JP2001021745A - Manufacture of embedded optical waveguide - Google Patents

Manufacture of embedded optical waveguide

Info

Publication number
JP2001021745A
JP2001021745A JP19819499A JP19819499A JP2001021745A JP 2001021745 A JP2001021745 A JP 2001021745A JP 19819499 A JP19819499 A JP 19819499A JP 19819499 A JP19819499 A JP 19819499A JP 2001021745 A JP2001021745 A JP 2001021745A
Authority
JP
Japan
Prior art keywords
ion exchange
refractive index
ion
substrate
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19819499A
Other languages
Japanese (ja)
Other versions
JP4156136B2 (en
Inventor
Kazuyoshi Hakamata
和喜 袴田
Junko Ishizu
淳子 石津
Tatsushi Kuno
達志 久納
Yasuhiro Yasuma
康浩 安間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP19819499A priority Critical patent/JP4156136B2/en
Publication of JP2001021745A publication Critical patent/JP2001021745A/en
Application granted granted Critical
Publication of JP4156136B2 publication Critical patent/JP4156136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a refractive index increasing portion of an axially symmetric shape excellent in consistency with an optical fiber, irrespective of a deep embedded depth, using two-step ion exchanging method. SOLUTION: Such three processes are conducted in order as the first ion exchange process for forming an ion exchange controlling membrane on a glass substrate to be immersed into the first molten salt to conduct thermal ion exchange so as to form a refractive index increasing portion, an etching process for removing the ion exchange control membrane, and the second ion exchange process for impressing an electric field to be perpendicular to the substrate while immersed into the second molten salt so as to embed the refractive index increasing portion along a depth direction of the substrate. The first method makes impressed electric field intensity in the second ion exchange process lowered with the lapse of time. In the second method, the third ion exchange process is conducted to impress an electric field reverse-directional to that in the second ion exchange process while immersed into the second molten salt after the second ion exchange process. In the third method, a heat- treatment process is conducted to hold heatingly the substrate under a no- electric-field condition after the second ion exchange process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2段階イオン交換
法による低損失の埋め込み型光導波路の製造方法に関
し、更に詳しく述べると、ガラス基板中に十分な深さま
で埋め込まれた屈折率増加部分の断面イオン濃度分布形
状を、基板深さ方向でほぼ対称形にする方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a low-loss embedded optical waveguide by a two-stage ion exchange method. More specifically, the present invention relates to a method of manufacturing a refractive index increasing portion embedded in a glass substrate to a sufficient depth. The present invention relates to a method for making a cross-sectional ion concentration distribution shape substantially symmetrical in a substrate depth direction.

【0002】[0002]

【従来の技術】各種の光通信用伝送素子、光集積回路、
あるいは光センサ用素子などでは、ガラス状物質からな
る基板中に光導波路を形成する技術が必要となる。従
来、この種の光導波路の形成には、イオン交換法が採用
されている。このイオン交換法による光導波路の形成に
おいては、基板表面の散乱による伝播損失を低減するた
めに、また光ファイバとのモードフィールド整合のため
に、基板内部に光導波路を埋め込む2段階イオン交換法
が一般的である。
2. Description of the Related Art Various types of transmission elements for optical communication, optical integrated circuits,
Alternatively, for an optical sensor element or the like, a technique for forming an optical waveguide in a substrate made of a glassy substance is required. Conventionally, an ion exchange method has been employed for forming this type of optical waveguide. In forming an optical waveguide by this ion exchange method, a two-stage ion exchange method in which an optical waveguide is embedded in the substrate to reduce propagation loss due to scattering on the substrate surface and for mode field matching with an optical fiber is used. General.

【0003】2段階イオン交換法は、熱イオン交換によ
り屈折率増加部分を形成する第1のイオン交換工程と、
電界印加により該屈折率増加部分を基板深さ方向に埋め
込む第2のイオン交換工程を組み合わせた方法である。
第1のイオン交換工程では、アルカリイオンを含むガラ
ス基板上に、所定の光導波路パターンを有するイオン交
換制御膜を形成し、AgあるいはTl等の屈折率を増加
させる1価イオンを含む硝酸塩や硫酸塩の溶融塩に適当
な時間浸漬して、前記イオン交換制御膜を通して熱イオ
ン交換を行い屈折率増加部分を形成する。この第1のイ
オン交換工程の後、前記イオン交換制御膜をエッチング
により除去する。次いで、第2のイオン交換工程では、
ガラス基板をNa又はKイオンを含む溶融塩中に浸漬
し、電界を印加しながらイオン交換し、AgあるいはT
lイオンによる屈折率増加部分をガラス基板の深さ方向
に埋め込む。
[0003] The two-stage ion exchange method includes a first ion exchange step of forming a refractive index increasing portion by thermal ion exchange;
This is a method in which a second ion exchange step of embedding the increased refractive index portion in the depth direction of the substrate by applying an electric field is combined.
In the first ion exchange step, an ion exchange control film having a predetermined optical waveguide pattern is formed on a glass substrate containing alkali ions, and nitrate or sulfuric acid containing monovalent ions such as Ag or Tl that increases the refractive index is used. The salt is immersed in a molten salt for an appropriate period of time, and thermal ion exchange is performed through the ion exchange control membrane to form a refractive index increasing portion. After the first ion exchange step, the ion exchange control film is removed by etching. Next, in the second ion exchange step,
A glass substrate is immersed in a molten salt containing Na or K ions, ion-exchanged while applying an electric field, and Ag or T
The portion where the refractive index is increased by the 1 ion is embedded in the depth direction of the glass substrate.

【0004】このようにして形成された屈折率増加部分
が光導波路として機能する。光導波路を基板表面近傍に
形成した場合、基板表面の表面あれや基板表面上の材料
などにより、導波光の散乱や吸収が発生する。これは、
導波光のエネルギのしみだしが基板表面上までも起こっ
ているためである。この影響を回避するために、上記の
ように、光導波路を基板内部に埋め込むことが行われて
いるのである。
[0004] The refractive index increasing portion thus formed functions as an optical waveguide. When the optical waveguide is formed in the vicinity of the substrate surface, scattering or absorption of the guided light occurs due to the surface of the substrate surface or the material on the substrate surface. this is,
This is because the exudation of the energy of the guided light occurs even on the substrate surface. In order to avoid this effect, the optical waveguide is embedded in the substrate as described above.

【0005】[0005]

【発明が解決しようとする課題】一般に、埋め込み深さ
が大きくなればなるほど、それだけ基板表面の影響を受
け難くなり、低損失の光導波路が実現できる。必要な埋
め込み深さは、使用波長や光導波路の設計などにより異
なるが、通信波長域の用途を考慮すると10μm程度が
目安となる。しかし、埋め込み深さが大きくなるほど、
屈折率増加部分の断面イオン濃度分布形状がいびつにな
り、真円からはほど遠いものとなる。ここで、「埋め込
み深さ」とは、屈折率増加部分中で屈折率を増加させる
イオンの濃度が最も大きい点の基板表面からの深さをい
う。
In general, the larger the buried depth, the less affected by the substrate surface, and a low-loss optical waveguide can be realized. The necessary embedding depth varies depending on the wavelength used, the design of the optical waveguide, and the like. However, in consideration of the application in the communication wavelength range, the approximate embedding depth is about 10 μm. However, the larger the embedding depth,
The sectional ion concentration distribution shape of the portion where the refractive index increases is distorted, and is far from a perfect circle. Here, “embedded depth” refers to the depth from the substrate surface at the point where the concentration of ions that increase the refractive index in the refractive index increasing portion is the highest.

【0006】ところで、AgやTl等の屈折率を増加さ
せる1価イオンのガラス中における拡散係数や移動度に
は、多かれ少なかれ濃度依存性が存在する。具体的に
は、ガラス中のイオン濃度が高い部分は拡散係数や移動
度が大きく、イオン濃度が低い部分は拡散係数や移動度
が小さくなる。従って、電界印加による第2のイオン交
換では、その依存性の影響で、埋め込み深さが大きくな
るほど、屈折率増加部分が基板深さ方向で上下非対称と
なることは避けられず、モードフィールド自体も当然非
対称になってしまう。このような理由で、屈折率増加部
分の断面イオン濃度分布が真円で、且つシングルモード
となる光導波路の実現は非常に困難であった。そのた
め、光ファイバとの整合性に劣り、光ファイバと結合す
る際の損失が大きくなる欠点があった。
Meanwhile, the diffusion coefficient and the mobility of monovalent ions, such as Ag and Tl, which increase the refractive index in glass have more or less concentration dependence. Specifically, a portion having a high ion concentration in the glass has a large diffusion coefficient and mobility, and a portion having a low ion concentration has a small diffusion coefficient and mobility. Therefore, in the second ion exchange by applying an electric field, it is inevitable that as the buried depth increases, the refractive index increasing portion becomes vertically asymmetric in the substrate depth direction due to the dependency, and the mode field itself also increases. Naturally it becomes asymmetric. For this reason, it has been very difficult to realize an optical waveguide in which the cross-sectional ion concentration distribution of the portion where the refractive index is increased is a perfect circle and the mode is a single mode. Therefore, there is a defect that the matching with the optical fiber is inferior and the loss at the time of coupling with the optical fiber is large.

【0007】本発明の目的は、2段階イオン交換法を用
いて、埋め込み深さを大きくするにもかかわらず、光フ
ァイバとの整合性の良い軸対称形の屈折率増加部分を形
成できるようにした埋め込み型光導波路の製造方法を提
供することである。
[0007] An object of the present invention is to form an axially symmetric refractive index increasing portion having good matching with an optical fiber by using a two-stage ion exchange method, despite the fact that the embedding depth is increased. To provide a method for manufacturing a buried optical waveguide.

【0008】[0008]

【課題を解決するための手段】本発明は、1価のイオン
を含有してイオン交換可能なガラス状物質からなる基板
上に、所定の光導波路パターンを有するイオン交換制御
膜を形成し、前記基板の屈折率を増加させ得る第1の1
価イオンを含有する第1の溶融塩に浸漬して、前記イオ
ン交換制御膜を通して熱イオン交換を行い屈折率増加部
分を形成する第1のイオン交換工程と、前記基板から前
記イオン交換制御膜を除去するエッチング工程と、エッ
チング処理した基板を、前記第1のイオン交換工程によ
って屈折率が増加した部分の屈折率を下げ得る第2の1
価イオンを含有する第2の溶融塩に浸漬しながら、前記
イオン交換制御膜の形成されていた側を正電位とし、反
対側を負電位として基板にほぼ垂直に電界を印加して前
記第1の1価イオンによる屈折率増加部分を前記基板の
深さ方向に埋め込む第2のイオン交換工程とを、この順
で行う埋め込み型光導波路の製造方法を前提とするもの
である。
According to the present invention, an ion exchange control film having a predetermined optical waveguide pattern is formed on a substrate made of an ion-exchangeable glassy material containing monovalent ions, The first one that can increase the refractive index of the substrate
A first ion exchange step of immersing in a first molten salt containing a valent ion and performing thermal ion exchange through the ion exchange control film to form a refractive index increasing portion; and removing the ion exchange control film from the substrate. An etching step for removing, and a second substrate which can lower the refractive index of the portion where the refractive index has been increased by the first ion exchange step.
While immersed in the second molten salt containing a valence ion, the side on which the ion exchange control film was formed was set to a positive potential, and the opposite side was set to a negative potential, and an electric field was applied almost perpendicularly to the substrate to thereby perform the first step. And a second ion exchange step of burying the portion of increased refractive index due to monovalent ions in the depth direction of the substrate in this order on the premise of a method of manufacturing a buried optical waveguide.

【0009】本発明の第1の方法は、前記第2のイオン
交換工程における印加電界強度を、時間と共に低下させ
て、埋め込まれる第1の1価イオンによる屈折率増加部
分の断面イオン濃度分布形状を、ほぼ軸対称形に整形し
つつ埋め込む方法である。第2のイオン交換の際に、時
間に依らず一定強度の電界を印加すると、イオン移動度
の濃度依存性から高イオン濃度領域が深く、低濃度領域
が浅く埋め込まれ、イオン濃度分布が非対称形状となっ
ていた。それに対して上記のように、第2のイオン交換
工程で、時間と共に印加電界強度を低下させることによ
り、電界によるイオン移動度に対する熱によるイオン拡
散の影響を大きくすることができ、屈折率増加部分のイ
オン濃度分布の断面形状の非対称性を低減できる。
In the first method of the present invention, the electric field intensity applied in the second ion exchange step is reduced with time, and the sectional ion concentration distribution shape of the portion where the refractive index is increased due to the embedded first monovalent ions is reduced. Is embedded while shaping it into an almost axially symmetric shape. During the second ion exchange, when an electric field of a constant intensity is applied regardless of time, the high ion concentration region is deep and the low concentration region is buried shallowly due to the concentration dependence of ion mobility, and the ion concentration distribution is asymmetric. Had become. On the other hand, as described above, by reducing the applied electric field strength with time in the second ion exchange step, the effect of ion diffusion due to heat on the ion mobility due to the electric field can be increased, and the refractive index increase portion can be increased. Can reduce the asymmetry of the cross-sectional shape of the ion concentration distribution.

【0010】本発明の第2の方法は、前記第2のイオン
交換工程後に、前記基板を第2の溶融塩に浸漬しなが
ら、第2のイオン交換工程とは逆向きの電界を印加する
第3のイオン交換工程を具備し、第2のイオン交換工程
によって埋め込まれた第1の1価イオンによる屈折率増
加部分のイオン濃度分布の断面形状を、前記第3のイオ
ン交換工程によってほぼ軸対称形に整形する方法であ
る。逆電界を印加する第3のイオン交換工程によって、
屈折率増加部分の特に高イオン濃度領域のみを選択的に
移動させ、屈折率増加イオン濃度の断面分布形状の非対
称性を低減できる。ここで逆電界を印加する第3のイオ
ン交換工程は、交換イオンの熱による移動度を極力抑制
し、電界による高イオン濃度領域の移動度をより大きく
する。
[0010] In a second method of the present invention, after the second ion exchange step, while applying the electric field in a direction opposite to that of the second ion exchange step, the substrate is immersed in a second molten salt. 3) the ion exchange step, wherein the cross-sectional shape of the ion concentration distribution of the portion where the refractive index is increased by the first monovalent ions embedded in the second ion exchange step is substantially axially symmetric by the third ion exchange step. It is a way to shape it. By the third ion exchange step of applying a reverse electric field,
It is possible to selectively move only the high ion concentration region of the refractive index increasing portion, particularly, to reduce the asymmetry of the sectional distribution shape of the refractive index increasing ion concentration. Here, in the third ion exchange step of applying a reverse electric field, the mobility of the exchange ions due to heat is suppressed as much as possible, and the mobility of the high ion concentration region due to the electric field is further increased.

【0011】本発明の第3の方法は、前記第2のイオン
交換工程後に、基板を無電界状態で加熱保持する熱処理
工程を具備し、第2のイオン交換工程によって埋め込ま
れた第1の1価イオンによる屈折率増加部分のイオン濃
度分布の断面形状を、前記熱処理工程によってほぼ軸対
称形に整形する方法である。第2のイオン交換工程後の
熱処理により、空間的なイオン濃度勾配の大きな部分が
選択的に拡散する。また、拡散定数の濃度依存性からも
イオン濃度の高い部分の選択的拡散が実現される。更
に、一旦拡散により移動し低濃度化した部分は、拡散定
数の濃度依存性から考えて時間的に形状変化の少ない定
常状態を実現して安定化する作用をもつ。この熱処理
は、第2のイオン交換を行った後の基板を、第2のイオ
ン交換工程で用いる第2の溶融塩に一定時間浸漬するこ
とで簡便に実施できる。
[0011] A third method of the present invention comprises a heat treatment step of heating and holding the substrate in an electric field-free state after the second ion exchange step, and the first ion implantation step embedded in the second ion exchange step. This is a method of shaping the cross-sectional shape of the ion concentration distribution of the portion where the refractive index is increased by the valence ions to be substantially axially symmetric by the heat treatment step. By the heat treatment after the second ion exchange step, a portion having a large spatial ion concentration gradient is selectively diffused. Also, from the concentration dependence of the diffusion constant, selective diffusion of a portion having a high ion concentration is realized. Furthermore, the portion which has once been moved by diffusion and reduced in concentration has the effect of stabilizing by realizing a steady state with little temporal change in shape, considering the concentration dependence of the diffusion constant. This heat treatment can be easily performed by immersing the substrate after the second ion exchange in the second molten salt used in the second ion exchange step for a certain period of time.

【0012】[0012]

【発明の実施の形態】本発明は、特に埋め込み深さが1
0μm以上の光導波路に有効である。従来の2段階イオ
ン交換法では、埋め込み深さが大きくなればなるほど屈
折率増加部分のイオン濃度分布の断面形状の非対称性が
甚だしくなり、それを改善する必要性も大きくなるから
である。前記第1の方法における印加電界強度の変化パ
ターンと時間、第2の方法における印加逆電界強度と時
間、第3の方法における温度と時間などは、いずれも基
板材質や使用するイオンの種類、光導波路の設計値等に
応じて適宜決定すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has a
This is effective for an optical waveguide of 0 μm or more. This is because, in the conventional two-stage ion exchange method, as the burying depth increases, the asymmetry of the cross-sectional shape of the ion concentration distribution in the portion where the refractive index increases increases, and the necessity to improve the asymmetry increases. The change pattern and time of the applied electric field strength in the first method, the applied reverse electric field strength and the time in the second method, the temperature and the time in the third method, etc. are all the same as the material of the substrate, the type of ions used, What is necessary is just to determine suitably according to the design value of a wave path, etc.

【0013】基板の屈折率を増加させ得る第1の1価イ
オンとしては、Agイオン、Tlイオン、Csイオン、
Rbイオン、Kイオン、Liイオンのうちの少なくとも
1種のイオンを用いる。また、第1の1価イオンにより
形成された屈折率増加部分の屈折率を下げ得る第2の1
価イオンとしては、Naイオン又はKイオンの少なくと
も1種のイオンを用いる。
The first monovalent ions capable of increasing the refractive index of the substrate include Ag ions, Tl ions, Cs ions,
At least one of Rb ions, K ions, and Li ions is used. In addition, the second one that can lower the refractive index of the refractive index increasing portion formed by the first monovalent ion.
As the valence ion, at least one ion of Na ion or K ion is used.

【0014】ガラス状物質の基板としては、例えばアル
ミノボロシリケート系ガラス、アルミノシリケート系ガ
ラス、ボロシリケート系ガラスのいずれかを用いる。
As a substrate made of a glassy substance, for example, any one of aluminoborosilicate glass, aluminosilicate glass, and borosilicate glass is used.

【0015】[0015]

【実施例】(実施例1−1)アルカリイオンとしてNa
イオンのみが含まれるアルミノボロシリケート系ガラス
基板上に、所定の光導波路パターンの開口を有するTi
のイオン交換制御膜を形成し、AgNO3 とNaNO3
よりなる溶融塩(AgNO3 濃度10%)中に、255
℃で90分間浸漬する第1のイオン交換を行い、基板表
面に屈折率増加部分を形成する。続いて、基板表面のイ
オン交換制御膜をエッチングにより除去する。その後、
NaNO3 溶融塩中で、電界を印加した第2のイオン交
換を行い、基板表面に形成された屈折率増加部分を基板
内部に埋め込む。
EXAMPLES (Example 1-1) Na as an alkali ion
Ti having an opening of a predetermined optical waveguide pattern on an aluminoborosilicate glass substrate containing only ions
AgNO 3 and NaNO 3
Of molten salt (AgNO 3 concentration 10%)
The first ion exchange in which the substrate is immersed at 90 ° C. for 90 minutes is performed to form a refractive index increasing portion on the substrate surface. Subsequently, the ion exchange control film on the substrate surface is removed by etching. afterwards,
A second ion exchange with an electric field applied is performed in the NaNO 3 molten salt to bury the refractive index increasing portion formed on the substrate surface in the substrate.

【0016】この第2のイオン交換工程は、印加する電
界強度を時間的に次のようなパターンで変化させて行っ
た。 (a)パターン:溶融塩温度255℃で、150V/mm
の電界強度から直線的に180分かけて0V/mmに低下
させながら行う。 (b)パターン:溶融塩温度255℃で、150V/mm
の電界強度から直線的に180分かけて半値である75
V/mmに低下させながら行う。 (c)パターン:比較のために、溶融塩温度255℃
で、180分間、150V/mmの電界強度を一定に保っ
て行う(従来技術)。
In the second ion exchange step, the intensity of the applied electric field was temporally changed in the following pattern. (A) Pattern: 150 V / mm at a molten salt temperature of 255 ° C.
From the electric field intensity of 0 V / mm linearly over 180 minutes. (B) Pattern: 150 V / mm at a molten salt temperature of 255 ° C.
Is a half value linearly from the electric field strength of
Perform while lowering to V / mm. (C) Pattern: For comparison, molten salt temperature 255 ° C
For 180 minutes while maintaining the electric field strength of 150 V / mm constant (prior art).

【0017】この条件で作製した3.5μmの光導波路
の屈折率増加イオンの濃度プロファイルをシミュレート
した結果を、図1に示す。図1中、符号(a),…,
(c)は、それぞれ上記の各パターンに対応したイオン
濃度分布を示している。この結果より、第2のイオン交
換工程で印加電界強度を低下させる本発明により、埋め
込み深さが10μm以上となるように十分大きく、深さ
方向に関してより対称性の良好なイオン濃度分布をもつ
ように光導波路を整形できることが分かる。
FIG. 1 shows the result of simulating the concentration profile of the ion of increasing the refractive index of the optical waveguide of 3.5 μm manufactured under these conditions. In FIG. 1, symbols (a),.
(C) shows the ion concentration distribution corresponding to each of the above patterns. From these results, it is understood that the present invention in which the applied electric field intensity is reduced in the second ion exchange step has an ion concentration distribution that is sufficiently large so that the embedding depth is 10 μm or more and has better symmetry in the depth direction. It can be seen that the optical waveguide can be shaped.

【0018】図2と図3に屈折率増加イオンの断面濃度
プロファイルを示す。図2は本発明方法(上記実施例1
−1の(a)パターン)の場合であり、図3は従来技術
(上記実施例1−1の(c)パターン:比較例)の場合
である。図3(従来技術)では上下方向(深さ方向)で
非対称の度合いが甚だしく、中央部も潰れて楕円状とな
っているが、図2(本発明方法)では、それが大きく改
善され軸対称性が良好となり、特に中央部ではほぼ真円
となっている。
FIGS. 2 and 3 show cross-sectional concentration profiles of ions having increased refractive index. FIG. 2 shows the method of the present invention (Example 1 above).
FIG. 3 shows a case of the prior art (pattern (c) of Example 1-1: Comparative Example). In FIG. 3 (prior art), the degree of asymmetry in the vertical direction (depth direction) is extremely high, and the central portion is also crushed to have an elliptical shape. However, in FIG. The properties are good, and especially in the central part, it is almost a perfect circle.

【0019】(実施例1−2)実施例1−1と同様の手
順で屈折率増加部分を基板内部に埋め込む。第2のイオ
ン交換工程は、処理時間のみ変えて、次のように電界強
度を時間的に変化させて行った。 (d)パターン:溶融塩温度255℃で、150V/mm
の電界強度から直線的に120分かけて0V/mmに低下
させながら行う。 (e)パターン:溶融塩温度255℃で、150V/mm
の電界強度から直線的に120分かけて半値である75
V/mmに低下させながら行う。 (f)パターン:比較のために、溶融塩温度255℃
で、120分間、150V/mmの電界強度を一定に保っ
て行う(従来技術)。
(Example 1-2) The refractive index increasing portion is buried in the substrate in the same procedure as in Example 1-1. The second ion exchange step was performed by changing only the processing time and changing the electric field strength over time as follows. (D) Pattern: 150 V / mm at a molten salt temperature of 255 ° C.
From the electric field strength of 0 to 120 V / mm linearly over 120 minutes. (E) Pattern: 150 V / mm at a molten salt temperature of 255 ° C.
Is a half value linearly from the electric field strength of
Perform while lowering to V / mm. (F) Pattern: for comparison, molten salt temperature 255 ° C
For 120 minutes while keeping the electric field strength of 150 V / mm constant (prior art).

【0020】この条件で作製した3.5μmの光導波路
の屈折率増加イオンの濃度プロファイルをシミュレート
した結果を、図4に示す。図4中、符号(d),…,
(f)は、それぞれ上記の各パターンに対応したイオン
濃度分布を示している。この結果より、第2のイオン交
換工程で印加電界強度を低下させる本発明により、埋め
込み深さが10μm以上となるように十分大きく、深さ
方向に関してより対称性の良好なイオン濃度分布をもつ
ように光導波路を整形できることが分かる。
FIG. 4 shows the result of simulating the concentration profile of the refractive index increasing ion of the 3.5 μm optical waveguide manufactured under the above conditions. In FIG. 4, symbols (d),.
(F) shows the ion concentration distribution corresponding to each of the above patterns. From these results, it is understood that the present invention in which the applied electric field intensity is reduced in the second ion exchange step has an ion concentration distribution that is sufficiently large so that the embedding depth is 10 μm or more and has better symmetry in the depth direction. It can be seen that the optical waveguide can be shaped.

【0021】(実施例2−1)アルカリイオンとしてN
aイオンのみが含まれるアルミノボロシリケート系ガラ
ス基板上に、所定の光導波路パターンの開口を有するT
iのイオン交換制御膜を形成し、AgNO3 とNaNO
3 よりなる溶融塩(AgNO3 濃度10%)中に、25
5℃で90分間浸漬する第1のイオン交換を行い、基板
表面に屈折率増加部分を形成する。続いて、基板表面の
イオン交換制御膜をエッチングにより除去する。その
後、NaNO3 溶融塩中で電界を印加した第2のイオン
交換を、255℃、120V/mmの電界強度の下で12
0分間行い、基板表面に形成された屈折率増加部分を基
板内部に埋め込む。
(Example 2-1) N was used as an alkali ion.
T having an opening of a predetermined optical waveguide pattern on an aluminoborosilicate glass substrate containing only a ion
forming an ion exchange control membrane of i, AgNO 3 and NaNO
During consisting 3 molten salt (AgNO 3 concentration of 10%), 25
The first ion exchange in which the substrate is immersed at 5 ° C. for 90 minutes is performed to form a refractive index increasing portion on the substrate surface. Subsequently, the ion exchange control film on the substrate surface is removed by etching. Thereafter, a second ion exchange with an electric field applied in a NaNO 3 molten salt was carried out at 255 ° C. under an electric field strength of 120 V / mm.
This is performed for 0 minutes, and the portion where the refractive index is increased formed on the substrate surface is embedded in the substrate.

【0022】更に、第2のイオン交換工程と同一温度、
同一溶融塩中で、第2のイオン交換とは逆方向で、より
高い150V/mmの電界下で最長20分間までの第3の
イオン交換を行った。
Further, the same temperature as in the second ion exchange step,
In the same molten salt, a third ion exchange was performed in a direction opposite to the second ion exchange under a higher electric field of 150 V / mm for up to 20 minutes.

【0023】この条件で作製した3.5μmの光導波路
の屈折率増加イオンの濃度プロファイルをシミュレート
した結果を図5に示す。図5において、各曲線は処理時
間を示している。未処理は、第2のイオン交換終了時点
のデータであり、従来技術に相当する。この結果より、
第3のイオン交換工程で逆方向の電界強度を印加する本
発明により、埋め込み深さが10μm以上となるように
十分大きく、深さ方向に関してより対称性の良好なイオ
ン濃度分布をもつように屈折率増加部分を整形できるこ
とが分かる。
FIG. 5 shows the result of simulating the concentration profile of the refractive index increasing ion of the 3.5 μm optical waveguide manufactured under the above conditions. In FIG. 5, each curve represents the processing time. The unprocessed data is the data at the end of the second ion exchange, and corresponds to the prior art. From this result,
According to the present invention in which the electric field strength in the reverse direction is applied in the third ion exchange step, the refraction is performed so that the burying depth is sufficiently large so as to be 10 μm or more, and the ion concentration distribution is more symmetric with respect to the depth direction. It can be seen that the rate increasing portion can be shaped.

【0024】また図6に本発明方法(上記実施例2−
1)の場合の屈折率増加イオンの断面濃度プロファイル
を示す。図3の従来技術と比べれば明瞭なように、図6
(本発明方法)では、上下方向(深さ方向)で非対称の
度合いが大きく改善され、特に中央部ではほぼ真円にな
ることが分かる。
FIG. 6 shows the method of the present invention (above-mentioned Embodiment 2).
5 shows a cross-sectional concentration profile of the refractive index increasing ion in the case of 1). As is clear from comparison with the prior art of FIG.
In the (method of the present invention), the degree of asymmetry in the vertical direction (depth direction) is greatly improved, and it can be seen that the shape becomes substantially a perfect circle especially at the center.

【0025】(実施例2−2)実施例2−1と同様の手
順で屈折率増加部分を基板内部に埋め込んだ。第3のイ
オン交換工程は、電界強度と処理時間を変えて行った。
即ち、第2のイオン交換と同一温度、同一溶融塩中で、
第2のイオン交換とは逆方向の100V/mmの電界下で
40分間の第3のイオン交換を行った。この条件で作製
した3.5μmの光導波路の屈折率増加イオンの濃度プ
ロファイルをシミュレートした結果を図7に示す。
(Example 2-2) A refractive index increasing portion was embedded in the substrate by the same procedure as in Example 2-1. The third ion exchange step was performed while changing the electric field intensity and the processing time.
That is, at the same temperature and in the same molten salt as the second ion exchange,
A third ion exchange was performed for 40 minutes under an electric field of 100 V / mm in the opposite direction to the second ion exchange. FIG. 7 shows the result of simulating the concentration profile of the refractive index increasing ion of the 3.5 μm optical waveguide manufactured under these conditions.

【0026】(実施例2−3)実施例2−1と同様の手
順で屈折率増加部分を基板内部に埋め込んだ。第3のイ
オン交換工程は、電界強度と処理時間を変えて行った。
即ち、第2のイオン交換と同一温度、同一溶融塩中で、
第2のイオン交換とは逆方向の50V/mmの電界下で8
0分間の第3のイオン交換を行った。この条件で作製し
た3.5μmの光導波路の屈折率増加イオンの濃度プロ
ファイルをシミュレートした結果を図8に示す。
Example 2-3 A refractive index increasing portion was embedded in the substrate by the same procedure as in Example 2-1. The third ion exchange step was performed while changing the electric field intensity and the processing time.
That is, at the same temperature and in the same molten salt as the second ion exchange,
8 under an electric field of 50 V / mm in the opposite direction to the second ion exchange.
A third ion exchange for 0 minutes was performed. FIG. 8 shows the result of simulating the concentration profile of the refractive index increasing ions of the 3.5 μm optical waveguide manufactured under these conditions.

【0027】これらの結果からも、第3のイオン交換工
程で逆向きの電界を印加する本発明により、埋め込み深
さが10μm以上となるように十分大きく、深さ方向に
関してより対称なイオン濃度分布をもつように光導波路
を整形できることが分かる。
From these results, it can be seen that the present invention in which an electric field in the opposite direction is applied in the third ion exchange step has an ion concentration distribution which is sufficiently large so that the embedding depth is 10 μm or more and is more symmetrical in the depth direction. It can be seen that the optical waveguide can be shaped to have

【0028】(実施例3)アルカリイオンとしてNaイ
オンのみが含まれるアルミノボロシリケート系ガラス基
板上に、所定の光導波路パターンの開口を有するTiの
イオン交換制御膜を形成し、AgNO3 とNaNO3
りなる溶融塩(AgNO3 濃度5%)中に、280℃で
120分間浸漬する第1のイオン交換を行い、基板表面
に屈折率増加部分を形成する。続いて、基板表面のイオ
ン交換制御膜をエッチングにより除去する。その後、N
aNO3 溶融塩中で電界を印加した第2のイオン交換
を、280℃、150V/mmの電界強度の下で120分
間行い、基板表面に形成された屈折率増加部分を基板内
部に埋め込む。更に、第2のイオン交換と同一温度、同
一溶融塩中で、120分間の熱処理を行った。
(Example 3) An ion exchange control film of Ti having an opening of a predetermined optical waveguide pattern is formed on an aluminoborosilicate glass substrate containing only Na ions as alkali ions, and AgNO 3 and NaNO 3 First ion exchange is performed by immersion in a molten salt (AgNO 3 concentration: 5%) at 280 ° C. for 120 minutes to form a portion having an increased refractive index on the substrate surface. Subsequently, the ion exchange control film on the substrate surface is removed by etching. Then N
The second ion exchange in which an electric field is applied in a molten salt of aNO 3 is performed at 280 ° C. under an electric field intensity of 150 V / mm for 120 minutes to bury the refractive index increasing portion formed on the substrate surface in the substrate. Further, heat treatment was performed for 120 minutes in the same molten salt at the same temperature as the second ion exchange.

【0029】この条件で作製した3.5μmの光導波路
の屈折率増加イオンの濃度プロファイルをBSE(back
scattered electron )により分析した結果を図9に示
す。また図10に本発明方法(上記実施例3)の場合の
屈折率増加イオンの断面濃度プロファイルを示す。これ
らの結果から、第2のイオン交換工程後に熱処理を行う
本発明により、埋め込み深さが10μm以上となるよう
に十分大きく、深さ方向に関してより対称性の良好な屈
折率分布をもつ光導波路に整形できることが分かる。ま
た、図3の従来技術と比べれば明瞭なように、図10
(本発明方法)では、上下方向(深さ方向)で非対称の
度合いが大きく改善され、特に中央部ではほぼ真円にな
っていることが分かる。
The 3.5 μm optical waveguide fabricated under these conditions has a BSE (back
FIG. 9 shows the result of analysis by scattered electron). FIG. 10 shows the cross-sectional concentration profile of the refractive index increasing ions in the case of the method of the present invention (Example 3 above). From these results, according to the present invention in which the heat treatment is performed after the second ion exchange step, an optical waveguide having a refractive index distribution which is sufficiently large so that the embedding depth is 10 μm or more and has a better symmetry in the depth direction can be obtained. You can see that it can be shaped. As is clear from comparison with the prior art of FIG. 3, FIG.
In the (method of the present invention), the degree of asymmetry in the vertical direction (depth direction) is greatly improved, and it can be seen that the shape is almost a perfect circle especially at the center.

【0030】なお、上記の例では、熱処理工程を第2の
イオン交換に用いたのと同じ溶融塩中に浸漬しながら行
っているが、該溶融塩から取り出して別の雰囲気中での
熱処理プロセスで行ってもよい。
In the above example, the heat treatment step is performed while immersing in the same molten salt used for the second ion exchange. May be performed.

【0031】[0031]

【発明の効果】本発明は上記のように、原理的には2段
階イオン交換法を用いる埋め込み型光導波路の製造方法
を利用し、その第2のイオン交換工程、あるいは第2の
イオン交換工程後の処理を工夫したことにより、屈折率
増加部分を十分な深さに埋め込むことができ、そのため
低損失であり、しかもその屈折率増加部分を軸対称性が
良好となるように整形でき、そのため光ファイバとの整
合性を改善できる。
As described above, the present invention utilizes the method of manufacturing a buried optical waveguide using a two-step ion exchange method in principle, and the second ion exchange step or the second ion exchange step By devising the later processing, the increased refractive index portion can be embedded at a sufficient depth, so that the loss can be reduced, and the increased refractive index portion can be shaped so as to have good axial symmetry. The consistency with the optical fiber can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1−1における光導波路の屈折率増加イ
オンの濃度プロファイル。
FIG. 1 is a concentration profile of a refractive index increasing ion of an optical waveguide in Example 1-1.

【図2】本発明方法による光導波路の屈折率増加イオン
の断面濃度プロファイル。
FIG. 2 is a sectional concentration profile of a refractive index increasing ion of an optical waveguide according to the method of the present invention.

【図3】従来技術による光導波路の屈折率増加イオンの
断面濃度プロファイル。
FIG. 3 is a sectional concentration profile of a refractive index increasing ion of an optical waveguide according to a conventional technique.

【図4】実施例1−2における光導波路の屈折率増加イ
オンの濃度プロファイル。
FIG. 4 is a concentration profile of a refractive index increasing ion of an optical waveguide in Example 1-2.

【図5】実施例2−1における光導波路の屈折率増加イ
オンの濃度プロファイル。
FIG. 5 is a concentration profile of a refractive index increasing ion of an optical waveguide in Example 2-1.

【図6】本発明方法による光導波路の屈折率増加イオン
の断面濃度プロファイル。
FIG. 6 is a cross-sectional concentration profile of a refractive index increasing ion of an optical waveguide according to the method of the present invention.

【図7】実施例2−2における光導波路の屈折率増加イ
オンの濃度プロファイル。
FIG. 7 is a concentration profile of ions having an increased refractive index in an optical waveguide in Example 2-2.

【図8】実施例2−3における光導波路の屈折率増加イ
オンの濃度プロファイル。
FIG. 8 is a concentration profile of a refractive index increasing ion of an optical waveguide in Example 2-3.

【図9】実施例3における光導波路の屈折率増加イオン
の濃度プロファイル。
FIG. 9 is a concentration profile of a refractive index increasing ion of an optical waveguide in Example 3.

【図10】本発明方法による光導波路の屈折率増加イオ
ンの断面濃度プロファイル。
FIG. 10 is a cross-sectional concentration profile of a refractive index increasing ion of an optical waveguide according to the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久納 達志 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 安間 康浩 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 Fターム(参考) 2H047 KA04 PA13 PA21 QA04 TA36 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsushi Kuno 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (72) Inventor Yasuhiro Anma 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electrochemical Co., Ltd. F term (reference) 2H047 KA04 PA13 PA21 QA04 TA36

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1価のイオンを含有してイオン交換可能
なガラス状物質からなる基板上に、所定の光導波路パタ
ーンを有するイオン交換制御膜を形成し、前記基板の屈
折率を増加させ得る第1の1価イオンを含有する第1の
溶融塩に浸漬して、前記イオン交換制御膜を通して熱イ
オン交換を行い屈折率増加部分を形成する第1のイオン
交換工程と、 前記基板から前記イオン交換制御膜を除去するエッチン
グ工程と、 エッチング処理した基板を、前記第1のイオン交換工程
によって屈折率が増加した部分の屈折率を下げ得る第2
の1価イオンを含有する第2の溶融塩に浸漬しながら、
前記イオン交換制御膜の形成されていた側を正電位と
し、反対側を負電位として基板にほぼ垂直に電界を印加
して前記第1の1価イオンによる屈折率増加部分を前記
基板の深さ方向に埋め込む第2のイオン交換工程とを、
この順で行う埋め込み型光導波路の製造方法において、 前記第2のイオン交換工程における印加電界強度を、時
間と共に低下させて、埋め込まれる第1の1価イオンに
よる屈折率増加部分の断面イオン濃度分布形状を、軸対
称形に近づくように整形しつつ埋め込むことを特徴とす
る埋め込み型光導波路の製造方法。
1. An ion-exchange control film having a predetermined optical waveguide pattern formed on a substrate made of a glassy substance capable of ion exchange containing monovalent ions to increase the refractive index of the substrate. A first ion exchange step of immersing in a first molten salt containing a first monovalent ion and performing thermal ion exchange through the ion exchange control membrane to form a refractive index increasing portion; An etching step of removing the exchange control film; and a second step of reducing the refractive index of the etched substrate by increasing the refractive index in the portion where the refractive index has been increased by the first ion exchange step.
While immersing in a second molten salt containing monovalent ions of
The side on which the ion exchange control film was formed was set to a positive potential, and the opposite side was set to a negative potential, and an electric field was applied almost perpendicularly to the substrate to increase the refractive index increased by the first monovalent ions to the depth of the substrate. A second ion exchange step of embedding in the direction,
In the method of manufacturing a buried optical waveguide performed in this order, the electric field intensity applied in the second ion exchange step is reduced with time, and the cross-sectional ion concentration distribution of a portion where the refractive index is increased due to the buried first monovalent ions. A method of manufacturing a buried optical waveguide, wherein a shape is buried while being shaped so as to approach an axially symmetric shape.
【請求項2】 1価のイオンを含有してイオン交換可能
なガラス状物質からなる基板上に、所定の光導波路パタ
ーンを有するイオン交換制御膜を形成し、前記基板の屈
折率を増加させ得る第1の1価イオンを含有する第1の
溶融塩に浸漬して、前記イオン交換制御膜を通して熱イ
オン交換を行い屈折率増加部分を形成する第1のイオン
交換工程と、 前記基板から前記イオン交換制御膜を除去するエッチン
グ工程と、 エッチング処理した基板を、前記第1のイオン交換工程
によって屈折率が増加した部分の屈折率を下げ得る第2
の1価イオンを含有する第2の溶融塩に浸漬しながら、
前記イオン交換制御膜の形成されていた側を正電位と
し、反対側を負電位として基板にほぼ垂直に電界を印加
して前記第1の1価イオンによる屈折率増加部分を前記
基板の深さ方向に埋め込む第2のイオン交換工程とを、
この順で行う埋め込み型光導波路の製造方法において、 前記第2のイオン交換工程後に、前記基板を第2の溶融
塩に浸漬しつつ、第2のイオン交換工程とは逆向きの電
界を印加する第3のイオン交換工程を具備し、第2のイ
オン交換工程によって埋め込まれた第1の1価イオンに
よる屈折率増加部分の断面イオン濃度分布形状を、前記
第3のイオン交換工程によって軸対称形に近づくように
整形することを特徴とする埋め込み型光導波路の製造方
法。
2. An ion exchange control film having a predetermined optical waveguide pattern is formed on a substrate made of a glassy substance which can exchange ions and contains monovalent ions, thereby increasing the refractive index of the substrate. A first ion exchange step of immersing in a first molten salt containing a first monovalent ion and performing thermal ion exchange through the ion exchange control membrane to form a refractive index increasing portion; An etching step of removing the exchange control film; and a second step of reducing the refractive index of the etched substrate by increasing the refractive index in the portion where the refractive index has been increased by the first ion exchange step.
While immersing in a second molten salt containing monovalent ions of
The side on which the ion exchange control film was formed was set to a positive potential, and the opposite side was set to a negative potential, and an electric field was applied almost perpendicularly to the substrate to increase the refractive index increased by the first monovalent ions to the depth of the substrate. A second ion exchange step of embedding in the direction,
In the method for manufacturing a buried optical waveguide performed in this order, after the second ion exchange step, an electric field in a direction opposite to that of the second ion exchange step is applied while the substrate is immersed in a second molten salt. A third ion exchange step, wherein a sectional ion concentration distribution shape of a refractive index increasing portion formed by the first monovalent ions embedded in the second ion exchange step is made axially symmetric by the third ion exchange step. A method for manufacturing a buried optical waveguide, wherein the optical waveguide is shaped so as to approach.
【請求項3】 1価のイオンを含有してイオン交換可能
なガラス状物質からなる基板上に、所定の光導波路パタ
ーンを有するイオン交換制御膜を形成し、前記基板の屈
折率を増加させ得る第1の1価イオンを含有する第1の
溶融塩に浸漬して、前記イオン交換制御膜を通して熱イ
オン交換を行い屈折率増加部分を形成する第1のイオン
交換工程と、 前記基板から前記イオン交換制御膜を除去するエッチン
グ工程と、 エッチング処理した基板を、前記第1のイオン交換工程
によって屈折率が増加した部分の屈折率を下げ得る第2
の1価イオンを含有する第2の溶融塩に浸漬しながら、
前記イオン交換制御膜の形成されていた側を正電位と
し、反対側を負電位として基板にほぼ垂直に電界を印加
して前記第1の1価イオンによる屈折率増加部分を前記
基板の深さ方向に埋め込む第2のイオン交換工程とを、
この順で行う埋め込み型光導波路の製造方法において、 前記第2のイオン交換工程後に、前記基板を無電界状態
で加熱保持する熱処理工程を具備し、第2のイオン交換
工程によって埋め込まれた第1の1価イオンによる屈折
率増加部分の断面イオン濃度分布形状を、前記熱処理工
程によってほぼ軸対称形に近づくように整形することを
特徴とする埋め込み型光導波路の製造方法。
3. An ion exchange control film having a predetermined optical waveguide pattern is formed on a substrate made of a glass material containing ion exchangeable ions containing monovalent ions to increase the refractive index of the substrate. A first ion exchange step of immersing in a first molten salt containing a first monovalent ion and performing thermal ion exchange through the ion exchange control membrane to form a refractive index increasing portion; An etching step of removing the exchange control film; and a second step of reducing the refractive index of the etched substrate by increasing the refractive index in the portion where the refractive index has been increased by the first ion exchange step.
While immersing in a second molten salt containing monovalent ions of
The side on which the ion exchange control film was formed was set to a positive potential, and the opposite side was set to a negative potential, and an electric field was applied almost perpendicularly to the substrate to increase the refractive index increased by the first monovalent ions to the depth of the substrate. A second ion exchange step of embedding in the direction,
In the method for manufacturing a buried optical waveguide performed in this order, a heat treatment step of heating and holding the substrate in an electric field-free state after the second ion exchange step is provided, and the first buried optical waveguide embedded in the second ion exchange step is provided. Wherein the shape of the cross-sectional ion concentration distribution at the portion where the refractive index is increased due to the monovalent ions is shaped so as to approximate an axially symmetric shape by the heat treatment step.
【請求項4】 熱処理工程を、基板を無電界状態で第2
の溶融塩に浸漬することによって行う請求項3記載の埋
め込み型光導波路の製造方法。
4. The method according to claim 1, further comprising the step of:
4. The method of manufacturing an embedded optical waveguide according to claim 3, wherein the method is performed by immersing the embedded optical waveguide in a molten salt.
【請求項5】 屈折率増加部分中で屈折率を増加させる
イオンの濃度が最も大きい点の基板表面からの深さが1
0μm以上となるように屈折率増加部分を埋め込む請求
項1乃至4のいずれかに記載の埋め込み型光導波路の製
造方法。
5. The depth of the point where the concentration of the ion which increases the refractive index in the refractive index increasing portion is highest from the substrate surface is 1 point.
The method for manufacturing a buried optical waveguide according to any one of claims 1 to 4, wherein the portion having an increased refractive index is buried so as to have a thickness of 0 µm or more.
【請求項6】 基板の屈折率を増加させ得る第1の1価
イオンとして、Agイオン、Tlイオン、Csイオン、
Rbイオン、Kイオン、Liイオンのうちの少なくとも
1種のイオンを用い、第1の1価イオンにより形成され
た屈折率増加部分の屈折率を下げ得る第2の1価イオン
として、Naイオン又はKイオンの少なくとも1種のイ
オンを用いる請求項1乃至5のいずれかに記載の埋め込
み型光導波路の製造方法。
6. The first monovalent ions capable of increasing the refractive index of the substrate include Ag ions, Tl ions, Cs ions,
As a second monovalent ion that can lower the refractive index of the refractive index increasing portion formed by the first monovalent ion using at least one ion of Rb ion, K ion, and Li ion, Na ion or 6. The method for manufacturing a buried optical waveguide according to claim 1, wherein at least one kind of K ions is used.
【請求項7】 ガラス状物質の基板として、アルミノボ
ロシリケート系ガラス、アルミノシリケート系ガラス、
ボロシリケート系ガラスのいずれかを用いる請求項1乃
至6のいずれかに記載の埋め込み型光導波路の製造方
法。
7. An aluminoborosilicate-based glass, an aluminosilicate-based glass,
The method for manufacturing a buried optical waveguide according to any one of claims 1 to 6, wherein one of borosilicate glass is used.
JP19819499A 1999-07-12 1999-07-12 Method for manufacturing buried optical waveguide Expired - Fee Related JP4156136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19819499A JP4156136B2 (en) 1999-07-12 1999-07-12 Method for manufacturing buried optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19819499A JP4156136B2 (en) 1999-07-12 1999-07-12 Method for manufacturing buried optical waveguide

Publications (2)

Publication Number Publication Date
JP2001021745A true JP2001021745A (en) 2001-01-26
JP4156136B2 JP4156136B2 (en) 2008-09-24

Family

ID=16387045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19819499A Expired - Fee Related JP4156136B2 (en) 1999-07-12 1999-07-12 Method for manufacturing buried optical waveguide

Country Status (1)

Country Link
JP (1) JP4156136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007385A1 (en) * 2002-07-16 2004-01-22 Asahi Glass Company, Limited Glass, optical waveguide manufacturing method, and optical waveguide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197732B2 (en) 2016-08-26 2019-02-05 Corning Optical Communications LLC Methods for forming ion-exchanged waveguides in glass substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007385A1 (en) * 2002-07-16 2004-01-22 Asahi Glass Company, Limited Glass, optical waveguide manufacturing method, and optical waveguide

Also Published As

Publication number Publication date
JP4156136B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
FI86226B (en) FOERFARANDE FOER FRAMSTAELLNING AV LJUSVAOGSLEDARE MEDELST JONBYTESTEKNIK PAO ETT GLASSUBSTRAT.
US11307352B2 (en) Optical waveguide article with laminate structure and method for forming the same
CN104656187B (en) A kind of glass-based ion exchange optical waveguide chip of integrated magneto-optical function
US5160360A (en) Process for producing low-loss embedded waveguide
JP2001021745A (en) Manufacture of embedded optical waveguide
CN106291816B (en) A method of improving glass based optical waveguide chip uniformity
JP3834590B2 (en) Method for forming optical waveguide
JP2001133649A (en) Method for manufacturing optical waveguide grating
US10197732B2 (en) Methods for forming ion-exchanged waveguides in glass substrates
JP2003172840A (en) Optical waveguide element and method of manufacturing the same
JPH0244041B2 (en)
JP2001221926A (en) Production of optical waveguide element
JPH05307125A (en) Production of optical waveguide
JPH02262110A (en) Production of flush type optical waveguide
CN113391397B (en) Method for improving core symmetry of glass-based optical waveguide by adopting external barrier layer
CN111208608A (en) Manufacturing method of ion exchange glass-based buried waveguide mode spot converter
CN117706680A (en) Manufacturing method of large-core-diameter optical waveguide
CN111208607A (en) Method for manufacturing glass-based spot-size converter by grooved hot plate temperature gradient ion diffusion
JPS6325496B2 (en)
JPS60149008A (en) Production of optical waveguide
JPS58118608A (en) Production of optical waveguide
JPH01261243A (en) Production of optical waveguide
JPS6060601A (en) Manufacture of plane lens
Honkanen et al. Application Of Solid-State Silver Exchange In Integrated Optics
JPH02168207A (en) Forming method for curved waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees