JP2001021565A - Fluoroimmunoassay and device therefor - Google Patents

Fluoroimmunoassay and device therefor

Info

Publication number
JP2001021565A
JP2001021565A JP11193536A JP19353699A JP2001021565A JP 2001021565 A JP2001021565 A JP 2001021565A JP 11193536 A JP11193536 A JP 11193536A JP 19353699 A JP19353699 A JP 19353699A JP 2001021565 A JP2001021565 A JP 2001021565A
Authority
JP
Japan
Prior art keywords
antibody
light
antigen
prism
labeled antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11193536A
Other languages
Japanese (ja)
Other versions
JP3249954B2 (en
Inventor
Akito Ishida
昭人 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP19353699A priority Critical patent/JP3249954B2/en
Publication of JP2001021565A publication Critical patent/JP2001021565A/en
Application granted granted Critical
Publication of JP3249954B2 publication Critical patent/JP3249954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Abstract

PROBLEM TO BE SOLVED: To measure the antigen concentration with high sensitivity by selectively exciting only a fluorescent labeled antibody by use of a surface plasmon resonance. SOLUTION: A triangular glass prism 10 having a metallic thin film 11 with an antibody fixed thereon is placed on a rotating table 1 and a sample solution containing an antigen is injected into a flow cell 13 and supplied to the metallic thin film 11 to cause the antigen to bond to the antibody. Further, a fluorescent labeling reagent containing the fluorescent labeled antibody is supplied to cause the fluorescent labeled antibody to bond to the antibody bonded to the antigen. Next, light that is normally absorbed by the fluorescent labeled antibody and light whose wavelength is an integer multiple of the former light are made to impinge on the prism side of the triangular glass prism 10 at the same time to cause two-photon excitation or multi-photon excitation of the fluorescent labeled antibody; fluorescence generated when the light impinges on the prism side of the triangular glass prism with an impinging angle at which reflectivity is lowest is subjected to spectrum analysis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プラズモン共鳴による
二光子又はそれ以上の多光子励起を利用して抗原濃度を
定量する蛍光免疫分析方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence immunoassay method and apparatus for quantifying an antigen concentration using two-photon or higher multiphoton excitation by plasmon resonance.

【0002】[0002]

【従来の技術】免疫分析では、ある抗原に対して特異的
に結合する抗体を用い、試料内に存在しているごく微量
の抗原を高感度で分析している。従来から種々の免疫分
析法が知られているが、なかでも分析時間が短く高感度
で且つ廃液処理の困難な放射性物質を使用しない蛍光免
疫分析法が注目されている。蛍光免疫分析法では、蛍光
試薬を標識した抗体を用い、通常の光照射で溶液試料中
の抗原と結合した抗体が発する蛍光強度を測定し、測定
値から抗原濃度を定量している。
2. Description of the Related Art In an immunoassay, a very small amount of an antigen present in a sample is analyzed with high sensitivity using an antibody that specifically binds to a certain antigen. Conventionally, various immunoassay methods have been known. Among them, a fluorescent immunoassay method that has a short analysis time, high sensitivity, and does not use a radioactive substance that is difficult to treat a waste liquid has attracted attention. In the fluorescence immunoassay, an antibody labeled with a fluorescent reagent is used to measure the intensity of fluorescence emitted by an antibody bound to an antigen in a solution sample by ordinary light irradiation, and the antigen concentration is quantified from the measured value.

【0003】また、簡便性や安定性に有利な表面プラズ
モン共鳴を利用する免疫分析法も採用されている。表面
プラズモン共鳴は、金属薄膜を蒸着した三角形ガラスプ
リズムに光を入射させると、共鳴角θR で反射光強度が
著しく低下する現象である。共鳴角θR は、金属薄膜の
表面に予め結合・固定化した抗体が溶液試料中の抗原に
結合することにより変化する。そこで、反射光強度が極
小になったときの共鳴角θR を測定することにより、抗
体と抗原との結合割合、ひいては抗原を分析する。蛍光
免疫分析法及び表面プラズモン共鳴を利用した免疫分析
法は、このような長所を活用して生化学分析,臨床分析
等の分野に応用されている。
[0003] An immunoassay utilizing surface plasmon resonance, which is advantageous for simplicity and stability, has also been adopted. Surface plasmon resonance, when light is incident on the triangular glass prism with a deposit of metal thin film, a phenomenon that the reflected light intensity is remarkably reduced in the resonance angle theta R. The resonance angle θ R changes when an antibody previously bound and immobilized on the surface of the metal thin film binds to an antigen in a solution sample. Therefore, by measuring the resonance angle θ R when the intensity of the reflected light is minimized, the binding ratio between the antibody and the antigen, and thus the antigen, is analyzed. Fluorescent immunoassays and immunoassays utilizing surface plasmon resonance have been applied to fields such as biochemical analysis and clinical analysis, taking advantage of these advantages.

【0004】[0004]

【発明が解決しようとする課題】従来の蛍光免疫分析で
は、抗原と結合した蛍光標識抗体を励起する励起光によ
り、系内に存在する血清蛋白,酵素等の妨害物質が同時
に励起される。励起された妨害物質は、強い背景光を発
する蛍光発生源となり、測定感度を低下させる。妨害物
質の励起に起因する誤差要因は、蛍光標識試薬と妨害物
質の偏光特性の差を利用する方法,妨害物質に比較して
蛍光寿命が長い希土類系標識系抗体を用いる時間分解蛍
光分析法である程度解消される。しかし、感度の向上は
すでに限界に達しており、新規な蛍光標識試薬の開発に
よる感度の向上が困難な現状である。
In the conventional fluorescent immunoassay, interfering substances such as serum proteins and enzymes existing in the system are simultaneously excited by excitation light that excites a fluorescently labeled antibody bound to an antigen. The excited interfering substance becomes a fluorescent light source that emits strong background light, and reduces measurement sensitivity. The sources of error caused by the excitation of interfering substances are the method that utilizes the difference in the polarization characteristics between the fluorescent labeling reagent and the interfering substance, and the time-resolved fluorescence analysis method that uses a rare-earth-based labeled antibody that has a longer fluorescence lifetime than the interfering substance. Eliminate to some extent. However, the improvement of sensitivity has already reached its limit, and it is difficult to improve the sensitivity by developing a new fluorescent labeling reagent.

【0005】そこで、既存の蛍光標識試薬を用いながら
更なる高感度分析を可能にする分光技術として、二光子
励起が考えられている("p-Bis(o-methylstyryl)benzen
e asa Power-Squared Sensor for Two-Photon Absorpti
on Measurements between 537 and 694nm", S.M.Kenned
y and F.E. Lytle Anal. Chem., 1986, 58 2643-2647
,"Two-Photon induced fluorescence of biological
markers based on optic al fibers" A.Lago, A.T.Obei
dat, A.E.Kaplan, J.B.Khurgin, and P.L.Shkolnikov,
Opt.Lett.,1995, 20, 2054-2056等参照)。通常の一光
子励起では、蛍光標識試薬の電子の遷移エネルギに対応
する波長の光子を蛍光標識試薬が吸収することにより励
起状態を生起させる。他方、二光子励起では、蛍光標識
試薬が通常吸収する光の倍の波長をもつ二つの低エネル
ギ光子を同時に吸収させることにより一光子励起と同じ
励起状態が生成する。したがって、励起光の電場が強
く、局在化している個所が選択的に励起されるため、妨
害物質に起因する背景光の影響を大幅に低下させること
が可能になる。しかし、二光子励起の吸収断面積は、一
光子励起に比較して数十桁も小さい。その結果、蛍光標
識試薬を直接光照射して励起させる上では、極めて高価
な超短パルス光源の使用を余儀なくされる。そこで、二
光子励起の効率を格段に向上させ、蛍光免疫分析への応
用を可能にする手法が求められている。
Therefore, two-photon excitation has been considered as a spectroscopic technique that enables even higher sensitivity analysis using an existing fluorescent labeling reagent ("p-Bis (o-methylstyryl) benzen").
e asa Power-Squared Sensor for Two-Photon Absorpti
on Measurements between 537 and 694nm ", SMKenned
y and FE Lytle Anal.Chem., 1986, 58 2643-2647
, "Two-Photon induced fluorescence of biological
markers based on optic al fibers "A. Lago, ATObei
dat, AEKaplan, JBKhurgin, and PLShkolnikov,
Opt. Lett., 1995, 20, 2054-2056, etc.). In ordinary one-photon excitation, an excited state is generated by absorption of a photon having a wavelength corresponding to the electron transition energy of the fluorescent labeling reagent by the fluorescent labeling reagent. On the other hand, in two-photon excitation, the same excited state as one-photon excitation is generated by simultaneously absorbing two low-energy photons having twice the wavelength of the light normally absorbed by the fluorescent labeling reagent. Therefore, the electric field of the excitation light is strong, and localized portions are selectively excited, so that the influence of the background light caused by the interfering substance can be significantly reduced. However, the absorption cross section of two-photon excitation is several tens of orders of magnitude smaller than that of one-photon excitation. As a result, an extremely expensive ultrashort pulse light source must be used to directly irradiate the fluorescent labeling reagent with light. Therefore, there is a need for a method that significantly improves the efficiency of two-photon excitation and enables application to fluorescence immunoassay.

【0006】[0006]

【課題を解決するための手段】本発明は、このような要
求に応えるべく開発されたものであり、表面プラズモン
共鳴の電場増強効果及び電場局在化効果を利用して二光
子励起の確立を高くすることにより、励起効率を飛躍的
に向上させ、妨害物質に起因する背景光の影響を抑制
し、抗原濃度を高感度で定量することを目的とする。
SUMMARY OF THE INVENTION The present invention has been developed to meet such a demand, and establishes two-photon excitation by utilizing the electric field enhancement effect and the electric field localization effect of surface plasmon resonance. An object of the present invention is to dramatically increase the excitation efficiency, suppress the influence of background light caused by interfering substances, and quantify the antigen concentration with high sensitivity by increasing it.

【0007】本発明の蛍光免疫分析方法は、その目的を
達成するため、抗体が固定された金属薄膜をもつ三角形
ガラスプリズムを回転テーブルに載置し、抗原を含む試
料溶液を三角形ガラスプリズムの金属薄膜側に供給して
抗原を抗体に結合させ、更に蛍光標識抗体を含む蛍光標
識試薬を供給して抗原に結合している抗体に蛍光標識抗
体を結合させた後、蛍光標識抗体が通常吸収する光の整
数倍の波長をもつ光を三角形ガラスプリズムのプリズム
側から同時入射させて蛍光標識抗体を二光子励起又は多
光子励起させ、反射率が最も小さくなる入射角で三角形
ガラスプリズムのプリズム側に入射したときに発生する
蛍光をスペクトル分析することを特徴とする。
In order to achieve the object of the fluorescent immunoassay method of the present invention, a triangular glass prism having a metal thin film on which an antibody is immobilized is placed on a rotary table, and a sample solution containing an antigen is placed on a metal plate of the triangular glass prism. After supplying to the thin film side to bind the antigen to the antibody, and further supplying a fluorescent labeling reagent containing a fluorescently labeled antibody to bind the fluorescently labeled antibody to the antibody bound to the antigen, the fluorescently labeled antibody is normally absorbed Light having a wavelength that is an integral multiple of the light is simultaneously incident from the prism side of the triangular glass prism to excite the fluorescent-labeled antibody by two-photon excitation or multi-photon excitation. It is characterized in that the fluorescence generated upon incidence is spectrally analyzed.

【0008】この方法で使用する装置は、抗体が固定さ
れた金属薄膜を一面にもつ三角形ガラスプリズムと、該
三角形ガラスプリズムが載置される回転テーブルと、抗
原を含む試料溶液及び該抗原に対する蛍光標識抗体を含
む蛍光標識試薬を前記金属薄膜側に供給するフローセル
と、蛍光標識抗体が通常吸収する光の整数倍の波長をも
つ光を三角形ガラスプリズムのプリズム側から同時入射
させる励起光源と、前記抗体に結合した抗原に更に結合
した蛍光標識抗体が二光子励起又は多光子励起されたと
きに発する蛍光を分光分析する光検出器とを備えてい
る。
The apparatus used in this method includes a triangular glass prism having a metal thin film on which an antibody is immobilized, a rotating table on which the triangular glass prism is mounted, a sample solution containing an antigen and fluorescence for the antigen. A flow cell that supplies a fluorescent labeling reagent containing a labeled antibody to the metal thin film side, an excitation light source that simultaneously emits light having a wavelength that is an integral multiple of the light normally absorbed by the fluorescently labeled antibody from the prism side of the triangular glass prism, A photodetector for spectrally analyzing the fluorescence emitted when the fluorescent-labeled antibody further bound to the antigen bound to the antibody is excited by two-photon or multiphoton excitation.

【0009】[0009]

【作用】表面プラズモンは、Au,Ag,Cu,Pt,
Ni,Al等の金属薄膜を蒸着した三角形ガラスプリズ
ムに、プリズム側から所定の共鳴角θR で光を入射する
とき金属薄膜表面に形成される強い局所電場である。共
鳴角θR 付近では、入射光のほとんどが表面プラズモン
に変換される。表面プラズモンの電場が入射光とほぼ同
様な性質をもつため、電場中に置かれた蛍光標識試薬
は、直接光の吸収で励起する従来法と同様に励起され、
蛍光を発する。表面プラズモンによる励起は、電場増強
効果を呈することが最大の特徴である。すなわち、表面
プラズモンの電場強度が入射光の電場強度よりも増強さ
れ、特に近赤外領域では数百倍に達する。この電場増強
効果により、光を表面プラズモンに一旦変換すると、同
じ光源を用いた直接光励起に比較して極めて高い電場強
度が得られ、従来の直接光励起では困難であった二光子
励起が可能になる。
[Function] Surface plasmons are Au, Ag, Cu, Pt,
Ni, a triangular glass prism with a deposit of thin metal film of Al or the like, a strong local field, which is formed on the metal thin film surface when light is incident from the prism side at a predetermined resonance angle theta R. Near the resonance angle θ R , most of the incident light is converted to surface plasmons. Since the electric field of the surface plasmon has almost the same properties as the incident light, the fluorescent labeling reagent placed in the electric field is excited in the same manner as the conventional method of exciting by direct light absorption,
It fluoresces. The most distinctive feature of excitation by surface plasmons is that they exhibit an electric field enhancement effect. That is, the electric field intensity of the surface plasmon is enhanced more than the electric field intensity of the incident light, and reaches several hundred times especially in the near infrared region. Due to this electric field enhancement effect, once light is converted to surface plasmons, an extremely high electric field intensity is obtained compared to direct light excitation using the same light source, and two-photon excitation that was difficult with conventional direct light excitation is possible. .

【0010】しかも、表面プラズモンの電場は、金属表
面に強く局在しており、金属表面からの距離に応じて指
数関数的に減衰する。この強度分布のため、金属表面以
外に存在する妨害物質が励起されず、誤差要因となる背
景光が排除される。したがって、表面プラズモン共鳴を
蛍光免疫分析に応用すると、金属表面に吸着固定されて
いる蛍光標識抗体のみが選択的に且つ高効率で励起さ
れ、妨害物質の影響が最少限に抑制される。更に、表面
プラズモンの電場がp−偏光としての特性をもつことか
ら、蛍光の偏光特性の差を利用して背景光を低減するこ
とも可能である。このように、表面プラズモンは、蛍光
免疫分析用の励起源として理想的な長所をもつ。しか
も、電場増強効果及び電場局在化効果を呈する表面プラ
ズモン共鳴と二光子励起又は多光子励起を組み合わせる
とき、一層大きな効果が得られる。すなわち、二光子励
起の吸収断面積は10-48 〜10-50 と極端に小さいた
め、超短パルスレーザ等による極めて高強度の励起光を
照射しなければ通常励起できない。他方、たとえば近赤
外光領域における表面プラズモン共鳴により誘導される
電場の強度は入射光の数百倍に達する。このような電場
強度が吸収断面積に重畳されると二桁以上も大きな遷移
確率での励起が可能になり、妨害物質に起因する背景光
の影響が排除される二光子又は多光子励起の長所が発揮
される。抗体の励起には二光子励起が最も好ましいが、
三光子励起以上の多光子励起によっても同様に背景光を
低減し高感度で蛍光を検出することが可能である。三光
子以上の励起においては、二光子励起よりも更に長波長
の光を用いて励起する。通常の直接光照射では、二光子
励起に比較して吸収断面積が更に小さくなるため励起が
極めて困難である。ここに、光源の波長が長波長化する
ほど電場強度が大きくなる表面プラズモン共鳴を加える
と、二光子励起よりも更に大きな遷移確率の増大効果が
得られる。
Moreover, the electric field of the surface plasmon is strongly localized on the metal surface, and decays exponentially according to the distance from the metal surface. Owing to this intensity distribution, interfering substances existing other than the metal surface are not excited, and background light which is an error factor is excluded. Therefore, when surface plasmon resonance is applied to fluorescence immunoassay, only the fluorescently labeled antibody adsorbed and fixed on the metal surface is selectively and efficiently excited, and the influence of interfering substances is minimized. Further, since the electric field of the surface plasmon has a characteristic of p-polarized light, it is possible to reduce the background light by utilizing the difference in the polarization characteristic of the fluorescence. Thus, surface plasmons have ideal advantages as excitation sources for fluorescent immunoassays. Moreover, when surface plasmon resonance exhibiting an electric field enhancement effect and an electric field localization effect is combined with two-photon excitation or multiphoton excitation, a greater effect can be obtained. That is, since the absorption cross section of two-photon excitation is extremely small, 10 −48 to 10 −50 , excitation cannot be normally performed without irradiating extremely high-intensity excitation light with an ultrashort pulse laser or the like. On the other hand, for example, the intensity of an electric field induced by surface plasmon resonance in the near-infrared light region reaches several hundred times that of incident light. When such electric field intensity is superimposed on the absorption cross section, excitation with a transition probability of two orders of magnitude or more becomes possible, and the advantage of two-photon or multi-photon excitation in which the influence of background light caused by interfering substances is eliminated. Is exhibited. Two-photon excitation is most preferred for exciting the antibody,
Similarly, the background light can be reduced and the fluorescence can be detected with high sensitivity by multiphoton excitation equal to or more than three-photon excitation. In the excitation of three or more photons, excitation is performed using light having a longer wavelength than that of two-photon excitation. In ordinary direct light irradiation, excitation is extremely difficult because the absorption cross-section becomes smaller as compared with two-photon excitation. Here, when surface plasmon resonance in which the electric field intensity increases as the wavelength of the light source becomes longer is added, an effect of increasing the transition probability larger than that of two-photon excitation can be obtained.

【0011】[0011]

【実施の形態】本発明に従った蛍光免疫分析装置は、た
とえば図1に示すように三角形ガラスプリズム10を回
転テーブル1に載置している。三角形ガラスプリズム1
0の一面には抗体を固定化した金属薄膜11が設けられ
ており、試料溶液が金属薄膜11に接触しながら流れる
ようにフローパイプ12及びフローセル13で流路を構
成する。フローパイプ12に替えて固定セルを使用する
ことも勿論可能である。金属薄膜11は、三角形ガラス
プリズム10の一面に直接形成し、或いは金属薄膜11
を形成したガラス基板17(図3)を三角形ガラスプリ
ズム10に貼り合せることにより設けられる。金属薄膜
11が設けられる三角形ガラスプリズム10又はガラス
基板17としては、近紫外線又は近赤外線の透過率が高
い高屈折率である限り材質に制約を受けるものではな
く、光学用ガラスBK−7,LaSF−N30,SF−
10(ドイツSchott社製)等が使用される。金属
薄膜11としては、Au,Ag,Cu,Pt,Ni,A
l等が使用可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a fluorescence immunoassay apparatus according to the present invention, for example, a triangular glass prism 10 is mounted on a rotary table 1 as shown in FIG. Triangular glass prism 1
A metal thin film 11 on which an antibody is immobilized is provided on one surface of the reference numeral 0, and a flow path is formed by the flow pipe 12 and the flow cell 13 so that the sample solution flows while contacting the metal thin film 11. Of course, a fixed cell can be used instead of the flow pipe 12. The metal thin film 11 is formed directly on one surface of the triangular glass prism 10 or
Is formed by bonding a glass substrate 17 (FIG. 3) on which is formed a triangular glass prism 10. The material of the triangular glass prism 10 or the glass substrate 17 on which the metal thin film 11 is provided is not limited as long as it has a high refractive index having a high transmittance of near ultraviolet rays or near infrared rays, and optical glass BK-7, LaSF -N30, SF-
10 (manufactured by Schott, Germany) or the like is used. Au, Ag, Cu, Pt, Ni, A
1 and the like can be used.

【0012】フローパイプ12及びフローセル13に
は、試料溶液と反応せず透明度の高いアクリル樹脂が好
適に使用される。フローパイプ12は、図2に示すよう
にフローセル13に挿し込まれ、同質の三角形ガラスプ
リズム10とガラス板14との間に挟持され、樹脂接着
剤を用いて全体が圧着Pされる。フローパイプ12は一
部が開放されており、試料溶液が金属薄膜11に接する
接液部15となる。励起光源2としては、図1では二光
子発生源として半導体レーザ誘起ピコ秒Nd−YAGレ
ーザ(波長532nm,パルス幅800ピコ秒,エネル
ギ1μJ)を図示しているが、これに拘束されることな
く、対象となる蛍光標識試薬に応じた波長をもつレーザ
が適宜選択される。
For the flow pipe 12 and the flow cell 13, an acrylic resin which does not react with the sample solution and has high transparency is preferably used. The flow pipe 12 is inserted into a flow cell 13 as shown in FIG. 2, is sandwiched between a triangular glass prism 10 of the same quality, and a glass plate 14, and the whole is pressure-bonded P using a resin adhesive. A part of the flow pipe 12 is opened, and becomes a liquid contact part 15 where the sample solution contacts the metal thin film 11. As the excitation light source 2, a semiconductor laser-induced picosecond Nd-YAG laser (wavelength: 532 nm, pulse width: 800 picoseconds, energy: 1 μJ) is shown in FIG. 1 as a two-photon generation source, but is not limited to this. A laser having a wavelength corresponding to the target fluorescent labeling reagent is appropriately selected.

【0013】励起光源2から出射されたレーザ光は、ビ
ームスプリッタ3aで透過光及び反射光に分割される。
透過光は、更にビームスプリッタ3bで透過光及び反射
光に分割され、透過光が三角形ガラスプリズム10のプ
リズム面に導かれる。プリズム側から三角形ガラスプリ
ズム10に入射した透過光は、屈折して金属薄膜11に
投影され、金属薄膜11で反射した後、三角形ガラスプ
リズム10の他のプリズム面から出射される。三角形ガ
ラスプリズム10に対する入射角は、回転テーブル1 の
回転角度を調整することにより設定・変更される。
The laser light emitted from the excitation light source 2 is split by a beam splitter 3a into transmitted light and reflected light.
The transmitted light is further divided into transmitted light and reflected light by the beam splitter 3b, and the transmitted light is guided to the prism surface of the triangular glass prism 10. The transmitted light that has entered the triangular glass prism 10 from the prism side is refracted and projected onto the metal thin film 11, reflected by the metal thin film 11, and then emitted from another prism surface of the triangular glass prism 10. The angle of incidence on the triangular glass prism 10 is set and changed by adjusting the angle of rotation of the turntable 1.

【0014】三角形ガラスプリズム10から出射された
光を光検出器4aで検出し、反射光強度Iを測定する。
また、ビームスプリッタ3bで分割された反射光を光検
出器4bで検出し、入射光強度I0 を測定する。反射光
強度I及び入射光強度I0 は、それぞれ光検出器4a及
び光検出器4bからI/I0 回路5に出力される。I/
0 回路5で反射率I/I0 が求められ、コンピュータ
6に出力され記録される。三角形ガラスプリズム10を
載せた回転テーブル1を回転させながら反射率I/I0
の測定するとき、反射率I/I0 が最小になる入射角、
すなわち共鳴角θR が求められる。
The light emitted from the triangular glass prism 10 is detected by the photodetector 4a, and the reflected light intensity I is measured.
Further, the reflected light split by the beam splitter 3b is detected by the photodetector 4b, measures the incident light intensity I 0. The reflected light intensity I and the incident light intensity I 0 are output to the I / I 0 circuit 5 from the light detector 4a and the light detector 4b, respectively. I /
The reflectance I / I 0 is obtained by the I 0 circuit 5 and output to the computer 6 and recorded. While rotating the rotary table 1 on which the triangular glass prism 10 is mounted, the reflectance I / I 0
When measuring the incident angle at which the reflectance I / I 0 is minimized,
That is, the resonance angle θ R is obtained.

【0015】ビームスプリッタ3aからの反射光は、光
検出器4cに入力され、光検出器4dのゲート開閉に利
用される。光検出器4a〜4cには、たとえばPINフ
ォトダイオードが使用される。光検出器4dには、たと
えばイメージを増強する機能をもつゲート付きCCD分
光検出器が使用される。金属薄膜11に固定されている
抗体は、フローパイプ12から注入された試料溶液中の
抗原と結合する。抗体に結合した抗原に更に蛍光標識抗
体を結合させる。蛍光標識抗体は、三角形ガラスプリズ
ム10に入射した光で励起され、蛍光FLを発する。
The reflected light from the beam splitter 3a is input to a photodetector 4c and used to open and close the gate of the photodetector 4d. As the photodetectors 4a to 4c, for example, PIN photodiodes are used. As the light detector 4d, for example, a gated CCD spectral detector having a function of enhancing an image is used. The antibody immobilized on the metal thin film 11 binds to the antigen in the sample solution injected from the flow pipe 12. A fluorescently labeled antibody is further bound to the antigen bound to the antibody. The fluorescent-labeled antibody is excited by light incident on the triangular glass prism 10 and emits fluorescent light FL.

【0016】蛍光標識抗体を含む試薬としては、近紫外
又は近赤外に吸収をもつ限り多数の有機蛍光標識試薬や
希土類蛍光標識試薬が使用される。希土類蛍光標識試薬
には、Eu,Tb,Yb,Sm,Tm,Nd,Er,H
o,Pr,Gd等の希土類イオンを含む試薬がある。発
光寿命の短い通常の有機系蛍光標識試薬を使用する場
合、レーザ照射直後に光検出器4dのゲートを開けて蛍
光FLを検出するように、光検出器4cからゲートパル
サ7に検知信号を送り、ゲートパルサ7から光検出器4
dにゲート開閉信号を出力する。これにより、金属薄膜
11から発せられた蛍光FLが分光器8を透過して光検
出器4dで検出される。発生した蛍光FLは、抗体の選
択励起によるものであり、二光子励起により背景光が抑
えられている。発光寿命が極めて長い希土類系標識試薬
を使用する場合、数百ナノ秒が経過した後で光検出器4
dのゲートを開き、金属薄膜11からの蛍光FLを検出
する。ゲート開放のタイミングをこのように調整すると
き、妨害物質に起因する背景光が大幅に低下し、蛍光F
Lが一層高感度で測定される。
As the reagent containing a fluorescently labeled antibody, many organic fluorescent labeling reagents and rare earth fluorescent labeling reagents can be used as long as they have absorption in the near ultraviolet or near infrared. Rare earth fluorescent labeling reagents include Eu, Tb, Yb, Sm, Tm, Nd, Er, H
There are reagents containing rare earth ions such as o, Pr, and Gd. When a normal organic fluorescent labeling reagent having a short emission life is used, a detection signal is sent from the photodetector 4c to the gate pulser 7 so as to open the gate of the photodetector 4d and detect the fluorescence FL immediately after the laser irradiation. Gate pulsar 7 to photodetector 4
A gate opening / closing signal is output to d. Thereby, the fluorescent light FL emitted from the metal thin film 11 passes through the spectroscope 8 and is detected by the photodetector 4d. The generated fluorescence FL is due to the selective excitation of the antibody, and the background light is suppressed by the two-photon excitation. When a rare earth-based labeling reagent having an extremely long luminescence lifetime is used, after several hundred nanoseconds have elapsed, the photodetector 4
The gate of d is opened, and the fluorescence FL from the metal thin film 11 is detected. When the gate opening timing is adjusted in this manner, the background light due to the interfering substance is greatly reduced, and the fluorescence F
L is measured with higher sensitivity.

【0017】[0017]

【実施例】抗体が固定された金属薄膜11を次の手順で
ガラス基板17上に設けた。図3に示すように、ガラス
基板17上にAuを蒸着して金属薄膜11を形成した
後、γ−アミノプロピルトリエトキシシランの2%アセ
トン溶液に浸漬し、メタノール及び蒸留水で洗浄した。
次いで、グルタールアルデヒドの5%水溶液にガラス基
板17を3時間浸漬し、蒸留水で洗浄することにより、
抗体固定用の有機層21を金属薄膜11の上に形成し
た。次いで、血清中の代表的な腫瘍マーカーであるα−
フェトプロテイン(AFP)に対する抗体を含む燐酸緩
衝溶液にガラス基板17を16時間浸漬し、抗AFP抗
体22を有機層21に結合させた。更に、抗AFP抗体
22が関与しない非特異的な吸着を防止するため、有機
層21の活性部位を0.1Mエタノールアミン水溶液及
び血清アルブミン溶液でブロッキングした。
EXAMPLE A metal thin film 11 having an antibody fixed thereon was provided on a glass substrate 17 in the following procedure. As shown in FIG. 3, Au was vapor-deposited on a glass substrate 17 to form a metal thin film 11, which was then immersed in a 2% acetone solution of γ-aminopropyltriethoxysilane, and washed with methanol and distilled water.
Next, the glass substrate 17 is immersed in a 5% aqueous solution of glutaraldehyde for 3 hours, and washed with distilled water.
An organic layer 21 for immobilizing antibodies was formed on the metal thin film 11. Then, α-, a representative tumor marker in serum,
The glass substrate 17 was immersed in a phosphate buffer solution containing an antibody against fetoprotein (AFP) for 16 hours to bind the anti-AFP antibody 22 to the organic layer 21. Further, in order to prevent non-specific adsorption without involvement of the anti-AFP antibody 22, the active site of the organic layer 21 was blocked with a 0.1 M aqueous solution of ethanolamine and a serum albumin solution.

【0018】ブロッキング層23の形成後、ガラス基板
17にアクリル樹脂製のフローセル13を粘着性パッキ
ングで接着し、回転テーブル1上の三角形ガラスプリズ
ム10にガラス基板17のガラス側をマッチングオイル
で接着した。300μg/mlのAFPを含むリン酸緩
衝液をフローセル13に注入し、抗AFP抗体22と接
触する状態で2時間放置した後、リン酸緩衝溶液で洗浄
し、ガラス基板17上の抗AFP抗体22にAFP24
を結合させた。次いで、蛍光標識抗体として代表的な希
土類蛍光標識試薬であるN1-P-isothiosyanatobenzyl)-d
iethylenetriamine-N1, N2, N3, N3-tetraaceteic acid
europi um(DTTA−Eu)を100μg/ml含む
燐酸緩衝溶液をフローセル13に注入し、AFP24と
接触する状態で2時間放置した後、リン酸緩衝溶液で洗
浄した。これにより、ガラス基板17上の抗AFP抗体
22で固定されたAFP24にDTTA−Eu25を結
合させた。
After the formation of the blocking layer 23, an acrylic resin flow cell 13 is adhered to the glass substrate 17 by an adhesive packing, and the glass side of the glass substrate 17 is adhered to the triangular glass prism 10 on the turntable 1 with a matching oil. . A phosphate buffer solution containing 300 μg / ml of AFP was injected into the flow cell 13 and left for 2 hours in contact with the anti-AFP antibody 22, washed with a phosphate buffer solution, and the anti-AFP antibody 22 on the glass substrate 17. AFP24 to
Was combined. Next, N 1 -P-isothiosyanatobenzyl) -d which is a typical rare earth fluorescent labeling reagent as a fluorescent labeled antibody
iethylenetriamine-N 1 , N 2 , N 3 , N 3 -tetraaceteic acid
A phosphate buffer solution containing 100 μg / ml of europium (DTTA-Eu) was injected into the flow cell 13, left in contact with AFP 24 for 2 hours, and then washed with a phosphate buffer solution. Thereby, DDTA-Eu25 was bound to AFP24 immobilized with the anti-AFP antibody 22 on the glass substrate 17.

【0019】以上の操作によって、試料溶液に含まれる
AFP24(抗原)の濃度に比例した量のDTTA−E
u25(蛍光標識抗体)がガラス基板17に固定され
た。AFP24(抗原)及びDTTA−Eu25(蛍光
標識抗体)が固定されたガラス基板17を備えた三角形
ガラスプリズム10を回転テーブル1上で回転させなが
ら、半導体レーザ励起Nd−YAGレーザ(励起光源
2)を用いて波長532nmのp−偏光をプリズム側か
ら照射し、各入射角ごとに反射率を測定した。その結
果、入射角がほぼ75度のときに反射率が最少になっ
た。
By the above operation, the amount of DTT-E in proportion to the concentration of AFP24 (antigen) contained in the sample solution is
u25 (fluorescently labeled antibody) was immobilized on the glass substrate 17. While rotating the triangular glass prism 10 provided with the glass substrate 17 on which the AFP 24 (antigen) and the DTT-Eu 25 (fluorescence-labeled antibody) are fixed on the turntable 1, the semiconductor laser-excited Nd-YAG laser (excitation light source 2) is turned on. The sample was irradiated with p-polarized light having a wavelength of 532 nm from the prism side, and the reflectance was measured at each incident angle. As a result, the reflectance was minimized when the incident angle was approximately 75 degrees.

【0020】反射率が最少になる条件下で発光スペクト
ルを測定したところ、図4に示すように3価ユウロピウ
ムイオンに特徴的な発光スペクトルが観測された。更
に、種々のAFP濃度を有する試料溶液を用いて検量線
を作成し定量したところ、AFP濃度と発光強度との間
に密接な直線関係が成立していることが判った。このこ
とから、本発明によるとき、抗原の濃度を十分に定量で
きることが確認された。
When the emission spectrum was measured under the condition that the reflectance was minimized, an emission spectrum characteristic of trivalent europium ion was observed as shown in FIG. Further, when a calibration curve was prepared and quantified using sample solutions having various AFP concentrations, it was found that a close linear relationship was established between the AFP concentration and the emission intensity. From this, it was confirmed that according to the present invention, the concentration of the antigen could be quantified sufficiently.

【0021】[0021]

【発明の効果】以上に説明したように、本発明において
は、表面プラズモン共鳴を利用して蛍光標識抗体を二光
子励起又は多光子励起させ、このときに発生する蛍光を
スペクトル分析することにより、金属薄膜に固定した抗
体に結合している抗原を定量している。この方法による
とき、試料溶液に含まれている妨害物質が励起されず、
吸着固定されている蛍光標識抗体のみを選択的に且つ効
率よく励起させることができるため、抗原濃度を高感度
で定量できる。
As described above, in the present invention, two-photon excitation or multi-photon excitation of a fluorescent-labeled antibody using surface plasmon resonance, and the fluorescence generated at this time is spectrally analyzed. The antigen bound to the antibody immobilized on the metal thin film is quantified. When using this method, the interfering substances contained in the sample solution are not excited,
Since only the fluorescently labeled antibody immobilized by adsorption can be selectively and efficiently excited, the antigen concentration can be quantified with high sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 表面プラズモン共鳴を利用した蛍光免疫分析
装置の概略図
FIG. 1 is a schematic diagram of a fluorescence immunoassay apparatus using surface plasmon resonance.

【図2】 抗体を固定した金属薄膜が設けられた三角形
ガラスプリズム及びフローセルを示す図
FIG. 2 is a view showing a triangular glass prism and a flow cell provided with a metal thin film on which an antibody is immobilized.

【図3】 抗体を金属薄膜に固定するプロセス及び抗体
に結合した抗原の濃度を測定するプロセスの説明図
FIG. 3 is an explanatory view of a process for immobilizing an antibody on a metal thin film and a process for measuring the concentration of an antigen bound to the antibody.

【図4】 実施例で求められた表面プラズモン励起によ
る希土類標識抗体の蛍光スペクトル
FIG. 4 is a fluorescence spectrum of a rare-earth-labeled antibody obtained by surface plasmon excitation obtained in an example.

【符号の説明】[Explanation of symbols]

1:回転テーブル 2:励起光源 3a,3b:ビ
ームスプリッタ 4a〜4d:光検出器 5:I/
0 回路 6:コンピュータ 7:ゲートパルサ
8:分光器 10:三角形ガラスプリズム 11:金属薄膜 1
2:フローパイプ 13:フローセル 14:ガラ
ス板 15:接液部 17:ガラス基板 21:有機層 22:抗AFP抗体 23:ブロッ
キング層 24:AFP(α−フェトプロテイン:抗
原) 25:DTTA−Eu(蛍光標識抗体) I:反射光強度 I0 :入射光強度 FL:蛍光
1: Rotary table 2: Excitation light source 3a, 3b: Beam splitter 4a-4d: Photodetector 5: I /
I 0 circuit 6: Computer 7: Gate pulser
8: Spectroscope 10: Triangular glass prism 11: Metal thin film 1
2: Flow pipe 13: Flow cell 14: Glass plate 15: Liquid contact part 17: Glass substrate 21: Organic layer 22: Anti-AFP antibody 23: Blocking layer 24: AFP (α-fetoprotein: antigen) 25: DTT-Eu (fluorescence Labeled antibody) I: reflected light intensity I 0 : incident light intensity FL: fluorescence

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 抗体が固定された金属薄膜をもつ三角形
ガラスプリズムを回転テーブルに載置し、抗原を含む試
料溶液を三角形ガラスプリズムの金属薄膜側に供給して
抗原を抗体に結合させ、更に蛍光標識抗体を含む蛍光標
識試薬を供給して抗原に結合している抗体に蛍光標識抗
体を結合させた後、蛍光標識抗体が通常吸収する光の整
数倍の波長をもつ光を三角形ガラスプリズムのプリズム
側から入射させて蛍光標識抗体を二光子励起又は多光子
励起させ、反射率が最も小さくなる入射角で三角形ガラ
スプリズムのプリズム側に入射したときに発生する蛍光
をスペクトル分析することを特徴とする蛍光免疫分析方
法。
1. A triangular glass prism having a metal thin film on which an antibody is fixed is placed on a rotating table, and a sample solution containing an antigen is supplied to the metal thin film side of the triangular glass prism to bind the antigen to the antibody. After supplying a fluorescent labeling reagent containing the fluorescent labeled antibody and binding the fluorescent labeled antibody to the antibody bound to the antigen, light having a wavelength that is an integral multiple of the light normally absorbed by the fluorescent labeled antibody is passed through the triangular glass prism. Two-photon excitation or multi-photon excitation of the fluorescent-labeled antibody by incidence from the prism side, and spectral analysis of the fluorescence generated when the light is incident on the prism side of the triangular glass prism at an incidence angle at which the reflectance is minimized. Fluorescent immunoassay method.
【請求項2】 抗体が固定された金属薄膜を一面にもつ
三角形ガラスプリズムと、該三角形ガラスプリズムが載
置される回転テーブルと、抗原を含む試料溶液及び該抗
原に対する蛍光標識抗体を含む蛍光標識試薬を前記金属
薄膜側に供給するフローセルと、蛍光標識抗体が通常吸
収する光の整数倍の波長をもつ光を三角形ガラスプリズ
ムのプリズム側から入射させる励起光源と、前記抗体に
結合した抗原に更に結合した蛍光標識抗体が二光子励起
又は多光子励起されたときに発する蛍光を分光分析する
光検出器とを備え、反射率が最も小さくなる入射角で三
角形ガラスプリズムのプリズム側に入射したときに発生
する蛍光をスペクトル分析することを特徴とする蛍光免
疫分析装置。
2. A triangular glass prism having a metal thin film on which an antibody is immobilized on one side, a rotary table on which the triangular glass prism is mounted, a sample solution containing an antigen, and a fluorescent label containing a fluorescently labeled antibody against the antigen A flow cell that supplies a reagent to the metal thin film side, an excitation light source that causes light having a wavelength that is an integral multiple of the light normally absorbed by the fluorescently labeled antibody to be incident from the prism side of the triangular glass prism, and an antigen bound to the antibody. A photodetector for spectrally analyzing the fluorescence emitted when the bound fluorescently labeled antibody is excited by two-photon excitation or multiphoton excitation, when the light is incident on the prism side of the triangular glass prism at an incident angle at which the reflectance is minimized. A fluorescence immunoanalyzer characterized by performing spectrum analysis of generated fluorescence.
JP19353699A 1999-07-07 1999-07-07 Fluorescent immunoassay method and apparatus Expired - Fee Related JP3249954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19353699A JP3249954B2 (en) 1999-07-07 1999-07-07 Fluorescent immunoassay method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19353699A JP3249954B2 (en) 1999-07-07 1999-07-07 Fluorescent immunoassay method and apparatus

Publications (2)

Publication Number Publication Date
JP2001021565A true JP2001021565A (en) 2001-01-26
JP3249954B2 JP3249954B2 (en) 2002-01-28

Family

ID=16309718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19353699A Expired - Fee Related JP3249954B2 (en) 1999-07-07 1999-07-07 Fluorescent immunoassay method and apparatus

Country Status (1)

Country Link
JP (1) JP3249954B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056012A1 (en) * 2001-01-12 2002-07-18 Japan Science And Technology Corporation Fluorescent analysis element with the use of metallic nanowell and process for producing the same
WO2004040272A1 (en) * 2002-11-01 2004-05-13 Takuo Tanaka Surface plasmon fluorescence microscope, and method of measuring fluorescence excited by surface plasmon
WO2006118311A1 (en) * 2005-04-27 2006-11-09 Ricoh Company, Ltd. Dye material, dye solution and multiphoton absorption reaction material using the same, reaction product, multiphoton absorption reaction material, gold nanorods and manufacturing method of gold nanorods
JP2008102117A (en) * 2006-09-21 2008-05-01 Fujifilm Corp Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
JP2008145309A (en) * 2006-12-12 2008-06-26 Fujifilm Corp Surface plasmon intensifying fluorescence sensor
JPWO2005095927A1 (en) * 2004-03-31 2008-07-31 オムロン株式会社 Localized plasmon resonance sensor and inspection device
JP2008224561A (en) * 2007-03-15 2008-09-25 Fujifilm Corp Surface plasmon enhancing fluorescence sensor
JP2009133842A (en) * 2007-11-07 2009-06-18 Toshiba Corp Optical-waveguide sensor chip, method of manufacturing same, method of measuring substance, substance-measuring kit and optical-waveguide sensor
JP2009156723A (en) * 2007-12-27 2009-07-16 Hitachi High-Technologies Corp Fluorescence detection device
EP2096428A1 (en) 2008-02-28 2009-09-02 Fujifilm Corporation Surface plasmon sensing apparatus
JP2009536727A (en) * 2006-04-04 2009-10-15 シングレックス,インコーポレイテッド Methods and compositions for sensitive marker analysis and molecular detection
JP2010008247A (en) * 2008-06-27 2010-01-14 Fujifilm Corp Detection method, detector, detecting sample cell and detecting kit
JP2010019766A (en) * 2008-07-14 2010-01-28 Fujifilm Corp Detection method, detector, detecting sample cell and detecting kit
JP2010048756A (en) * 2008-08-25 2010-03-04 Fujifilm Corp Detection method, detection device, detecting sample cell and kit
US7709810B2 (en) 2005-03-18 2010-05-04 National University Corporation Hokkaido University Sensing device, sensing apparatus, and sensing method
JP2010190880A (en) * 2008-04-18 2010-09-02 Fujifilm Corp Method and apparatus for detecting optical signal, sample cell for detecting optical signal, and kit for detecting optical signal
WO2010123073A1 (en) * 2009-04-24 2010-10-28 コニカミノルタホールディングス株式会社 Assay method using plasmon excitation sensor comprising stimulus-responsive polymer
WO2010134592A1 (en) * 2009-05-22 2010-11-25 コニカミノルタホールディングス株式会社 Plasmon excitation sensor for use in assay method based on spfs-lpfs system, and assay method
JP2011033454A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Detection method, and dielectric particles containing magnetic material used for detection method
US7898659B2 (en) 2006-12-11 2011-03-01 Fujifilm Corporation Surface plasmon sensor, sensing apparatus and sensing method
JP2011257266A (en) * 2010-06-09 2011-12-22 Konica Minolta Holdings Inc Optical sensor and chip structure used for optical sensor
EP2399117A2 (en) * 2009-02-23 2011-12-28 University Of Maryland Baltimore County Directional surface plasmon coupled fluorescence and chemiluminescence from thin films of nickel, iron or palladium and uses thereof
JP2012251863A (en) * 2011-06-02 2012-12-20 Konica Minolta Holdings Inc Surface plasmon excitation enhanced fluorescence measuring device and sensor structure to be used for the same
US8462339B2 (en) 2007-12-19 2013-06-11 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
US8642319B2 (en) 2007-11-07 2014-02-04 Kabushiki Kaisha Toshiba Optical-waveguide sensor chip, method of manufacturing the same, method of measuring substance, substance-measuring kit and optical-waveguide sensor
US8685711B2 (en) 2004-09-28 2014-04-01 Singulex, Inc. Methods and compositions for highly sensitive detection of molecules
JP5573843B2 (en) * 2009-10-05 2014-08-20 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measurement device
US9040305B2 (en) 2004-09-28 2015-05-26 Singulex, Inc. Method of analysis for determining a specific protein in blood samples using fluorescence spectrometry
CN104931472A (en) * 2015-06-10 2015-09-23 东北电力大学 Continuous detector for multi-wavelength excited fluorescence labeling immune test strips
CN109238964A (en) * 2016-08-30 2019-01-18 上海理工大学 A kind of sensing device

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056012A1 (en) * 2001-01-12 2002-07-18 Japan Science And Technology Corporation Fluorescent analysis element with the use of metallic nanowell and process for producing the same
WO2004040272A1 (en) * 2002-11-01 2004-05-13 Takuo Tanaka Surface plasmon fluorescence microscope, and method of measuring fluorescence excited by surface plasmon
US7906344B2 (en) 2004-03-31 2011-03-15 Omron Corporation Localized plasmon resonance sensor and examining device
JPWO2005095927A1 (en) * 2004-03-31 2008-07-31 オムロン株式会社 Localized plasmon resonance sensor and inspection device
JP4548416B2 (en) * 2004-03-31 2010-09-22 オムロン株式会社 Localized plasmon resonance sensor and inspection device
US8685711B2 (en) 2004-09-28 2014-04-01 Singulex, Inc. Methods and compositions for highly sensitive detection of molecules
US9040305B2 (en) 2004-09-28 2015-05-26 Singulex, Inc. Method of analysis for determining a specific protein in blood samples using fluorescence spectrometry
US9063131B2 (en) 2004-09-28 2015-06-23 Singulex, Inc. Methods and compositions for highly sensitive detection of molecules
US9823194B2 (en) 2004-09-28 2017-11-21 Singulex, Inc. Methods and compositions for highly sensitive detection of molecules
US7709810B2 (en) 2005-03-18 2010-05-04 National University Corporation Hokkaido University Sensing device, sensing apparatus, and sensing method
WO2006118311A1 (en) * 2005-04-27 2006-11-09 Ricoh Company, Ltd. Dye material, dye solution and multiphoton absorption reaction material using the same, reaction product, multiphoton absorption reaction material, gold nanorods and manufacturing method of gold nanorods
JP2009536727A (en) * 2006-04-04 2009-10-15 シングレックス,インコーポレイテッド Methods and compositions for sensitive marker analysis and molecular detection
JP2008102117A (en) * 2006-09-21 2008-05-01 Fujifilm Corp Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
US7898659B2 (en) 2006-12-11 2011-03-01 Fujifilm Corporation Surface plasmon sensor, sensing apparatus and sensing method
JP2008145309A (en) * 2006-12-12 2008-06-26 Fujifilm Corp Surface plasmon intensifying fluorescence sensor
JP2008224561A (en) * 2007-03-15 2008-09-25 Fujifilm Corp Surface plasmon enhancing fluorescence sensor
US9075017B2 (en) 2007-11-07 2015-07-07 Kabushiki Kaisha Toshiba Optical-waveguide sensor chip, method of manufacturing the same, method of measuring substance, substance-measuring kit and optical-waveguide sensor
JP2009133842A (en) * 2007-11-07 2009-06-18 Toshiba Corp Optical-waveguide sensor chip, method of manufacturing same, method of measuring substance, substance-measuring kit and optical-waveguide sensor
US8642319B2 (en) 2007-11-07 2014-02-04 Kabushiki Kaisha Toshiba Optical-waveguide sensor chip, method of manufacturing the same, method of measuring substance, substance-measuring kit and optical-waveguide sensor
US9239284B2 (en) 2007-12-19 2016-01-19 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
US8462339B2 (en) 2007-12-19 2013-06-11 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
US10107752B2 (en) 2007-12-19 2018-10-23 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
US8917392B2 (en) 2007-12-19 2014-12-23 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
US8634075B2 (en) 2007-12-19 2014-01-21 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
JP2009156723A (en) * 2007-12-27 2009-07-16 Hitachi High-Technologies Corp Fluorescence detection device
US8193516B2 (en) 2008-02-28 2012-06-05 Fujifilm Corporation Sensing apparatus
EP2096428A1 (en) 2008-02-28 2009-09-02 Fujifilm Corporation Surface plasmon sensing apparatus
JP2010190880A (en) * 2008-04-18 2010-09-02 Fujifilm Corp Method and apparatus for detecting optical signal, sample cell for detecting optical signal, and kit for detecting optical signal
JP2010008247A (en) * 2008-06-27 2010-01-14 Fujifilm Corp Detection method, detector, detecting sample cell and detecting kit
JP2010019766A (en) * 2008-07-14 2010-01-28 Fujifilm Corp Detection method, detector, detecting sample cell and detecting kit
JP2010048756A (en) * 2008-08-25 2010-03-04 Fujifilm Corp Detection method, detection device, detecting sample cell and kit
EP2399117A2 (en) * 2009-02-23 2011-12-28 University Of Maryland Baltimore County Directional surface plasmon coupled fluorescence and chemiluminescence from thin films of nickel, iron or palladium and uses thereof
EP2399117A4 (en) * 2009-02-23 2012-08-08 Univ Maryland Directional surface plasmon coupled fluorescence and chemiluminescence from thin films of nickel, iron or palladium and uses thereof
US10024794B2 (en) 2009-02-23 2018-07-17 University Of Maryland, Baltimore County Directional surface plasmon coupled fluorescence and chemiluminescence from thin films of nickel, iron or palladium and uses thereof
WO2010123073A1 (en) * 2009-04-24 2010-10-28 コニカミノルタホールディングス株式会社 Assay method using plasmon excitation sensor comprising stimulus-responsive polymer
JP5652393B2 (en) * 2009-05-22 2015-01-14 コニカミノルタ株式会社 Plasmon excitation sensor and assay method used for measurement method by SPFS-LPFS system
WO2010134592A1 (en) * 2009-05-22 2010-11-25 コニカミノルタホールディングス株式会社 Plasmon excitation sensor for use in assay method based on spfs-lpfs system, and assay method
US8456158B2 (en) 2009-07-31 2013-06-04 Fujifilm Corporation Detecting method and dielectric particles containing magnetic material employed in the detecting method
JP2011033454A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Detection method, and dielectric particles containing magnetic material used for detection method
JP5573843B2 (en) * 2009-10-05 2014-08-20 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measurement device
US9255883B2 (en) 2009-10-05 2016-02-09 Konica Minolta, Inc. Surface plasmon-enhanced fluorescence measuring apparatus
JP2011257266A (en) * 2010-06-09 2011-12-22 Konica Minolta Holdings Inc Optical sensor and chip structure used for optical sensor
JP2012251863A (en) * 2011-06-02 2012-12-20 Konica Minolta Holdings Inc Surface plasmon excitation enhanced fluorescence measuring device and sensor structure to be used for the same
CN104931472A (en) * 2015-06-10 2015-09-23 东北电力大学 Continuous detector for multi-wavelength excited fluorescence labeling immune test strips
CN109238964A (en) * 2016-08-30 2019-01-18 上海理工大学 A kind of sensing device
CN109238964B (en) * 2016-08-30 2020-12-01 上海理工大学 Sensing device

Also Published As

Publication number Publication date
JP3249954B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
JP3249954B2 (en) Fluorescent immunoassay method and apparatus
US5959292A (en) Process for detecting evanescently excited luminescence
Hlady et al. Fluorescence of adsorbed protein layers: I. Quantitation of total internal reflection fluorescence
US7332344B2 (en) Luminescence assays
JP5152917B2 (en) Detection method, detection sample cell and detection kit
US4882288A (en) Assay technique and equipment
US4368047A (en) Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
US5445972A (en) Raman label and its conjugate in a ligand-binding assay for a test sample analyte
JP5301894B2 (en) Detection method
US10024794B2 (en) Directional surface plasmon coupled fluorescence and chemiluminescence from thin films of nickel, iron or palladium and uses thereof
CN106461559B (en) Bioassay system and method for detecting analyte in body fluid
JP2005338098A (en) Sensor platform and method for parallel detection of a plurality of analyte using dissipatively excited luminescence
JPS59501873A (en) Immunoassay device and method
JP2010071693A (en) Sensing method, sensing device, inspection chip, and inspection kit
JPH03506078A (en) Equipment used in chemical test methods
JP2010038624A (en) Detection method and detector
US8193516B2 (en) Sensing apparatus
JP2006267052A (en) Inspection apparatus for measuring immune reaction
JP2010210378A (en) Sensing method and sensing kit to be used of the same
JP2009080011A (en) Fluorescence detection method
JP5563789B2 (en) Detection method
RU2494374C2 (en) Microelectronic sensor
Supianto et al. Recent research trends in fluorescent reporters‐based lateral flow immunoassay for protein biomarkers specific to acute myocardial infarction
JP6481371B2 (en) Detection method and detection kit
JP2005077396A (en) Optical waveguide for analysis

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees