JP2001026922A - Earthquake-proof reinforcing method for existing tunnel - Google Patents

Earthquake-proof reinforcing method for existing tunnel

Info

Publication number
JP2001026922A
JP2001026922A JP11199462A JP19946299A JP2001026922A JP 2001026922 A JP2001026922 A JP 2001026922A JP 11199462 A JP11199462 A JP 11199462A JP 19946299 A JP19946299 A JP 19946299A JP 2001026922 A JP2001026922 A JP 2001026922A
Authority
JP
Japan
Prior art keywords
tunnel
ground
seismic
improvement
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11199462A
Other languages
Japanese (ja)
Inventor
Takeyasu Suzuki
猛康 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP11199462A priority Critical patent/JP2001026922A/en
Publication of JP2001026922A publication Critical patent/JP2001026922A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform earthquake-proof reinforcing work for an existing tunnel so as to reduce shear deformation amount of the ground at outer periphery of the existing tunnel when earthquake occurs. SOLUTION: Soil improvement agent is poured into outer periphery of a tunnel 1 from the inside of the tunnel 1 or a ground surface 6 to increase shear rigidity of the ground 7 at outer periphery of the tunnel 1 so as to reduce shear deformation amount 9 of the ground 7 at outer periphery of the tunnel 1 when earthquake occurs and shear deformation amount 9 of the tunnel 1 so that a cross sectional force generated when earthquake occurs of the tunnel 1 is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、既設トンネルの耐
震補強方法に関するものであり、特に、トンネル外周地
盤を改良し、トンネル横断面のせん断変形自体を小さく
抑制する既設トンネルの耐震補強方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic retrofitting method for an existing tunnel, and more particularly to a seismic retrofitting method for an existing tunnel by improving the ground around the tunnel and suppressing the shear deformation itself of the cross section of the tunnel. It is.

【0002】[0002]

【従来の技術】従来、地盤内にシールド機を掘進させト
ンネルを形成する際、シールド機の周囲の地山を繊維状
の補強材を混入した固化剤を注入しながら攪拌し、シー
ルド機の周囲に固化剤と地山とを混練した繊維補強固化
層を形成するものがある。(特開平2−210198号
公報)一方、既存の地下鉄、道路及び下水道トンネル等
の地下構造物に対し、大地震時に備えて耐震補強をする
際、側壁や床版の鉄筋コンクリート巻き付けによるせ
ん断補強、鉄板や強化プラスチック(FRP)シート
貼着によるせん断及び曲げ補強、中柱を有するトンネ
ルに於ける中柱の靱性補強及びせん断補強等が行われ
る。
2. Description of the Related Art Conventionally, when a shield machine is excavated in the ground to form a tunnel, a ground around the shield machine is stirred while a solidifying agent mixed with a fibrous reinforcing material is injected thereinto, and the surroundings of the shield machine are stirred. There is one that forms a fiber-reinforced solidified layer by kneading a solidifying agent and ground. On the other hand, when reinforcing existing underground structures such as subways, roads and sewer tunnels in preparation for a large earthquake, shear reinforcement by winding reinforced concrete on side walls and floor slabs, and iron plate And reinforced plastic (FRP) sheet attachment, shear and bending reinforcement, and toughness and shear reinforcement of the middle pillar in a tunnel having a middle pillar.

【0003】[0003]

【発明が解決しようとする課題】前記シールド機の周囲
の地山を補強する方法はトンネル構築後の地山の崩壊や
漏水を防止し、トンネルの安定性を維持するものであ
り、大地震時の耐震性は考慮されていない。
The method of reinforcing the ground around the shield machine is intended to prevent collapse and water leakage of the ground after the construction of the tunnel and to maintain the stability of the tunnel. Is not considered.

【0004】一方、前記耐震補強のうち及びの補強
は、部材の断面を増加させるせん断補強や構造物の内面
が引張となる曲げ補強には有効であるが、構造物の外面
が引張となる曲げに対する補強に対しては有効とならな
い。更に、構造物自体の空間の制限から構造物の部材断
面を増加させることによって内空断面を減少させること
ができない場合が多い。
On the other hand, among the above-mentioned seismic reinforcement, the reinforcement is effective for shear reinforcement for increasing the cross section of a member or for bending reinforcement in which the inner surface of a structure is tensile, but bending in which the outer surface of the structure is tensile. It is not effective for reinforcement for Furthermore, due to the limited space of the structure itself, it is often not possible to reduce the inner space section by increasing the member cross section of the structure.

【0005】又、前記の補強に於ては、地下鉄の駅部
等に採用する場合には、供用しながらの補強工事とな
り、且つ、建築空間の制限等により補強作業が困難とな
る。依って、構造物の外部を補強し、部材断面を増加さ
せたり、曲げ耐力を増加させることは、周囲を地盤で覆
われている地下構造物(トンネル)では、構造物位置ま
で地盤を掘削しない限り不可能である。
[0005] In addition, when the above-mentioned reinforcement is applied to a subway station or the like, the reinforcement work is performed while the service is in use, and the reinforcement work becomes difficult due to restrictions on the building space and the like. Therefore, to reinforce the exterior of the structure, increase the section of the member, or increase the bending strength, do not excavate the ground to the structure position in an underground structure (tunnel) that is covered with the ground. As long as it is impossible.

【0006】そこで、トンネルの大地震時に対する耐震
補強をトンネル内及び地表面から行い、トンネル外周の
地盤のせん断剛性を高めることにより、トンネル外周の
地盤のせん断変形量を低減させる既設トンネルの耐震補
強方法を得るために解決すべき技術的課題が生じてくる
のであり、本発明はこの課題を解決することを目的とす
る。
Accordingly, seismic reinforcement of the tunnel in case of a large earthquake is performed from the inside of the tunnel and from the ground surface to increase the shear rigidity of the ground around the tunnel, thereby reducing the amount of shear deformation of the ground around the tunnel. The technical problem to be solved arises in order to obtain the method, and the present invention aims to solve this problem.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために提案されたものであり、トンネルの耐震診断
によって耐震補強が必要との評価を受けた既設トンネル
の耐震補強方法に於て、該トンネル外周へ該トンネル内
又は地表面より地盤改良材を注入し、該トンネル外周の
地盤のせん断剛性を高めることにより、該トンネル外周
の該地盤の地震時せん断変形量を低減させ、且つ、該ト
ンネルのせん断変形量を低減させることで該トンネルの
地震時発生断面力を低減させる既設トンネルの耐震補強
方法、及びトンネル外周の地盤のせん断剛性を高める地
盤改良部の範囲と必要とされる改良後の地盤の剛性は、
数値解析によって決定する既設トンネルの耐震補強方
法、並びに地盤改良部の範囲及び必要とされる改良後の
地盤の剛性は、耐震設計に於けるトンネル部材断面力の
許容値と該地盤改良部の範囲又は改良地盤のヤング率と
の関係から決定されると共に、該ヤング率の該改良地盤
となるように配合した地盤改良材をトンネル外周の地盤
へ注入する既設トンネルの耐震補強方法を提供するもの
である。
DISCLOSURE OF THE INVENTION The present invention has been proposed in order to achieve the above-mentioned object, and it is an object of the present invention to provide a method for seismic retrofitting of an existing tunnel which has been evaluated as needing seismic retrofitting by seismic diagnosis of the tunnel. By injecting a ground improvement material from the inside of the tunnel or from the ground surface to the outer periphery of the tunnel, and increasing the shear rigidity of the ground around the tunnel, reducing the amount of shear deformation of the ground around the tunnel during an earthquake, and A seismic reinforcement method for an existing tunnel that reduces the cross-sectional force generated during an earthquake in the tunnel by reducing the amount of shear deformation of the tunnel, the range of a ground improvement unit that increases the shear rigidity of the ground around the tunnel, and required improvements The rigidity of the back ground is
The seismic retrofitting method of the existing tunnel determined by numerical analysis, the range of the ground improvement part and the required rigidity of the ground after the improvement are based on the permissible value of the tunnel member sectional force in the seismic design and the range of the ground improvement part. Or, it is determined from the relationship with the Young's modulus of the improved ground, and provides a method for seismic reinforcement of an existing tunnel by injecting a ground improvement material blended to be the improved ground of the Young's modulus into the ground around the tunnel. is there.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施の形態を図
1乃至図3に従って詳述する。図1は周囲を地盤7に覆
われている既設の開削トンネル1を示す。該開削トンネ
ル1は上部を上床版2、下部を下床版3、両側を側壁
4,4で構成する横長の矩形断面を有し、中央には中柱
5を立設する。該開削トンネル1を大地震時の地盤7の
せん断変形8等から防護するための耐震補強を必要とす
る。該開削トンネル1を新設する際には周辺地盤とトン
ネルとの間に免震層(図示せず)を形成することによ
り、トンネルの横断面変形に伴って発生する断面力を大
きく低減させて地震時の安全性を向上させることができ
る。しかし、既設トンネルに該免震層を形成することは
困難である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 1 shows an existing excavation tunnel 1 whose periphery is covered with a ground 7. The excavation tunnel 1 has an oblong rectangular section having an upper floor slab 2 at an upper part, a lower floor slab 3 at a lower part, and side walls 4 and 4 on both sides, and a middle pillar 5 is erected in the center. Seismic reinforcement is required to protect the excavation tunnel 1 from shear deformation 8 of the ground 7 during a large earthquake. When the excavation tunnel 1 is newly constructed, a seismic isolation layer (not shown) is formed between the surrounding ground and the tunnel to greatly reduce the cross-sectional force generated due to the cross-sectional deformation of the tunnel. Safety at the time can be improved. However, it is difficult to form the seismic isolation layer in an existing tunnel.

【0009】尚、トンネルの横断面に断面力を発生させ
る地震荷重は、上下床版の間で相対的に発生する地盤
の相対変位、トンネルの剛性と地盤の剛性との違いに
起因する周面せん断力、トンネル自体の質量による慣
性力から構成される。該地震荷重の割合を比べた場合、
トンネルの断面形状や剛性によって前記とのどちら
が大きいか一概には云えないが、ととで該地震荷重
の大部分を占め、前記の占める割合は小さい。
The seismic load that generates a sectional force in the cross section of the tunnel is caused by the relative displacement of the ground relatively generated between the upper and lower slabs, and the peripheral surface caused by the difference between the rigidity of the tunnel and the rigidity of the ground. It consists of the shear force and the inertial force due to the mass of the tunnel itself. When comparing the ratio of the seismic loads,
Depending on the cross-sectional shape and the rigidity of the tunnel, it is not clear which of the above is larger, but it occupies most of the seismic load, and the above-mentioned ratio is small.

【0010】そこで、該開削トンネル1の外周の該地盤
7のせん断剛性を高めることによって、該開削トンネル
1の外周の該地盤7の地震時せん断変形量9を低減さ
せ、且つ、該開削トンネル1のせん断変形量を低減させ
ることで該開削トンネル1の地震時発生断面力を低減さ
せるため、該開削トンネル1の該上床版2、該下床版3
及び該側壁4,4の内部の所定箇所より周囲の該地盤7
に向けて穿孔機(図示せず)で複数穿孔し、該穿孔部
(図示せず)より該開削トンネル1の外周地盤7へセメ
ントミルク、微粒子セメント粉体等の地盤改良材をノズ
ル(図示せず)で注入・噴射し、地盤改良部10を構築
する。該地盤改良部10の範囲及び必要とされる改良後
の該地盤7の剛性は、後述するように予め実施する数値
解析により設定する。
Therefore, by increasing the shear rigidity of the ground 7 on the outer periphery of the excavation tunnel 1, the amount of shear deformation 9 of the ground 7 on the outer periphery of the excavation tunnel 1 during an earthquake is reduced. The upper floor slab 2 and the lower floor slab 3 of the excavation tunnel 1 in order to reduce the shearing cross-sectional force of the excavation tunnel 1 by reducing the amount of shear deformation of the excavation tunnel 1.
And the ground 7 surrounding a predetermined portion inside the side walls 4 and 4.
A plurality of ground improvement materials such as cement milk, fine particle cement powder, etc. are introduced into the outer ground 7 of the excavation tunnel 1 from the perforated portion (not shown) by a nozzle (not shown). )) To construct the ground improvement unit 10. The range of the ground improvement unit 10 and the required rigidity of the ground 7 after the improvement are set by numerical analysis performed in advance as described later.

【0011】尚、該地盤改良材の注入等に於てシールド
トンネルの場合には、該シールドトンネルの裏込め注入
に使用したグラウトホール(図示せず)を利用して行う
ことができる。又、地表面6から比較的浅い位置にトン
ネルが構築されている場合には、該地表面6より直接ボ
ーリングマシン(図示せず)によるボーリング孔(図示
せず)を利用して該地盤改良部10を形成する。
In the case of a shield tunnel in the injection of the ground improvement material, etc., it is possible to use a grout hole (not shown) used for the backfill injection of the shield tunnel. Further, when a tunnel is constructed at a relatively shallow position from the ground surface 6, the ground improvement unit is directly used from the ground surface 6 by using a boring hole (not shown) by a boring machine (not shown). Form 10.

【0012】次に、図2及び図3に従い既設の該開削ト
ンネル1の耐震補強方法について説明する。図2(a)
は該開削トンネル1の耐震補強として地盤改良を行うた
めの解析モデルを示し、該地盤7は基盤12上より該地
表面6までの層厚を15m、該開削トンネル1の該上床
版2と該地表面6の間隔を4.5mとし、又、該開削ト
ンネル1の該上床版2と該下床版3とのトンネル高さは
7m、両端の該側壁4,4間の該開削トンネル1の幅方
向長さは17mの矩形断面として中央に該中柱5を立設
する。
Next, the seismic retrofitting method of the existing open-cut tunnel 1 will be described with reference to FIGS. FIG. 2 (a)
Shows an analytical model for improving the ground as seismic reinforcement of the excavation tunnel 1. The ground 7 has a layer thickness from the base 12 to the ground surface 6 of 15 m. The interval between the ground surfaces 6 is 4.5 m, the tunnel height between the upper slab 2 and the lower slab 3 of the excavation tunnel 1 is 7 m, and the height of the excavation tunnel 1 between the side walls 4, 4 at both ends. The middle pillar 5 is erected at the center as a rectangular section having a width of 17 m in the width direction.

【0013】該地盤7のヤング率Eは1000 kgf/cm
2 、単位体積重量は1.7tf/m3、ポアソン比は0.4
8の均一地盤とする。又、該開削トンネル1は、該地盤
7のせん断変形の影響が比較的大きくなるように該基盤
12に近い位置、即ち、該基盤12と該下床版3との間
隔を3.5mとして埋設する。尚、解析は周辺地盤を平
面ひずみ要素、トンネル部材を梁要素でモデル化して2
次元有限要素モデルを用いて行う。更に、該地表面6に
於て300 galとなる正弦波状の水平加速分布11を仮
定し、これに相当する地盤慣性力を地震荷重として解析
モデルの各節点に静的に作用させることにより、該地盤
7及び該開削トンネル1の変形を線形で解析する。
The ground 7 has a Young's modulus E of 1000 kgf / cm.
2 , unit weight is 1.7 tf / m 3 , Poisson's ratio is 0.4
8 uniform ground. The excavation tunnel 1 is buried at a position close to the base 12, that is, at a distance of 3.5 m between the base 12 and the lower slab 3 so that the influence of shear deformation of the ground 7 is relatively large. I do. In the analysis, the surrounding ground was modeled with a plane strain element and the tunnel member was modeled with a beam element.
This is performed using a three-dimensional finite element model. Further, a sinusoidal horizontal acceleration distribution 11 of 300 gal on the ground surface 6 is assumed, and a ground inertia force corresponding thereto is applied statically to each node of the analysis model as a seismic load, thereby The deformation of the ground 7 and the open tunnel 1 is analyzed linearly.

【0014】図2(b)は該開削トンネル1の両側の該
側壁4,4より2mの幅と該開削トンネル1の四つの角
部は、該上床版2と該下床版3から夫々45°の範囲に
地盤改良した改良パターン(Type -1)を想定し、又、
図2(c)は、該開削トンネル1の全外周を2mの幅に
亘って地盤改良した改良パターン(Type -2)を想定
し、夫々の解析モデルに於て改良範囲をもとの該地盤7
の10倍から1000倍までヤング率を増大させて解析
する。解析は、該開削トンネル1の中心位置に於ける該
上床版2から該下床版3間の水平相対変位、トンネル部
材の断面力に関し、地盤改良及び地盤改良を行わない基
本ケースに対する各解析ケースの最大値の比を求めて解
析結果を整理する。
FIG. 2 (b) shows that the width of 2 m from the side walls 4 and 4 on both sides of the cut tunnel 1 and the four corners of the cut tunnel 1 are 45 m from the upper deck 2 and the lower deck 3 respectively. Assuming an improved pattern (Type-1) with ground improvement in the range of °,
FIG. 2 (c) assumes an improved pattern (Type-2) in which the entire outer periphery of the excavation tunnel 1 is improved over the ground over a width of 2 m, and the ground based on the improved range in each analysis model. 7
The analysis is performed by increasing the Young's modulus from 10 times to 1000 times of the above. The analysis relates to the horizontal relative displacement between the upper slab 2 and the lower slab 3 at the center position of the excavation tunnel 1 and the sectional force of the tunnel member, and each analysis case for the base case where the ground improvement and the ground improvement are not performed. Obtain the ratio of the maximum value of, and organize the analysis results.

【0015】図3(a)は横軸に基本ケースに対する該
地盤改良部10の該ヤング率の比E R を取り、地盤改良
による相対変位RDR の変化を示したものである。該相
対変位RDR の変化を考察すると、該側壁4,4の外側
のみを地盤改良するType -1の改良パターンでは、前記
ヤング率の比ER を1000倍とした場合でも該開削ト
ンネル1の該相対変位RDR を略60%までしか低減で
きない。これに対し全外周を地盤改良するType -2の改
良パターンでは、該ヤング率の比ER が100倍で該相
対変位RDR を40%まで低減でき、しかも、該ヤング
率の比ER が1000倍では10%近くまで該相対変位
RDR を低減できており、地盤改良が地震荷重の1つで
ある地盤変位の低減に有効であることがわかる。
FIG. 3 (a) shows the horizontal case with respect to the basic case.
The ratio E of the Young's modulus of the ground improvement unit 10 RAnd ground improvement
Relative displacement RDRThis shows the change of The phase
Displacement RDRConsidering the change in
In the Type-1 improvement pattern that only improves the ground,
Young's modulus ratio EREven when the size is 1000 times
The relative displacement RD of the channel 1RCan be reduced to only about 60%
I can't. On the other hand, Type-2 modification to improve the ground around the entire circumference
In a good pattern, the Young's modulus ratio ERIs 100 times that phase
Displacement RDRCan be reduced to 40%, and the Young
Rate ratio ERBut relative displacement up to nearly 10% at 1000 times
RDRAnd ground improvement is one of the seismic loads.
It turns out that it is effective in reducing a certain ground displacement.

【0016】図3(b)はせん断力の比SR と該ヤング
率の比ER との関係を示し、該側壁4,4の外側のみを
改良する前記Type -1では殆ど効果が得られないが、全
外周を改良する前記Type- 2の改良パターンでは基本ケ
ースに対し該ヤング率の比E R を大きくとれば1以下と
なり、断面力低減に有効であることがわかる。
FIG. 3B shows a shear force ratio S.RAnd the young
Rate ratio ERAnd only the outside of the side walls 4 and 4
With the improved Type-1, almost no effect can be obtained,
In the Type-2 improved pattern for improving the outer circumference,
Ratio of the Young's modulus to RIf you take large, it is 1 or less
Thus, it can be seen that this is effective in reducing the sectional force.

【0017】又、図3(c)は曲げモーメントの比MR
と該ヤング率の比ER との関係を示し、前記せん断力の
比SR との関係と同様に該Type -1では殆ど効果が得ら
れないが、該Type -2では該ヤング率の比ER を500
倍程度に半減させることが可能であることがわかる。
FIG. 3C shows a bending moment ratio M R.
Shows the relationship between the ratio of the Young's modulus and the ratio of the Young's modulus E R. Similar to the relationship with the ratio of the shearing force S R , little effect is obtained with the Type-1. E R 500
It can be seen that it is possible to halve it about twice.

【0018】以上のことから、各技術基準に基づいて耐
震設計を行った結果、既設の該開削トンネル1の曲げ耐
力がないとした場合に、例えば図3(c)に示すように
発生モーメントを0.5にしないと耐震設計が成立しな
いという該開削トンネル1の部材断面力の許容値から該
ヤング率の比ER =600を求め、周辺地盤のヤング率
に対し600倍のヤング率に地盤改良すれば、許容範囲
内の曲げモーメントに導くことができる。
From the above, as a result of the seismic design based on each technical standard, assuming that the existing open-cut tunnel 1 has no bending strength, for example, as shown in FIG. The ratio E R = 600 of the Young's modulus is determined from the allowable value of the section force of the member of the open-cut tunnel 1 that the seismic design will not be established unless the value is set to 0.5. Improvements can lead to acceptable bending moments.

【0019】このように数値解析してヤング率を変えて
地盤改良を行えば、必要最少限の地盤改良で必要とする
地盤の剛性が得られる。尚、所定のヤング率の地盤にす
るためにはセメントミルクの注入率を変えること等によ
り行う。又、前記の全外周の改良に変えて該側壁だけの
改良でも同様の効果が得られるものであれば耐震補強が
可能である。
If the ground improvement is performed by changing the Young's modulus by performing a numerical analysis in this way, the required ground rigidity can be obtained with the minimum necessary ground improvement. Incidentally, in order to obtain a ground having a predetermined Young's modulus, the cement milk injection rate is changed or the like. In addition, if the same effect can be obtained by the improvement of only the side wall instead of the improvement of the entire outer periphery, seismic reinforcement can be made.

【0020】而して、本発明は、本発明の精神を逸脱し
ない限り種々の改変を為すことができ、そして、本発明
が該改変されたものに及ぶことは当然である。
Thus, the present invention can be variously modified without departing from the spirit of the present invention, and it goes without saying that the present invention extends to the modified ones.

【0021】[0021]

【発明の効果】以上説明したように、請求項1記載の発
明は、トンネル内又は地表面より地盤改良材を注入し、
トンネル外周の地盤のせん断剛性を高めるのでトンネル
内空断面を低減させることなく、耐震補強を行うことが
でき、且つ、トンネルの横断面のせん断変形を効率よく
低減させることができる。
As described above, according to the first aspect of the present invention, a ground improvement material is injected into a tunnel or from the ground surface.
Since the shear rigidity of the ground at the outer periphery of the tunnel is increased, seismic reinforcement can be performed without reducing the cross section inside the tunnel, and the shear deformation of the cross section of the tunnel can be efficiently reduced.

【0022】請求項2記載の発明は、地盤改良部の範囲
及び必要とされる改良後の地盤の剛性は、数値解析によ
って決定するので容易に、且つ、効果的な地盤改良ゾー
ンを設定することができる。
According to a second aspect of the present invention, the range of the ground improvement part and the required rigidity of the ground after the improvement are determined by numerical analysis, so that an easy and effective ground improvement zone can be set. Can be.

【0023】請求項3記載の発明は、地盤改良部の範囲
及び必要とされる改良後の地盤の剛性を耐震設計に於け
るトンネル部材断面力の許容値と該地盤改良部の範囲又
は改良地盤のヤング率との関係から決定して、トンネル
外周の地盤を改良するので、必要最少限の地盤改良材の
注入等で必要な箇所だけの地盤改良を行うことができる
と共に、余分な地盤改良を行う必要はないため経済的な
地盤改良を行うことができ、コストダウンを図ることが
できる。
According to a third aspect of the present invention, the range of the ground improvement section and the required improvement of the ground rigidity are determined by the allowable value of the tunnel member sectional force in the seismic design and the range of the ground improvement section or the improved ground. Because the soil around the tunnel is improved by determining from the relationship with the Young's modulus of the tunnel, it is possible to improve the ground only at the necessary places by injecting the necessary minimum ground improvement material, etc. Since there is no need to perform this, economical ground improvement can be performed, and costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示し、開削トンネルの
外周を地盤改良した状態を示す横断面図。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention and showing a state in which the outer periphery of an open-cut tunnel is improved in ground.

【図2】(a)解析対象地盤と開削トンネルを示す解説
横断面図。 (b)開削トンネルの両側壁部を地盤改良したType -1
を示す横断面図。 (c)開削トンネルの全外周部を地盤改良したType -2
を示す横断面図。
FIG. 2A is an explanatory cross-sectional view showing an analysis target ground and an open excavation tunnel. (B) Type-1 with ground improvement on both side walls of excavation tunnel
FIG. (C) Type-2 ground improvement of the entire outer periphery of the excavation tunnel
FIG.

【図3】(a)上床版〜下床版間の相対変位比RDR
R の関係図。 (b)せん断力比SR とER の関係図。 (c)曲げモーメント比MR とER の関係図。
3 (a) top floor plate-relationship diagram of the relative displacement ratio RD R and E R between under deck. (B) Relationship between shear force ratio S R and E R. (C) Relationship diagram between bending moment ratio M R and E R.

【符号の説明】[Explanation of symbols]

1 トンネル(開削トンネル) 6 地表面 7 地盤 9 地盤の地震時せん断変形量 10 地盤改良部 SR せん断力比 MR 曲げモーメント比 ER ヤング率1 Tunnel (digging tunnels) Seismic shear deformation amount 10 ground improvement of 6 ground surface 7 Ground 9 Ground S R shear ratio M R bending moment ratio E R Young's modulus

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 トンネルの耐震診断によって耐震補強が
必要との評価を受けた既設トンネルの耐震補強方法に於
て、該トンネル外周へ該トンネル内又は地表面より地盤
改良材を注入し、該トンネル外周の地盤のせん断剛性を
高めることにより、該トンネル外周の該地盤の地震時せ
ん断変形量を低減させ、且つ、該トンネルのせん断変形
量を低減させることで該トンネルの地震時発生断面力を
低減させることを特徴とする既設トンネルの耐震補強方
法。
In a method of seismic retrofitting of an existing tunnel, which has been evaluated that seismic retrofitting is necessary by a seismic diagnosis of the tunnel, a ground improvement material is injected into the outer periphery of the tunnel from the inside of the tunnel or from the ground surface. By increasing the shear rigidity of the outer ground, the amount of shear deformation of the ground around the tunnel during an earthquake is reduced, and by reducing the amount of shear deformation of the tunnel, the cross-sectional force generated during the earthquake of the tunnel is reduced. A seismic retrofitting method for existing tunnels.
【請求項2】 トンネル外周の地盤のせん断剛性を高め
る地盤改良部の範囲及び必要とされる改良後の地盤の剛
性は、数値解析によって決定することを特徴とする請求
項1記載の既設トンネルの耐震補強方法。
2. The existing tunnel according to claim 1, wherein the range of the ground improvement portion for increasing the shear rigidity of the ground around the tunnel and the required ground rigidity after the improvement are determined by numerical analysis. Seismic reinforcement method.
【請求項3】 地盤改良部の範囲及び必要とされる改良
後の地盤の剛性は、耐震設計に於けるトンネル部材断面
力の許容値と該地盤改良部の範囲又は改良地盤のヤング
率との関係から決定されると共に、該ヤング率の該改良
地盤となるように配合した地盤改良材をトンネル外周の
地盤へ注入することを特徴とする請求項2記載の既設ト
ンネルの耐震補強方法。
3. The range of the ground improvement portion and the required rigidity of the ground after the improvement are determined by comparing the allowable value of the sectional force of the tunnel member in the seismic design with the range of the soil improvement portion or the Young's modulus of the improved ground. 3. The method for seismic reinforcement of an existing tunnel according to claim 2, wherein a ground improvement material determined to be the relationship and blended so as to become the improved ground having the Young's modulus is injected into the ground around the tunnel.
JP11199462A 1999-07-13 1999-07-13 Earthquake-proof reinforcing method for existing tunnel Withdrawn JP2001026922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11199462A JP2001026922A (en) 1999-07-13 1999-07-13 Earthquake-proof reinforcing method for existing tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11199462A JP2001026922A (en) 1999-07-13 1999-07-13 Earthquake-proof reinforcing method for existing tunnel

Publications (1)

Publication Number Publication Date
JP2001026922A true JP2001026922A (en) 2001-01-30

Family

ID=16408215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11199462A Withdrawn JP2001026922A (en) 1999-07-13 1999-07-13 Earthquake-proof reinforcing method for existing tunnel

Country Status (1)

Country Link
JP (1) JP2001026922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309567A (en) * 2001-04-13 2002-10-23 Kumagai Gumi Co Ltd Method for reinforcing existing underground linear structure against earthquake
JP2008248649A (en) * 2007-03-30 2008-10-16 Railway Technical Res Inst Soil improvement method in vicinity of underground structure
JP2011026942A (en) * 2009-06-25 2011-02-10 Shimizu Corp Seismic strengthening structure for box culvert
CN109001081A (en) * 2018-07-17 2018-12-14 中铁十二局集团第二工程有限公司 Tunnel excavation is simulated to the experimental rig and method of Influence of Pile Foundation
CN110106883A (en) * 2019-04-23 2019-08-09 天津大学 A kind of Real-time Feedback grouting method for correcting subway tunnel horizontal distortion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309567A (en) * 2001-04-13 2002-10-23 Kumagai Gumi Co Ltd Method for reinforcing existing underground linear structure against earthquake
JP4544775B2 (en) * 2001-04-13 2010-09-15 株式会社熊谷組 Seismic reinforcement method for existing underground line structures
JP2008248649A (en) * 2007-03-30 2008-10-16 Railway Technical Res Inst Soil improvement method in vicinity of underground structure
JP2011026942A (en) * 2009-06-25 2011-02-10 Shimizu Corp Seismic strengthening structure for box culvert
CN109001081A (en) * 2018-07-17 2018-12-14 中铁十二局集团第二工程有限公司 Tunnel excavation is simulated to the experimental rig and method of Influence of Pile Foundation
CN109001081B (en) * 2018-07-17 2021-05-25 中铁十二局集团第二工程有限公司 Test device and method for simulating influence of tunnel excavation on pile foundation
CN110106883A (en) * 2019-04-23 2019-08-09 天津大学 A kind of Real-time Feedback grouting method for correcting subway tunnel horizontal distortion

Similar Documents

Publication Publication Date Title
JP2004162362A (en) Aseismatic reinforcing structure for pile foundation structure
JP2000352296A (en) Method o constructing passage just under underground structure
JP2001026922A (en) Earthquake-proof reinforcing method for existing tunnel
KR100444838B1 (en) A fiber reinforced earth retaining wall, a constructing method thereof, and a composite underground wall structure using thereof
JP3760304B2 (en) Building foundation construction method
JPS615125A (en) Foundation of building
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
JP3948655B2 (en) Construction method of retaining wall and underground structure
JP6860895B2 (en) Retaining wall and its construction method
JP2003003556A (en) Shear reinforcement method of culvert
JPH11303062A (en) Soil-cement wall
JP4544775B2 (en) Seismic reinforcement method for existing underground line structures
CN201991015U (en) Foundation underpinning structure
JP4382974B2 (en) Connection structure of wall and sheet pile member
JP3030622B2 (en) How to build a tunnel
JP3404561B2 (en) Connection method of shield tunnel
JP3713117B2 (en) How to build the foundation
JP4344733B2 (en) Seismic reinforcement structure for existing pile foundation structures
JP3059058U (en) Solid foundation structure with stabilizer
JP3678290B2 (en) High earthquake resistance foundation
JP2797066B2 (en) Solid foundation method with stabilizer
JP4576768B2 (en) Composite type underground continuous wall and construction method of the same wall
JPH0649987B2 (en) Underground continuous wall foundation construction method
JP4919079B2 (en) Protective structure
JP2020200600A (en) Suppression structure of rotation of column pile

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003