycle apparatus according to a third aspect of the present invention is a refrigeration cycle apparatus in which a compressor, a condenser, a receiver, a first decompression device, an evaporator, and an accumulator are sequentially connected by refrigerant piping. Penetrate,
And a discharge pipe connected to the compressor suction side, a second pressure reducing device provided between the receiver of the discharge pipe and the compressor suction side, and a discharge-side pipe of the second pressure reducing device and the condenser And heat exchange between a pipe connecting the evaporator and the receiver, and adjusting the opening degree of the second decompression device until the merging from the receiver to the compressor suction side via the second decompression device. The main configuration is to be a gas refrigerant.

【0017】請求項4の発明に係る冷凍サイクル装置
は、請求項3の構成において、第2の減圧装置として温
度式膨張弁を使用し、この温度式膨張弁の吐出側配管部
に感温筒を取り付けたものである。
A refrigeration cycle apparatus according to a fourth aspect of the present invention is the refrigeration cycle apparatus according to the third aspect, wherein a temperature-type expansion valve is used as the second pressure reducing device, and a temperature-sensitive cylinder is provided at a discharge-side pipe portion of the temperature-type expansion valve. Is attached.

【0018】請求項5の発明に係る冷凍サイクル装置
は、請求項3の構成において、第2の減圧装置として電
子膨張弁を使用し、この電子膨張弁の吐出側配管部と熱
交換直後の配管とに温度センサを取り付け、これらによ
る検出温度差が所定値以上となるように、上記電子膨張
弁を開度調整するようにしたことを主要な構成としてい
る。
According to a fifth aspect of the present invention, there is provided a refrigeration cycle apparatus according to the third aspect, wherein an electronic expansion valve is used as the second pressure reducing device, and a pipe immediately after heat exchange with a discharge-side pipe portion of the electronic expansion valve. The main configuration is that a temperature sensor is attached to the electronic expansion valve and the opening degree of the electronic expansion valve is adjusted so that the detected temperature difference becomes a predetermined value or more.

【0019】請求項6の発明に係る冷凍サイクル装置
は、請求項1〜5の何れかの構成において、液冷媒と溶
解しない冷凍サイクル用潤滑油を用いたことを主要な構
成としている。
A refrigeration cycle apparatus according to a sixth aspect of the present invention is the refrigeration cycle apparatus according to any one of the first to fifth aspects, which mainly uses a refrigeration cycle lubricating oil which does not dissolve in the liquid refrigerant.

【0020】[0020]

【作用】請求項1の発明に係る冷凍サイクル装置は、液
面レベル検出器、冷媒飽和温度検出器および冷媒温度検
出器を設け、これらの検出器の検知信号により加熱装置
および弁を動作させることにより、圧縮機に確実に潤滑
油を戻すことができる。
According to a first aspect of the present invention, there is provided a refrigeration cycle apparatus including a liquid level detector, a refrigerant saturation temperature detector, and a refrigerant temperature detector, and operating a heating device and a valve based on detection signals from these detectors. Thereby, the lubricating oil can be reliably returned to the compressor.

【0021】請求項2の発明に係る冷凍サイクル装置
は、請求項1の発明に係る作用の他、液溜め装置に余剰
冷媒を溜めることにより、冷媒量の調整を行うものであ
る。
A refrigeration cycle apparatus according to a second aspect of the present invention adjusts the amount of refrigerant by storing excess refrigerant in a liquid storage device in addition to the operation according to the first aspect of the present invention.

【0022】請求項3の発明に係る冷凍サイクル装置
は、レシーバより第2の減圧装置を介して圧縮機吸入側
に吐出配管を設け、この吐出配管の第2の減圧装置の吐
出側の配管と、上記凝縮器及び蒸発器と上記レシーバと
を接続する配管とを熱交換させ、上記第2の減圧装置の
開度調整により、上記レシーバから上記第2の減圧装置
を介して上記圧縮機吸入側に合流するまでにガス冷媒と
なるようにしたことにより、圧縮機に一部の冷媒が気化
して潤滑油と共に供給されるものである。
In the refrigeration cycle apparatus according to the third aspect of the present invention, a discharge pipe is provided from the receiver via the second pressure reducing device to the compressor suction side, and the discharge pipe is connected to the discharge side pipe of the second pressure reducing device. Heat exchange is performed between a pipe connecting the condenser and the evaporator to the receiver, and by adjusting an opening degree of the second decompression device, the compressor is suctioned from the receiver via the second decompression device. A part of the refrigerant is vaporized and supplied to the compressor together with the lubricating oil by being made into a gas refrigerant before the refrigerant is joined.

【0023】請求項4の発明に係る冷凍サイクル装置
は、請求項3の発明に係る作用を温度式膨張弁の作動に
より、一層適正ならしめるものである。
A refrigeration cycle apparatus according to a fourth aspect of the present invention makes the operation according to the third aspect of the present invention more appropriate by operating a thermal expansion valve.

【0024】請求項5の発明に係る冷凍サイクル装置
は、請求項3の発明に係る作用を温度センサによる電子
膨張弁の作動により一層適正ならしめるものである。
The refrigeration cycle apparatus according to the fifth aspect of the present invention makes the operation according to the third aspect of the present invention more appropriate by operating the electronic expansion valve using a temperature sensor.

【0025】請求項6の発明に係る冷凍サイクル装置
は、請求項1〜5の発明に係る冷凍サイクル装置におい
て、液冷媒と溶解しない冷凍サイクル用潤滑油が気化し
た冷媒とともに圧縮機に戻されるのである。
According to the refrigeration cycle apparatus according to the sixth aspect of the present invention, in the refrigeration cycle apparatus according to the first to fifth aspects of the present invention, the lubricating oil for the refrigeration cycle that does not dissolve the liquid refrigerant is returned to the compressor together with the vaporized refrigerant. is there.

【0026】[0026]

【実施例】実施例1.以下、この発明の一実施例を図に
基づいて説明する。図11に示す従来例と同一部分につ
いては、同一符号を付す。図1はこの発明における冷凍
サイクルの冷媒回路を示す図であり、圧縮機(51)、凝縮
器(52)、減圧装置(53)、蒸発器(54)およびアキュムレー
タ(55)を順次冷媒配管で接続し、アキュムレータ(55)の
底部に圧縮機吸入側に接続される配管(59)を有する回路
を形成している。また図2は、この発明におけるアキュ
ムレータの内部を示す説明図である。このアキュムレー
タ(55)は、冷媒吸入管(56)および冷媒吐出管(57)を備
え、その底部に加熱装置(60)を設け、さらに圧縮機吸入
側に接続する吐出配管(59)を設けている。また、この吐
出配管(59)には弁(61)を備え、かつ、アキュムレータ(5
5)に液面レベル検出器(63)、冷媒飽和温度検出器(64)お
よび冷媒温度検出器(65)を備えている。
[Embodiment 1] An embodiment of the present invention will be described below with reference to the drawings. The same parts as those of the conventional example shown in FIG. FIG. 1 is a diagram showing a refrigerant circuit of a refrigeration cycle according to the present invention, in which a compressor (51), a condenser (52), a pressure reducing device (53), an evaporator (54), and an accumulator (55) are sequentially connected by refrigerant piping. A circuit having a pipe (59) connected to the compressor suction side at the bottom of the accumulator (55) is formed. FIG. 2 is an explanatory diagram showing the inside of the accumulator according to the present invention. The accumulator (55) includes a refrigerant suction pipe (56) and a refrigerant discharge pipe (57), a heating device (60) provided at the bottom thereof, and a discharge pipe (59) connected to the compressor suction side. I have. The discharge pipe (59) is provided with a valve (61) and the accumulator (5
5) is provided with a liquid level detector (63), a refrigerant saturation temperature detector (64), and a refrigerant temperature detector (65).

【0027】次に、図2におけるアキュムレータの作用
について説明する。冷凍サイクル運転中に湿った状態の
冷媒がアキュムレータ(55)の吸入管(56)から流入した場
合、アキュムレータ(55)内で気液分離され吐出管(57)か
らはガス冷媒が流出していき、アキュムレータ(55)の底
部には液冷媒と潤滑油が溜まり込む。液冷媒と潤滑油が
溶け合う場合は両者の比重の関係で上層部に潤滑油の豊
富な層が、下層部に液冷媒の豊富な層が溜まり込む。ま
た、液冷媒と潤滑油が溶け合わない場合には両者の比重
の関係で潤滑油が上層部に、液冷媒が下層部に分離して
溜まり込む。この時アキュムレータ(55)の底部に設けた
加熱装置(60)を用いて冷媒を冷媒飽和温度以上に十分に
加熱してやることにより下層部に留まり込んだ液冷媒が
蒸発してガス化し、吐出管(57)より圧縮機に吸入され、
アキュムレータ(55)には液冷媒が存在しなくなり潤滑油
のみがアキュムレータ(55)底部に溜まり込む。この後ア
キュムレータ(55)底部に設けた圧縮機吸入側に接続する
吐出配管(59)上の弁(61)を開くことにより、アキュムレ
ータ(55)底部に溜まり込んだ潤滑油が圧縮機に吸入され
ていく。この一連の動作をアキュムレータ(55)に設けた
液面レベル検出器(63)と冷媒飽和温度検出器(64)および
冷媒温度検出器(65)からの検知信号により制御してやれ
ば、アキュムレータ(55)内に溜まり込んだ潤滑油の圧縮
機への戻しを一括して制御することができ、圧縮機損傷
の原因となる液冷媒の吸入および潤滑油不足を回避し、
圧縮機の信頼性を確保することが可能となる。
Next, the operation of the accumulator in FIG. 2 will be described. When the wet refrigerant flows from the suction pipe (56) of the accumulator (55) during the refrigeration cycle operation, gas-liquid separation is performed in the accumulator (55), and gas refrigerant flows out from the discharge pipe (57). The liquid refrigerant and the lubricating oil accumulate at the bottom of the accumulator (55). When the liquid refrigerant and the lubricating oil are mixed, a layer rich in the lubricating oil accumulates in the upper layer and a layer enriched in the liquid refrigerant accumulates in the lower layer due to the specific gravity of the two. Further, when the liquid refrigerant and the lubricating oil do not dissolve, the lubricating oil separates and accumulates in the lower layer due to the specific gravity of the two. At this time, by using a heating device (60) provided at the bottom of the accumulator (55) to sufficiently heat the refrigerant to the refrigerant saturation temperature or more, the liquid refrigerant remaining in the lower layer evaporates and gasifies, and the discharge pipe ( 57) from the compressor
The liquid refrigerant does not exist in the accumulator (55), and only the lubricating oil accumulates at the bottom of the accumulator (55). Thereafter, by opening the valve (61) on the discharge pipe (59) connected to the compressor suction side provided at the bottom of the accumulator (55), the lubricating oil accumulated at the bottom of the accumulator (55) is sucked into the compressor. To go. If this series of operations is controlled by detection signals from the liquid level detector (63), the refrigerant saturation temperature detector (64), and the refrigerant temperature detector (65) provided in the accumulator (55), the accumulator (55) It is possible to control the return of the lubricating oil accumulated in the compressor to the compressor at a time, avoiding the suction of the liquid refrigerant and the shortage of lubricating oil that may cause compressor damage.
It is possible to ensure the reliability of the compressor.

【0028】なお図2においては、アキュムレータ(55)
内に加熱装置(60)を収容した例を示したが、この加熱装
置(60)はアキュムレータ(55)の外側底部に設け、外部か
ら加熱する構造としてもよい。また、この加熱装置(60)
の熱源としては、電気ヒータや圧縮機の吐出ガスを用い
ても同様の効果が得られる。
In FIG. 2, the accumulator (55)
Although the example in which the heating device (60) is accommodated in the inside is shown, the heating device (60) may be provided on the outer bottom of the accumulator (55), and may be configured to heat from the outside. In addition, this heating device (60)
The same effect can be obtained by using an electric heater or a discharge gas from a compressor as a heat source.

【0029】以上の一連の動作を図3のフローチャート
にて説明する。冷凍サイクル装置の運転開始一定時間経
過後、液面レベル検出器(63)によりアキュムレータ(55)
内の液面レベル検知を開始する。以後液面レベルの検知
は連続して行う必要はなく、あるサンプリングタイム毎
に行えばよい。液面レベルが設定値より高いときは、加
熱装置(60)をONすることにより、アキュムレータ(55)
内に溜まり込んだ液冷媒を加熱し、冷媒のガス化を促進
させる。その後アキュムレータ(55)内の圧力により変化
する冷媒飽和温度および冷媒温度の検知を検知器(64)お
よび(65)にて開始する。その後冷媒温度が冷媒飽和温度
より高くなった場合、すなわち過熱蒸気となった時液冷
媒のガス化が終了したものと判断し、加熱装置をOFF
する。この状態ではアキュムレータ(55)底部に潤滑油が
溜まり込んでいるので、弁(61)を開くことにより、潤滑
油が圧縮機に吸入されていく。そしてある一定時間経過
後、弁(61)を閉じて潤滑油を圧縮機に戻す一連の動作が
終了する。なお、液面レベルを検知する時間間隔および
弁(61)を開閉する時間間隔については、アキュムレータ
の容量や加熱装置の加熱容量等によって異なるので、あ
らかじめ試験等によって時間間隔を求めておき実機に適
用すればよい。また、弁(61)を電磁弁とすれば、弁(61)
開閉のタイミングを液面レベル検出器(63)からの検知信
号によって電気的に制御することができ、より制御性の
よいシステムを提供することができる。このようにし
て、アキュムレータ(55)内に溜まり込んだ潤滑油を強制
的に圧縮機に吸入させることにより、液冷媒と潤滑油が
溶け合わない場合でも、アキュムレータ(55)内に潤滑油
が溜まり込むことなく圧縮機に確実に潤滑油を戻すこと
が可能となり、圧縮機損傷の原因となる液冷媒の吸入お
よび潤滑油不足を回避し圧縮機の信頼性を確保すること
ができる。
The above series of operations will be described with reference to the flowchart of FIG. After a lapse of a fixed time from the start of operation of the refrigeration cycle device, the accumulator (55)
Starts liquid level detection in the inside. Thereafter, the detection of the liquid level does not need to be performed continuously, but may be performed every certain sampling time. When the liquid level is higher than the set value, by turning on the heating device (60), the accumulator (55) is turned on.
The liquid refrigerant accumulated inside is heated to promote gasification of the refrigerant. Thereafter, the detection of the refrigerant saturation temperature and the refrigerant temperature, which are changed by the pressure in the accumulator (55), is started by the detectors (64) and (65). Thereafter, when the refrigerant temperature becomes higher than the refrigerant saturation temperature, that is, when it becomes superheated vapor, it is determined that gasification of the liquid refrigerant has been completed, and the heating device is turned off.
I do. In this state, since the lubricating oil is accumulated at the bottom of the accumulator (55), the lubricating oil is sucked into the compressor by opening the valve (61). After a certain period of time, a series of operations for closing the valve (61) and returning the lubricating oil to the compressor ends. The time interval for detecting the liquid level and the time interval for opening and closing the valve (61) differ depending on the capacity of the accumulator and the heating capacity of the heating device. do it. If the valve (61) is an electromagnetic valve, the valve (61)
The opening / closing timing can be electrically controlled by the detection signal from the liquid level detector (63), and a system with better controllability can be provided. In this way, by forcibly sucking the lubricating oil accumulated in the accumulator (55) into the compressor, the lubricating oil is accumulated in the accumulator (55) even when the liquid refrigerant and the lubricating oil do not melt. This makes it possible to reliably return the lubricating oil to the compressor without intrusion, thereby avoiding the suction of the liquid refrigerant and the shortage of the lubricating oil which may cause damage to the compressor, and ensuring the reliability of the compressor.

【0030】実施例2.図4は、この発明の実施例2に
関する冷凍サイクルの冷媒回路を示す図である。この実
施例においても、図11に示す従来例や図1に示す実施
例1と同一または相当する部分については、同一符号を
付し、重複説明を省略する。図4と実施例1を示す図1
との異なる点は、凝縮器(52)と減圧装置(53)の間に液溜
め装置(62)を設けた点にあり、アキュムレータ内に溜ま
り込んだ冷媒や潤滑油を圧縮機に戻す動作については、
実施例1と全く同様である。アキュムレータ(55)は気液
分離機能、返油機能の他に余剰冷媒を溜込む機能も要求
される。この実施例においても実施例1と同様にアキュ
ムレータ(55)の底部に備えた加熱装置(60)をオンするこ
とにより、アキュムレータ(55)底部から配管(59)を通し
て圧縮機に潤滑油を戻す機能をもつが、この時アキュム
レータ(55)に溜まり込んだ余剰の液冷媒は、アキュムレ
ータ(55)に備えた加熱装置(60)をオンすることにより、
ガス化し冷凍サイクル中に戻っていくが、このままの状
態では冷凍サイクルは冷媒過剰の状態となる。したがっ
て液溜め装置(62)にこの余剰冷媒を溜めることにより、
冷凍サイクルは適正な冷媒量で運転され、かつアキュム
レータ(55)内に潤滑油が溜まり込むことなく圧縮機に確
実に潤滑油を戻すことが可能となり、圧縮機損傷の原因
となる液冷媒の吸入および潤滑油不足を回避し圧縮機の
信頼性を確保することができる。
Embodiment 2 FIG. FIG. 4 is a diagram illustrating a refrigerant circuit of a refrigeration cycle according to Embodiment 2 of the present invention. Also in this embodiment, the same reference numerals are given to the same or corresponding portions as those in the conventional example shown in FIG. 11 and the first embodiment shown in FIG. FIG. 4 and FIG. 1 showing the first embodiment.
The difference between this is that a liquid storage device (62) is provided between the condenser (52) and the pressure reducing device (53), and the operation of returning the refrigerant and lubricating oil stored in the accumulator to the compressor is described. Is
This is exactly the same as the first embodiment. The accumulator (55) is required to have a function of storing excess refrigerant in addition to a gas-liquid separation function and an oil return function. In this embodiment, as in the first embodiment, the heating device (60) provided at the bottom of the accumulator (55) is turned on to return the lubricating oil from the bottom of the accumulator (55) to the compressor through the pipe (59). At this time, the excess liquid refrigerant accumulated in the accumulator (55) turns on the heating device (60) provided in the accumulator (55),
Although it is gasified and returns during the refrigeration cycle, in this state, the refrigeration cycle is in a state of excess refrigerant. Therefore, by storing this excess refrigerant in the liquid storage device (62),
The refrigeration cycle is operated with an appropriate amount of refrigerant, and lubricating oil can be reliably returned to the compressor without accumulating lubricating oil in the accumulator (55). In addition, the shortage of lubricating oil can be avoided and the reliability of the compressor can be ensured.

【0031】実施例3.以下、この発明の一実施例を図
について説明する。図5はこの発明における冷凍サイク
ルの冷媒回路を示す図であり、圧縮機(71)、四方弁(7
2)、室内熱交換器(73)、逆止弁(74a)(74b)、レシーバ(7
5)、第1の減圧装置(76a)(76b)、室外熱交換器(77)、ア
キュムレータ(78)を冷媒配管で接続し、レシーバ(75)の
下部を貫通し、圧縮機吸入側に接続する吐出配管を有
し、レシーバ(75)と圧縮機吸入側の間に第2の減圧装置
(79)を備え、さらにレシーバ(75)から第2の減圧装置(7
9)を介して圧縮機吸入側に接続する吐出配管上におい
て、第2の減圧装置と圧縮機吸入側の間に室内熱交換器
(73)および室外熱交換器(77)からレシーバ(75)に通じる
配管と熱交換する熱交換器(80a)(80b)を設けた回路を形
成している。
Embodiment 3 FIG. An embodiment of the present invention will be described below with reference to the drawings. FIG. 5 is a diagram showing a refrigerant circuit of a refrigeration cycle according to the present invention, in which a compressor (71), a four-way valve (7
2), indoor heat exchanger (73), check valves (74a) (74b), receiver (7
5), the first decompression devices (76a) (76b), the outdoor heat exchanger (77), and the accumulator (78) are connected by refrigerant piping, penetrate the lower part of the receiver (75), and are connected to the compressor suction side And a second pressure reducing device between the receiver (75) and the compressor suction side.
(79), and further provided from the receiver (75) to the second decompression device (7).
On the discharge pipe connected to the compressor suction side via 9), the indoor heat exchanger is connected between the second pressure reducing device and the compressor suction side.
(73) and a circuit provided with a heat exchanger (80a) (80b) for exchanging heat with a pipe leading from the outdoor heat exchanger (77) to the receiver (75).

【0032】以下、図5における冷凍サイクル装置の作
用について説明する。レシーバ(75)と室内熱交換器(73)
および室外熱交換器(77)をつなぐ配管を流れる冷媒の状
態は高圧の液で、冷房または暖房運転においても状態は
変らないため、以下、暖房運転のもとで説明する。室内
熱交換器(73)から吐出し、逆止弁(74a)を通って、高圧
状態の冷媒が潤滑油と共にレシーバ(75)に流入する。レ
シーバは圧縮機吸入側と減圧装置(79)を介して冷媒配管
で接続されており、レシーバ(75)における圧力と圧縮機
吸入側の圧力の差に応じて、一部の流体がこの配管に吸
入される。この流体は潤滑油と冷媒が溶け合う場合には
両者の混合したもの、潤滑油と冷媒が溶け合わない場合
には潤滑油と液冷媒が分離したものである。吸入された
流体中の冷媒は、この減圧装置(79)を通過するときに、
減圧されて断熱膨張し、一部の冷媒が気化して、気液混
合冷媒となって、潤滑油と共に圧縮機(71)の吸入側に送
られる。このとき、冷媒は配管上の減圧装置(79)により
一部が気化し、気液混合状態となっているが、配管上の
熱交換器(80a)(80b)において、熱を吸収して全て気化
し、ガス状となって潤滑油と共に圧縮機に戻る。
The operation of the refrigeration cycle apparatus shown in FIG. 5 will be described below. Receiver (75) and indoor heat exchanger (73)
The state of the refrigerant flowing through the pipe connecting the outdoor heat exchanger (77) is a high-pressure liquid, and the state does not change even in the cooling or heating operation. Therefore, the state will be described below under the heating operation. The refrigerant discharged from the indoor heat exchanger (73) passes through the check valve (74a), and the high-pressure refrigerant flows into the receiver (75) together with the lubricating oil. The receiver is connected to the compressor suction side via a refrigerant pipe via a decompression device (79), and a part of the fluid is supplied to this pipe according to the difference between the pressure at the receiver (75) and the pressure at the compressor suction side. Inhaled. This fluid is a mixture of the lubricating oil and the refrigerant when the lubricating oil and the refrigerant are soluble, and a fluid when the lubricating oil and the refrigerant are not soluble. When the refrigerant in the sucked fluid passes through the pressure reducing device (79),
The pressure is reduced and the adiabatic expansion is performed, and a part of the refrigerant is vaporized to become a gas-liquid mixed refrigerant and sent to the suction side of the compressor (71) together with the lubricating oil. At this time, the refrigerant is partially vaporized by the pressure reducing device (79) on the pipe and is in a gas-liquid mixed state, but the heat exchangers (80a) (80b) on the pipe absorb heat and all It evaporates and becomes gaseous and returns to the compressor together with the lubricating oil.

【0033】このように、潤滑油と冷媒が溶け合わない
場合でも、またアキュムレータ(78)において一部の潤滑
油が滞留した場合でも、レシーバ(75)から圧縮機吸入側
に接続する吐出配管を通し、熱交換により冷媒を全て気
化して潤滑油を送ることにより、圧縮機への潤滑油の供
給が円滑になり、潤滑油不足による圧縮機の損傷が回避
でき、圧縮機の信頼性を確保することができる。
As described above, even when the lubricating oil and the refrigerant do not mix with each other, or when a part of the lubricating oil stays in the accumulator (78), the discharge pipe connected from the receiver (75) to the compressor suction side can be used. Through the heat exchange, all the refrigerant is vaporized and lubricating oil is sent, smoothing the supply of lubricating oil to the compressor, avoiding damage to the compressor due to insufficient lubricating oil, and ensuring compressor reliability. can do.

【0034】実施例4.図6は、この発明の実施例4に
関する冷凍サイクルの冷媒回路を示す図である。実施例
3と同一部分については同一符号を付し重複説明を省略
し、実施例3と同様に暖房運転のもとで説明する。図6
と実施例3を示す図5の異なる点は、減圧装置(79)の代
りに温度膨張弁(83)を設け、かつこの温度膨張弁を制御
するために、熱交換器(80b)の吐出側の配管に管温筒(8
4)を設けたところにある。
Embodiment 4 FIG. FIG. 6 is a diagram showing a refrigerant circuit of a refrigeration cycle according to Embodiment 4 of the present invention. The same parts as those in the third embodiment are denoted by the same reference numerals, and the description thereof will not be repeated. FIG.
5 showing Embodiment 3 and Embodiment 3 is different from FIG. 5 in that a temperature expansion valve (83) is provided instead of the pressure reducing device (79), and the discharge side of the heat exchanger (80b) is controlled to control the temperature expansion valve. Pipe temperature tube (8
4).

【0035】この実施例と実施例3の動作上の異なる点
は、圧縮機(71)に潤滑油と共に吸入される冷媒の温度を
温度式膨張弁(83)により制御する点である。この冷媒の
圧縮機(71)に吸入される冷媒の温度を制御することによ
り、アキュムレータ(78)を通って圧縮機(71)に吸入され
る冷媒との圧力の差を小さくし、吸入圧力の急激な低下
を防止し、かつ潤滑油不足を解消し、圧縮機の信頼性を
確保することができる。
The difference between this embodiment and the third embodiment in operation is that the temperature of the refrigerant sucked into the compressor (71) together with the lubricating oil is controlled by the temperature type expansion valve (83). By controlling the temperature of the refrigerant sucked into the compressor (71), the pressure difference between the refrigerant and the refrigerant sucked into the compressor (71) through the accumulator (78) is reduced, and the suction pressure is reduced. It is possible to prevent a sharp drop and eliminate shortage of lubricating oil, thereby ensuring the reliability of the compressor.

【0036】実施例5.図7は、この発明の実施例4に
関する冷凍サイクルの冷媒回路を示す図である。図7と
実施例4を示す図6との異なる点は、温度式膨張弁(83)
の代りに電子膨張弁(81)を設け、さらに、この電子膨張
弁(81)を制御するために、電子膨張弁(81)の存在する吐
出配管と、熱交換器(80b)の吐出側の配管に温度センサ
(82a)(82b)をそれぞれ設けたところにある。
Embodiment 5 FIG. FIG. 7 is a diagram showing a refrigerant circuit of a refrigeration cycle according to Embodiment 4 of the present invention. The difference between FIG. 7 and FIG. 6 showing the fourth embodiment is that the temperature type expansion valve (83)
In place of this, an electronic expansion valve (81) is provided, and further, in order to control the electronic expansion valve (81), a discharge pipe in which the electronic expansion valve (81) is present and a discharge side of the heat exchanger (80b) are provided. Temperature sensor on piping
(82a) and (82b) are provided respectively.

【0037】この実施例と実施例4の動作上の異なる点
は、圧縮機(71)に潤滑油と共に吸入される冷媒の過熱度
を電子膨張弁(81)により制御する点である。図8はこの
冷媒の過熱度の制御を示すフローチャートである。この
冷媒の過熱度の制御は温度センサ(82a)(82b)の温度差か
ら冷媒の過熱度を算出し、適正な過熱度(ほぼ3℃〜5
℃程度)になるように電子膨張弁(81)の絞りを制御する
もので、アキュムレータ(78)を通って圧縮機(71)に吸入
される冷媒との圧力の差をさらに小さくし、吸入圧力の
急激な低下を防止し、かつ潤滑油不足を解消し、圧縮機
の信頼性を確保することができる。
The difference between this embodiment and the fourth embodiment in operation is that the degree of superheat of the refrigerant sucked into the compressor (71) together with the lubricating oil is controlled by the electronic expansion valve (81). FIG. 8 is a flowchart showing the control of the degree of superheat of the refrigerant. In controlling the degree of superheat of the refrigerant, the degree of superheat of the refrigerant is calculated from the temperature difference between the temperature sensors (82a) and (82b).
(Approx. ° C) by controlling the throttle of the electronic expansion valve (81), further reducing the pressure difference between the refrigerant and the refrigerant drawn into the compressor (71) through the accumulator (78), Of the compressor can be prevented, the shortage of lubricating oil can be eliminated, and the reliability of the compressor can be ensured.

【0038】[0038]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0039】請求項1の発明によれば、圧縮機、凝縮
器、減圧装置、蒸発器およびアキュムレータを順次冷媒
配管で接続し、上記アキュムレータの底部に調整弁を介
して圧縮機吸入側に潤滑油を注入する吐出配管を接続し
た冷凍サイクル装置において、上記アキュムレータ底部
を加熱する加熱装置、上記アキュムレータの液面レベル
を検出する液面レベル検出器、上記アキュムレータ内の
冷媒温度を検出する冷媒温度検出器、および上記アキュ
ムレータ内の冷媒飽和温度を検出する冷媒飽和温度検出
器を設け、上記液面レベル検出器の所定レベル以上の検
出に応じ上記加熱装置を動作させ、上記冷媒温度検出器
の検出温度が上記冷媒飽和温度検出器の検出温度より高
くなったときに上記加熱装置の動作を終了させるととも
に、上記調整弁を一定時間開くようにしたので、アキュ
ムレータ内に潤滑油が溜まり込むことなく、圧縮機に確
実に潤滑油を戻すことが可能となり、圧縮機損傷の原因
となる液冷媒の吸入および潤滑油不足を回避し、圧縮機
の信頼性を確保することができる。
According to the first aspect of the present invention, a compressor, a condenser, a decompression device, an evaporator, and an accumulator are sequentially connected by a refrigerant pipe, and lubricating oil is supplied to the compressor suction side via an adjusting valve at the bottom of the accumulator. In a refrigeration cycle device connected to a discharge pipe for injecting a liquid, a heating device for heating the bottom of the accumulator, a liquid level detector for detecting a liquid level of the accumulator, and a refrigerant temperature detector for detecting a refrigerant temperature in the accumulator And a refrigerant saturation temperature detector for detecting a refrigerant saturation temperature in the accumulator is provided, and the heating device is operated in accordance with detection of a predetermined level or more of the liquid level detector, and the detected temperature of the refrigerant temperature detector is increased. When the temperature becomes higher than the temperature detected by the refrigerant saturation temperature detector, the operation of the heating device is terminated, and the adjustment valve is turned off. Since the lubricating oil is opened for a long time, lubricating oil can be reliably returned to the compressor without accumulating lubricating oil in the accumulator, avoiding suction of liquid refrigerant and insufficient lubricating oil that could cause compressor damage. Thus, the reliability of the compressor can be ensured.

【0040】また、請求項2の発明によれば、請求項1
の発明に加え、凝縮器と減圧装置の間に液溜め装置を備
えたので、冷凍サイクルに冷媒過剰の状態が生じても、
液溜め装置に余剰冷媒を溜めることにより、冷凍サイク
ルは適正な冷媒量で運転され、請求項16の発明と同様
の効果を得ることができる。
According to the invention of claim 2, according to claim 1,
In addition to the invention of the present invention, since the liquid storage device is provided between the condenser and the pressure reducing device, even if the refrigeration cycle has an excess refrigerant,
By storing excess refrigerant in the liquid storage device, the refrigeration cycle is operated with an appropriate amount of refrigerant, and the same effects as those of the sixteenth aspect can be obtained.

【0041】また、請求項3の発明によれば、圧縮機、
凝縮器、レシーバ、第1の減圧装置、蒸発器およびアキ
ュムレータを順次冷媒配管で接続した冷凍サイクル装置
において、上記レシーバの下部を貫通し、かつ圧縮機吸
入側に接続する吐出配管を設け、この吐出配管のレシー
バと圧縮機吸入側の間に第2の減圧装置を設け、上記第
2の減圧装置の吐出側の配管と、上記凝縮器及び蒸発器
と上記レシーバとを接続する配管とを熱交換させ、上記
第2の減圧装置の開度調整により、上記レシーバから上
記第2の減圧装置を介して上記圧縮機吸入側に合流する
までにガス冷媒となるようにしたことを主要な構成とし
たので、潤滑油がアキュムレータで滞留しても、このレ
シーバにおいて潤滑油を回収できるため圧縮機に常時潤
滑油を戻すことが可能となり、圧縮機損傷の原因の一つ
である潤滑油不足を解消し、圧縮機の信頼性を高めるこ
とができ、圧縮機に潤滑油と共に戻る冷媒が完全に気化
するため、潤滑油不足と共に液冷媒の吸入による圧縮機
の損傷を防止し、圧縮機の信頼性を向上させることがで
きる。
According to the third aspect of the present invention, a compressor,
In a refrigeration cycle apparatus in which a condenser, a receiver, a first decompression device, an evaporator, and an accumulator are sequentially connected by a refrigerant pipe, a discharge pipe penetrating a lower portion of the receiver and connected to a compressor suction side is provided. A second decompression device is provided between the receiver and the compressor suction side of the pipe, and heat exchange is performed between the pipe on the discharge side of the second decompression apparatus and the pipe connecting the condenser and the evaporator to the receiver. The main configuration is that the opening degree of the second decompression device is adjusted to be a gas refrigerant before the second decompression device joins the compressor suction side via the second decompression device through the second decompression device. Therefore, even if the lubricating oil stays in the accumulator, the lubricating oil can be recovered by this receiver, so that the lubricating oil can always be returned to the compressor, which is one of the causes of the compressor damage. This eliminates the need for lubricating oil and prevents the compressor from being damaged due to the inhalation of liquid refrigerant. Performance can be improved.

【0042】また、請求項4の発明によれば、第2の減
圧装置として温度式膨張弁を使用し、この温度式膨張弁
の吐出側配管部に感温筒を取り付け、これらの検出され
た温度差によって上記制御弁の絞りを制御するようにし
たので、圧縮機に吸入される冷媒の過熱度を適正なもの
とし、圧縮機に吸入される冷媒の圧力の急激な低下を防
止すると共に、潤滑油不足による圧縮機の損傷を防止
し、圧縮機の信頼性を向上させることができる。
According to the fourth aspect of the present invention, a temperature-type expansion valve is used as the second pressure reducing device, and a temperature-sensitive cylinder is attached to a discharge-side pipe portion of the temperature-type expansion valve. Since the throttle of the control valve is controlled by the temperature difference, the degree of superheat of the refrigerant sucked into the compressor is made appropriate, and a sharp decrease in the pressure of the refrigerant sucked into the compressor is prevented. Damage to the compressor due to lack of lubricating oil can be prevented, and the reliability of the compressor can be improved.

【0043】また、請求項5の発明によれば、第2の減
圧装置として電子膨張弁を使用し、この電子膨張弁の吐
出側配管部と熱交換直後の配管とに温度センサを取り付
け、これらによる検出温度差が所定値以上となるよう
に、上記電子膨張弁を開度調整するようにしたので、圧
縮機に吸入される冷媒の過熱度を適正なものとし、圧縮
機に吸入される冷媒の圧力の急激な低下を防止すると共
に潤滑油不足による圧縮機の損傷を防止し、圧縮機の信
頼性を向上させることができる。
According to the fifth aspect of the present invention, an electronic expansion valve is used as the second pressure reducing device, and a temperature sensor is attached to a discharge side pipe portion of the electronic expansion valve and a pipe immediately after heat exchange. The opening degree of the electronic expansion valve is adjusted so that the detected temperature difference becomes equal to or more than a predetermined value, so that the degree of superheat of the refrigerant drawn into the compressor is made appropriate, and the refrigerant drawn into the compressor is adjusted. Of the compressor can be prevented, and the compressor can be prevented from being damaged due to lack of lubricating oil, so that the reliability of the compressor can be improved.

【0044】また、請求項6の発明によれば、上記各発
明のものにおいて、液冷媒と溶解しない冷凍サイクル用
潤滑油を用いたので、液冷媒や潤滑油として安価なもの
が使用できる。
According to the invention of claim 6, in each of the above-mentioned inventions, lubricating oil for a refrigeration cycle that does not dissolve in the liquid refrigerant is used, so that inexpensive liquid refrigerant or lubricating oil can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1を示す冷凍サイクル装置の
冷媒回路図。
FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing Embodiment 1 of the present invention.

【図2】この発明の実施例1の冷凍サイクル装置のアキ
ュムレータの断面図。
FIG. 2 is a sectional view of an accumulator of the refrigeration cycle apparatus according to the first embodiment of the present invention.

【図3】この発明の実施例1における動作を示すフロー
チャート。
FIG. 3 is a flowchart showing an operation according to the first embodiment of the present invention.

【図4】この発明の実施例2を示す冷凍サイクル装置の
冷媒回路図。
FIG. 4 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a second embodiment of the present invention.

【図5】この発明の実施例3を示す冷凍サイクル装置の
冷媒回路図。
FIG. 5 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing a third embodiment of the present invention.

【図6】この発明の実施例4を示す冷凍サイクル装置の
冷媒回路図。
FIG. 6 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing a fourth embodiment of the present invention.

【図7】この発明の実施例5を示す冷凍サイクル装置の
冷媒回路図。
FIG. 7 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing Embodiment 5 of the present invention.

【図8】この発明の実施例5における冷媒過熱度の制御
を示すフローチャート。
FIG. 8 is a flowchart showing control of the degree of superheat of the refrigerant in Embodiment 5 of the present invention.

【図9】一般の冷凍サイクル装置の冷媒回路図。FIG. 9 is a refrigerant circuit diagram of a general refrigeration cycle device.

【図10】従来のアキュムレータの断面図。FIG. 10 is a sectional view of a conventional accumulator.

【図11】従来の冷凍サイクル装置の冷媒回路図。FIG. 11 is a refrigerant circuit diagram of a conventional refrigeration cycle device.

【図12】従来の冷凍サイクル装置におけるアキュムレ
ータの断面図。
FIG. 12 is a cross-sectional view of an accumulator in a conventional refrigeration cycle device.

【図13】従来の冷凍サイクル装置の冷媒回路図。FIG. 13 is a refrigerant circuit diagram of a conventional refrigeration cycle device.

【符号の説明】[Explanation of symbols]

1 筒状密閉容器、2 吸入管、7 吐出管、8 小
孔、14 圧縮機、15凝縮器、16 減圧器、17
蒸発器、18 アキュムレータ、51 圧縮機、52
凝縮器、53 減圧装置、54 蒸発器、55 アキュ
ムレータ、56吸入管、57 吐出管、58 油戻し
管、59 吐出配管、60 加熱装置、61 弁、62
液溜め装置、63 液面レベル検出器、64 冷媒飽
和温度検出器、65 冷媒温度検出器、71 圧縮機、
72 四方弁、73 室内熱交換器、74a 逆止弁、
74b 逆止弁、75 レシーバ、76a 減圧装置、
76b 減圧装置、77 室外熱交換器、78 アキュ
ムレータ、79 減圧装置、80a 熱交換器、80b
熱交換器、81 電子膨張弁(制御弁)、82a温度
センサ、82b 温度センサ、83 温度式膨張弁(制
御弁)、84 管温筒。
Reference Signs List 1 cylindrical closed container, 2 suction pipe, 7 discharge pipe, 8 small hole, 14 compressor, 15 condenser, 16 pressure reducer, 17
Evaporator, 18 accumulator, 51 compressor, 52
Condenser, 53 decompression device, 54 evaporator, 55 accumulator, 56 suction pipe, 57 discharge pipe, 58 oil return pipe, 59 discharge pipe, 60 heating device, 61 valve, 62
Reservoir, 63 Liquid level detector, 64 Refrigerant saturation temperature detector, 65 Refrigerant temperature detector, 71 Compressor,
72 four-way valve, 73 indoor heat exchanger, 74a check valve,
74b check valve, 75 receiver, 76a pressure reducing device,
76b pressure reducing device, 77 outdoor heat exchanger, 78 accumulator, 79 pressure reducing device, 80a heat exchanger, 80b
Heat exchanger, 81 electronic expansion valve (control valve), 82a temperature sensor, 82b temperature sensor, 83 temperature type expansion valve (control valve), 84 pipe temperature tube.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 孝行 静岡市小鹿三丁目18番1号 三菱電機株式 会社住環境エンジニアリング統括センター 内 (72)発明者 永野 雅夫 静岡市小鹿三丁目18番1号 三菱電機株式 会社住環境エンジニアリング統括センター 内 (72)発明者 枝吉 敦史 静岡市小鹿三丁目18番1号 三菱電機株式 会社住環境エンジニアリング統括センター 内 (72)発明者 小西 勝 東京都千代田区大手町二丁目6番2号 日 本建鐵株式会社内 (72)発明者 幸田 利秀 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 隅田 嘉裕 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 岡崎 多佳志 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 木藤良 善久 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 森本 修 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takayuki Yoshida 3-181, Oka, Shizuoka-shi Mitsubishi Electric Corporation Living Environment Engineering Management Center (72) Inventor Masao Nagano 3-181, Oga, Shizuoka-shi Mitsubishi (72) Inventor Atsushi Edayoshi 3-18-1, Oka, Shizuoka-shi Mitsubishi Electric Corporation Living Environment Engineering Management Center (72) Inventor Masaru Konishi 2-chome Otemachi, Chiyoda-ku, Tokyo 6-2 Nihon Kentei Co., Ltd. (72) Inventor Toshihide Koda 8-1-1, Tsukaguchi Honcho, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory (72) Inventor Yoshihiro Sumita 8-1-1, Tsukaguchi Honcho Amagasaki City 1 Mitsubishi Electric Corporation Central Research Laboratory (72) Inventor Takashi Okazaki Amagasaki 8-1-1, Ichizukaguchi Honcho Mitsubishi Electric Corporation Central Research Laboratory (72) Inventor Yoshihisa Kito 3-181-1, Oka, Shizuoka-shi Mitsubishi Electric Corporation Shizuoka Works (72) Inventor Osamu Morimoto Ichide Wakayama No. 6-5-66, Mitsubishi Electric Corporation Wakayama Manufacturing Co., Ltd. (72) Inventor Tomohiko Kasai No. 6-5-66 Tehira, Wakayama City Mitsubishi Electric Wakayama Manufacturing Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、蒸発器およ
びアキュムレータを順次冷媒配管で接続し、上記アキュ
ムレータの底部に調整弁を介して圧縮機吸入側に潤滑油
を注入する吐出配管を接続した冷凍サイクル装置におい
て、上記アキュムレータ底部を加熱する加熱装置、上記
アキュムレータの液面レベルを検出する液面レベル検出
器、上記アキュムレータ内の冷媒温度を検出する冷媒温
度検出器、および上記アキュムレータ内の冷媒飽和温度
を検出する冷媒飽和温度検出器を設け、上記液面レベル
検出器の所定レベル以上の検出に応じ上記加熱装置を動
作させ、上記冷媒温度検出器の検出温度が上記冷媒飽和
温度検出器の検出温度より高くなったときに上記加熱装
置の動作を終了させるとともに、上記調整弁を一定時間
開くようにしたことを特徴とする冷凍サイクル装置。
1. A compressor, a condenser, a decompression device, an evaporator, and an accumulator are sequentially connected by a refrigerant pipe, and a discharge pipe for injecting lubricating oil to a compressor suction side is connected to a bottom of the accumulator via an adjustment valve. In the refrigeration cycle apparatus, a heating device for heating the bottom of the accumulator, a liquid level detector for detecting a liquid level of the accumulator, a refrigerant temperature detector for detecting a refrigerant temperature in the accumulator, and a refrigerant in the accumulator A refrigerant saturation temperature detector for detecting a saturation temperature is provided, and the heating device is operated in response to detection of a predetermined level or more of the liquid level detector, and a detection temperature of the refrigerant temperature detector is set to a value of the refrigerant saturation temperature detector. When the temperature becomes higher than the detected temperature, the operation of the heating device is terminated, and the regulating valve is opened for a predetermined time. A refrigeration cycle device characterized by the above-mentioned.
【請求項2】 冷凍サイクルを構成する凝縮器と減圧装
置の間に液溜め装置を備えたことを特徴とする請求項1
記載の冷凍サイクル装置。
2. A liquid storage device is provided between a condenser and a pressure reducing device constituting a refrigeration cycle.
A refrigeration cycle apparatus as described in the above.
【請求項3】 圧縮機、凝縮器、レシーバ、第1の減圧
装置、蒸発器およびアキュムレータを順次冷媒配管で接
続した冷凍サイクル装置において、上記レシーバの下部
を貫通し、かつ圧縮機吸入側に接続する吐出配管を設
け、この吐出配管のレシーバと圧縮機吸入側の間に第2
の減圧装置を設け、上記第2の減圧装置の吐出側の配管
と、上記凝縮器及び蒸発器と上記レシーバとを接続する
配管とを熱交換させ、上記第2の減圧装置の開度調整に
より、上記レシーバから上記第2の減圧装置を介して上
記圧縮機吸入側に合流するまでにガス冷媒となるように
したことを特徴とする冷凍サイクル装置。
3. A refrigeration cycle apparatus in which a compressor, a condenser, a receiver, a first decompression device, an evaporator, and an accumulator are sequentially connected by refrigerant piping, and penetrates a lower portion of the receiver and is connected to a compressor suction side. A discharge pipe is provided between the receiver and the compressor suction side of the discharge pipe.
Is provided, and the pipe on the discharge side of the second decompressor and the pipe connecting the condenser and the evaporator to the receiver are subjected to heat exchange, and the opening degree of the second decompressor is adjusted. A refrigeration cycle apparatus wherein the refrigerant is converted into a gas refrigerant before it joins the compressor suction side via the second pressure reducing device from the receiver.
【請求項4】 第2の減圧装置として温度式膨張弁を使
用し、この温度式膨張弁の吐出側配管部に感温筒を取り
付けたことを特徴とする請求項3記載の冷凍サイクル装
置。
4. The refrigeration cycle apparatus according to claim 3, wherein a temperature-type expansion valve is used as the second pressure reducing device, and a temperature-sensitive cylinder is attached to a discharge-side pipe portion of the temperature-type expansion valve.
【請求項5】 第2の減圧装置として電子膨張弁を使用
し、この電子膨張弁の吐出側配管部と熱交換直後の配管
とに温度センサを取り付け、これらによる検出温度差が
所定値以上となるように、上記電子膨張弁を開度調整す
るようにしたことを特徴とする請求項3記載の冷凍サイ
クル装置。
5. An electronic expansion valve is used as a second pressure reducing device, and a temperature sensor is attached to a discharge side pipe portion of the electronic expansion valve and a pipe immediately after heat exchange, and a temperature difference detected by the temperature sensor is set to a predetermined value or more. 4. The refrigeration cycle apparatus according to claim 3, wherein an opening of the electronic expansion valve is adjusted so as to be adjusted.
【請求項6】 液冷媒と溶解しない冷凍サイクル用潤滑
油を用いたことを特徴とする請求項1〜5の何れかに記
載の冷凍サイクル装置。
6. The refrigeration cycle apparatus according to claim 1, wherein lubricating oil for a refrigeration cycle that does not dissolve in a liquid refrigerant is used.
JP2000193121A 1993-12-28 2000-06-27 Refrigeration cycle device Expired - Lifetime JP3439178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000193121A JP3439178B2 (en) 1993-12-28 2000-06-27 Refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP05334283A JP3104513B2 (en) 1993-12-28 1993-12-28 accumulator
JP2000193121A JP3439178B2 (en) 1993-12-28 2000-06-27 Refrigeration cycle device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05334283A Division JP3104513B2 (en) 1993-12-28 1993-12-28 accumulator

Publications (2)

Publication Number Publication Date
JP2001027460A true JP2001027460A (en) 2001-01-30
JP3439178B2 JP3439178B2 (en) 2003-08-25

Family

ID=27806844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000193121A Expired - Lifetime JP3439178B2 (en) 1993-12-28 2000-06-27 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP3439178B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100569833B1 (en) 2005-01-07 2006-04-11 한국에너지기술연구원 Flash tank of two-stage compression heat pump
EP1647783A2 (en) * 2004-10-18 2006-04-19 Mitsubishi Denki Kabushiki Kaisha Refrigeration/air conditioning equipment
US7104086B2 (en) 2002-07-10 2006-09-12 Daikin Industries, Ltd. Refrigeration apparatus
JP2007139257A (en) * 2005-11-16 2007-06-07 Fujitsu General Ltd Refrigeration device
JP2007154830A (en) * 2005-12-07 2007-06-21 Aisin Seiki Co Ltd Gas liquid separation device for compressor
EP1862749A2 (en) * 2006-05-30 2007-12-05 Sanden Corporation Vapor Compression Refrigeration Cycle
EP2000751A2 (en) * 2006-03-27 2008-12-10 Mitsubishi Electric Corporation Refrigeration air conditioning device
US7506518B2 (en) 2003-01-10 2009-03-24 Daikin Industries, Ltd. Refrigeration device and method for detecting refrigerant amount of refrigeration device
CN100523665C (en) * 2003-11-05 2009-08-05 Lg电子株式会社 System and method for recycling oil in air conditioner
EP1662215A3 (en) * 2004-11-25 2010-10-06 LG Electronics Inc. Oil separator for air conditioners
JP2012007864A (en) * 2010-06-28 2012-01-12 Mitsubishi Electric Corp Liquid receiver and refrigerating cycle device using the same
JP2012229893A (en) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp Refrigerating air conditioning device
CN103822413A (en) * 2012-05-02 2014-05-28 广东万和新电气股份有限公司 Detachable electric refrigerant heating body
EP2434236A3 (en) * 2010-09-27 2015-06-03 LG Electronics, Inc. Refrigerant system and a control method of the same
WO2015140884A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus
WO2015198431A1 (en) * 2014-06-25 2015-12-30 三菱電機株式会社 Refrigeration-cycle device, air conditioner, and method for controlling refrigeration cycle device
US20160238293A1 (en) * 2015-02-18 2016-08-18 Heatcraft Refrigeration Products Llc Oil line control system
CN106440438A (en) * 2016-11-24 2017-02-22 南京佳力图机房环境技术股份有限公司 Modularized magnetic levitation refrigeration system and multifunctional heat exchanger structure thereof
EP3173714A1 (en) 2015-11-25 2017-05-31 Mitsubishi Heavy Industries, Ltd. Refrigerating cycle system and liquid flow-back prevention method
EP2511629A4 (en) * 2009-12-10 2017-09-13 Mitsubishi Heavy Industries, Ltd. Air conditioner and method for detecting amount of refrigerant in air conditioner
JP2017198376A (en) * 2016-04-26 2017-11-02 株式会社デンソー Refrigeration cycle device
CN108444128A (en) * 2018-05-14 2018-08-24 西安交通大学 A kind of Trans-critical cycle CO2Wet Compression heat pump system and its operating method
CN109579344A (en) * 2018-11-27 2019-04-05 南京天加环境科技有限公司 A kind of air-conditioning system and its control method that can prevent compressor liquid hammer
CN110193212A (en) * 2019-05-14 2019-09-03 绍兴西爱西尔数控科技有限公司 A kind of rectifier unit of refrigerant point oil
CN111486626A (en) * 2020-04-30 2020-08-04 宁波奥克斯电气股份有限公司 Liquid-gas separator, air conditioner and liquid-gas separation method
CN111947354A (en) * 2020-09-02 2020-11-17 珠海格力电器股份有限公司 Oil separator, control method thereof and air conditioning unit
WO2021038852A1 (en) * 2019-08-30 2021-03-04 三菱電機株式会社 Refrigeration cycle device
EP3943839A4 (en) * 2019-03-22 2022-05-18 NEC Corporation Liquid separator, cooling system, and gas-liquid separation method
CN114893923A (en) * 2022-04-16 2022-08-12 郑州大学 Working medium component concentration active regulation-based self-overlapping system and control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738033B (en) * 2008-11-21 2014-07-23 湖南艾捷能节能科技有限公司 Refrigerant purification economizer
CN111306855B (en) * 2020-02-26 2021-01-08 珠海格力电器股份有限公司 Refrigerant heating control method and device for improving stability and air conditioning equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228776U (en) * 1975-08-22 1977-02-28
JPS5365053U (en) * 1976-11-05 1978-06-01
JPS6066064A (en) * 1983-09-22 1985-04-16 三洋電機株式会社 Refrigerator
JPS6325462A (en) * 1986-07-16 1988-02-02 三菱電機株式会社 Air conditioner
JPS6363660U (en) * 1986-10-15 1988-04-27
JPH02120667U (en) * 1989-03-10 1990-09-28
JPH02298770A (en) * 1989-05-10 1990-12-11 Daikin Ind Ltd Multiple type air conditioner
JPH04240355A (en) * 1991-01-22 1992-08-27 Toshiba Corp Controlling method for electronic expansion valve of air conditioner
JPH04283360A (en) * 1991-03-11 1992-10-08 Daikin Ind Ltd Refrigerator
JPH04344072A (en) * 1991-05-20 1992-11-30 Sanyo Electric Co Ltd Air conditioner
JPH05157379A (en) * 1991-07-12 1993-06-22 Mitsubishi Electric Corp Refrigerant compressor, refrigerator, refrigerating air conditioner and refrigerating system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228776U (en) * 1975-08-22 1977-02-28
JPS5365053U (en) * 1976-11-05 1978-06-01
JPS6066064A (en) * 1983-09-22 1985-04-16 三洋電機株式会社 Refrigerator
JPS6325462A (en) * 1986-07-16 1988-02-02 三菱電機株式会社 Air conditioner
JPS6363660U (en) * 1986-10-15 1988-04-27
JPH02120667U (en) * 1989-03-10 1990-09-28
JPH02298770A (en) * 1989-05-10 1990-12-11 Daikin Ind Ltd Multiple type air conditioner
JPH04240355A (en) * 1991-01-22 1992-08-27 Toshiba Corp Controlling method for electronic expansion valve of air conditioner
JPH04283360A (en) * 1991-03-11 1992-10-08 Daikin Ind Ltd Refrigerator
JPH04344072A (en) * 1991-05-20 1992-11-30 Sanyo Electric Co Ltd Air conditioner
JPH05157379A (en) * 1991-07-12 1993-06-22 Mitsubishi Electric Corp Refrigerant compressor, refrigerator, refrigerating air conditioner and refrigerating system

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104086B2 (en) 2002-07-10 2006-09-12 Daikin Industries, Ltd. Refrigeration apparatus
US7506518B2 (en) 2003-01-10 2009-03-24 Daikin Industries, Ltd. Refrigeration device and method for detecting refrigerant amount of refrigeration device
US7647784B2 (en) 2003-01-10 2010-01-19 Daikin Industries, Ltd. Refrigeration device and method for detecting refrigerant amount of refrigeration device
CN100523665C (en) * 2003-11-05 2009-08-05 Lg电子株式会社 System and method for recycling oil in air conditioner
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
USRE43998E1 (en) 2004-10-18 2013-02-19 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP1647783A3 (en) * 2004-10-18 2007-12-26 Mitsubishi Denki Kabushiki Kaisha Refrigeration/air conditioning equipment
EP2119982A3 (en) * 2004-10-18 2011-01-12 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP2119983A3 (en) * 2004-10-18 2011-01-12 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP2119984A3 (en) * 2004-10-18 2011-01-12 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP1647783A2 (en) * 2004-10-18 2006-04-19 Mitsubishi Denki Kabushiki Kaisha Refrigeration/air conditioning equipment
EP1662215A3 (en) * 2004-11-25 2010-10-06 LG Electronics Inc. Oil separator for air conditioners
KR100569833B1 (en) 2005-01-07 2006-04-11 한국에너지기술연구원 Flash tank of two-stage compression heat pump
JP2007139257A (en) * 2005-11-16 2007-06-07 Fujitsu General Ltd Refrigeration device
JP2007154830A (en) * 2005-12-07 2007-06-21 Aisin Seiki Co Ltd Gas liquid separation device for compressor
EP2000751A4 (en) * 2006-03-27 2010-03-24 Mitsubishi Electric Corp Refrigeration air conditioning device
EP2000751A2 (en) * 2006-03-27 2008-12-10 Mitsubishi Electric Corporation Refrigeration air conditioning device
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
EP1862749A2 (en) * 2006-05-30 2007-12-05 Sanden Corporation Vapor Compression Refrigeration Cycle
EP1862749A3 (en) * 2006-05-30 2008-12-24 Sanden Corporation Vapor Compression Refrigeration Cycle
EP2511629A4 (en) * 2009-12-10 2017-09-13 Mitsubishi Heavy Industries, Ltd. Air conditioner and method for detecting amount of refrigerant in air conditioner
JP2012007864A (en) * 2010-06-28 2012-01-12 Mitsubishi Electric Corp Liquid receiver and refrigerating cycle device using the same
EP2434236A3 (en) * 2010-09-27 2015-06-03 LG Electronics, Inc. Refrigerant system and a control method of the same
JP2012229893A (en) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp Refrigerating air conditioning device
CN103822413B (en) * 2012-05-02 2016-01-20 广东万和新电气股份有限公司 Removable cold-producing medium electric heating body
CN103822413A (en) * 2012-05-02 2014-05-28 广东万和新电气股份有限公司 Detachable electric refrigerant heating body
WO2015140884A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus
EP3121534A4 (en) * 2014-03-17 2017-12-13 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2015140884A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
US10101069B2 (en) 2014-03-17 2018-10-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP5908177B1 (en) * 2014-06-25 2016-04-26 三菱電機株式会社 Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus
WO2015198431A1 (en) * 2014-06-25 2015-12-30 三菱電機株式会社 Refrigeration-cycle device, air conditioner, and method for controlling refrigeration cycle device
US20160238293A1 (en) * 2015-02-18 2016-08-18 Heatcraft Refrigeration Products Llc Oil line control system
US10408513B2 (en) * 2015-02-18 2019-09-10 Heatcraft Refrigeration Products, Inc. Oil line control system
JP2017096564A (en) * 2015-11-25 2017-06-01 三菱重工業株式会社 Refrigeration cycle system and liquid back prevention method
EP3173714A1 (en) 2015-11-25 2017-05-31 Mitsubishi Heavy Industries, Ltd. Refrigerating cycle system and liquid flow-back prevention method
JP2017198376A (en) * 2016-04-26 2017-11-02 株式会社デンソー Refrigeration cycle device
CN106440438A (en) * 2016-11-24 2017-02-22 南京佳力图机房环境技术股份有限公司 Modularized magnetic levitation refrigeration system and multifunctional heat exchanger structure thereof
CN108444128A (en) * 2018-05-14 2018-08-24 西安交通大学 A kind of Trans-critical cycle CO2Wet Compression heat pump system and its operating method
CN109579344A (en) * 2018-11-27 2019-04-05 南京天加环境科技有限公司 A kind of air-conditioning system and its control method that can prevent compressor liquid hammer
EP3943839A4 (en) * 2019-03-22 2022-05-18 NEC Corporation Liquid separator, cooling system, and gas-liquid separation method
CN110193212A (en) * 2019-05-14 2019-09-03 绍兴西爱西尔数控科技有限公司 A kind of rectifier unit of refrigerant point oil
JPWO2021038852A1 (en) * 2019-08-30 2021-12-23 三菱電機株式会社 Refrigeration cycle device
WO2021038852A1 (en) * 2019-08-30 2021-03-04 三菱電機株式会社 Refrigeration cycle device
CN111486626A (en) * 2020-04-30 2020-08-04 宁波奥克斯电气股份有限公司 Liquid-gas separator, air conditioner and liquid-gas separation method
CN111947354A (en) * 2020-09-02 2020-11-17 珠海格力电器股份有限公司 Oil separator, control method thereof and air conditioning unit
CN111947354B (en) * 2020-09-02 2024-03-19 珠海格力电器股份有限公司 Oil separator, control method thereof and air conditioning unit
CN114893923A (en) * 2022-04-16 2022-08-12 郑州大学 Working medium component concentration active regulation-based self-overlapping system and control method
CN114893923B (en) * 2022-04-16 2023-05-26 郑州大学 Automatic overlapping system based on active regulation and control of concentration of working medium components and control method

Also Published As

Publication number Publication date
JP3439178B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
JP2001027460A (en) Refrigeration cycle system
CN100590372C (en) Refrigeration circuit with improved liquid/steam receiver
US5953934A (en) Refrigerant circulating apparatus and method of assembling a refrigerant circuit
CN107208937A (en) Conditioner
JP3743861B2 (en) Refrigeration air conditioner
JPH0232547B2 (en)
JP3238973B2 (en) Refrigeration equipment
CN105716307A (en) Air conditioner
WO2017037771A1 (en) Refrigeration cycle device
CN108369046A (en) Refrigerating circulatory device
JP2003097443A (en) Compressor and refrigeration unit
JP3852591B2 (en) Refrigeration cycle
JP2005083704A (en) Refrigerating cycle and air conditioner
JP2018204805A (en) Refrigeration unit, refrigeration system and control method for refrigerant circuit
JP3714348B2 (en) Refrigeration equipment
JP2015102256A (en) Air conditioner
JP2011141104A (en) Refrigerating air conditioning device
JP4274250B2 (en) Refrigeration equipment
US20140165646A1 (en) Oil Compensation In A Refrigeration Circuit
JPH102640A (en) Refrigerator
JP4258030B2 (en) Refrigerant circulation device
JP3492427B2 (en) Refrigeration air conditioner
CN207335217U (en) Efficient parallel-screw chilled water system
JPH10246521A (en) Freezer, air conditioner and method for assembling refrigerant circuit
JP3873317B2 (en) Refrigerant circulation system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

EXPY Cancellation because of completion of term