JP2001026846A - Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member - Google Patents

Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member

Info

Publication number
JP2001026846A
JP2001026846A JP11202815A JP20281599A JP2001026846A JP 2001026846 A JP2001026846 A JP 2001026846A JP 11202815 A JP11202815 A JP 11202815A JP 20281599 A JP20281599 A JP 20281599A JP 2001026846 A JP2001026846 A JP 2001026846A
Authority
JP
Japan
Prior art keywords
carbides
magnetic member
composite magnetic
magnetic
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11202815A
Other languages
Japanese (ja)
Inventor
Shinichiro Yokoyama
紳一郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11202815A priority Critical patent/JP2001026846A/en
Publication of JP2001026846A publication Critical patent/JP2001026846A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite magnetic member of a single material combining a ferromagnetic part and a nonmagnetic part, in which the ferromagnetic part has soft magnetism more excellent than that of the conventional member, and the nonmagnetic part has stable characteristics equal to those of the conventional member, to provide a method for producing the ferromagnetic part in the member and to provide a method for forming the nonmagnetic part. SOLUTION: This composite magnetic member is composed of Fe-Cr-C base alloy steel contg. 0.1 to 7.0% Si or Si and Al by 0.1 to 12.0% in total and has a ferromagnetic part in which the number of carbides having >=0.1 μm grain size is controlled to <=50 pieces in the area of 100 μm2, also the ratio of the number of the carbides having >=1.0 μm grain size to the number of the carbides to >=15%, and the maximum magnetic permeability to >=400 and a nonmagnetic part whose magnetic permeability is controlled to <=2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モ−タをはじめと
する磁気回路を利用した工業製品に適用され得る、単一
材料中に強磁性部と非磁性部を併せ持つ複合磁性部材、
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic member having both a ferromagnetic portion and a non-magnetic portion in a single material, which can be applied to an industrial product using a magnetic circuit such as a motor.
And a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、モ−タの回転子や磁気目盛等、磁
気回路を必要とする工業製品においては、磁気回路を形
成するために、強磁性体(一般には軟質磁性材料)の一
部に非磁性部を設けた構造が用いられている。強磁性体
の一部に非磁性部分を設ける方法としては強磁性部品と
非磁性部品をろう付けするか、レ−ザ−溶接する等の手
法が行われてきた。これらの異種材を接合する手法に対
し、本発明者らは、単一材を使用して、この単一材に冷
間加工または熱処理によって強磁性部および非磁性部を
設けた複合磁性部材を提案している。このような単一材
の複合磁性部材を利用すると、気密性の確保、振動等に
よる破損防止等、信頼性の確保、またコストの低下とい
う点で、強磁性体と非磁性体を接合した部品よりも優れ
たものとなる。
2. Description of the Related Art Conventionally, in industrial products requiring a magnetic circuit, such as a rotor of a motor and a magnetic scale, a part of a ferromagnetic material (generally, a soft magnetic material) is required to form a magnetic circuit. Is provided with a non-magnetic portion. As a method of providing a non-magnetic portion on a part of a ferromagnetic material, a method of brazing a ferromagnetic component and a non-magnetic component or laser welding has been used. In contrast to the method of joining these dissimilar materials, the present inventors have used a single material and formed a composite magnetic member having a ferromagnetic portion and a non-magnetic portion provided by cold working or heat treatment on the single material. is suggesting. The use of such a single composite magnetic member makes it possible to secure the airtightness, prevent damage due to vibration, etc., as well as to ensure reliability and reduce costs. Will be better than

【0003】たとえば本発明者らの提案による特開平9
−157802号には、自動車の油量制御機器に適した
複合磁性部材として、Niを0.5〜4.0%含有する
マルテンサイト系ステンレス鋼が開示されている。この
提案には、フェライトと炭化物よりなる焼鈍状態のマル
テンサイト系ステンレス鋼で、最大透磁率200以上の
強磁性特性が得られるFe−Cr−C系合金にNiを適
量添加することにより、マルテンサイト系ステンレス鋼
の一部を加熱後冷却することにより得られる透磁率2以
下の非磁性部のオ−ステナイトを安定化し、Ms点(オ
−ステナイトがマルテンサイト化し始める温度)を−3
0℃以下にまで低下できることが開示されている。
For example, Japanese Patent Application Laid-Open No.
No. 157802 discloses a martensitic stainless steel containing 0.5 to 4.0% Ni as a composite magnetic member suitable for an oil control device of an automobile. This proposal proposes the addition of an appropriate amount of Ni to a martensitic stainless steel in an annealed state consisting of ferrite and carbide, which can provide ferromagnetic properties with a maximum magnetic permeability of 200 or more, by adding an appropriate amount of Ni. The austenite in the non-magnetic portion having a magnetic permeability of 2 or less obtained by heating and cooling a part of the stainless steel is stabilized, and the Ms point (the temperature at which austenite starts to become martensite) is reduced by -3.
It is disclosed that the temperature can be reduced to 0 ° C. or less.

【0004】また、本願出願人の提案による特開平9−
228004号には、磁気目盛等に使用される複合磁性
材料として、Cr:10〜16%、C:0.35〜0.
75%を含み、最大透磁率200以上の強磁性特性が得
られるC−Cr−Fe系合金にMn:2%を超え7%以
下、かつN:0.01〜0.05%添加することによ
り、加熱後冷却して得られる透磁率2以下の残留オ−ス
テナイトを安定化し、Ms点を−10℃以下にまで低下
できることが開示されている。これらの提案は、単一材
において最大透磁率200以上の強磁性部と、透磁率2
以下でMs点が低い安定した非磁性部が得られるという
点で優れたものである。
Further, Japanese Patent Application Laid-Open No.
No. 228004 discloses a composite magnetic material used for a magnetic scale or the like, in which Cr is 10 to 16% and C is 0.35 to 0.
By adding Mn: more than 2% to 7% or less and N: 0.01 to 0.05% to a C-Cr-Fe-based alloy containing 75% and having ferromagnetic properties with a maximum magnetic permeability of 200 or more. It discloses that the residual austenite having a magnetic permeability of 2 or less obtained by cooling after heating can be stabilized and the Ms point can be lowered to -10 ° C or less. These proposals consist of a ferromagnetic part having a maximum magnetic permeability of 200 or more in a single material and a magnetic permeability of 2 or more.
This is excellent in that a stable nonmagnetic portion having a low Ms point can be obtained below.

【0005】[0005]

【発明が解決しようとする課題】上述した特開平9−1
57802号や特開平9−228004号に開示されて
いる複合磁性部材は、強磁性特性が得られるマルテンサ
イト系ステンレス鋼を基本として、これにオ−ステナイ
ト形成元素であるNiやMnを適量添加し、部分的溶体
化処理を施すことによって、強磁性体の一部に低温まで
安定した非磁性部を形成することができるという提案で
あって、単一材料中に最大透磁率μm200以上の強磁
性部と、透磁率μ2以下の安定した非磁性部を併せ持つ
ことができるという点で優れた技術と言える。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 9-1 is disclosed.
The composite magnetic members disclosed in Japanese Patent No. 57802 and JP-A-9-228004 are based on martensitic stainless steel having ferromagnetic properties, and to which an appropriate amount of an austenite-forming element such as Ni or Mn is added. It is proposed that a non-magnetic part stable at a low temperature can be formed in a part of a ferromagnetic material by performing a partial solution treatment, and a ferromagnetic material having a maximum magnetic permeability of 200 μm or more in a single material is proposed. It can be said that this is an excellent technique in that it can have both a non-magnetic part and a stable non-magnetic part having a magnetic permeability of μ2 or less.

【0006】本発明者らの検討によれば、磁気回路とし
て用いられる複合磁性部材の中には、たとえばモ−タ回
転子の様に、従来部材よりも優れた軟質磁気特性(以
下、軟磁性と記す)、すなわち高い最大透磁率と低い保
磁力が必要とされる場合がある。これに対して、上述し
た二件の提案では、強磁性部で得られる軟磁性に限界が
あった。
According to the study of the present inventors, among composite magnetic members used as a magnetic circuit, soft magnetic characteristics (hereinafter referred to as soft magnetic characteristics) superior to conventional members, such as a motor rotor, are provided. That is, a high maximum magnetic permeability and a low coercive force may be required. On the other hand, in the above two proposals, there is a limit to the soft magnetism obtained by the ferromagnetic portion.

【0007】すなわち、Fe−Cr−C系合金鋼を素材
とした複合磁性部材の強磁性部においては、フェライト
のマトリックス基地に炭化物を析出したミクロ組織形態
となっているが、優れた軟磁性を示す一つの指標となる
高い最大透磁率を得るためには、部材内部の析出物をで
きるだけ少なくし、磁壁移動が容易な状態を作ることが
必要であり、中でも粒径0.1μm以上の炭化物が数多
く存在すると、特に磁壁の移動にとって障害となるため
か、これまで強磁性部で得られる最大透磁率には限界が
あった。
That is, the ferromagnetic portion of the composite magnetic member made of Fe—Cr—C alloy steel has a microstructure in which carbides are precipitated on a matrix base of ferrite. In order to obtain a high maximum magnetic permeability, which is one of the indices shown, it is necessary to minimize the precipitates inside the member and create a state in which domain wall movement is easy, and among them, carbide having a particle diameter of 0.1 μm or more is required. The presence of a large number of the barriers particularly hinders the movement of the domain wall, and there has been a limit to the maximum magnetic permeability that can be obtained in the ferromagnetic portion.

【0008】また、優れた軟磁性を示すもう一つの指標
である低い保磁力を得るためには、マトリックスの結晶
粒を大きくするのが効果的である。しかし、炭化物が数
多く存在すると、マトリックスであるフェライト結晶粒
の成長が抑制されるため、フェライト粒径は非常に微細
なものとなり、強磁性部で得られる保磁力の低下を阻害
する原因となっていた。
In order to obtain a low coercive force, which is another index showing excellent soft magnetism, it is effective to increase the crystal grains of the matrix. However, when a large number of carbides are present, the growth of ferrite crystal grains as a matrix is suppressed, so that the ferrite grain size becomes extremely fine, which is a factor that hinders a decrease in the coercive force obtained in the ferromagnetic portion. Was.

【0009】本発明の目的は、上述の問題を解決し、単
一材で強磁性部と非磁性部を併せ持つ複合磁性部材の
内、強磁性部において従来部材よりも優れた軟磁性を有
し、かつ従来部材と変わらない安定した特性の非磁性部
を有する複合磁性部材および該部材の強磁性部の製造方
法、ならびに非磁性部の形成方法を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and, among composite magnetic members having both a ferromagnetic portion and a non-magnetic portion in a single material, have a ferromagnetic portion having soft magnetism superior to conventional members. Another object of the present invention is to provide a composite magnetic member having a non-magnetic portion having stable characteristics which is not different from that of a conventional member, a method of manufacturing a ferromagnetic portion of the member, and a method of forming a non-magnetic portion.

【0010】[0010]

【課題を解決するための手段】本発明者らは、複合磁性
部材の強磁性部の軟磁性を高める方法として、これまで
は積極的に添加されていなかった元素であるSiを添加
すること、及びSiとよく似た効果を示すAlをSiと
複合添加することに着目した。本発明者らが先に提案し
た特開平9−157802号の複合磁性部材には、脱酸
剤としてSi、Mn、Alの1種または2種以上を合計
で2.0%以下含有するとしている。この提案はSi、
Mn、Al等の元素が脱酸剤として溶鋼中の酸素を除去
する効果のみを期待したものであり、これらの元素は部
材中には残存しない方がよいと考えていた。ところが本
発明者らの更なる検討によるとFe−Cr−C系の合金
鋼から成る複合磁性部材においては、素材である合金鋼
にSiを0.1〜7.0%の範囲で積極的に添加するこ
と、またはSiとAlを合計で0.1〜12.0%の範
囲で積極的に添加することにより、強磁性部の軟磁性が
著しく改善されることを知見した。
Means for Solving the Problems As a method of increasing the soft magnetism of the ferromagnetic portion of the composite magnetic member, the present inventors have added Si, which has not been positively added so far, In addition, attention was paid to the complex addition of Al, which exhibits an effect very similar to that of Si, with Si. The composite magnetic member of Japanese Patent Application Laid-Open No. 9-157802 proposed by the present inventors contains one or more of Si, Mn, and Al as a deoxidizing agent in a total of 2.0% or less. . This proposal is Si,
Elements such as Mn and Al were expected only to remove oxygen in molten steel as a deoxidizing agent, and it was thought that these elements should not remain in the member. However, according to further studies by the present inventors, in a composite magnetic member made of an Fe-Cr-C-based alloy steel, Si is actively added to the alloy steel as a material in a range of 0.1 to 7.0%. It has been found that the soft magnetism of the ferromagnetic portion is remarkably improved by adding Si or Al positively in a total range of 0.1 to 12.0%.

【0011】続いて本発明者らは、強磁性部のミクロ組
織に及ぼすSi添加の影響、及び(Si,Al)複合添
加の影響を詳細に調査した。その結果、強磁性部は、こ
れらの元素添加の有無によらず(フェライト+炭化物)
主体の金属組織であるが、Siを添加すると、単位面積
当たりの炭化物個数が少なくなるとともに個々の炭化物
が大きくなること、およびフェライト粒の結晶粒径が大
きくなることを突き止めた。また、SiとAlを複合添
加すると、上述したミクロ組織の変化は、更に顕著にな
ることを突き止め、本発明に到達した。
Subsequently, the present inventors investigated in detail the effect of Si addition on the microstructure of the ferromagnetic portion and the effect of (Si, Al) composite addition. As a result, the ferromagnetic part is irrespective of whether or not these elements are added (ferrite + carbide)
As for the main metal structure, it has been found that when Si is added, the number of carbides per unit area decreases and the individual carbides increase, and the crystal grain size of ferrite grains increases. In addition, it was found that when Si and Al were added in combination, the change in the microstructure described above became more remarkable, and the present invention was reached.

【0012】すなわち本発明は、Siを0.1〜7.0
%、またはSiとAlを合計で0.1〜12.0%含有
するFe−Cr−C系合金鋼から成り、粒径0.1μm
以上の炭化物個数が100μmの面積中に50個以
下、且つ該炭化物個数に対する粒径1.0μm以上の炭
化物個数の割合が15%以上に調整された最大透磁率4
00以上の強磁性部と、透磁率2以下の非磁性部を有す
る複合磁性部材である。
That is, according to the present invention, Si is contained in an amount of 0.1 to 7.0.
% Or a Fe-Cr-C alloy steel containing 0.1 to 12.0% in total of Si and Al, and a particle diameter of 0.1 μm
The maximum permeability 4 in which the number of carbides is 50 or less in an area of 100 μm 2 and the ratio of the number of carbides having a particle size of 1.0 μm or more to the number of carbides is adjusted to 15% or more.
This is a composite magnetic member having a ferromagnetic portion of 00 or more and a non-magnetic portion of a magnetic permeability of 2 or less.

【0013】また本発明は、Siを0.1〜7.0%、
またはSiとAlを合計で0.1〜12.0%含有する
Fe−Cr−C系合金鋼から成り、結晶粒度番号14を
含んで、これより粗粒に調整され、保磁力1000A/
m以下の強磁性部と、透磁率2以下の非磁性部を有する
複合磁性部材である。
[0013] The present invention also relates to the present invention, wherein the content of Si is 0.1 to 7.0%;
Alternatively, it is made of a Fe—Cr—C alloy steel containing 0.1 to 12.0% in total of Si and Al, and is adjusted to a coarser grain including a crystal grain size number of 14, and has a coercive force of 1000 A /
This is a composite magnetic member having a ferromagnetic portion of m or less and a non-magnetic portion of a magnetic permeability of 2 or less.

【0014】好ましくは、表面側からX線で結晶方位を
測定した時、フェライト(200)とフェライト(11
0)のX線積分強度比が6以上の強磁性部を有する複合
磁性部材であり、更に好ましくは、電気抵抗率は、0.
7μΩm以上の強磁性部を有する複合磁性部材である。
Preferably, when the crystal orientation is measured by X-rays from the surface side, the ferrite (200) and the ferrite (11
0) is a composite magnetic member having a ferromagnetic portion having an X-ray integrated intensity ratio of 6 or more, and more preferably, the electric resistivity is 0.1.
This is a composite magnetic member having a ferromagnetic portion of 7 μΩm or more.

【0015】本発明の好ましい化学組成として、Ni当
量(=%Ni+30×%C+0.5×%Mn+30×%
N)が10.0〜25.0%である合金鋼から成る複合
磁性部材である。
The preferred chemical composition of the present invention is Ni equivalent (=% Ni + 30 ×% C + 0.5 ×% Mn + 30 ×%
N) is a composite magnetic member made of an alloy steel with 10.0 to 25.0%.

【0016】Siを単独で添加する場合の好ましい組成
は、重量%でC:0.30〜0.80%、Cr:10.
0〜25.0%、Si;0.1〜7.0%、Ni:0.
1〜4.0%、Mn;0.1〜2.0%、N:0.01
〜0.10%、残部がFeと不可避不純物の組成の合金
鋼から成る複合磁性部材であり、また更に好ましくは、
Siが重量%で0.3〜3.5%を含有する複合磁性部
材である。また、Siを単独で添加する場合には、脱酸
元素としてAlを0.05%未満の範囲で含有してもよ
い。
When Si is added alone, the preferred composition is as follows: C: 0.30 to 0.80% by weight;
0 to 25.0%, Si; 0.1 to 7.0%, Ni: 0.
1 to 4.0%, Mn; 0.1 to 2.0%, N: 0.01
0.10%, the balance being a composite magnetic member made of an alloy steel having a composition of Fe and unavoidable impurities.
This is a composite magnetic member containing 0.3 to 3.5% by weight of Si. When Si is added alone, Al may be contained in a range of less than 0.05% as a deoxidizing element.

【0017】SiとAlを複合添加する場合の好ましい
組成は、重量%でC:0.30〜0.80%、Cr:1
0.0〜25.0%、Si;0.05〜7.0%、A
l;0.05〜5.0%、Ni:0.1〜4.0%、M
n;0.1〜2.0%、N:0.01〜0.10%、残
部がFeと不可避不純物の組成の合金鋼から成る複合磁
性部材であり、また更に好ましくは、Si、Alをそれ
ぞれ重量%で0.3〜3.5%の範囲で含有する複合磁
性部材である。
In the case where Si and Al are added in combination, the preferred composition is as follows: C: 0.30 to 0.80% by weight, Cr: 1
0.0-25.0%, Si; 0.05-7.0%, A
l; 0.05-5.0%, Ni: 0.1-4.0%, M
n: 0.1 to 2.0%, N: 0.01 to 0.10%, the balance being a composite magnetic member made of an alloy steel having a composition of Fe and unavoidable impurities. A composite magnetic member containing 0.3 to 3.5% by weight.

【0018】また本発明の製造方法としては、Siを
0.1〜7.0%、またはSiとAlを合計で0.1〜
12.0%含有するFe−Cr−C系の合金鋼を、11
00℃以下で熱間加工した後、A3変態点以下で少なく
とも1回焼鈍し、粒径0.1μm以上の炭化物個数を1
00μmの面積中に50個以下、且つ該炭化物個数に
対する粒径1.0μm以上の炭化物個数の割合が15%
以上に調整した強磁性体を得る複合磁性部材の強磁性部
の製造方法である。
Further, in the production method of the present invention, the content of Si is 0.1 to 7.0% or the total content of Si and Al is 0.1 to 7.0%.
Fe-Cr-C alloy steel containing 12.0%
After hot working at a temperature of 00 ° C. or less, the steel is annealed at least once at an A3 transformation point or less to reduce the number of carbides having a grain size of 0.1 μm or more to 1
50% or less in the area of 00 μm 2 and the ratio of the number of carbides having a particle size of 1.0 μm or more to the number of carbides is 15%
This is a method for manufacturing a ferromagnetic portion of a composite magnetic member for obtaining a ferromagnetic material adjusted as described above.

【0019】また、本発明部材の非磁性部の形成方法と
しては、上述の方法で得られた強磁性体の一部を105
0℃〜溶融温度の温度範囲で加熱後、急冷することで、
非磁性化する複合磁性部材の非磁性部の形成方法であ
る。
As a method of forming the non-magnetic portion of the member of the present invention, a part of the ferromagnetic material obtained by
After heating in the temperature range from 0 ° C to the melting temperature, it is quenched,
This is a method for forming a nonmagnetic portion of a composite magnetic member to be demagnetized.

【0020】[0020]

【発明の実施の形態】上述したように、本発明には重要
な特徴が2つある。第一の特徴は、複合磁性部材の強磁
性部の軟磁性を高めるため、複合磁性部材の素材となる
合金鋼に、これまでは脱酸剤としてしか捉えられていな
かったSiを積極的に添加したことである。そして第二
の特徴は、Siと同様の効果をもつAlを、Siと複合
で添加したことである。このSiを添加すること、また
はSiとAlを複合添加することによって、Fe−Cr
−C系の合金鋼から成る複合磁性部材の強磁性部におい
て、粒径0.1μm以上の炭化物個数、該炭化物個数に
対する粒径1.0μm以上の炭化物個数の割合、更には
フェライト粒の結晶粒度と結晶方位を、それぞれ特定の
範囲に調整し、優れた軟磁性が得られたものであり、S
i、Alは複合磁性部材の強磁性部において、軟磁性を
改善するために合金素材に添加される本発明の重要元素
である。
DETAILED DESCRIPTION OF THE INVENTION As noted above, the present invention has two important features. The first feature is that to increase the soft magnetism of the ferromagnetic part of the composite magnetic member, Si, which has been regarded only as a deoxidizer, was actively added to the alloy steel used as the material of the composite magnetic member. It was done. The second feature is that Al having the same effect as Si is added in combination with Si. By adding Si or by adding Si and Al in combination, Fe—Cr
In the ferromagnetic portion of the composite magnetic member made of -C alloy steel, the number of carbides having a particle diameter of 0.1 μm or more, the ratio of the number of carbides having a particle diameter of 1.0 μm or more to the number of carbides, and the crystal grain size of ferrite grains And the crystal orientation were adjusted to specific ranges, respectively, and excellent soft magnetism was obtained.
i and Al are important elements of the present invention added to the alloy material to improve soft magnetism in the ferromagnetic portion of the composite magnetic member.

【0021】まず、本発明の第一の特徴である複合磁性
部材の素材となる合金鋼にSiを添加することの効果を
詳細に説明する。本発明者らは複合磁性部材の素材であ
るFe−Cr−C系合金にSiを添加することには、4
つの効果があることを見出しており、それらについて順
に説明する。本発明者らは複合磁性部材の素材であるF
e−Cr−C系合金に対し、種々の添加元素の内、Si
は個々の炭化物を成長させる効果、炭化物の個数を減少
させる効果、更にマトリックスのフェライト結晶粒を大
きくさせる効果を併せ持ち、強磁性部の磁気特性を飛躍
的に向上させる効果を初めて見出した。そして、強磁性
部において、Siは炭化物中ではなく、マトリックスの
フェライト中に存在することをEDXの面分析により確
認している。しかし、Siがマトリックスに存在するこ
とによって、炭化物が大きくなるメカニズムや、Siを
添加すると、炭化物が大きく、かつ少なくなるからフェ
ライト粒が大きくなるのか、それとも逆にフェライト粒
が大きくなるから、炭化物が大きく、かつ少なくなるの
か等、Si添加による金属組織の変化の原因については
不明であり、現在、解明中である。
First, the effect of adding Si to the alloy steel as the material of the composite magnetic member, which is the first feature of the present invention, will be described in detail. The present inventors have found that adding Si to the Fe—Cr—C-based alloy, which is the material of the composite magnetic member, requires 4%.
Has been found to have two effects, which will be described in turn. The present inventors have proposed F, which is a material of the composite magnetic member.
For the e-Cr-C-based alloy, among various additional elements, Si
Has for the first time found an effect of growing individual carbides, an effect of reducing the number of carbides, and an effect of increasing the size of ferrite crystal grains in the matrix, and dramatically improving the magnetic properties of the ferromagnetic portion. Then, it has been confirmed by EDX surface analysis that Si in the ferromagnetic portion is present not in the carbide but in the ferrite of the matrix. However, since Si is present in the matrix, the mechanism by which the carbides become larger, or by adding Si, the carbides become larger and less, so the ferrite grains become larger, or conversely, the ferrite grains become larger, so the carbides become larger. The cause of the change in the metal structure due to the addition of Si, such as whether it is large and small, is unknown and is currently being clarified.

【0022】次に、具体的にSi添加量と強磁性部の炭
化物形態、最大透磁率の関係を説明する。ここでは、A
lは脱酸元素として0.002%程度、含有されている
だけで、実質的には添加されていない。本発明者らが行
った実験の内、重量%でFe−17.5%Cr−0.5
%C−2.0%Niを主成分とする合金鋼を素材とした
複合磁性部材を例に挙げと、Siを脱酸剤として0.0
02%のみ含有し、実質的には添加していない場合に
は、強磁性部において粒径0.1μm以上の炭化物個数
は100μmの面積中で66個、このうち粒径1μm
以上の炭化物は、測定された全炭化物個数に対して1
2.1%の8個であり、最大透磁率は315である。こ
の合金鋼に重量%で0.44%のSiを添加した合金鋼
を素材とした複合磁性部材の強磁性部では、粒径0.1
μm以上の炭化物個数は100μmの面積中で45
個、このうち粒径1μm以上の炭化物は、測定された全
炭化物個数に対して17.7%の8個となり、最大透磁
率は436まで上昇する。
Next, the relationship between the amount of added Si, the carbide form of the ferromagnetic portion, and the maximum magnetic permeability will be specifically described. Here, A
1 is contained only as about 0.002% as a deoxidizing element, and is not substantially added. Among the experiments performed by the present inventors, Fe-17.5% Cr-0.5 by weight%.
% C-2.0% Ni as an example, a composite magnetic member made of an alloy steel containing Si as a main component is used.
When only 0.2% is contained and substantially not added, the number of carbides having a particle diameter of 0.1 μm or more in the ferromagnetic portion is 66 in an area of 100 μm 2, of which 1 μm
The above carbide is 1 to the total number of carbides measured.
There are eight of 2.1%, and the maximum magnetic permeability is 315. The ferromagnetic portion of the composite magnetic member made of alloy steel obtained by adding 0.44% by weight of Si to this alloy steel has a grain size of 0.1%.
The number of carbides of μm or more is 45 in an area of 100 μm 2.
The number of carbides having a particle diameter of 1 μm or more is 8 at 17.7% of the total number of carbides measured, and the maximum magnetic permeability increases to 436.

【0023】また、重量%で0.91%のSiを添加し
た合金鋼を素材とした場合には、強磁性部における粒径
0.1μm以上の炭化物個数は100μmの面積中で
36個まで低下し、このうち粒径1μm以上の炭化物
は、測定された全炭化物個数に対して25.0%の9個
となり、最大透磁率は628まで上昇する。更に、重量
%で1.94%のSiを添加した場合には、粒径0.1
μm以上の炭化物個数は100μmの面積中で24個
まで低下し、このうち粒径1μm以上の炭化物は、測定
された全炭化物個数に対して37.5%の9個となり、
最大透磁率は920まで上昇する。このようにSiを添
加して行くことによって、強磁性部における粒径0.1
μm以上の炭化物個数は減少し、測定される全炭化物個
数に対する粒径1μm以上の炭化物個数の割合が増えて
行くことが分かる。更にこの炭化物形態の変化に伴っ
て、高い最大透磁率が得られることが分かった。以上
が、複合磁性材部材の素材となるFe−Cr−C系合金
鋼にSiを添加する効果の第一である。
When the alloy steel to which 0.91% by weight of Si is added is used as the material, the number of carbides having a grain size of 0.1 μm or more in the ferromagnetic portion is up to 36 in an area of 100 μm 2. Among them, the number of carbides having a particle diameter of 1 μm or more becomes 9 of 25.0% of the total number of carbides measured, and the maximum magnetic permeability increases to 628. Further, when 1.94% by weight of Si is added, the particle size is 0.1%.
The number of carbides of μm or more is reduced to 24 in an area of 100 μm 2, and the number of carbides of 1 μm or more in particle size is 9 of 37.5% of the total number of carbides measured,
The maximum permeability rises to 920. By adding Si in this manner, the grain size in the ferromagnetic portion is reduced to 0.1.
It can be seen that the number of carbides having a particle diameter of 1 μm or more increases as the number of carbides having a particle diameter of 1 μm or more decreases. Further, it was found that a high maximum magnetic permeability was obtained with the change in the carbide form. The above is the first effect of adding Si to the Fe—Cr—C alloy steel used as the material of the composite magnetic material member.

【0024】次に、Si添加量と強磁性部のフェライト
粒の結晶粒度、保磁力の関係を具体的に述べる。重量%
でFe−17.5%Cr−0.5%C−2.0%Niを
主成分とする合金鋼を素材とした複合磁性部材を例に挙
げると、Siを脱酸剤として0.02%のみ含有し、実
質的には添加していない場合には、強磁性部においてフ
ェライト粒の大きさは結晶粒度番号16.0で、保磁力
は1220A/mである。この合金鋼に重量%で0.4
4%のSiを添加した合金鋼を素材とした複合磁性部材
の強磁性部では、フェライト粒の大きさは結晶粒度番号
13.5まで大きくなり、保磁力は980A/mまで低
下し、軟磁性(軟質磁気特性)の向上が図れる。また、
重量%で0.91%のSiを添加した合金鋼を素材とし
た場合には、強磁性部の結晶粒度番号は13.0、保磁
力は700A/mとなる。更に重量%で1.94%のS
iを添加した場合には、フェライト粒の大きさは結晶粒
度番号12.0まで大きくなり、保磁力は490A/m
まで低下し、更なる軟磁性(軟質磁気特性)の向上が図
れる。このようにSiを添加することにより、フェライ
ト粒は大きくなり、これに伴って保磁力が低下し、軟磁
性(軟質磁気特性)が向上して行くことが分かる。以上
が、複合磁性材部材の素材となるFe−Cr−C系合金
鋼にSiを添加する効果の第二である。
Next, the relationship between the amount of added Si, the crystal grain size of ferrite grains in the ferromagnetic portion, and the coercive force will be specifically described. weight%
In the case of a composite magnetic member made of an alloy steel containing Fe-17.5% Cr-0.5% C-2.0% Ni as a main component, for example, 0.02% of Si is used as a deoxidizing agent. When only ferromagnetic particles are contained and substantially not added, the size of the ferrite grains in the ferromagnetic portion is a crystal grain size number of 16.0, and the coercive force is 1220 A / m. 0.4% by weight to this alloy steel
In the ferromagnetic portion of the composite magnetic member made of alloy steel to which 4% Si is added, the size of ferrite grains increases to a crystal grain size number of 13.5, the coercive force decreases to 980 A / m, and the soft magnetic property increases. (Soft magnetic characteristics) can be improved. Also,
When an alloy steel to which 0.91% by weight of Si is added is used as a material, the crystal grain number of the ferromagnetic portion is 13.0, and the coercive force is 700 A / m. Furthermore, 1.94% of S by weight%
When i was added, the size of the ferrite grains increased to a grain size number of 12.0, and the coercive force was 490 A / m
And the soft magnetism (soft magnetic properties) can be further improved. It can be seen that the addition of Si increases the size of the ferrite grains, thereby decreasing the coercive force and improving the soft magnetism (soft magnetic properties). The above is the second effect of adding Si to the Fe-Cr-C alloy steel used as the material of the composite magnetic material member.

【0025】更に、複合磁性部材を磁気回路部品として
使用する場合には、強磁性部の残留磁束密度が高く、ヒ
ステリシス曲線の角型性が良いことが、しばしば要求さ
れる。ヒステリシス曲線の角型性が良いということは、
材料の磁気損失が小さく、正磁界−逆磁界を連続的に印
加した際のオン/オフ特性、すなわち磁気的な応答性が
良いということを意味している。一般に、ヒステリシス
曲線の角型性は、磁性材料の結晶方位と関係があること
が知られている。本発明者らは、複合磁性部材の素材で
あるFe−Cr−C系合金にSiを添加することによっ
て、強磁性部のマトリックスであるフェライト粒の結晶
方位を制御できること、及び結晶方位と残留磁束密度の
間には密接な関係があることを見出した。
Further, when the composite magnetic member is used as a magnetic circuit component, it is often required that the residual magnetic flux density of the ferromagnetic portion is high and the squareness of the hysteresis curve is good. The good squareness of the hysteresis curve means that
This means that the magnetic loss of the material is small and the on / off characteristics when a positive magnetic field-reverse magnetic field is continuously applied, that is, the magnetic responsiveness is good. In general, it is known that the squareness of the hysteresis curve is related to the crystal orientation of the magnetic material. The present inventors can control the crystal orientation of ferrite grains, which are the matrix of the ferromagnetic portion, by adding Si to the Fe—Cr—C-based alloy that is the material of the composite magnetic member. It has been found that there is a close relationship between densities.

【0026】すなわち、Fe−Cr−C系合金鋼を素材
とした場合、表面側となる圧延平面側からX線で結晶方
位を測定したフェライト相(200)の積分強度および
残留磁束密度の変化に及ぼすSi添加の影響がよく一致
していること、すなわちSiを添加することによって表
面側から見た(200)の集積度を高くすると、残留磁
束密度も高くできる。なお、Si添加により結晶方位を
制御できるメカニズムについては分かっておらず、これ
も現在、解明中である。
That is, when Fe—Cr—C alloy steel is used as a material, changes in the integrated strength and residual magnetic flux density of the ferrite phase (200) whose crystal orientation is measured by X-rays from the surface of the rolling plane, which is the surface side, are shown. When the influence of the addition of Si is in good agreement, that is, when the degree of integration of (200) viewed from the surface side is increased by adding Si, the residual magnetic flux density can be increased. The mechanism by which the crystal orientation can be controlled by the addition of Si is not known, and is currently being elucidated.

【0027】Si添加量と強磁性部のフェライト粒の結
晶方位、残留磁束密度の関係を具体的に述べる。この場
合の結晶方位とは、X線回折により測定される表面側と
なる圧延平面側のフェライト(110)(200)(2
11)の積分強度比を測定したものである。重量%でF
e−17.5%Cr−0.5%C−2.0%Niを主成
分とする合金鋼を素材とした複合磁性部材を例に挙げる
と、Siを脱酸剤として0.02%のみ含有し、実質的
には添加していない場合には、強磁性部においてフェラ
イト粒の結晶方位は、(110)が9.2%、(20
0)が39.1%、(211)が51.7%、(20
0)と(110)の積分強度比(200)/(110)
は4.3であって、このときの残留磁束密度は0.73
T(テスラ)である。この合金鋼に重量%でSiを0.
44%添加した合金鋼を素材とした複合磁性部材の強磁
性部では、フェライト粒の結晶方位は、(110)が
6.0%、(200)が36.6%、(211)が5
7.5%で、(200)/(110)の値は6.1とな
り、残留磁束密度は0.87Tまで上昇する。
The relationship between the amount of added Si, the crystal orientation of ferrite grains in the ferromagnetic portion, and the residual magnetic flux density will be specifically described. In this case, the crystal orientation refers to the ferrite (110) (200) (2) on the rolling plane side, which is the surface side measured by X-ray diffraction.
11) is a measurement of the integrated intensity ratio. F in weight%
e-17.5% Cr-0.5% C-2.0% As an example of a composite magnetic member made of an alloy steel containing Ni as a main component, only 0.02% is used with Si as a deoxidizing agent. When it is contained and substantially not added, the crystal orientation of ferrite grains in the ferromagnetic part is (110) 9.2%, (20)
0) was 39.1%, (211) was 51.7%, (20)
0) and (110) integrated intensity ratio (200) / (110)
Is 4.3, and the residual magnetic flux density at this time is 0.73
T (Tesla). This alloy steel contains Si in an amount of 0.
In the ferromagnetic portion of the composite magnetic member made of an alloy steel to which 44% was added, the crystal orientation of ferrite grains was (110) 6.0%, (200) 36.6%, and (211) 5%.
At 7.5%, the value of (200) / (110) becomes 6.1, and the residual magnetic flux density increases to 0.87T.

【0028】また、重量%でSiを0.91%添加した
場合には、強磁性部のフェライト粒の結晶方位は、(1
10)が3.5%、(200)が47.4%、(21
1)が49.1%で、(200)/(110)の値は1
3.5となり、残留磁束密度は0.94Tまで上昇す
る。更に重量%で1.44%のSiを添加した合金鋼を
素材とした複合磁性部材の強磁性部では、フェライト粒
の結晶方位は、(110)が2.0%、(200)が4
4.4%、(211)が53.6%、(200)/(1
10)の値は22.2となり、残留磁束密度は0.98
Tとなる。このようにSiを添加することにより、フェ
ライト粒の結晶方位は、表面となる圧延平面から測定し
た場合、(200)/(110)が大きくなる方位とな
り、これに伴って残留磁束密度は増加することが分か
る。以上が、複合磁性材部材の素材となるFe−Cr−
C系合金鋼にSiを添加する効果の第三である。なお、
X線回折による測定面が湾曲形状をしている場合は、表
面側となる圧延ロールで平面に加工された側の面を測定
すれば良い。
When 0.91% by weight of Si is added, the crystal orientation of ferrite grains in the ferromagnetic portion is (1).
10) is 3.5%, (200) is 47.4%, (21)
1) is 49.1%, and the value of (200) / (110) is 1
3.5, and the residual magnetic flux density increases to 0.94T. Further, in the ferromagnetic portion of the composite magnetic member made of an alloy steel to which 1.44% by weight of Si is added, the crystal orientation of ferrite grains is (110) 2.0% and (200) 4%.
4.4%, (211) is 53.6%, (200) / (1
The value of 10) is 22.2 and the residual magnetic flux density is 0.98
It becomes T. By adding Si in this manner, the crystal orientation of the ferrite grains becomes an orientation in which (200) / (110) increases when measured from the rolled plane serving as the surface, and the residual magnetic flux density increases accordingly. You can see that. The above is the description of Fe-Cr-
This is the third effect of adding Si to the C-based alloy steel. In addition,
When the measurement surface by X-ray diffraction has a curved shape, the surface on the side processed into a flat surface by the rolling roll on the surface side may be measured.

【0029】Siを添加することは、上述した強磁性部
の軟磁性の面からだけでなく、強磁性部の電気抵抗率を
高めるという点、すなわち軟磁性材料を交流磁場中で使
用する際には、材料の電気抵抗率を高くしておくと渦電
流損失を低減できるため、磁気的な応答性を改善できる
と言う効果もあり、以上が、複合磁性材部材の素材とな
るFe−Cr−C系合金鋼にSiを添加する効果の第四
である。
The addition of Si not only increases the soft magnetic surface of the ferromagnetic portion described above, but also increases the electrical resistivity of the ferromagnetic portion, that is, when the soft magnetic material is used in an alternating magnetic field. The effect of improving the magnetic responsiveness is that the eddy current loss can be reduced by increasing the electrical resistivity of the material, and the above is the effect of Fe-Cr- This is the fourth effect of adding Si to the C-based alloy steel.

【0030】次に、本発明の重要な特徴の第二は、Si
と同様の効果をもつ元素であるAlに着目し、Siと複
合で添加したことである。SiとAlを複合添加するこ
とによって、上述の炭化物形態や結晶粒径を調整する効
果は、Siのみを添加した場合よりも更に高まり、強磁
性部の軟磁性は更に改善される。尚、この場合にも、S
iとAlは、ともに炭化物中ではなく、マトリックスの
フェライト中に存在することをEDXにより確認してい
る。
The second important feature of the present invention is that Si
In addition, attention is paid to Al, which is an element having the same effect as that described above, and it is added in combination with Si. By adding Si and Al in combination, the effect of adjusting the carbide morphology and crystal grain size described above is further enhanced than when only Si is added, and the soft magnetism of the ferromagnetic portion is further improved. In this case, S
It has been confirmed by EDX that both i and Al exist not in carbide but in ferrite of the matrix.

【0031】具体的には、重量%でSiを0.91%添
加し、Alは脱酸剤として0.002%のみ含有し実質
的に添加しない場合、先述した様に、強磁性部における
粒径0.1μm以上の炭化物個数は100μmの面積
中で36個、このうち粒径1μm以上の炭化物は、全炭
化物個数に対して25.0%の9個であり、最大透磁率
は628である。また、強磁性部の結晶粒度番号は1
3.0、保磁力は700A/mとなる。更に重量%で
1.94%のSiを添加した場合には、フェライト粒の
大きさは結晶粒度番号12.0、保磁力は490A/m
である。ここで、重量%でSiを0.95%、Alを
0.98%複合添加し、SiとAlの合計量を1.93
%とした合金鋼を素材とした場合、強磁性部における粒
径0.1μm以上の炭化物個数は100μmの面積中
で25個、このうち粒径1μm以上の炭化物は、全炭化
物個数に対して32.0%の8個であり、最大透磁率は
1120まで上昇する。また、強磁性部の結晶粒は粒度
番号9.5まで大きくなり、保磁力は360A/mまで
低下する。この様に、素材となる合金鋼にSiとAlを
複合添加することによって、強磁性部の炭化物形態と結
晶粒径は、優れた軟磁性を得る上で、Siのみを添加し
た場合よりも更に好ましく調整されたものとなり、より
一層優れた軟磁性が得られることが分かる。またSiと
Alの複合添加は電気抵抗率の更なる増加という点から
も有効である。
Specifically, when 0.91% of Si is added by weight% and Al is contained only as 0.002% as a deoxidizing agent and is not substantially added, as described above, the particles in the ferromagnetic portion are not added. The number of carbides having a diameter of 0.1 μm or more is 36 in an area of 100 μm 2, and the number of carbides having a particle diameter of 1 μm or more is 25.0% of the total number of carbides, and the maximum magnetic permeability is 628. is there. The grain size number of the ferromagnetic portion is 1
3.0, the coercive force is 700 A / m. Further, when 1.94% by weight of Si was added, the size of the ferrite grains was 12.0 and the coercive force was 490 A / m.
It is. Here, 0.95% of Si and 0.98% of Al are added as a composite by weight, and the total amount of Si and Al is 1.93.
% Of alloy steel, the number of carbides having a grain size of 0.1 μm or more in the ferromagnetic portion is 25 in an area of 100 μm 2, of which the carbides having a grain size of 1 μm or more are based on the total number of carbides. There are 8 of 32.0%, and the maximum magnetic permeability increases to 1120. Further, the crystal grains of the ferromagnetic portion increase to a particle size number of 9.5, and the coercive force decreases to 360 A / m. As described above, by adding Si and Al to the alloy steel as a material, the carbide morphology and crystal grain size of the ferromagnetic portion are further improved in obtaining excellent soft magnetism than in the case where only Si is added. It can be seen that the composition was adjusted favorably, and further excellent soft magnetism was obtained. Further, the combined addition of Si and Al is effective from the viewpoint of further increasing the electrical resistivity.

【0032】次に本発明における各数値の規定理由を述
べる。まず、複合磁性部材の素材であるFe−Cr−C
系合金鋼に添加されるSi量を重量%で0.1%〜7.
0%の範囲に規定した理由を述べる。これまで述べてき
た様に、Siは強磁性部の炭化物形態、結晶粒径、結晶
方位等の金属組織を変化させ、結果として強磁性部の軟
磁性を著しく改善する本発明の重要元素である。Siの
範囲を0.1〜7.0%以下としたのは、Si含有量が
0.1%未満では強磁性部の金属組織を変化させ、軟磁
性を改善する効果が小さく、逆に7.0%を超える範囲
では、加工性が悪くなり、複合磁性部材を製造すること
が困難となるからである。実際、Siを7.10%含有
したものは、鍛造が不可能であった。Siのより好まし
い範囲は、0.3〜3.5%である。
Next, the reason for defining each numerical value in the present invention will be described. First, Fe—Cr—C which is a material of the composite magnetic member is used.
0.1% to 7% by weight of Si added to the base alloy steel.
The reason specified in the range of 0% will be described. As described above, Si is an important element of the present invention that changes the metal structure such as the carbide morphology, crystal grain size, and crystal orientation of the ferromagnetic portion, and consequently significantly improves the soft magnetism of the ferromagnetic portion. . The reason why the range of Si is set to 0.1 to 7.0% or less is that when the Si content is less than 0.1%, the effect of changing the metal structure of the ferromagnetic portion and improving soft magnetism is small. If the content exceeds 0.0%, the workability deteriorates, and it becomes difficult to manufacture a composite magnetic member. In fact, those containing 7.10% of Si could not be forged. The more preferable range of Si is 0.3 to 3.5%.

【0033】次に、複合磁性部材の素材であるFe−C
r−C系合金鋼にSiとAlを複合添加する場合の添加
量を、合計で0.1〜12.0%とした理由を述べる。
先述した様に、SiとAlを複合添加することの効果
は、Siを単独で添加した場合よりも、更に金属組織と
軟磁性を改善できることである。SiとAlの合計量
を、0.1%を超えて12.0%以下としたのは、0.
1%未満では上記の効果が少なく、また12.0%を超
える範囲では、やはり加工性が悪くなり、複合磁性部材
を製造することが困難となるからである。実際、Siを
7.11%、Alを5.19%含有し、SiとAlの含
有量の合計を12.30%とした合金鋼は鍛造が不可能
であった。SiとAlを複合添加する場合のSi量とA
l量は、それぞれ0.3〜3.5%が望ましい。
Next, the material of the composite magnetic member, Fe-C
The reason why the total amount of addition of Si and Al to the r-C alloy steel is 0.1 to 12.0% will be described.
As described above, the effect of adding Si and Al in combination is that the metal structure and soft magnetism can be further improved as compared with the case where Si is added alone. The reason why the total amount of Si and Al is set to more than 0.1% and 12.0% or less is 0.1%.
If it is less than 1%, the above effect is small, and if it is more than 12.0%, the workability is also deteriorated, and it becomes difficult to manufacture a composite magnetic member. In fact, alloy steel containing 7.11% of Si and 5.19% of Al and having a total content of Si and Al of 12.30% could not be forged. Si content and A when Si and Al are added in combination
The amount of 1 is desirably 0.3 to 3.5%, respectively.

【0034】次に、強磁性部の炭化物粒径と個数、更に
測定される全炭化物に対して粒径1.0μm以上の炭化
物個数の割合を規定した理由を述べる。炭化物個数を数
える際に粒径0.1μm以上の炭化物を対象としたの
は、粒径0.1μm未満の炭化物は観察が困難であり、
かつ0.1μm未満の大きさであれば磁壁の動きを妨げ
るには至らず、軟磁性への影響は少ないためである。ま
た上記の粒径0.1μm以上の炭化物個数を100μm
の面積中に50個以下、全炭化物個数に対して粒径
1.0μm以上の炭化物個数の割合を15%以上とした
のは、先述した実験結果からも分かる様に、炭化物形態
をこの範囲に制御することによって、磁壁移動が容易に
なり、強磁性部の最大透磁率400以上が容易に得られ
るためである。更に好ましい炭化物形態の範囲は、粒径
0.1μm以上の炭化物個数を100μmの面積中に
40個以下、全炭化物個数に対する粒径1.0μm以上
の炭化物個数の割合が20%以上であり、この範囲に調
整すれば、最大透磁率500以上の特性をも容易に達成
することができる。
Next, the reason why the grain size and the number of carbides of the ferromagnetic portion and the ratio of the number of carbides having a grain size of 1.0 μm or more to the total carbides to be measured will be described. When counting the number of carbides, it was difficult to observe carbides with a particle size of less than 0.1 μm, because the carbides with a particle size of 0.1 μm or more were targeted.
If the size is less than 0.1 μm, the movement of the domain wall is not hindered, and the influence on soft magnetism is small. The number of carbides having a particle size of 0.1 μm or more is 100 μm
50 in the second area below, had a ratio of more carbides number particle diameter 1.0μm and 15% or more with respect to the total carbide number, as can be seen from the experimental results described above, the range carbides form This makes it possible to easily move the domain wall and to easily obtain a maximum magnetic permeability of 400 or more of the ferromagnetic portion. A more preferred range of the carbide form is that the number of carbides having a particle diameter of 0.1 μm or more is 40 or less in an area of 100 μm 2 , and the ratio of the number of carbides having a particle diameter of 1.0 μm or more to the total number of carbides is 20% or more, By adjusting to this range, characteristics with a maximum magnetic permeability of 500 or more can be easily achieved.

【0035】次に、強磁性部の最大透磁率と非磁性部の
透磁率を規定した理由を述べる。本発明部材は複合磁性
部材であるので、一つの部材において軟磁性と非磁性の
両方の特性を満足しなければならない。強磁性部の最大
透磁率を400以上としたのは、たとえばモ−タ部品の
様に高い最大透磁率が要求される用途に対して充分に対
応可能とするためである。強磁性部の最大透磁率の望ま
しい範囲は500以上、更に好ましくは700以上であ
る。また非磁性部の透磁率を2以下としたのは、これを
超える範囲では磁束が通り易くなり非磁性としての用途
に適さなくなるからである。非磁性部の透磁率のより望
ましい範囲は1.1以下である。
Next, the reason why the maximum magnetic permeability of the ferromagnetic portion and the magnetic permeability of the non-magnetic portion are specified will be described. Since the member of the present invention is a composite magnetic member, one member must satisfy both the soft magnetic and non-magnetic properties. The reason why the maximum magnetic permeability of the ferromagnetic portion is 400 or more is to sufficiently cope with an application requiring a high maximum magnetic permeability such as a motor component. A desirable range of the maximum magnetic permeability of the ferromagnetic portion is 500 or more, more preferably 700 or more. The reason why the magnetic permeability of the non-magnetic portion is set to 2 or less is that if it exceeds this range, the magnetic flux easily passes and becomes unsuitable for use as a non-magnetic material. A more desirable range of the magnetic permeability of the non-magnetic portion is 1.1 or less.

【0036】次に、強磁性部のマトリックスであるフェ
ライト粒の大きさと保磁力の範囲を規定した理由を述べ
る。フェライト粒の大きさを結晶粒度番号14を含んで
これより粗粒であること、及び強磁性部の保磁力を10
00A/m以下としたのは、フェライト粒の大きさと保
磁力は、相互に関連し合う特性であるが、結晶粒度番号
14を含んで粗粒に調整すれば、保磁力1000A/m
以下の特性が容易に得られ、この保磁力1000A/m
以下の特性を得ることで、コア部品の様に軟磁性として
小さい保磁力が要求される用途で使用可能になる。
Next, the reason for defining the size of the ferrite grains as the matrix of the ferromagnetic portion and the range of the coercive force will be described. The size of the ferrite grains should be coarser, including the grain size number 14, and the coercive force of the ferromagnetic portion should be 10
The reason why the size is set to be not more than 00 A / m is that the size of the ferrite grains and the coercive force are mutually related characteristics.
The following characteristics are easily obtained, and the coercive force is 1000 A / m
By obtaining the following characteristics, it can be used for applications requiring a small coercive force as soft magnetism, such as core components.

【0037】望ましい範囲として、強磁性部の結晶方位
と残留磁束密度の範囲を規定した理由を述べる。本発明
部材の素材を圧延鋼板とした場合、強磁性部の結晶方位
を、表面となる圧延平面から見てフェライト(200)
とフェライト(110)のX線積分強度比が6以上であ
ること、及び強磁性部の残留磁束密度を1.0T以上と
したのは、フェライト粒の結晶方位と残留磁束密度は、
相互に関連し合う特性であるが、フェライト(200)
とフェライト(110)のX線積分強度比が6以上に調
整すれば、残留磁束密度0.8T以上の特性が容易に得
られ、この残留磁束密度0.8T以上の特性を得ること
で、印加磁場に対する優れたON/OFF特性すなわち
応答性が要求される用途にも使用可能となる。
The reason why the crystal orientation of the ferromagnetic portion and the range of the residual magnetic flux density are defined as desirable ranges will be described. When the material of the member of the present invention is a rolled steel sheet, the ferrite (200)
And the ferrite (110) having an X-ray integrated intensity ratio of 6 or more and the residual magnetic flux density of the ferromagnetic portion being 1.0 T or more are as follows.
Ferrite (200)
If the X-ray integrated intensity ratio between the ferrite and the ferrite (110) is adjusted to 6 or more, characteristics with a residual magnetic flux density of 0.8T or more can be easily obtained. It can also be used for applications that require excellent ON / OFF characteristics, that is, responsiveness to a magnetic field.

【0038】次に望ましい範囲として強磁性部の電気抵
抗率を規定した理由を述べる。強磁性部の電気抵抗率を
0.7μΩm以上としたのは、交流磁場中で部材が使用
される場合に、渦電流による磁気的損失を減らし、磁気
回路において素早い応答性が要求される用途に対して、
充分に対応可能とするためである。
Next, the reason why the electric resistivity of the ferromagnetic portion is specified as a desirable range will be described. The electric resistivity of the ferromagnetic portion is set to 0.7 μΩm or more, when the member is used in an alternating magnetic field, the magnetic loss due to eddy current is reduced, and the magnetic circuit is required to have quick response. for,
This is in order to be able to respond sufficiently.

【0039】望ましい範囲として、素材となる合金鋼の
Ni当量を規定した理由を述べる。本発明部材は、これ
まで述べてきたように、強磁性部の軟磁性は従来、開示
されている複合磁性部材よりも優れたものとなってい
る。本発明部材において、安定した非磁性部を得るため
には、非磁性化処理を行った時に非磁性組織であるオ−
ステナイトを安定にする作用を持った元素が必要であ
る。本発明部材の素材における重要元素はSi,Al、
Fe、Cr、Cの5つであるが、この内、上述の作用を
持っているのはCのみである。そこで、非磁性部の透磁
率を下げて、特性を更に安定にしたい場合には、Ni,
Mn,N等のオ−ステネイト形成元素を、Ni当量(=
%Ni+30×%C+0.5×%Mn+30×%N)で
10.0〜25.0%の範囲で添加することが望まし
い。Ni当量の下限を10.0%としたのは、10.0
%未満では、透磁率2以下の非磁性部を得ることが困難
となるからである。またNi当量の上限を25.0%と
したのは、25.0%を超える範囲では強磁性部の軟磁
性が劣化し、最大透磁率400以上の特性が得られ難く
なるからである。
The reason why the Ni equivalent of the alloy steel as a material is specified as a desirable range will be described. As described above, in the member of the present invention, the soft magnetism of the ferromagnetic portion is superior to the conventionally disclosed composite magnetic member. In the member of the present invention, in order to obtain a stable non-magnetic portion, when the non-magnetic treatment is performed, the non-magnetic structure of
An element having an action to stabilize the stain is required. Important elements in the material of the member of the present invention are Si, Al,
There are five Fe, Cr, and C, and among them, only C has the above-mentioned action. Therefore, when it is desired to lower the magnetic permeability of the non-magnetic portion to further stabilize the characteristics, Ni,
An austenate-forming element such as Mn or N is replaced with a Ni equivalent (=
% Ni + 30.times.C + 0.5.times.Mn + 30.times.N) in the range of 10.0 to 25.0%. The reason why the lower limit of the Ni equivalent is set to 10.0% is 10.0%.
If the amount is less than%, it is difficult to obtain a non-magnetic portion having a magnetic permeability of 2 or less. The reason why the upper limit of the Ni equivalent is set to 25.0% is that if it exceeds 25.0%, the soft magnetism of the ferromagnetic portion deteriorates, and it becomes difficult to obtain a characteristic having a maximum magnetic permeability of 400 or more.

【0040】更に望ましい範囲として、複合磁性部材の
素材である合金鋼中のSiとAl以外の元素の化学成分
を規定した理由を述べる。Cは上述したようにオ−ステ
ナイト形成元素として、非磁性部の形成に有効な本発明
の必須元素である。また、C添加は部材の強度確保にも
有効である。Cが0.30%未満では、オ−ステナイト
変態温度以上に加熱後冷却した際、安定した非磁性のオ
−ステナイト組織を得ることが困難である。一方、0.
80%を超えると、複合磁性部材の強磁性部の炭化物個
数が多くなり過ぎて、本発明における炭化物形態の規定
を満足し難くなる。また、硬くなり過ぎて加工性も悪く
なる。そのため本発明においては、Cの範囲を0.30
〜0.80%に規定した。Cのより望ましい範囲は、
0.45〜0.65%である。
As a more desirable range, the reason for defining the chemical components of elements other than Si and Al in the alloy steel as the material of the composite magnetic member will be described. C is an essential element of the present invention effective as an austenite forming element for forming a non-magnetic portion as described above. Further, the addition of C is also effective in ensuring the strength of the member. If C is less than 0.30%, it is difficult to obtain a stable non-magnetic austenite structure when cooled after heating to austenite transformation temperature or higher. On the other hand, 0.
If it exceeds 80%, the number of carbides in the ferromagnetic portion of the composite magnetic member becomes too large, and it becomes difficult to satisfy the specification of the carbide form in the present invention. Moreover, it becomes too hard and the workability is also deteriorated. Therefore, in the present invention, the range of C is set to 0.30.
It was specified to 0.80.80%. A more desirable range of C is
0.45 to 0.65%.

【0041】Crはマトリックスに固溶するとともに、
強磁性部においては、一部は炭化物となり、複合磁性部
材の機械的強度と耐食性を確保する本発明の必須元素で
ある。Crの範囲を、10.0〜25.0%としたの
は、10.0%未満では耐食性が悪く、逆に25.0%
を超える範囲では、耐食性は優れているものの、強磁性
部の軟磁性が劣化するからである。Crのより望ましい
範囲は16.0〜20.0%である。
Cr dissolves in the matrix and
A part of the ferromagnetic portion becomes a carbide, which is an essential element of the present invention for ensuring the mechanical strength and corrosion resistance of the composite magnetic member. The reason for setting the range of Cr to 10.0 to 25.0% is that if it is less than 10.0%, the corrosion resistance is poor, and conversely, 25.0%
This is because, in the range exceeding, the corrosion resistance is excellent, but the soft magnetism of the ferromagnetic portion is deteriorated. A more desirable range of Cr is 16.0 to 20.0%.

【0042】Niはオ−ステナイト形成元素として、非
磁性部の形成に有効な元素である。Niの範囲を0.1
〜4.0%にしたのは、0.1%未満では安定した非磁
性部を得ることが困難であり、逆に4.0%を超えると
良好な軟磁気特性と加工性が得られ難くなるためであ
る。Nはオ−ステナイト生成元素としてNiと同様の効
果を有する元素である。Nの範囲を0.01〜0.10
%としたのは0.01%未満では安定した非磁性部を得
ることが困難であり、0.10%を超えると、硬くなり
過ぎて成形性が劣化するためである。
Ni is an effective element for forming a nonmagnetic portion as an austenite forming element. Ni range 0.1
The reason why the content is set to -4.0% is that if it is less than 0.1%, it is difficult to obtain a stable non-magnetic portion, and if it exceeds 4.0%, it is difficult to obtain good soft magnetic properties and workability. It is because it becomes. N is an element having the same effect as Ni as an austenite generating element. The range of N is 0.01 to 0.10
The reason for setting% is that if it is less than 0.01%, it is difficult to obtain a stable non-magnetic portion, and if it exceeds 0.10%, it becomes too hard and the moldability deteriorates.

【0043】なお、本発明の複合磁性部材の素材となる
合金鋼は脱酸元素としてMnを2.0%以下含有しても
よい。MnもC,Ni,N等と同様にオ−ステナイトの
形成に有効である。また不可避不純物としてP、S、O
を、特に磁気特性を劣化しない範囲として、それぞれ
0.1%以下含有してもよい。
The alloy steel used as the material of the composite magnetic member of the present invention may contain Mn as a deoxidizing element in an amount of 2.0% or less. Mn is also effective in forming austenite like C, Ni, N and the like. P, S, O are inevitable impurities.
May be contained in an amount of 0.1% or less, respectively, as a range that does not deteriorate the magnetic properties.

【0044】次に製造工程の限定理由を述べる。本発明
では、複合磁性部材の素材であるSiを適量添加、また
はSiとAlを複合添加したFe−Cr−C系合金鋼の
熱間加工温度を1100℃以下とした。1100℃を超
える温度で熱間加工を行うと、合金鋼のマトリックスに
固溶するC量が多くなり、析出する炭化物は非常に微細
となる。その結果、熱間加工後にA3変態点以下で焼鈍
しても析出している個々の炭化物を十分に大きくするこ
とができず、また熱間加工時にマトリックスに固溶して
いたCが、焼鈍中に新たに微細な炭化物として析出する
ため、炭化物形態を本発明の請求範囲に制御することが
困難となる。焼鈍後に粒径0.1μm以上の炭化物個数
を100μmの面積中に50個以下、該炭化物に対す
る粒径1.0μm以上の炭化物の割合を15%以上とす
るためには、熱間加工時に炭化物の核を残しておくこと
が必要であり、炭化物の核を残すことができる上限温度
を1100℃と規定した。好ましくは、熱間加工は90
0〜1100℃の範囲で行うことが望ましい。
Next, the reasons for limiting the manufacturing process will be described. In the present invention, the hot working temperature of the Fe—Cr—C alloy steel to which an appropriate amount of Si, which is a material of the composite magnetic member, or the composite addition of Si and Al is added is set to 1100 ° C. or less. When hot working is performed at a temperature exceeding 1100 ° C., the amount of C dissolved in the matrix of the alloy steel increases, and the precipitated carbide becomes very fine. As a result, even if the steel is annealed below the A3 transformation point after hot working, the precipitated carbides cannot be sufficiently increased, and C which has been dissolved in the matrix at the time of hot working, Therefore, it is difficult to control the form of the carbide within the scope of the present invention. In order to reduce the number of carbides having a grain size of 0.1 μm or more to 50 or less in an area of 100 μm 2 after annealing and to make the ratio of carbides having a grain size of 1.0 μm or more to 15% or more to the carbides, it is necessary to use carbide during hot working. Is required to remain, and the maximum temperature at which carbide nuclei can be left is defined as 1100 ° C. Preferably, the hot working is 90
It is desirable to carry out in the range of 0 to 1100 ° C.

【0045】熱間加工後に行う焼鈍温度はA3変態点以
下とした。A3変態点とは、この温度以下では(フェラ
イト+炭化物)組織、逆にこれを超える温度では、オ−
ステナイト組織が生成し始める温度のことであり、本発
明の請求範囲の中で、たとえばFe−17.5%Cr−
0.5%C−1.0%Si−2.0%Ni−0.02%
N合金の場合、A3変態点は約880℃である。強磁性
部の磁気特性は、軟磁性であるフェライト組織によるも
のであるから、焼鈍温度がA3変態点を超えることは好
ましくない。
The annealing temperature performed after the hot working was set to the A3 transformation point or lower. The A3 transformation point is a structure (ferrite + carbide) below this temperature, and conversely, above this temperature,
It is the temperature at which the formation of the austenitic structure starts, and in the claims of the present invention, for example, Fe-17.5% Cr-
0.5% C-1.0% Si-2.0% Ni-0.02%
In the case of N alloy, the A3 transformation point is about 880 ° C. Since the magnetic properties of the ferromagnetic portion are due to the soft magnetic ferrite structure, it is not preferable that the annealing temperature exceeds the A3 transformation point.

【0046】この温度範囲で少なくとも1回焼鈍するの
は、フェライト相の加工歪を除去するとともに、加工時
に核となった炭化物を大きくし、炭化物形態を本発明の
請求範囲に調整するためである。尚、本発明部材におい
ては必要に応じてA3変態点以下での焼鈍を2回以上、
行ってもよい。焼鈍を複数回行うことにより、1回焼鈍
して得られた炭化物を更に大きくする効果、および炭化
物個数を減らす効果は更に高まる。
The reason for annealing at least once in this temperature range is to remove the processing strain of the ferrite phase, to increase the carbide serving as a nucleus at the time of processing, and to adjust the form of the carbide within the scope of the present invention. . In addition, in the member of this invention, annealing at A3 transformation point or less is performed twice or more as needed,
May go. By performing annealing multiple times, the effect of further increasing the carbide obtained by one-time annealing and the effect of reducing the number of carbides are further enhanced.

【0047】なお、本発明部材においては、熱間加工、
少なくとも1回のA3変態点以下での焼鈍を行った後、
必要に応じて冷間加工を行い、冷間加工後にA3変態点
以下での焼鈍を行ってもよい。これは、一般の軟磁性材
料の場合、冷間圧延または冷間引抜された後に焼鈍した
鋼板を用いることが多く、本発明の複合磁性部材でも同
様と考えられるからである。冷間加工後の焼鈍も熱間加
工後と同様に複数回行ってもよい。また冷間加工、焼鈍
の工程を複数回繰り返してもよい。熱間加工後に焼鈍を
行った場合、冷間加工後に焼鈍を行った場合のいずれに
おいても強磁性部としての軟磁性に大差はない。
In the member of the present invention, hot working,
After performing at least one annealing below the A3 transformation point,
If necessary, cold working may be performed, and after the cold working, annealing at an A3 transformation point or lower may be performed. This is because, in the case of a general soft magnetic material, a steel sheet annealed after cold rolling or cold drawing is often used, and it is considered that the same applies to the composite magnetic member of the present invention. Annealing after cold working may be performed a plurality of times in the same manner as after hot working. Further, the steps of cold working and annealing may be repeated a plurality of times. There is no great difference in soft magnetism as a ferromagnetic part in both cases of annealing after hot working and annealing after cold working.

【0048】本発明においては、上述の工程により強磁
性体となった合金鋼の一部に非磁性部を設ける方法とし
ては、部材の一部を、たとえば高周波加熱でオ−ステナ
イト化温度以上に加熱し溶体化処理した後、急冷する
か、またはCOレ−ザ等で溶融化温度に加熱した後、
急冷する等の手法が良い。これら非磁性化処理の際の加
熱温度は、冷却後にオ−ステナイト組織が得られる10
50℃〜溶融化温度の範囲、好ましくは1150℃〜溶
融化温度までの温度範囲である。加熱温度の下限を10
50℃としたのは、この温度が加熱、冷却後にオ−ステ
ナイト組織を形成し、透磁率2以下の非磁性部を得るた
めに必要な下限温度であり、更に好ましい下限温度を1
150℃としたのは、加熱温度が1150℃以上であれ
ば、更に安定した非磁性部が得られるからである。また
上限温度を溶融化温度としたのは、加熱、冷却による溶
体化のみでなく、更に高い温度での溶融、凝固の手法を
用いても実質的にオ−ステナイト組織からなる透磁率2
以下の非磁性部を形成できるからである。加熱源として
レ−ザビ−ムを用いる場合などは、特にこの溶融、凝固
による非磁性化は有効な手段となる。
In the present invention, as a method of providing a non-magnetic portion in a part of the alloy steel which has become a ferromagnetic material by the above-mentioned process, a part of the member is heated to an austenitizing temperature or higher by high frequency heating, for example. After heating and solution treatment, it is quenched or heated to a melting temperature with a CO 2 laser or the like,
A method such as rapid cooling is preferred. The heating temperature during the demagnetization treatment is such that an austenite structure is obtained after cooling.
The temperature ranges from 50 ° C to the melting temperature, preferably from 1150 ° C to the melting temperature. The lower limit of the heating temperature is 10
The temperature of 50 ° C. is the lower limit temperature necessary for forming an austenite structure after heating and cooling and obtaining a non-magnetic portion having a magnetic permeability of 2 or less.
The reason why the temperature is set to 150 ° C. is that if the heating temperature is 1150 ° C. or higher, a more stable nonmagnetic portion can be obtained. The reason why the upper limit temperature is set as the melting temperature is not only that the solution is formed by heating and cooling, but also that the magnetic permeability substantially consisting of an austenite structure is obtained by using a method of melting and solidifying at a higher temperature.
This is because the following nonmagnetic portions can be formed. In the case where a laser beam is used as a heating source, the demagnetization by melting and solidifying is an effective means.

【0049】上述した加熱、溶体化、急冷もしくは加
熱、溶融、急冷の処理を施すことにより、実質的にオ−
ステナイト組織よりなる非磁性部を得ることができる。
この場合の実質的にオ−ステナイトでなる組織とは、比
較的低い温度で溶体化した場合、急冷時に生じる少量の
マルテンサイトが組織中に含まれていても良いことを指
す。具体的には組織の中のマルテンサイト量が10%以
下であれば複合磁性部材の非磁性部に必要な特性である
透磁率μ2以下の範囲から外れることはなく、問題はな
い。上述した製造工程を施すことで、本発明の複合磁性
部材を得ることができる。
By performing the above-mentioned heating, solution, quenching or heating, melting, and quenching treatments, substantially o
It is possible to obtain a non-magnetic part composed of a stainless steel structure.
In this case, the structure substantially composed of austenite means that when solution is formed at a relatively low temperature, a small amount of martensite generated at the time of rapid cooling may be contained in the structure. Specifically, if the amount of martensite in the structure is 10% or less, there is no problem without deviating from the range of magnetic permeability μ2 or less, which is a characteristic required for the nonmagnetic portion of the composite magnetic member. By performing the above-described manufacturing steps, the composite magnetic member of the present invention can be obtained.

【0050】[0050]

【実施例】(実施例1)本発明では、まず複合磁性部材
の素材であるFe−Cr−C系合金に添加するSi量と
Al量、炭化物形態、結晶粒径、結晶方位といった強磁
性部の金属組織、更に最大透磁率、保磁力、残留磁束密
度といった強磁性部の磁気特性が重要となる。そして次
に、複合磁性部材の非磁性部の透磁率と、これを調節す
るためのNi当量も重要となる。強磁性部の金属組織と
軟磁性に及ぼすSi添加、(Si,Al)複合添加の影
響、及びNi当量と非磁性部の透磁率の関係を明確に把
握するために、合金素材として真空溶解でSi,Al,
C,Niの元素含有量を種々に変えた合金鋼塊を溶製し
た。
(Embodiment 1) In the present invention, first, a ferromagnetic portion such as an Si amount and an Al amount, a carbide form, a crystal grain size, and a crystal orientation added to an Fe—Cr—C-based alloy which is a material of a composite magnetic member. The magnetic characteristics of the ferromagnetic portion, such as the metal structure, the maximum magnetic permeability, the coercive force and the residual magnetic flux density, are important. Next, the permeability of the non-magnetic portion of the composite magnetic member and the Ni equivalent for adjusting the permeability are also important. In order to clearly understand the effects of Si addition and (Si, Al) composite addition on the metal structure and soft magnetism of the ferromagnetic part, and the relationship between Ni equivalent and the magnetic permeability of the non-magnetic part, vacuum melting was used as an alloy material. Si, Al,
Alloy steel ingots in which the element contents of C and Ni were variously changed were melted.

【0051】表1に、複合磁性部材の素材である合金鋼
の化学組成とNi当量(=%Ni+30×%C+0.5
×%Mn+30×%N)を示す。部材No.1〜9の素
材は、C、Mn、Ni、Crの添加量をほぼ等しくし、
Si添加量を変化させた合金鋼であり、Al量は0.0
01〜0.007%で実質的に無添加である。部材N
o.10〜13の素材は、C、Mn、Ni、Crの添加
量は、部材No.1〜9の素材とほぼ同じであり、0.
1≦(Si+Al)≦12.0の範囲で、SiとAlを
複合添加した合金鋼である。また、部材No.14の素
材はC,Ni含有量をともに低くし、Ni当量を下げた
ものであり、部材No.15の素材はC,Ni含有量を
ともに高くし、Ni当量を高めたものである。部材N
o.16の素材は、Si量、Al量とも0.002%で
あり、実質的には両元素を含有していない。また、部材
No.17の素材は、Si量が7.0%を超えるもので
あり、部材No.18の素材は、SiとAlの合計量が
12.0%を超えるものである。
Table 1 shows the chemical composition and Ni equivalent (=% Ni + 30 ×% C + 0.5) of the alloy steel as the material of the composite magnetic member.
×% Mn + 30 ×% N). Member No. Materials 1 to 9 make the addition amounts of C, Mn, Ni and Cr almost equal,
This is an alloy steel in which the amount of Si added is changed, and the amount of Al is 0.0
0.01 to 0.007% and substantially no additive. Member N
o. In the materials Nos. 10 to 13, the addition amounts of C, Mn, Ni, and Cr are the same as those of the member Nos. It is almost the same as the materials Nos. 1 to 9;
It is an alloy steel in which Si and Al are added in a range of 1 ≦ (Si + Al) ≦ 12.0. The member No. Material No. 14 has a low C and Ni content and a low Ni equivalent. In the fifteen materials, the contents of C and Ni were both increased, and the Ni equivalent was increased. Member N
o. Material No. 16 has a Si content and an Al content of 0.002%, and does not substantially contain both elements. The member No. Material No. 17 has a Si content exceeding 7.0%. The material No. 18 has a total amount of Si and Al exceeding 12.0%.

【0052】[0052]

【表1】 [Table 1]

【0053】得られた合金鋼塊を1000℃に加熱して
鍛造を行い20mm厚の板材とした後、再度1000℃
に加熱して熱間圧延を行い、板厚5.0mmの圧延板を
得た。ここで、Si量が7.0%を超える部材No.1
7の素材と、SiとAlの合計量が12.0%を超える
部材No.18の素材は、鍛造時に鋼塊が割れて熱間加
工ができなかったため、本発明の比較例とした。部材N
o.1〜16の素材は、熱間圧延によって得られた5.
0mm厚の板をA3変態点以下の780℃で焼鈍して軟
化した後、冷間圧延を行い、板厚1.0mmの冷間圧延
板を得た。この冷間圧延板を再度、A3変態点以下の7
00℃で焼鈍して軟磁性材料とした。軟磁性材料となっ
た鋼板の一部を高周波加熱によって約1200℃で10
分間保持後、水冷し、部分的に非磁性化した。この部分
的な非磁性化処理により合金鋼板を複合磁性部材とし
た。
The obtained alloy steel ingot was heated to 1000 ° C. and forged to form a plate having a thickness of 20 mm.
And hot-rolled to obtain a rolled plate having a thickness of 5.0 mm. Here, the member No. whose Si content exceeds 7.0%. 1
No. 7 and the member No. 7 in which the total amount of Si and Al exceeds 12.0%. Material No. 18 was used as a comparative example of the present invention because the steel ingot was broken during forging and hot working could not be performed. Member N
o. The materials Nos. 1 to 16 were obtained by hot rolling.
After a 0 mm thick plate was annealed at 780 ° C. below the A3 transformation point to soften, cold rolling was performed to obtain a 1.0 mm thick cold rolled plate. This cold-rolled sheet is again subjected to the A3 transformation point below 7
Annealed at 00 ° C. to obtain a soft magnetic material. A part of the steel sheet made of soft magnetic material is heated at about 1200 ° C for 10
After holding for 1 minute, the mixture was cooled with water and partially demagnetized. By this partial demagnetization treatment, the alloy steel sheet was used as a composite magnetic member.

【0054】強磁性部の炭化物個数は、得られた複合磁
性部材の内、高周波加熱の熱影響を受けていない強磁性
部よりミクロ組織観察用のサンプルを切り出し、圧延時
の縦断面が観察面となるように樹脂に埋め込んで鏡面研
磨した後、王水を用いて化学的腐食を行い、走査型電子
顕微鏡により6000倍で10視野を観察、写真撮影し
た。撮影した10視野の写真を画像解析して粒径0.1
μm以上の炭化物個数と粒径1.0μm以上の炭化物個
数を数え、100μm当たりの炭化物個数と、全炭化
物個数に対する粒径1.0μm以上の炭化物の割合を求
めた。ミクロ組織の観察例として、部材No.3を図
1、No.10を図2、No.16を図3として強磁性
部の炭化物形態を各部材につき1視野ずつ示す。
The number of carbides in the ferromagnetic portion was determined by cutting out a sample for microstructure observation from the ferromagnetic portion of the obtained composite magnetic member that was not affected by the heat of high-frequency heating. After embedding in a resin so as to obtain a mirror-polished surface, chemical corrosion was performed using aqua regia, and 10 fields of view were observed and photographed at 6000 × with a scanning electron microscope. Image analysis of the photographed 10 fields of view was performed to determine the particle size to 0.1.
The number of carbides having a particle size of 1.0 μm or more and the number of carbides having a particle size of 1.0 μm or more were counted, and the number of carbides per 100 μm 2 and the ratio of the carbide having a particle size of 1.0 μm or more to the total number of carbides were determined. As an observation example of the microstructure, member No. No. 3 in FIG. No. 10 in FIG. 16 is shown in FIG. 3 and the carbide form of the ferromagnetic portion is shown in one view for each member.

【0055】強磁性部におけるフェライト粒の結晶粒度
番号は、上記と同じサンプルを用いて、JIS G 0
552に記載のフェライト結晶粒度試験方法に従って、
光学顕微鏡で5視野を観察して平均値を求めた。また強
磁性部の結晶方位は、強磁性部より10mm角程度のブ
ロックを切り出し、圧延平面を電解研磨した後、X線回
折で回折角2θ=30°〜120°まで分析し、検出さ
れるフェライト(110)、フェライト(200)、フ
ェライト(211)を測定し、(200)/(110)
の積分強度比を求めた。
The grain size number of the ferrite grains in the ferromagnetic portion was determined according to JIS G 0 using the same sample as above.
According to the ferrite grain size test method described in 552,
An average value was obtained by observing five visual fields with an optical microscope. The crystal orientation of the ferromagnetic portion is determined by cutting out a block of about 10 mm square from the ferromagnetic portion, electrolytically polishing the rolled surface, and analyzing the X-ray diffraction to a diffraction angle 2θ = 30 ° to 120 °, and detecting the ferrite. (110), ferrite (200) and ferrite (211) were measured, and (200) / (110)
Was determined.

【0056】強磁性部の磁気特性は、強磁性部より外径
45mm、内径33mmのJISリングを切り出し、1
次巻線150回、2次巻線30回の巻線を行った後、4
000A/mの直流磁場を印加して測定した。直流磁気
特性の測定例として、部材No.3を図4、No.10
を図5、No.16を図6として、強磁性部のB−H曲
線を示す。また、強磁性部の電気抵抗率は、強磁性部よ
り10mm×80mmの測定片を切り出して測定した。
The magnetic properties of the ferromagnetic portion were obtained by cutting a JIS ring having an outer diameter of 45 mm and an inner diameter of 33 mm from the ferromagnetic portion.
After winding the primary winding 150 times and the secondary winding 30 times,
The measurement was performed by applying a DC magnetic field of 000 A / m. As a measurement example of the direct current magnetic characteristics, the member No. No. 3 in FIG. 10
In FIG. The BH curve of the ferromagnetic portion is shown in FIG. Further, the electric resistivity of the ferromagnetic portion was measured by cutting out a measuring piece of 10 mm × 80 mm from the ferromagnetic portion.

【0057】一方、高周波加熱によって形成された非磁
性部は、この非磁性部より15角程度のブロックを切り
出して表面を電解研磨した後、X線回折分析により実質
的にオ−ステナイト相から成っていることを確認した。
この場合の実質的にオ−ステナイト相となっている状態
とは、X線回折において回折角2θを、2θ=30〜1
20°まで走査した時に検出されるマルテンサイト相ピ
−クの積分強度の総計をα、オ−ステナイト相の積分強
度の総計をγとすると、 γ/(α+γ)≧0.9…(1) であることとした。X線回折分析の結果、部材No.1
〜13、No.15〜16の非磁性部は、すべて上記
(1)式を満足し、実質的にオ−ステナイト相から成る
ことが確認された。しかし、素材のNi当量が5.19
%と低い部材No.14では、上記(1)式を満足しな
かった。更に、非磁性部の透磁率は、高周波加熱によっ
て形成された非磁性部より、10mm角程度のブロック
を切り出し、透磁率計により測定した。
On the other hand, the non-magnetic portion formed by high-frequency heating is substantially composed of an austenite phase by X-ray diffraction analysis after cutting out a block of about 15 squares from the non-magnetic portion and electropolishing the surface. Confirmed that.
In this case, the substantially austenitic state means that the diffraction angle 2θ in X-ray diffraction is 2θ = 30 to 1
Assuming that the total integrated intensity of the martensite phase peak detected when scanning to 20 ° is α and the total integrated intensity of the austenite phase is γ, γ / (α + γ) ≧ 0.9 (1) It was decided. As a result of the X-ray diffraction analysis, the member No. 1
-13, No. It was confirmed that all of the nonmagnetic portions 15 to 16 satisfied the above expression (1) and consisted substantially of an austenite phase. However, the Ni equivalent of the material was 5.19.
% As low as In No. 14, the above expression (1) was not satisfied. Further, the magnetic permeability of the non-magnetic portion was measured with a permeability meter by cutting out a block of about 10 mm square from the non-magnetic portion formed by high-frequency heating.

【0058】複合磁性部材の素材である合金鋼のSi
量、(Si+Al)量、及びNi当量、複合磁性部材の
強磁性部の組織形態と軟磁性、電気抵抗率、複合磁性部
材の非磁性部の透磁率をまとめて表2に示す。
The alloy steel, which is the material of the composite magnetic member, is made of Si.
Table 2 summarizes the amounts, (Si + Al) amounts, and Ni equivalents, the morphology and soft magnetism, electrical resistivity of the ferromagnetic portion of the composite magnetic member, and the magnetic permeability of the non-magnetic portion of the composite magnetic member.

【0059】[0059]

【表2】 [Table 2]

【0060】表2の内、部材No.1〜13は本発明部
材であり、部材No.14〜18は比較例である。ま
ず、合金素材へのSi添加量と強磁性部の組織形態、軟
磁性の観点から述べる。Siを0.1〜7.0%の範囲
で添加した本発明部材1〜9では、強磁性部における粒
径0.1μm以上の炭化物個数は、すべて50個/10
0μm以下で、かつ全炭化物個数に対して粒径1.0
μm以上の炭化物が占める割合は、すべて15%以上で
あって、強磁性部の最大透磁率はすべて400以上とな
っている。また、この内、部材2〜9では、強磁性部に
おけるフェライト粒度は、すべて結晶粒度番号で14を
含んで、これより粗粒であって、保磁力1000A/m
以下の特性を満足している。
In Table 2, the member No. Reference numerals 1 to 13 denote members of the present invention, and member Nos. 14 to 18 are comparative examples. First, the amount of Si added to the alloy material, the texture of the ferromagnetic portion, and the soft magnetism will be described. In the members 1 to 9 of the present invention to which Si was added in the range of 0.1 to 7.0%, the number of carbides having a particle diameter of 0.1 μm or more in the ferromagnetic portion was 50/10
0 μm 2 or less, and a particle size of 1.0 with respect to the total number of carbides.
The proportion occupied by carbides of μm or more is all 15% or more, and the maximum magnetic permeability of the ferromagnetic portion is all 400 or more. Among them, in the members 2 to 9, the ferrite grain size in the ferromagnetic part is all coarse including 14 in the grain size number, and the coercive force is 1000 A / m.
Satisfies the following characteristics.

【0061】次に、合金素材への(Si,Al)複合添
加と強磁性部の組織形態、軟磁性の観点から述べる。S
iとAlの合計量が0.1〜12.0%の範囲である本
発明部材No.10〜13では、強磁性部における粒径
0.1μm以上の炭化物個数は、すべて50個/100
μm以下で、かつ全炭化物個数に対して粒径1.0μ
m以上の炭化物が占める割合は、すべて15%以上であ
って、強磁性部の最大透磁率はすべて400以上となっ
ている。また、強磁性部におけるフェライト粒度は、す
べて結晶粒度番号で14を含んで、これより粗粒であっ
て、保磁力1000A/m以下の特性を満足している。
更に、SiとAlを複合添加することによって、Siを
単独で添加した場合よりも一層、強磁性部の金属組織と
軟磁性を改善する効果があることが分かる。
Next, the addition of (Si, Al) composite to the alloy material, the structure of the ferromagnetic portion, and the soft magnetism will be described. S
Inventive member No. 1 in which the total amount of i and Al is in the range of 0.1 to 12.0%. In Nos. 10 to 13, the number of carbides having a particle size of 0.1 μm or more in the ferromagnetic portion was 50/100.
μm 2 or less, and a particle size of 1.0 μm with respect to the total number of carbides.
The proportion occupied by carbides of m or more is all 15% or more, and the maximum magnetic permeability of the ferromagnetic portion is all 400 or more. Further, the ferrite grain size in the ferromagnetic portion is all coarse, including the crystal grain size number of 14, and satisfies the coercive force of 1000 A / m or less.
Further, it can be seen that the combined addition of Si and Al has the effect of improving the metal structure and soft magnetism of the ferromagnetic portion more than the case of adding Si alone.

【0062】一方、比較例である部材No.16〜18
を見ると、No.16(Si=0.002%、Al=
0.002%)では、Si量、Al量とも少な過ぎるた
めに強磁性部の炭化物個数が増加し、結晶粒度番号1
6.0と細粒になっており、強磁性部の最大透磁率が3
15という低い値に留まっている。また部材No.17
の素材(Si=7.10%、Al=0.002%)と部
材No.18の素材(Si=7.11%、Al=5.1
9%)では、逆にSi添加量、SiとAlの合計量が多
すぎるため、熱間加工が出来なくなっている。
On the other hand, the member No. 16-18
Looking at No. 16 (Si = 0.002%, Al =
(0.002%), both the Si content and the Al content are too small, so that the number of carbides in the ferromagnetic portion increases, and the crystal grain size number 1
6.0 and the maximum magnetic permeability of the ferromagnetic portion is 3
It remains at a low value of 15. The member No. 17
(Si = 7.10%, Al = 0.002%) and material No. 18 materials (Si = 7.11%, Al = 5.1)
9%), conversely, the amount of Si added and the total amount of Si and Al are too large, so that hot working cannot be performed.

【0063】次に、Ni当量と強磁性部の最大透磁率、
非磁性部の透磁率の観点から述べる。本発明部材No.
1〜13は、いずれも強磁性部の最大透磁率400以
上、非磁性部の透磁率2以下の複合磁気特性を満足して
いる。Ni当量が5.19%と低い比較例の部材No.
14では、強磁性部の軟磁性は優れているが、非磁性部
の透磁率は2.53と大きく、磁束が通り易い状態とな
っている。逆にNi当量が28.90%と高い比較例の
部材No.15では、強磁性部の最大透磁率が389と
低くなり、軟磁性が劣化していることが分かる。以上の
結果から、Ni当量の好ましい範囲は10.0%〜2
5.0%であることが分かる。
Next, the Ni equivalent and the maximum magnetic permeability of the ferromagnetic portion
This will be described from the viewpoint of the magnetic permeability of the non-magnetic portion. Inventive member No.
Each of the samples Nos. 1 to 13 satisfies the composite magnetic characteristics in which the maximum magnetic permeability of the ferromagnetic portion is 400 or more and the magnetic permeability of the non-magnetic portion is 2 or less. The member No. of Comparative Example in which the Ni equivalent was as low as 5.19%.
In No. 14, although the soft magnetism of the ferromagnetic portion is excellent, the magnetic permeability of the non-magnetic portion is as large as 2.53, so that the magnetic flux easily passes. Conversely, the member No. of the comparative example having a high Ni equivalent of 28.90%. In No. 15, it can be seen that the maximum magnetic permeability of the ferromagnetic portion was low at 389, and the soft magnetism was deteriorated. From the above results, the preferable range of the Ni equivalent is 10.0% to 2%.
It turns out that it is 5.0%.

【0064】(実施例2)本発明では、複合磁性部材を
製造する工程において、素材となるSiを添加、または
SiとAlを複合添加したFe−Cr−C系合金鋼の熱
間加工温度も重要となるので、表1の部材No.3とN
o.10の素材となる合金鋼の熱間加工温度を、950
〜1150℃の範囲で変化させた時に、得られた複合磁
性部材の強磁性部での粒径0.1μm以上の炭化物個数
と、粒径1.0μm以上の炭化物個数を測定した。炭化
物個数の測定方法は先述と同じである。測定結果を表3
に示す。
(Embodiment 2) In the present invention, in the process of manufacturing a composite magnetic member, the hot working temperature of Fe-Cr-C-based alloy steel to which Si as a raw material or Si and Al is added in combination is also reduced. Since it becomes important, the member No. 3 and N
o. The hot working temperature of the alloy steel used as the material No. 10 was 950
When the temperature was changed in the range of 11150 ° C., the number of carbides having a particle diameter of 0.1 μm or more and the number of carbides having a particle diameter of 1.0 μm or more in the ferromagnetic portion of the obtained composite magnetic member were measured. The method for measuring the number of carbides is the same as described above. Table 3 shows the measurement results.
Shown in

【0065】[0065]

【表3】 [Table 3]

【0066】表3から、素材である合金鋼の熱間加工温
度を1100℃以下とすることによって、強磁性部にお
いて粒径0.1μm以上の炭化物個数が全炭化物個数に
対する粒径1.0μm以上の炭化物の割合が15%以上
である本発明の複合磁性部材が得られることが分かる。
From Table 3, it can be seen that by setting the hot working temperature of the alloy steel as a raw material to 1100 ° C. or less, the number of carbides having a particle diameter of 0.1 μm or more in the ferromagnetic portion is at least 1.0 μm with respect to the total number of carbides. It can be seen that a composite magnetic member of the present invention having a carbide ratio of 15% or more can be obtained.

【0067】[0067]

【発明の効果】本発明によれば、単一材で強磁性部と非
磁性部をもつ複合磁性部材の素材として、Siを0.1
〜7.0%、またはSiとAlを合計で0.1〜12.
0%の範囲で添加したFe−Cr−C系の合金鋼を適用
し、適切な温度範囲での熱間加工と焼鈍を行うことによ
って、粒径0.1μm以上の炭化物個数が100μm
の面積中に50個以下、該炭化物個数に対する粒径1.
0μm以上の炭化物の割合が15%以上であって、優れ
た軟磁性の強磁性体を得ることができ、更に適切な温度
範囲での部分的加熱を行うことにより、従来と変わらな
い磁気特性を有する安定した非磁性部を得ることができ
る。本発明は、優れた軟磁性が要求される磁気回路に複
合磁性部材を適用するに当たって欠くことのできない技
術となる。
According to the present invention, Si is used as a material for a composite magnetic member having a ferromagnetic portion and a non-magnetic portion in a single material.
To 7.0%, or 0.1 to 12 in total of Si and Al.
By applying Fe-Cr-C alloy steel added in the range of 0% and performing hot working and annealing in an appropriate temperature range, the number of carbides having a grain size of 0.1 µm or more is 100 µm 2.
50 or less in the area of, and the particle size with respect to the number of carbides is 1.
The ratio of carbide of 0 μm or more is 15% or more, and an excellent soft magnetic ferromagnetic material can be obtained. Further, by performing partial heating in an appropriate temperature range, the magnetic characteristics can be maintained at the same level as in the past. A stable non-magnetic portion having the same can be obtained. The present invention is an indispensable technique when applying a composite magnetic member to a magnetic circuit requiring excellent soft magnetism.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合磁性部材の強磁性部の炭化物形態
を示す顕微鏡組織写真である。
FIG. 1 is a microstructure photograph showing a carbide form of a ferromagnetic portion of a composite magnetic member of the present invention.

【図2】本発明の複合磁性部材の強磁性部の炭化物形態
を示す顕微鏡組織写真である。
FIG. 2 is a micrograph showing a carbide morphology of a ferromagnetic portion of the composite magnetic member of the present invention.

【図3】比較例としての強磁性部の炭化物形態を示す顕
微鏡組織写真である。
FIG. 3 is a microstructure photograph showing a carbide form of a ferromagnetic part as a comparative example.

【図4】本発明の複合磁性部材の強磁性部のB−H曲線
である。
FIG. 4 is a BH curve of a ferromagnetic portion of the composite magnetic member of the present invention.

【図5】本発明の複合磁性部材の強磁性部のB−H曲線
である。
FIG. 5 is a BH curve of a ferromagnetic portion of the composite magnetic member of the present invention.

【図6】比較例としての強磁性部のB−H曲線である。FIG. 6 is a BH curve of a ferromagnetic portion as a comparative example.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年7月27日(1999.7.2
7)
[Submission date] July 27, 1999 (July 7, 1999
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】次に、Si添加量と強磁性部のフェライト
粒の結晶粒度、保磁力の関係を具体的に述べる。重量%
でFe−17.5%Cr−0.5%C−2.0%Niを
主成分とする合金鋼を素材とした複合磁性部材を例に挙
げると、Siを脱酸剤として0.02%のみ含有し、実
質的には添加していない場合には、強磁性部においてフ
ェライト粒の大きさは結晶粒度番号16.0で、保磁力
は1220A/mである。この合金鋼に重量%で0.4
4%のSiを添加した合金鋼を素材とした複合磁性部材
の強磁性部では、フェライト粒の大きさは結晶粒度番号
14.0まで大きくなり、保磁力は980A/mまで低
下し、軟磁性(軟質磁気特性)の向上が図れる。また、
重量%で0.91%のSiを添加した合金鋼を素材とし
た場合には、強磁性部の結晶粒度番号は13.0、保磁
力は700A/mとなる。更に重量%で1.94%のS
iを添加した場合には、フェライト粒の大きさは結晶粒
度番号12.0まで大きくなり、保磁力は490A/m
まで低下し、更なる軟磁性(軟質磁気特性)の向上が図
れる。このようにSiを添加することにより、フェライ
ト粒は大きくなり、これに伴って保磁力が低下し、軟磁
性(軟質磁気特性)が向上して行くことが分かる。以上
が、複合磁性材部材の素材となるFe−Cr−C系合金
鋼にSiを添加する効果の第二である。
Next, the relationship between the amount of added Si, the crystal grain size of ferrite grains in the ferromagnetic portion, and the coercive force will be specifically described. weight%
In the case of a composite magnetic member made of an alloy steel containing Fe-17.5% Cr-0.5% C-2.0% Ni as a main component, for example, 0.02% of Si is used as a deoxidizing agent. When only ferromagnetic particles are contained and substantially not added, the size of the ferrite grains in the ferromagnetic portion is a crystal grain size number of 16.0, and the coercive force is 1220 A / m. 0.4% by weight to this alloy steel
In the ferromagnetic portion of a composite magnetic member made of alloy steel containing 4% Si, the size of ferrite grains is determined by the grain size number.
It increases to 14.0 , the coercive force decreases to 980 A / m, and the soft magnetism (soft magnetic properties) can be improved. Also,
When an alloy steel to which 0.91% by weight of Si is added is used as a material, the crystal grain number of the ferromagnetic portion is 13.0, and the coercive force is 700 A / m. Furthermore, 1.94% of S by weight%
When i was added, the size of the ferrite grains increased to a grain size number of 12.0, and the coercive force was 490 A / m
And the soft magnetism (soft magnetic properties) can be further improved. It can be seen that the addition of Si increases the size of the ferrite grains, thereby decreasing the coercive force and improving the soft magnetism (soft magnetic properties). The above is the second effect of adding Si to the Fe-Cr-C alloy steel used as the material of the composite magnetic material member.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 Siを0.1〜7.0%、またはSiと
Alを合計で0.1〜12.0%含有するFe−Cr−
C系合金鋼から成り、粒径0.1μm以上の炭化物個数
が100μmの面積中に50個以下、且つ該炭化物個
数に対する粒径1.0μm以上の炭化物個数の割合が1
5%以上に調整された最大透磁率400以上の強磁性部
と、透磁率2以下の非磁性部を有することを特徴とする
複合磁性部材。
1. An Fe—Cr— containing 0.1 to 7.0% of Si, or 0.1 to 12.0% of Si and Al in total.
The number of carbides having a grain size of 0.1 μm or more is 50 or less in an area of 100 μm 2 , and the ratio of the number of carbides having a grain size of 1.0 μm or more to the number of carbides is 1
A composite magnetic member having a ferromagnetic portion having a maximum magnetic permeability of 400 or more adjusted to 5% or more and a non-magnetic portion having a magnetic permeability of 2 or less.
【請求項2】 強磁性部の結晶粒径が、粒度番号14を
含んで、これより粗粒に調整され、保磁力1000A/
m以下であることを特徴とする請求項1に記載の複合磁
性部材。
2. The crystal grain size of the ferromagnetic portion is adjusted to a coarser grain size including a grain size number 14, and the coercive force is 1000 A /
The composite magnetic member according to claim 1, wherein m is equal to or less than m.
【請求項3】 表面側からX線で結晶方位を測定した
時、フェライト(200)とフェライト(110)のX
線積分強度比が6以上の強磁性部を有することを特徴と
する請求項1または2に記載の複合磁性部材。
3. When the crystal orientation is measured by X-rays from the surface side, the X-rays of the ferrite (200) and the ferrite (110) are measured.
The composite magnetic member according to claim 1, further comprising a ferromagnetic portion having a linear integral intensity ratio of 6 or more.
【請求項4】 電気抵抗率は、0.7μΩm以上の強磁
性部を有することを特徴とする請求項1乃至3の何れか
に記載の複合磁性部材。
4. The composite magnetic member according to claim 1, wherein the composite magnetic member has a ferromagnetic portion having an electric resistivity of 0.7 μΩm or more.
【請求項5】 Ni当量(=%Ni+30×%C+0.
5×%Mn+30×%N)が10.0〜25.0%であ
る合金鋼から成ることを特徴とする請求項1乃至4の何
れかに記載の複合磁性部材。
5. Ni equivalent (=% Ni + 30 ×% C + 0.
5. The composite magnetic member according to claim 1, wherein the composite magnetic member is made of an alloy steel having (5 ×% Mn + 30 ×% N) 10.0 to 25.0%.
【請求項6】 重量%でC:0.30〜0.80%、C
r:10.0〜25.0%、Si;0.1〜7.0%、
Ni:0.1〜4.0%、Mn;0.1〜2.0%、
N:0.01〜0.10%、残部がFeと不可避不純物
の組成の合金鋼から成ることを特徴とする請求項1乃至
5の何れかに記載の複合磁性部材。
6. C: 0.30 to 0.80% by weight, C
r: 10.0 to 25.0%, Si; 0.1 to 7.0%,
Ni: 0.1 to 4.0%, Mn; 0.1 to 2.0%,
The composite magnetic member according to any one of claims 1 to 5, wherein N: 0.01 to 0.10%, the balance being alloy steel having a composition of Fe and inevitable impurities.
【請求項7】 重量%でC:0.30〜0.80%、C
r:10.0〜25.0%、Si;0.05〜7.0
%、Al;0.05〜5.0%、Ni:0.1〜4.0
%、Mn;0.1〜2.0%、N:0.01〜0.10
%、残部がFeと不可避不純物の組成の合金鋼から成る
ことを特徴とする請求項1乃至5の何れかに記載の複合
磁性部材。
7. C: 0.30 to 0.80% by weight, C
r: 10.0 to 25.0%, Si; 0.05 to 7.0
%, Al: 0.05 to 5.0%, Ni: 0.1 to 4.0
%, Mn; 0.1 to 2.0%, N: 0.01 to 0.10
The composite magnetic member according to any one of claims 1 to 5, wherein the balance is made of alloy steel having a composition of Fe and inevitable impurities.
【請求項8】 Siが重量%で0.3〜3.5%である
ことを特徴とする請求項1乃至7の何れかに記載の複合
磁性部材。
8. The composite magnetic member according to claim 1, wherein Si is 0.3 to 3.5% by weight.
【請求項9】 Alが重量%で0.3〜3.5%である
ことを特徴とする請求項1乃至5、請求項7、請求項8
の何れかに記載の複合磁性部材。
9. The method according to claim 1, wherein Al is 0.3 to 3.5% by weight.
The composite magnetic member according to any one of the above.
【請求項10】 Siを0.1〜7.0%、またはSi
とAlを合計で0.1〜12.0%含有するFe−Cr
−C系の合金鋼を、1100℃以下で熱間加工した後、
A3変態点以下で少なくとも1回焼鈍し、粒径0.1μ
m以上の炭化物個数を100μmの面積中に50個以
下、且つ該炭化物個数に対する粒径1.0μm以上の炭
化物個数の割合が15%以上に調整した強磁性体を得る
ことを特徴とする複合磁性部材の強磁性部の製造方法。
10. Si of 0.1 to 7.0%, or Si
Fe-Cr containing 0.1-12.0% in total of Al and Al
After hot working -C based alloy steel at 1100 ° C or lower,
Anneal at least once at A3 transformation point or less, and particle size 0.1μ
a ferromagnetic material in which the number of carbides of m or more in an area of 100 μm 2 is 50 or less, and the ratio of the number of carbides having a particle size of 1.0 μm or more to the number of carbides is adjusted to 15% or more. A method for manufacturing a ferromagnetic portion of a magnetic member.
【請求項11】 Siを0.1〜7.0%、またはSi
とAlを合計で0.1〜12.0%含有するFe−Cr
−C系の合金鋼を、1100℃以下で熱間加工した後、
A3変態点以下で少なくとも1回焼鈍し、粒径0.1μ
m以上の炭化物個数を100μmの面積中に50個以
下、該炭化物個数に対する粒径1.0μm以上の炭化物
個数の割合が15%以上に調整した強磁性体の一部を1
050℃〜溶融温度の温度範囲で加熱後、急冷すること
で、非磁性部を形成することを特徴とする複合磁性部材
の非磁性部の形成方法。
11. An alloy containing 0.1 to 7.0% of Si,
Fe-Cr containing 0.1-12.0% in total of Al and Al
After hot working -C based alloy steel at 1100 ° C or lower,
Anneal at least once at A3 transformation point or less, and particle size 0.1μ
The number of carbides of m or more in an area of 100 μm 2 is 50 or less, and the ratio of the number of carbides having a particle size of 1.0 μm or more to the number of carbides is adjusted to 15% or more.
A method for forming a non-magnetic portion of a composite magnetic member, wherein the non-magnetic portion is formed by quenching after heating in a temperature range of 050 ° C. to a melting temperature.
JP11202815A 1999-07-16 1999-07-16 Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member Pending JP2001026846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11202815A JP2001026846A (en) 1999-07-16 1999-07-16 Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11202815A JP2001026846A (en) 1999-07-16 1999-07-16 Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member

Publications (1)

Publication Number Publication Date
JP2001026846A true JP2001026846A (en) 2001-01-30

Family

ID=16463669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11202815A Pending JP2001026846A (en) 1999-07-16 1999-07-16 Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member

Country Status (1)

Country Link
JP (1) JP2001026846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077631A1 (en) * 2010-12-06 2012-06-14 日立金属株式会社 Composite magnetic material raw material and composite magnetic material
WO2013047267A1 (en) * 2011-09-30 2013-04-04 日立金属株式会社 Composite magnetic material and composite magnetic member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077631A1 (en) * 2010-12-06 2012-06-14 日立金属株式会社 Composite magnetic material raw material and composite magnetic material
CN103237912A (en) * 2010-12-06 2013-08-07 日立金属株式会社 Composite magnetic material raw material and composite magnetic material
JPWO2012077631A1 (en) * 2010-12-06 2014-05-19 日立金属株式会社 Composite magnetic material and composite magnetic material
WO2013047267A1 (en) * 2011-09-30 2013-04-04 日立金属株式会社 Composite magnetic material and composite magnetic member
JP5339009B1 (en) * 2011-09-30 2013-11-13 日立金属株式会社 Composite magnetic material and composite magnetic member
CN103814146A (en) * 2011-09-30 2014-05-21 日立金属株式会社 Composite magnetic material and composite magnetic member

Similar Documents

Publication Publication Date Title
JP4399751B2 (en) Composite magnetic member, method for manufacturing ferromagnetic portion of composite magnetic member, and method for forming nonmagnetic portion of composite magnetic member
US7419634B2 (en) Fe-Ni based permalloy and method of producing the same and cast slab
EP1411138A1 (en) Nonoriented electromagnetic steel sheet
EP3093858B1 (en) Ultra-low cobalt iron-cobalt magnet alloys
EP4079896A2 (en) Non-oriented electrical steel sheet, and method for manufacturing same
JP2010209467A (en) Improved method for producing non-oriented electrical steel sheet
JP2007051343A (en) Soft magnetic steel having excellent magnetic property in high magnetic field and excellent machinability, and soft magnetic steel component having excellent magnetic property in high magnetic field
JP2005200713A (en) Nonoriented silicon steel sheet having excellent uniformity of magnetic property in coil and high production yield, and its production method
JP2013049918A (en) Electromagnetic stainless steel and method of manufacturing the same
JP2001026846A (en) Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member
JP5374233B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them
JP2022056669A (en) Ferritic stainless steel
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
JP2000036409A (en) Manufacture of actuator composite magnetic member and ferromagnetic part thereof, and forming method of non- magnetic part of actuator composite magnetic member
EP4180543A1 (en) Soft magnetic member and intermediate thereof, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
WO2012077631A1 (en) Composite magnetic material raw material and composite magnetic material
JP4795900B2 (en) Fe-Ni permalloy alloy
JP2013224482A (en) Method for producing raw material for composite magnetic material and method for producing the composite magnetic material
CN118159676A (en) Semi-hard magnetic steel part
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
CN114981465A (en) Non-magnetic austenitic stainless steel
JPH09228004A (en) Composite magnetic member and its production
JP2000160301A (en) Composite magnetic member excellent in corrosion resistance and its manufacture
WO2013047267A1 (en) Composite magnetic material and composite magnetic member
JP2001152299A (en) Composite magnetic member with high proof stress