JP2008248649A - Soil improvement method in vicinity of underground structure - Google Patents

Soil improvement method in vicinity of underground structure Download PDF

Info

Publication number
JP2008248649A
JP2008248649A JP2007094144A JP2007094144A JP2008248649A JP 2008248649 A JP2008248649 A JP 2008248649A JP 2007094144 A JP2007094144 A JP 2007094144A JP 2007094144 A JP2007094144 A JP 2007094144A JP 2008248649 A JP2008248649 A JP 2008248649A
Authority
JP
Japan
Prior art keywords
ground
underground structure
ground improvement
area
constructed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007094144A
Other languages
Japanese (ja)
Other versions
JP5051752B2 (en
Inventor
Akira Sawada
亮 澤田
Kenji Watanabe
健治 渡辺
Susumu Ito
伊藤  晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2007094144A priority Critical patent/JP5051752B2/en
Publication of JP2008248649A publication Critical patent/JP2008248649A/en
Application granted granted Critical
Publication of JP5051752B2 publication Critical patent/JP5051752B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To properly decide a soil improvement area in a soil improvement method for the vicinity of an underground structure when a track is constructed on the earth surface. <P>SOLUTION: In this soil improvement method, a method for constructing a box culvert 1 serving as an underground structure is investigated for specifying whether it is constructed by an open-cut method or a non-open-cut method. Subsequently, if the box culvert 1 is constructed by the open-cut method, a virtual slope 3 diagonally extending upward from the lower edge of an earth retaining wall 2 built in construction to the earth surface on the opposite side to the box culvert 1 is assumed, and a triangular cross section area surrounded by the virtual slope, a vertical plane wherein the earth retaining wall 2 is built, and the earth surface is decided as a soil improvement area 4a. If the box culvert 1 is constructed by a pipe jacking method, a cylindrical cross section area spread from the circumferential face of the box culvert 1 to the position separated by a distance d equivalent to a wall thickness of the box culvert is decided as a soil improvement area 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主として地表に軌道が敷設される場合における地中構造物近傍の地盤改良方法に関する。   The present invention mainly relates to a ground improvement method in the vicinity of underground structures when a track is laid on the ground surface.

交通トンネル、下水道トンネル、都市内共同溝その他地盤内に構築されるトンネル状の地中構造物は、さまざまな用途・規模で構築されているが、それらの構築工法としては、概ね開削工法と非開削工法とに大別される。   Tunnel-like underground structures built in transportation tunnels, sewer tunnels, urban common trenches and other grounds are constructed in various uses and scales. It is roughly divided into the open-cut method.

開削工法は、山留め壁を構築してそれらの間を掘り下げた後、根切り底に地中構造物を敷設し、次いで周囲を埋め戻す工法である。   The excavation method is a method of constructing mountain retaining walls and digging between them, laying underground structures at the bottom of the root, and then backfilling the surroundings.

一方、非開削工法は、地上に存在する道路や線路その他の事情で開削工法を採用することができない場合に採用されるものであり、シールド工法、推進工法、牽引工法等に分類される。   On the other hand, the non-cut-off method is employed when the open-cut method cannot be adopted due to roads, railways and other circumstances existing on the ground, and is classified into a shield method, a propulsion method, a traction method, and the like.

特開平1−226913号公報JP-A-1-226913

ここで、開削工法にしろ非開削工法にしろ、地中構造物が構築されている地盤面に軌道を敷設すると、車両が通過する際の移動荷重で地盤沈下が生じることがある。   Here, regardless of whether it is an open-cut method or a non-open-cut method, if a track is laid on the ground surface on which the underground structure is constructed, ground subsidence may occur due to a moving load when the vehicle passes.

このような場合には、車両の走行安全性の観点から、地中構造物の周囲に拡がる地盤を改良し、地盤強度を高めなければならない。   In such a case, from the viewpoint of vehicle running safety, the ground spreading around the underground structure must be improved to increase the ground strength.

しかしながら、従来においては、地中構造物の周囲をどの程度の範囲にわたって地盤改良すればよいのか具体的な目安がなく、それゆえ、安全側に過ぎる地盤改良を行い、結果として不経済な施工にならざるを得ないという問題を生じていた。   However, in the past, there is no specific indication of how much ground should be improved around the underground structure, and therefore, ground improvement that is too safe is performed, resulting in uneconomical construction. There was a problem that it had to be.

本発明は、上述した事情を考慮してなされたもので、地盤改良範囲を適切に定めることが可能な地中構造物近傍の地盤改良方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a ground improvement method in the vicinity of an underground structure that can appropriately determine a ground improvement range.

上記目的を達成するため、本発明に係る地中構造物近傍の地盤改良方法は請求項1に記載したように、地中構造物の周囲に拡がる地盤を改良する地盤改良方法において、   In order to achieve the above object, the ground improvement method in the vicinity of the underground structure according to the present invention is the ground improvement method for improving the ground spreading around the underground structure as described in claim 1,

前記地中構造物が施工された工法を調査し、   Investigate the construction method where the underground structure was constructed,

前記工法が開削工法であった場合、施工時に建て込まれた山留め壁の下縁から前記地中構造物と反対側の地表面に向かって斜め上方に延びる仮想斜面を想定し、該仮想斜面と前記山留め壁が建て込まれていた鉛直面と地表面とに囲まれた三角形状断面領域を地盤改良エリアとし、   When the construction method is an open-cut method, assuming a virtual slope extending obliquely upward from the lower edge of the retaining wall built at the time of construction toward the ground surface opposite to the underground structure, The triangular cross-sectional area surrounded by the vertical surface and the ground surface where the mountain retaining wall was built as a ground improvement area,

前記工法が非開削工法であった場合、前記地中構造物の周面から該地中構造物の壁厚に相当する距離だけ離間した位置までの間に拡がる筒状断面領域を地盤改良エリアとし、   When the construction method is a non-cutting construction method, a cylindrical cross-sectional area extending from the peripheral surface of the underground structure to a position separated by a distance corresponding to the wall thickness of the underground structure is defined as a ground improvement area. ,

前記地盤改良エリアを地盤改良するものである。   The ground improvement area is ground improved.

また、本発明に係る地中構造物近傍の地盤改良方法は、前記仮想斜面と水平面とのなす角度を前記三角形状断面領域内の地盤の土質性状から定める内部摩擦角又は安息角としたものである。   In the ground improvement method in the vicinity of the underground structure according to the present invention, the angle formed between the virtual slope and the horizontal plane is an internal friction angle or repose angle determined from the soil properties of the ground in the triangular cross-sectional area. is there.

また、本発明に係る地中構造物近傍の地盤改良方法は請求項3に記載したように、開削工法で施工された地中構造物の周囲に拡がる地盤を改良する地盤改良方法において、   Further, the ground improvement method in the vicinity of the underground structure according to the present invention, as described in claim 3, in the ground improvement method for improving the ground spreading around the underground structure constructed by the open-cut method,

施工時に建て込まれた山留め壁の下縁から前記地中構造物と反対側の地表面に向かって斜め上方に延びる仮想斜面を想定し、該仮想斜面と前記山留め壁が建て込まれていた鉛直面と地表面とに囲まれた三角形状断面領域を地盤改良エリアとして地盤改良を行うものである。   Assuming a virtual slope extending obliquely upward from the lower edge of the retaining wall built at the time of construction toward the ground surface opposite to the underground structure, the vertical slope where the virtual slope and the retaining wall were built The ground improvement is performed using the triangular cross-sectional area surrounded by the surface and the ground surface as the ground improvement area.

また、本発明に係る地中構造物近傍の地盤改良方法は請求項4に記載したように、非開削工法で施工された地中構造物の周囲に拡がる地盤を改良する地盤改良方法において、   Further, the ground improvement method in the vicinity of the underground structure according to the present invention, as described in claim 4, in the ground improvement method for improving the ground spreading around the underground structure constructed by the non-opening method,

前記地中構造物の周面から該地中構造物の壁厚に相当する距離だけ離間した位置までの間に拡がる筒状断面領域を地盤改良エリアとして地盤改良を行うものである。   The ground improvement is performed using a cylindrical cross-sectional area extending from the peripheral surface of the underground structure to a position separated by a distance corresponding to the wall thickness of the underground structure as a ground improvement area.

本発明に係る地中構造物近傍の地盤改良方法においては、まず、地中構造物が施工された工法を必要に応じて調査し、開削工法で施工されたのか、非開削工法で施工されたのかを特定する。   In the ground improvement method in the vicinity of the underground structure according to the present invention, first, the construction method in which the underground structure was constructed was investigated as necessary, whether it was constructed by the open-cut method or was constructed by the non-open-cut method. To identify.

ここで、開削工法とは、山留め壁を構築して掘削を行い、次いで掘削された空間に地中構造物を構築した後、掘削空間を埋め戻す工法であり、地中構造物の構築予定領域の両側に山留め壁を建て込んで地中構造物を構築するのが一般的ではあるが、既存構造物を利用した土留めが可能である場合には、必ずしも両側に山留め壁を建て込む必要はなく、構築予定領域の片側だけに山留め壁を建て込んで地中構造物を構築する場合も本発明の開削工法に含まれる。   Here, the excavation method is a method of constructing a retaining wall, excavating, building an underground structure in the excavated space, and then refilling the excavated space. It is common to build underground structures by installing mountain retaining walls on both sides, but if earth retaining using existing structures is possible, it is not always necessary to build mountain retaining walls on both sides In addition, the excavation method of the present invention also includes a case where the underground structure is constructed by installing the retaining wall only on one side of the construction planned region.

非開削工法にはシールド工法、推進工法及び牽引工法が含まれる。ここで、シールド工法においては、シールドマシンが前進するときに引き起こされる周辺地盤の攪乱による強度低下を改善することが、推進工法及び牽引工法においては、函体やエレメントを圧入又は牽引する際に生じる周辺地盤の攪乱による強度低下を改善することがそれぞれ地盤改良の目的となる。   Non-open cutting methods include shield method, propulsion method and traction method. Here, in the shield method, the strength reduction caused by the disturbance of the surrounding ground caused when the shield machine moves forward occurs in the case of press-fitting or towing the box or element in the propulsion method and the traction method. Improving the strength reduction due to disturbance of the surrounding ground is the purpose of ground improvement.

シールド工法は、前方の地山をシールドマシンで掘進しながら、セグメントをテール側から組み上げていく工法であり、函体による推進工法は、既製の函体を発進立坑に据え付けた油圧推進ジャッキで地盤に押し込むとともに、その先端の地山を掘削することにより、函体を後端で連結させながら次々に地盤内に押し込んでいく工法であり、エレメントによる牽引工法は、複数のエレメントをPC鋼線等で順次牽引し、最終的に例えばボックス断面状に相互連結してそれらで囲まれた空間に中空空間を形成する工法である。なお、エレメントは、牽引のみならず推進によって地盤中に圧入する方法でもかまわない。   The shield method is a method of assembling the segments from the tail side while excavating the ground in front with a shield machine, and the propulsion method using a box is a hydraulic propulsion jack installed on a start-up shaft. In addition to excavating the ground at the tip, the box is pushed into the ground one after another while connecting the boxes at the rear end. In this method, the hollow space is formed in the space surrounded by them. The element may be pressed into the ground not only by towing but also by propulsion.

函体とは、材軸方向に連続的に接合できるように構成してあるとともに接合状態において内部に中空通路が一体形成される筒状部材を意味し、例えばボックスカルバートや管体が該当する。   The box means a cylindrical member that is configured so that it can be continuously joined in the material axis direction, and in which the hollow passage is integrally formed in the joined state. For example, a box culvert or a tube corresponds to the box.

地中構造物が施工された工法を特定したならば、それらのいずれであるかに応じて、それぞれ以下のように地盤改良エリアを決定する。   If the construction method in which the underground structure is constructed is specified, the ground improvement area is determined as follows, depending on which of them is used.

すなわち、地中構造物が開削工法で施工されたのであれば、施工時に建て込まれた山留め壁の下縁から地中構造物と反対側の地表面に向かって斜め上方に延びる仮想斜面を想定し、該仮想斜面と山留め壁が建て込まれていた鉛直面と地表面とに囲まれた三角形状断面領域を地盤改良エリアとする。   In other words, if the underground structure was constructed by the open-cut method, a hypothetical slope extending diagonally upward from the lower edge of the retaining wall built at the time of construction toward the ground surface opposite to the underground structure was assumed. A triangular cross-sectional area surrounded by the vertical plane where the virtual slope and the retaining wall are built and the ground surface is defined as a ground improvement area.

ここで、仮想斜面と水平面とのなす角度は、三角形状断面領域内の地盤の土質性状から定める内部摩擦角とし、より安全側には安息角とする。   Here, the angle formed between the virtual slope and the horizontal plane is the internal friction angle determined from the soil properties of the ground in the triangular cross-sectional area, and the repose angle on the safer side.

一方、地中構造物が非開削工法で施工されたのであれば、地中構造物の周面から該地中構造物の壁厚に相当する距離だけ離間した位置までの間に拡がる筒状断面領域を地盤改良エリアとする。   On the other hand, if the underground structure is constructed by the non-open cutting method, a cylindrical cross section that extends from the peripheral surface of the underground structure to a position separated by a distance corresponding to the wall thickness of the underground structure. The area is the ground improvement area.

次に、特定された地盤改良エリアに対して地盤改良を行う。   Next, ground improvement is performed on the specified ground improvement area.

このようにすると、緩みが生じている地盤領域を工法に応じて適切に設定することが可能となり、必要十分な地盤領域を改良することができる。   If it does in this way, it will become possible to set appropriately the ground area which has loosened according to a construction method, and it can improve a necessary and sufficient ground area.

以下、本発明に係る地中構造物近傍の地盤改良方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   Embodiments of a ground improvement method in the vicinity of an underground structure according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係る地中構造物近傍の地盤改良方法を示したフローチャートである。同図でわかるように、本実施形態に係る地盤改良方法においては、まず、地中構造物が施工された工法を調査し、開削工法で施工されたのか、非開削工法で施工されたのかを特定する(ステップ101)。   FIG. 1 is a flowchart showing a ground improvement method in the vicinity of an underground structure according to the present embodiment. As can be seen in the figure, in the ground improvement method according to this embodiment, first, the construction method in which the underground structure was constructed was investigated, and whether it was constructed by the open-cut method or non-open-cut method. Specify (step 101).

図2(a)は、地中構造物であるボックスカルバート1が開削工法で施工された場合における施工当時の状況を示した断面図である。開削工法でボックスカルバート1を施工するには、山留め壁2,2を構築し、次いで該山留め壁で囲まれた空間を掘り下げた後、掘削された空間にボックスカルバート1を構築し、最後に掘削空間を埋め戻す。   Fig.2 (a) is sectional drawing which showed the condition at the time of construction in case the box culvert 1 which is an underground structure was constructed by the open-cut method. To construct the box culvert 1 using the open-cut method, build the retaining walls 2 and 2, then dig down the space surrounded by the retaining walls, construct the box culvert 1 in the excavated space, and finally dig Refill the space.

同図(b)は、ボックスカルバート1を非開削工法である推進工法で施工した場合における施工当時の状況を示した断面図である。非開削工法である推進工法でボックスカルバート1を施工するには、発進立坑に据え付けられた推進ジャッキ(図示せず)でボックスカルバート1の構成要素であるブロック体を地盤に押し込むとともに、その先端の地山を掘削することにより、ブロック体を後端で連結させながら次々に地盤内に押し込んでいく。   FIG. 5B is a cross-sectional view showing the situation at the time of construction when the box culvert 1 is constructed by the propulsion method which is a non-open cutting method. In order to construct the box culvert 1 by the propulsion method which is a non-open-cut method, the block body which is a component of the box culvert 1 is pushed into the ground with a propulsion jack (not shown) installed on the start shaft, By excavating the natural ground, the block bodies are pushed into the ground one after another while being connected at the rear end.

ボックスカルバート1が施工された工法を特定したならば、それらのいずれであるかに応じて、それぞれ以下のように地盤改良エリアを決定する。   If the construction method in which the box culvert 1 is constructed is specified, the ground improvement area is determined as follows, depending on which of them is used.

すなわち、ボックスカルバート1が開削工法で施工されたのであれば(ステップ102, YES)、施工時に建て込まれた山留め壁2の下縁からボックスカルバート1と反対側の地表面に向かって斜め上方に延びる仮想斜面3を想定し、該仮想斜面と山留め壁2が建て込まれていた鉛直面と地表面とに囲まれた三角形状断面領域を地盤改良エリア4aとする(ステップ103)。   That is, if the box culvert 1 is constructed by the open-cut method (step 102, YES), it is obliquely upward from the lower edge of the retaining wall 2 built during construction toward the ground surface opposite to the box culvert 1 Assuming an extending virtual slope 3, a triangular cross-sectional area surrounded by the virtual slope and the vertical surface where the retaining wall 2 is built and the ground surface is defined as a ground improvement area 4a (step 103).

ここで、仮想斜面3と水平面とのなす角度θは、三角形状断面領域内の地盤の土質性状から定める内部摩擦角、より安全側には安息角とし、例えば30度とすることができる。   Here, the angle θ formed by the virtual slope 3 and the horizontal plane is an internal friction angle determined from the soil properties of the ground in the triangular cross-sectional area, and a repose angle on the safer side, for example, 30 degrees.

なお、山留め壁2,2に挟まれた埋戻し領域4bは、当然ながら地盤改良の対象となる。   Of course, the backfill region 4b sandwiched between the retaining walls 2 and 2 is an object of ground improvement.

一方、ボックスカルバート1が推進工法で施工されたのであれば(ステップ102, NO)、ボックスカルバート1の周面から該ボックスカルバートの壁厚に相当する距離dだけ離間した位置までの間に拡がる筒状断面領域を地盤改良エリア5とする(ステップ104)。   On the other hand, if the box culvert 1 is constructed by the propulsion method (step 102, NO), the cylinder that extends from the peripheral surface of the box culvert 1 to a position separated by a distance d corresponding to the wall thickness of the box culvert. The cross-sectional area is designated as ground improvement area 5 (step 104).

次に、開削工法の場合には地盤改良エリア4a及び埋戻し領域4bに対して、非開削工法の場合には地盤改良エリア5に対して、それぞれ地盤改良を行う(ステップ105)。地盤改良に用いる注入材や注入方法については、公知のものから適宜選択することが可能である。例えば、注入材としては、高分子系、水ガラス系等の薬剤系や、セメントミルクやベントナイトといった非薬剤系から適宜選択すればよい。   Next, the ground improvement is performed on the ground improvement area 4a and the backfilling region 4b in the case of the open-cut method, and the ground improvement area 5 is performed in the case of the non-cut-off method (step 105). The injection material and the injection method used for ground improvement can be appropriately selected from known ones. For example, the injection material may be appropriately selected from a chemical system such as a polymer system or a water glass system, or a non-chemical system such as cement milk or bentonite.

なお、地盤改良は、ボックスカルバート施工時の掘削や攪乱による土の緩みを、施工前の状態に戻す程度で足り、それ以上の改良については必要に応じて適宜行えばよい。   For ground improvement, it is sufficient to return soil loosening due to excavation and disturbance during box culvert construction to the state before construction, and any further improvement may be performed as necessary.

以上説明したように、本実施形態に係る地中構造物近傍の地盤改良方法によれば、ボックスカルバート1が施工された工法が開削工法であるか非開削工法であるかに応じて、地盤改良エリア4a又は4bを選択決定するようにしたので、緩みが生じている地盤領域を工法に応じて適切に設定することが可能となり、必要十分な地盤領域を改良することができる。   As described above, according to the ground improvement method in the vicinity of the underground structure according to the present embodiment, the ground improvement is performed depending on whether the construction method in which the box culvert 1 is constructed is an open-cut method or a non-cut-open method. Since the area 4a or 4b is selected and determined, it is possible to appropriately set the ground area where the looseness has occurred according to the construction method, and the necessary and sufficient ground area can be improved.

次に、本発明に係る地盤改良方法を実証した室内実験について説明する。   Next, an indoor experiment demonstrating the ground improvement method according to the present invention will be described.

実験模型を図3に示す。同図に示すように、実験は、幅210cm、高さ60cm、奥行き100cmの固定土槽に、珪砂6号(Gs=2.652,emax=0.903,emin=0.582)を用いて、高さ25cm、のり勾配1:1.5の模型盛土を作成し、その中央部に幅40cm、高さ20cm、奥行き60cmの線路下横断構造物模型を設置して実施した。   The experimental model is shown in FIG. As shown in the figure, the experiment was carried out using silica sand No. 6 (Gs = 2.652, emax = 0.903, emin = 0.582) in a fixed soil tank having a width of 210 cm, a height of 60 cm and a depth of 100 cm. A model embankment having a height of 25 cm and a gradient of 1: 1.5 was prepared, and a cross-sectional structure model under the track having a width of 40 cm, a height of 20 cm, and a depth of 60 cm was installed at the center.

ここで、線路下横断構造物模型の周囲には16個の分割2方向ロードセルを配置し、構造物に作用する法線方向力、接線方向力を計測した。また、盛土には加速度計、変位計を設置して動的挙動を計測した。なお、サンプリング周波数は、500Hzである。   Here, 16 divided two-way load cells were arranged around the crossing structure model under the track, and normal force and tangential force acting on the structure were measured. In addition, accelerometers and displacement meters were installed on the embankment to measure dynamic behavior. The sampling frequency is 500 Hz.

実験は、構造物周囲の地盤条件の異なる3ケースについて実施し、盛土性状及び線路下構造物の設置位置の違いによる線路下横断構造物への作用外力の特性について検証した。入力波には正弦波(3Hz)を用い,加速度は100galを初期値として10波ごとに連続的に400galまで増加させた。加振方向は線路方向である。   The experiment was conducted for three cases with different ground conditions around the structure, and the characteristics of the external force acting on the crossing structure under the track due to the difference in embankment properties and the installation position of the structure under the track were verified. A sine wave (3 Hz) was used as the input wave, and the acceleration was continuously increased to 400 gal every 10 waves with 100 gal as an initial value. The excitation direction is the line direction.

盛土は湿潤砂(含水比10%)で相対密度Dr=80%を目標に作成した。ゆるみ領域についてはDr=40%を目標に作成した。   The embankment was made of wet sand (water content ratio 10%) with a relative density Dr = 80% as a target. The slack area was created with a target of Dr = 40%.

加振時間と沈下率との関係を示したグラフを図4に示す。同図でわかるように、20秒の加振では、沈下率は、開削工法でおよそ0.003、非開削工法でおよそ0.001となるが、地盤改良を行った場合、0.0002程度にまで改善されることがわかる。   A graph showing the relationship between the excitation time and the settlement rate is shown in FIG. As can be seen in the figure, with 20 seconds of vibration, the settlement rate is approximately 0.003 with the open-cut method and approximately 0.001 with the non-cut method, but when the ground is improved, it is about 0.0002. It can be seen that it is improved.

図5は、上述した実験を解析した結果を示したグラフである。同図(a)でわかるように、開削工法においては、地盤は、山留め壁近傍で−30mm程度沈下し、山留め壁から離れるにつれて沈下量が小さくなって、15m程度離れるとほぼ無視し得る程度になっているが、別途行った解析による結果は、この実験結果をよく表しているといえる。   FIG. 5 is a graph showing the results of analyzing the above-described experiment. As can be seen from Fig. 5 (a), in the excavation method, the ground sinks about -30mm in the vicinity of the retaining wall, and the amount of settlement decreases as it moves away from the retaining wall. However, it can be said that the result of the analysis performed separately represents the result of this experiment.

また、同図(b)でわかるように、非開削工法においては、地中構造物の中央で沈下量が最大の−20mmとなり、中央から遠ざかるにつれて小さくなって、地中構造物の側壁から該地中構造物の壁厚程度離れると、概ね無視し得る程度になっているが、別途行った解析による結果は、開削工法と同様、実験結果をよく表しているといえる。   In addition, as can be seen in FIG. 5 (b), in the non-open cutting method, the subsidence amount is -20 mm at the maximum at the center of the underground structure, and decreases as the distance from the center decreases. When the wall thickness of the underground structure is separated, it is almost negligible. However, the results of the analysis performed separately can be said to represent the experimental results well, similar to the open-cut method.

本実施形態では、地中構造物が施工された工法を調査し、工法が開削工法であるか非開削工法であるかに応じて、地盤改良エリアを別々に定めるようにしたが、施工された工法が既にわかっている場合には、工法を調査するステップを省略してもかまわない。   In this embodiment, the construction method in which the underground structure was constructed was investigated, and the ground improvement area was determined separately depending on whether the construction method was an open-cut method or a non-cut-off method. If the method is already known, the step of investigating the method may be omitted.

かかる構成においては、それぞれの工法に対応した定め方で地盤改良エリアを特定し、該特定された地盤改良エリアに対して地盤改良を行えばよい。   In such a configuration, the ground improvement area may be specified by a method corresponding to each construction method, and the ground improvement may be performed on the specified ground improvement area.

本実施形態に係る地盤改良方法の手順を示したフローチャート。The flowchart which showed the procedure of the ground improvement method which concerns on this embodiment. 地盤領域エリアの定め方を示した説明図。Explanatory drawing which showed how to determine a ground area area. 実験に用いた固定土槽及び線路下構造物模型を示した図であり、(a)は平面図、(b)はA−A線に沿う断面図、(c)はB−B線に沿う断面図。It is the figure which showed the fixed soil tank used for experiment, and a structure model under a track, (a) is a top view, (b) is a sectional view which meets an AA line, (c) is along a BB line Sectional drawing. 加振時間と沈下率の関係を示したグラフ。The graph which showed the relationship between excitation time and settlement rate. 実験及び解析で得られた沈下量を示したグラフであり、(a)は開削工法の沈下量を示したグラフ、(b)は非開削工法の沈下量を示したグラフ。It is the graph which showed the settlement amount obtained by experiment and analysis, (a) is the graph which showed the settlement amount of the open-cut method, (b) The graph which showed the sink amount of the non-cut method.

符号の説明Explanation of symbols

1 ボックスカルバート(地中構造物)
2 山留め壁
3 仮想斜面
4a 地盤改良エリア
5 地盤改良エリア
1 Box culvert (underground structure)
2 Mountain retaining wall 3 Virtual slope 4a Ground improvement area 5 Ground improvement area

Claims (4)

地中構造物の周囲に拡がる地盤を改良する地盤改良方法において、
前記地中構造物が施工された工法を調査し、
前記工法が開削工法であった場合、施工時に建て込まれた山留め壁の下縁から前記地中構造物と反対側の地表面に向かって斜め上方に延びる仮想斜面を想定し、該仮想斜面と前記山留め壁が建て込まれていた鉛直面と地表面とに囲まれた三角形状断面領域を地盤改良エリアとし、
前記工法が非開削工法であった場合、前記地中構造物の周面から該地中構造物の壁厚に相当する距離だけ離間した位置までの間に拡がる筒状断面領域を地盤改良エリアとし、
前記地盤改良エリアを地盤改良することを特徴とする地中構造物近傍の地盤改良方法。
In the ground improvement method for improving the ground spreading around underground structures,
Investigate the construction method where the underground structure was constructed,
When the construction method is an open-cut method, assuming a virtual slope extending obliquely upward from the lower edge of the retaining wall built at the time of construction toward the ground surface opposite to the underground structure, The triangular cross-sectional area surrounded by the vertical surface and the ground surface where the mountain retaining wall was built as a ground improvement area,
When the construction method is a non-cutting construction method, a cylindrical cross-sectional area extending from a peripheral surface of the underground structure to a position separated by a distance corresponding to the wall thickness of the underground structure is defined as a ground improvement area. ,
A ground improvement method in the vicinity of an underground structure, wherein the ground improvement area is improved.
前記仮想斜面と水平面とのなす角度を前記三角形状断面領域内の地盤の土質性状から定める内部摩擦角又は安息角とした請求項1記載の地盤改良方法。 The ground improvement method according to claim 1, wherein an angle formed between the virtual slope and a horizontal plane is an internal friction angle or a repose angle determined from a soil property of the ground in the triangular cross-sectional area. 開削工法で施工された地中構造物の周囲に拡がる地盤を改良する地盤改良方法において、
施工時に建て込まれた山留め壁の下縁から前記地中構造物と反対側の地表面に向かって斜め上方に延びる仮想斜面を想定し、該仮想斜面と前記山留め壁が建て込まれていた鉛直面と地表面とに囲まれた三角形状断面領域を地盤改良エリアとして地盤改良を行うことを特徴とする地中構造物近傍の地盤改良方法。
In the ground improvement method to improve the ground spreading around the underground structure constructed by the open-cut method,
Assuming a virtual slope extending obliquely upward from the lower edge of the retaining wall built at the time of construction toward the ground surface opposite to the underground structure, the vertical slope where the virtual slope and the retaining wall were built A ground improvement method in the vicinity of an underground structure, characterized by performing ground improvement using a triangular cross-sectional area surrounded by a surface and a ground surface as a ground improvement area.
非開削工法で施工された地中構造物の周囲に拡がる地盤を改良する地盤改良方法において、
前記地中構造物の周面から該地中構造物の壁厚に相当する距離だけ離間した位置までの間に拡がる筒状断面領域を地盤改良エリアとして地盤改良を行うことを特徴とする地中構造物近傍の地盤改良方法。
In the ground improvement method to improve the ground spreading around the underground structure constructed by the non-open cutting method,
A ground improvement is performed using a cylindrical cross-sectional area extending from a peripheral surface of the underground structure to a position separated by a distance corresponding to a wall thickness of the underground structure as a ground improvement area. Ground improvement method near the structure.
JP2007094144A 2007-03-30 2007-03-30 Ground improvement method in the vicinity of underground structures Expired - Fee Related JP5051752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094144A JP5051752B2 (en) 2007-03-30 2007-03-30 Ground improvement method in the vicinity of underground structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007094144A JP5051752B2 (en) 2007-03-30 2007-03-30 Ground improvement method in the vicinity of underground structures

Publications (2)

Publication Number Publication Date
JP2008248649A true JP2008248649A (en) 2008-10-16
JP5051752B2 JP5051752B2 (en) 2012-10-17

Family

ID=39973909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094144A Expired - Fee Related JP5051752B2 (en) 2007-03-30 2007-03-30 Ground improvement method in the vicinity of underground structures

Country Status (1)

Country Link
JP (1) JP5051752B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026942A (en) * 2009-06-25 2011-02-10 Shimizu Corp Seismic strengthening structure for box culvert
JP2011204674A (en) * 2010-03-04 2011-10-13 Toray Ind Inc Polyester film for battery outer packaging and element for battery outer packaging
JP2020190099A (en) * 2019-05-21 2020-11-26 株式会社竹中工務店 Flotation preventing structure, and earth retaining method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107119731A (en) * 2017-06-12 2017-09-01 上海理工大学 Foundation ditch group excavates the model test apparatus to close to buildings deformation effect

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941352A (en) * 1995-08-03 1997-02-10 Yoshihiro Nakagawa Constructing method of culvert
JP2001026922A (en) * 1999-07-13 2001-01-30 Kumagai Gumi Co Ltd Earthquake-proof reinforcing method for existing tunnel
JP2003056287A (en) * 2001-08-13 2003-02-26 Taisei Corp Reinforcing method of existing tunnel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941352A (en) * 1995-08-03 1997-02-10 Yoshihiro Nakagawa Constructing method of culvert
JP2001026922A (en) * 1999-07-13 2001-01-30 Kumagai Gumi Co Ltd Earthquake-proof reinforcing method for existing tunnel
JP2003056287A (en) * 2001-08-13 2003-02-26 Taisei Corp Reinforcing method of existing tunnel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026942A (en) * 2009-06-25 2011-02-10 Shimizu Corp Seismic strengthening structure for box culvert
JP2011204674A (en) * 2010-03-04 2011-10-13 Toray Ind Inc Polyester film for battery outer packaging and element for battery outer packaging
JP2020190099A (en) * 2019-05-21 2020-11-26 株式会社竹中工務店 Flotation preventing structure, and earth retaining method
JP7326679B2 (en) 2019-05-21 2023-08-16 株式会社竹中工務店 Mountain retaining method

Also Published As

Publication number Publication date
JP5051752B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
CN103572755B (en) Prestressed concrete prefabricated pile
JP5882143B2 (en) Anti-floating pile for underground structures and anti-floating method for underground structures
JP2012082676A (en) Displacement controlling method
CN110219359A (en) A kind of Submersed type inspection well and its construction method
JP5051752B2 (en) Ground improvement method in the vicinity of underground structures
JP2009250006A (en) Countermeasure structure for ground subsidence
CN110158649A (en) The construction method of Adjacent Underground Pipeline when a kind of caisson sinking construction
JP2007284903A (en) Method of suppressing amount of settlement of ground in shield construction
CN104895121B (en) Transverse partition method for reducing ground surface settlement and building structure deformation of underground structure construction
JP2007009430A (en) Tunnel composition structure and its construction method
CN110055973A (en) Construction space foundation pit enclosure structure and water-stopping method under by high metal bridge in limited time
JP3889750B2 (en) Face stabilization method in underground structure construction method
JP2009079415A (en) Banking reinforcing structure, reinforcing method and linear banking
JP2007169927A (en) Earthquake resisting manhole structure and its manufacturing method
JP4830589B2 (en) Core material, soil cement wall, soil cement wall pile, method of building soil cement wall
KR100322845B1 (en) tubular roof tunnel construction method
CN107460832A (en) The deep existing bridge of cheuch disturbs ruggedized construction and construction method
JP2009250007A (en) Countermeasure method for ground subsidence
KR101437882B1 (en) Tunnel excavating method having various cross sectional shapes
JP5375549B2 (en) How to construct a retaining wall
Tan et al. Challenges in design and construction of deep excavation for KVMRT in Kuala Lumpur limestone formation
CN105064384A (en) Vacuum tube well precipitation system under special geological conditions
JP6592331B2 (en) Survey method of circumferential shield machine
JP2013150445A (en) Conduit section of wire common duct and installation structure
JP4966675B2 (en) H-type PC pile rooting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees