JP2009133842A - Optical-waveguide sensor chip, method of manufacturing same, method of measuring substance, substance-measuring kit and optical-waveguide sensor - Google Patents

Optical-waveguide sensor chip, method of manufacturing same, method of measuring substance, substance-measuring kit and optical-waveguide sensor Download PDF

Info

Publication number
JP2009133842A
JP2009133842A JP2008274708A JP2008274708A JP2009133842A JP 2009133842 A JP2009133842 A JP 2009133842A JP 2008274708 A JP2008274708 A JP 2008274708A JP 2008274708 A JP2008274708 A JP 2008274708A JP 2009133842 A JP2009133842 A JP 2009133842A
Authority
JP
Japan
Prior art keywords
substance
optical waveguide
measured
fine particles
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008274708A
Other languages
Japanese (ja)
Other versions
JP5424610B2 (en
Inventor
Shingo Kasai
晋吾 葛西
Ikuo Uematsu
育生 植松
Ichiro Tono
一郎 東野
Tomohiro Takase
智裕 高瀬
Isao Nawata
功 縄田
Kayoko Omiya
可容子 大宮
Yuriko Koyama
由利子 小山
Tsutomu Honjo
勉 本庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga and Co Ltd
Toshiba Corp
Original Assignee
Morinaga and Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga and Co Ltd, Toshiba Corp filed Critical Morinaga and Co Ltd
Priority to JP2008274708A priority Critical patent/JP5424610B2/en
Priority to US12/266,023 priority patent/US20090124024A1/en
Publication of JP2009133842A publication Critical patent/JP2009133842A/en
Priority to US13/462,196 priority patent/US8642319B2/en
Priority to US14/141,268 priority patent/US9075017B2/en
Application granted granted Critical
Publication of JP5424610B2 publication Critical patent/JP5424610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical-waveguide sensor for quantitatively measuring a substance to be measured of an analyte to be measured at a small amount in a short time. <P>SOLUTION: This optical-waveguide sensor includes an optical waveguide having a first substance immobilized on the surface thereof, the first substance being specifically reactive with the substance to be measured, and fine particles dispersed on the optical waveguide and having a second substance immobilized on the surface thereof, the second substance being specifically reactive with the substance to be measured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光導波路型センサチップ、光導波路型センサチップの製造方法、物質の測定方法、物質測定用キットおよび光導波路型センサに関する。   The present invention relates to an optical waveguide sensor chip, an optical waveguide sensor chip manufacturing method, a substance measuring method, a substance measuring kit, and an optical waveguide sensor.

従来の抗原抗体反応を利用した免疫測定は、通常、被測定検体中のタンパク質等に対応する一次抗体をウエル状の基材表面に固定化する。ウエル内に各々所定量の被測定検体溶液、二次抗体液、発色試薬を順次滴下する。各溶液の滴下毎に所定の洗浄液をそれぞれ行なう。このような免疫測定は測定者が秤量しつつ加え、かつ排出するという複雑な手順で行われている。この免疫測定において、被測定検体の容量は少なくとも5μL〜25μL程度必要である。   In conventional immunoassay using antigen-antibody reaction, a primary antibody corresponding to a protein or the like in a sample to be measured is usually immobilized on the surface of a well-shaped substrate. A predetermined amount of the sample solution to be measured, the secondary antibody solution, and the coloring reagent are sequentially dropped into each well. A predetermined cleaning solution is performed for each dropping of each solution. Such an immunoassay is performed by a complicated procedure in which a measurer adds and discharges while weighing. In this immunoassay, the volume of the sample to be measured needs to be at least about 5 μL to 25 μL.

一方、本出願人が出願した特許文献1には必要最小の被測定検体の量が1μLである上、被測定検体の容量が不正確でも被測定検体の測定対象物質の濃度測定が可能な濃度測定方法、センサチップが開示されている。
WO2005/022155
On the other hand, in Patent Document 1 filed by the present applicant, the minimum amount of the sample to be measured is 1 μL, and the concentration of the measurement target substance in the sample to be measured can be measured even if the volume of the sample to be measured is inaccurate. A measurement method and a sensor chip are disclosed.
WO2005 / 022155

しかしながら、従来の免疫測定システムにおいては一次抗体と被測定検体との反応、被測定検体と二次抗体との反応にそれぞれ一時間程度を要する上に、既述のような複雑な手順を踏む必要があるため被測定検体の採取から測定結果を得るまでに数時間を要する課題がある。また、必要とされる被測定検体の量が多いため、例えばラット等の小動物を用いた血液検査では数種類の検査項目を1回行うのに1検体が犠牲となる。その結果、同一検体での経時変化を検査することが困難である。   However, in the conventional immunoassay system, the reaction between the primary antibody and the sample to be measured and the reaction between the sample to be measured and the secondary antibody each take about one hour, and it is necessary to follow the complicated procedure as described above. Therefore, there is a problem that it takes several hours to obtain a measurement result from collection of a sample to be measured. In addition, since the amount of sample to be measured is large, for example, in a blood test using a small animal such as a rat, one sample is sacrificed for performing several types of test items once. As a result, it is difficult to examine changes with time in the same specimen.

本発明は、前述した特許文献1の発明をさらに改良し、より少量の被測定検体量で、より短時間において、被測定検体の測定対象物質を定量測定することが可能な光導波路型センサチップ、光導波路型センサチップの製造方法、物質の測定方法および物質測定用キット、光導波路型センサを提供するものである。   The present invention further improves the above-described invention of Patent Document 1, and is an optical waveguide sensor chip capable of quantitatively measuring a measurement target substance of a sample to be measured in a shorter time with a smaller amount of sample to be measured. An optical waveguide sensor chip manufacturing method, a substance measuring method, a substance measuring kit, and an optical waveguide sensor are provided.

本発明の第1態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路;および
前記光導波路上に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子;
を備えることを特徴とする光導波路型センサチップが提供される。
According to the first aspect of the present invention, the first substance that specifically reacts with the measurement target substance is immobilized on the surface; and is dispersed on the optical waveguide and specifically reacts with the measurement target substance. Fine particles having a second substance immobilized thereon;
An optical waveguide sensor chip is provided.

本発明の第2態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路;
前記光導波路と対向して配置された支持板;および
前記支持板の前記光導波路と対向する表面に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子;
を備えることを特徴とする光導波路型センサチップが提供される。
According to the second aspect of the present invention, an optical waveguide in which a first substance that specifically reacts with a substance to be measured is immobilized on the surface;
A support plate disposed opposite to the optical waveguide; and fine particles on which a second substance that is dispersed on the surface of the support plate facing the optical waveguide and specifically reacts with the measurement target substance is immobilized;
An optical waveguide sensor chip is provided.

本発明の第3態様によると、光導波路表面に測定対象物質と特異的に反応する第1物質を固定化すること;
前記光導波路上に前記測定対象物質と特異的に反応する第2物質が固定化された微粒子を含むスラリを塗布すること;および
前記塗布後に乾燥して前記光導波路上に前記微粒子を分散すること;
を含むことを特徴とする光導波路型センサチップの製造方法が提供される。
According to the third aspect of the present invention, the first substance that specifically reacts with the measurement target substance is immobilized on the surface of the optical waveguide;
Applying a slurry containing fine particles on which a second substance that specifically reacts with the substance to be measured is immobilized on the optical waveguide; and drying after the application to disperse the fine particles on the optical waveguide. ;
A method for manufacturing an optical waveguide sensor chip is provided.

本発明の第4態様によると、光導波路表面に測定対象物質と特異的に反応する第1物質を固定化すること;
支持板表面に前記測定対象物質と特異的に反応する第2物質が固定化された微粒子を含むスラリを塗布すること;
前記塗布後に乾燥して前記支持板上に前記微粒子を分散すること;および
前記光導波路に前記支持板をその微粒子分散面が対向するように一定の距離をあけて配置すること;
を含むことを特徴とする光導波路型センサチップの製造方法が提供される。
According to the fourth aspect of the present invention, the first substance that specifically reacts with the measurement target substance is immobilized on the surface of the optical waveguide;
Applying a slurry containing fine particles on which a second substance that specifically reacts with the measurement target substance is immobilized on the surface of the support plate;
Drying after the coating to disperse the fine particles on the support plate; and disposing the support plate on the optical waveguide at a certain distance so that the fine particle dispersion surface faces each other;
A method for manufacturing an optical waveguide sensor chip is provided.

本発明の第5態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、前記光導波路上に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを備える光導波路型センサチップを用意すること;
前記センサチップの光導波路表面に被測定検体溶液を滴下して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させると共に、前記測定対象物質と前記光導波路上に分散された微粒子の第2物質との間で特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法が提供される。
According to the fifth aspect of the present invention, the first substance that specifically reacts with the measurement target substance is immobilized on the surface, and is dispersed on the optical waveguide and specifically reacts with the measurement target substance. Providing an optical waveguide sensor chip comprising fine particles having a second substance immobilized thereon;
The analyte solution to be measured is dropped on the surface of the optical waveguide of the sensor chip to cause a specific reaction between the first substance on the surface of the optical waveguide and the substance to be measured in the analyte solution, and the substance to be measured and the Reacting specifically with the second substance of the fine particles dispersed on the optical waveguide; and detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the measurement target substance. To do;
There is provided a method for measuring a substance characterized by comprising:

本発明の第6態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意すること;
前記センサチップの光導波路表面に被測定検体溶液を滴下して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させること;
前記光導波路表面を洗浄すること;
前記光導波路表面に被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を滴下して被測定検体溶液の測定対象物質と微粒子の第2物質との間で特異的に反応させること;および
光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法が提供される。
According to a sixth aspect of the present invention, providing an optical waveguide sensor chip comprising an optical waveguide having a first substance that specifically reacts with a measurement target substance immobilized on the surface;
Dropping the analyte solution to be measured on the surface of the optical waveguide of the sensor chip to cause a specific reaction between the first substance on the surface of the optical waveguide and the substance to be measured in the analyte solution;
Cleaning the surface of the optical waveguide;
A dispersion liquid of fine particles in which a second substance that specifically reacts with the measurement target substance of the sample to be measured is dropped onto the surface of the optical waveguide to drop between the measurement target substance of the measurement target solution and the second substance of the fine particles. And detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured;
There is provided a method for measuring a substance characterized by comprising:

本発明の第7態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意すること;
被測定検体溶液、および被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子を予め混合し、微粒子の第2物質と被測定検体溶液の測定対象物質とを特異的に反応させること;
前記混合液を前記センサチップの光導波路表面に滴下して前記光導波路表面の第1物質と微粒子の第2物質に反応した被測定検体溶液の測定対象物質とを特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法が提供される。
According to a seventh aspect of the present invention, an optical waveguide sensor chip including an optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on a surface;
A sample solution and a microparticle to which a second substance that specifically reacts with the measurement target substance of the sample to be measured is mixed in advance, and the second substance of the microparticle and the measurement target substance of the sample solution to be measured are specified. Reacting automatically;
Dropping the mixed liquid onto the surface of the optical waveguide of the sensor chip and causing the first substance on the surface of the optical waveguide to react specifically with the measurement target substance of the analyte solution to be reacted with the second substance of the fine particles; Detecting an optical change caused by fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured;
There is provided a method for measuring a substance characterized by comprising:

本発明の第8態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意すること;
前記センサチップの光導波路表面に被測定検体溶液を滴下して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させること;
前記光導波路表面に被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を滴下して前記測定対象物質と微粒子の第2物質との間で特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法が提供される。
According to an eighth aspect of the present invention, an optical waveguide sensor chip including an optical waveguide having a first substance that specifically reacts with a measurement target substance immobilized on the surface thereof is prepared;
Dropping the analyte solution to be measured on the surface of the optical waveguide of the sensor chip to cause a specific reaction between the first substance on the surface of the optical waveguide and the substance to be measured in the analyte solution;
A dispersion liquid of fine particles in which a second substance that specifically reacts with the measurement target substance of the specimen to be measured is dropped on the surface of the optical waveguide, and specific between the measurement target substance and the second fine substance substance. And detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured;
There is provided a method for measuring a substance characterized by comprising:

本発明の第9態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意すること;
前記センサチップの光導波路表面に被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を滴下すること;
前記分散液が滴下された前記光導波路表面に被測定検体溶液を滴下して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させると共に前記測定対象物質と前記分散液中の微粒子の第2物質との間で特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法が提供される。
According to a ninth aspect of the present invention, an optical waveguide sensor chip including an optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on a surface;
Dropping a dispersion liquid of fine particles on which a second substance that specifically reacts with a measurement target substance of a sample to be measured is immobilized on the optical waveguide surface of the sensor chip;
A sample solution to be measured is dropped on the surface of the optical waveguide to which the dispersion liquid has been dropped to cause a specific reaction between the first substance on the surface of the optical waveguide and the substance to be measured in the sample solution to be measured. Reacting specifically between the substance and the second substance of the fine particles in the dispersion; and detecting optical changes caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured To do;
There is provided a method for measuring a substance characterized by comprising:

本発明の第10態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、前記光導波路と対向して配置された支持板と、前記支持板の前記光導波路と対向する表面に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを備える光導波路型センサチップを用意すること;
前記センサチップの光導波路と前記支持板の間に被測定検体溶液を注入して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させると共に、前記測定対象物質と前記支持板に分散された微粒子の第2物質との間で特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法が提供される。
According to the tenth aspect of the present invention, an optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on a surface, a support plate disposed to face the optical waveguide, and the support plate Providing an optical waveguide sensor chip comprising fine particles dispersed on a surface facing the optical waveguide and fixed with a second substance that specifically reacts with the substance to be measured;
The analyte solution to be measured is injected between the optical waveguide of the sensor chip and the support plate to cause a specific reaction between the first substance on the surface of the optical waveguide and the analyte to be measured in the analyte solution. Reacting specifically between the substance and the second substance of the fine particles dispersed on the support plate; and optical change by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured Detecting
There is provided a method for measuring a substance characterized by comprising:

本発明の第11態様によると、被測定検体の測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、この光導波路表面に配置され、前記光導波路表面との間で測定域を形成するための凹部を有し、かつこの測定域と連通する導入孔および排出孔が開口されたキャップとを備える光導波路型センサチップ;および
被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を収容した包装体;
を組み合わせたことを特徴とする物質測定用キットが提供される。
According to the eleventh aspect of the present invention, an optical waveguide in which a first substance that specifically reacts with a measurement target substance of a specimen to be measured is immobilized on the surface, and disposed on the surface of the optical waveguide, An optical waveguide sensor chip having a recess for forming a measurement area between them and having a cap with an introduction hole and a discharge hole communicating with the measurement area; and a substance to be measured and a specific substance A package containing a dispersion of fine particles on which a second substance that reacts automatically is immobilized;
A substance measurement kit characterized by combining the above is provided.

本発明の第12態様によると、前記物質測定用キットの使用において、
被測定検体溶液を光導波路型センサチップのキャップの導入孔を通して測定域内の光導波路表面に滴下して光導波路表面に固定化された第1物質と被測定検体溶液の測定対象物質とを特異的に反応させること;
微粒子の分散液を前記キャップの導入孔を通して測定域内の光導波路表面に導入すると共に、被測定検体溶液を排出孔を通して排出する間、特異的に反応された被測定検体溶液の測定対象物質と微粒子の第2物質との間で特異的に反応させること;および
光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法が提供される。
According to a twelfth aspect of the present invention, in the use of the substance measurement kit,
A sample substance to be measured is dropped onto the surface of the optical waveguide in the measurement region through the introduction hole of the cap of the optical waveguide sensor chip, and the first substance immobilized on the surface of the optical waveguide and the substance to be measured of the sample solution to be measured are specifically determined. Reacting with;
While introducing the dispersion liquid of fine particles to the surface of the optical waveguide in the measurement region through the introduction hole of the cap, the measurement target substance and the fine particles of the measurement target solution specifically reacted while the measurement target solution is discharged through the discharge hole. Reacting specifically with the second substance; and detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured;
There is provided a method for measuring a substance characterized by comprising:

本発明の第13態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、前記光導波路上に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを有する光導波路型センサチップ;
前記光導波路に光を入射させる光源;および
前記光導波路から出射される光を受光する受光素子;
を備えることを特徴とする光導波路型センサが提供される。
According to the thirteenth aspect of the present invention, the first substance that specifically reacts with the measurement target substance is immobilized on the surface, and is dispersed on the optical waveguide and specifically reacts with the measurement target substance. An optical waveguide sensor chip having fine particles on which a second substance is immobilized;
A light source that makes light incident on the optical waveguide; and a light receiving element that receives light emitted from the optical waveguide;
An optical waveguide sensor is provided.

本発明の第14態様によると、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と前記光導波路と対向して配置された支持板と、前記支持板の前記光導波路と対向する表面に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを有する光導波路型センサチップ;
前記光導波路に光を入射させる光源;および
前記光導波路から出射される光を受光する受光素子;
を備えることを特徴とする光導波路型センサが提供される。
According to the fourteenth aspect of the present invention, an optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on a surface, a support plate disposed opposite to the optical waveguide, and the support plate An optical waveguide sensor chip having fine particles dispersed on a surface facing the optical waveguide and fixed with a second substance that specifically reacts with the substance to be measured;
A light source that makes light incident on the optical waveguide; and a light receiving element that receives light emitted from the optical waveguide;
An optical waveguide sensor is provided.

本発明によれば、より少量の被測定検体量で、より短時間において、被測定検体の測定対象物質を定量測定することが可能な光導波路型センサチップ、光導波路型センサチップの製造方法および光導波路型センサを提供することができる。   According to the present invention, an optical waveguide sensor chip capable of quantitatively measuring a measurement target substance of a measured sample in a shorter time with a smaller amount of measured sample, a method for manufacturing an optical waveguide sensor chip, and An optical waveguide sensor can be provided.

また本発明によれば、より少量の被測定検体量で、より短時間において、被測定検体の測定対処物質を定量することが可能な物質の測定方法を提供することができる。   Further, according to the present invention, it is possible to provide a method for measuring a substance capable of quantifying the measurement target substance of the sample to be measured in a shorter time with a smaller amount of sample to be measured.

さらに本発明によれば、より少量の被測定検体量で、より短時間において、被測定検体の測定対処物質を定量測定することが可能な物質測定用キットを提供することができる。   Furthermore, according to the present invention, it is possible to provide a substance measurement kit capable of quantitatively measuring a measurement target substance of a sample to be measured in a shorter time with a smaller amount of sample to be measured.

以下、本発明に係る実施の形態として、光導波路型センサ、光導波路型センサチップの製造方法、物質の測定方法、物質測定用キットおよび光導波路型センサを詳細に説明する。   Hereinafter, an optical waveguide sensor, an optical waveguide sensor chip manufacturing method, a substance measuring method, a substance measuring kit, and an optical waveguide sensor will be described in detail as embodiments according to the present invention.

(第1実施形態)
第1実施形態に係る光導波路型センサチップは、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、この光導波路上に分散し、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを備えている。
(First embodiment)
The optical waveguide sensor chip according to the first embodiment includes an optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on the surface, and is dispersed on the optical waveguide, and is specific to the measurement target substance. And a fine particle on which a second substance that reacts automatically is immobilized.

ここで測定対象物質は、例えば血液、血清、血漿、生体試料、食品等の中に含まれる蛋白質、ペプチド、遺伝子等が挙げられる。具体的には、インスリン、カゼイン、β―ラクトグロブリン、オボアルブミン、カルシトニン、C−ペプチド、レプチン、β−2−ミクログロブリン、レチノール結合タンパク、α−1−ミクログロブリン、α−フェトプロテイン、癌胎児性抗原、トロポニン−I、クルカゴン様ペプチド、インスリン様ペプチド、腫瘍増殖因子、繊維芽細胞増殖因子、血小板成長因子、上皮増殖因子、コルチゾール、トリヨードサイロニン、サイロキシン等のハプテンホルモン、ジゴキシン、テオフィリン等の薬物、細菌、ウイルス等の感染性物質、肝炎抗体、IgEの他、そばの主要タンパク質複合体、落花生のArah2を含む可溶性タンパク質等が挙げられるが、これらに限定されるものではない。なお、以下の第2実施形態から第5実施形態における測定対象物質も同様なものが用いられる。   Here, examples of the measurement target substance include proteins, peptides, genes and the like contained in blood, serum, plasma, biological samples, foods and the like. Specifically, insulin, casein, β-lactoglobulin, ovalbumin, calcitonin, C-peptide, leptin, β-2-microglobulin, retinol binding protein, α-1-microglobulin, α-fetoprotein, carcinoembryonicity Antigen, troponin-I, curcagon-like peptide, insulin-like peptide, tumor growth factor, fibroblast growth factor, platelet growth factor, epidermal growth factor, cortisol, triiodothyronine, hapten hormone such as thyroxine, digoxin, theophylline, etc. Examples include, but are not limited to, infectious substances such as drugs, bacteria, viruses, hepatitis antibodies, IgE, major protein complexes of buckwheat, and soluble proteins including peanut Arah2. In addition, the same thing is used for the measurement target substance in the following second to fifth embodiments.

光導波路は、例えば平面光導波路を用いることができる。この平面光導波路は、例えばフェノール樹脂、エポキシ樹脂のような熱硬化性樹脂または無アルカリガラスから形成することができる。詳細には、ここで用いる材料とは、所定の光の透過性を有する材料であって、特に、ポリスチレンを主たる構造とするエポキシ樹脂等であることが好ましい。平面光導波路への被測定検体の測定対象物質と特異的に反応する第1物質の固定化は、例えばシランカップリング剤等により疎水化処理した表面上に前記物質の疎水性相互作用により固定化する。第1物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   For example, a planar optical waveguide can be used as the optical waveguide. The planar optical waveguide can be formed from, for example, a thermosetting resin such as phenol resin or epoxy resin, or alkali-free glass. Specifically, the material used here is a material having a predetermined light transmission property, and is particularly preferably an epoxy resin having a main structure of polystyrene. The first substance that specifically reacts with the measurement target substance of the sample to be measured is fixed to the planar optical waveguide by, for example, the hydrophobic interaction of the substance on the surface hydrophobized with a silane coupling agent or the like. To do. As the first substance, for example, when the substance to be measured of the specimen to be measured is an antigen, an antibody can be used.

ここで「光導波路上に微粒子が分散される」とは、微粒子が光導波路表面に直接的または間接的に分散されることを意味する。「微粒子が光導波路表面に間接的に分散される」形態は、例えば微粒子が光導波路表面にブロッキング層を介して分散される形態が挙げられる。ブロッキング層は、例えばポリビニルアルコール、ウシ血清アルブミン(BSA)、ポリエチレングリコール、リン脂質ポリマー、ゼラチン、糖類(例えばスクロース、トレハロース)のような水溶性物質を含む。ブロッキング層は、さらにプロテーインヒビタを含んでもよい。   Here, “fine particles are dispersed on the optical waveguide” means that the fine particles are directly or indirectly dispersed on the surface of the optical waveguide. Examples of the form in which “the fine particles are indirectly dispersed on the surface of the optical waveguide” include a form in which the fine particles are dispersed on the surface of the optical waveguide through a blocking layer. The blocking layer contains a water-soluble substance such as polyvinyl alcohol, bovine serum albumin (BSA), polyethylene glycol, phospholipid polymer, gelatin, saccharide (eg sucrose, trehalose). The blocking layer may further include a protein inhibitor.

微粒子は、例えばポリスチレン製のラテックスビーズ(商品名)のような樹脂ビーズもしくは金コロイドのような金属コロイド、または酸化チタン粒子のような無機酸化物粒子を用いることができる。微粒子は、アルブミンのようなタンパク質、アガロースのような多糖類、シリカ粒子、カーボン粒子のような非金属粒子も用いることができる。特に、ラテックスビーズ、金属コロイドが好ましい。ラテックスビーズの中で、後述する光導波路を伝播させる光が赤色レーザの場合、青色ラテックスビーズが好ましい。   As fine particles, for example, resin beads such as polystyrene latex beads (trade name), metal colloids such as gold colloid, or inorganic oxide particles such as titanium oxide particles can be used. As the fine particles, proteins such as albumin, polysaccharides such as agarose, non-metallic particles such as silica particles and carbon particles can also be used. In particular, latex beads and metal colloids are preferable. Of the latex beads, when the light propagating through the optical waveguide described later is a red laser, blue latex beads are preferable.

微粒子は、50nm〜10μmの径を有することが好ましい。   The fine particles preferably have a diameter of 50 nm to 10 μm.

第2物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   As the second substance, for example, when the substance to be measured of the sample to be measured is an antigen, an antibody can be used.

次に、第1実施形態に係る光導波路型センサチップの製造方法を説明する。   Next, a method for manufacturing the optical waveguide sensor chip according to the first embodiment will be described.

まず、光導波路表面に測定対象物質と特異的に反応する第1物質を固定化する。つづいて、微粒子に被測定検体の測定対象物質と特異的に反応する第2物質を例えば物理吸着、あるいはカルボキシル基やアミノ基等を介した化学結合により固定化する。ひきつづき、第2物質が固定化された微粒子を水溶性物質を含む生理食塩水に分散させてスラリを調製する。このスラリを光導波路上に塗布した後、乾燥して前記光導波路上に前記微粒子を分散させて光導波路型センサチップを製造する。   First, a first substance that specifically reacts with a measurement target substance is immobilized on the surface of the optical waveguide. Subsequently, the second substance that specifically reacts with the measurement target substance of the sample to be measured is immobilized on the fine particles by, for example, physical adsorption or chemical bonding via a carboxyl group, an amino group, or the like. Subsequently, a slurry is prepared by dispersing fine particles on which the second substance is immobilized in a physiological saline containing a water-soluble substance. After applying this slurry on the optical waveguide, it is dried to disperse the fine particles on the optical waveguide to produce an optical waveguide sensor chip.

このような製造方法において、水溶性物質は例えばポリビニルアルコール、ウシ血清アルブミン(BSA)、ポリエチレングリコール、リン脂質ポリマー、ゼラチン、糖類(例えばスクロース、トレハロース)を用いることができる。また、乾燥は微粒子の分散性を向上するために凍結乾燥が好ましい。   In such a production method, for example, polyvinyl alcohol, bovine serum albumin (BSA), polyethylene glycol, phospholipid polymer, gelatin, saccharides (for example, sucrose, trehalose) can be used as the water-soluble substance. Also, the drying is preferably lyophilized in order to improve the dispersibility of the fine particles.

第1実施形態に係る光導波路型センサチップを図1を参照して具体的に説明する。図1は、第1実施形態に係る光導波路型センサチップを示す断面図である。   The optical waveguide sensor chip according to the first embodiment will be specifically described with reference to FIG. FIG. 1 is a cross-sectional view showing an optical waveguide sensor chip according to the first embodiment.

ガラス基板1の主面の両端部には、入射側グレーティング2aおよび出射側グレーティング2bが設けられている。これらのグレーティング2a,2bは、例えば酸化チタン(TiO2)、酸化錫(SnO2)、酸化亜鉛、ニオブ酸リチウム、ガリウム砒素(GaAs)、インジウム錫酸化物(ITO)、ポリイミド等から形成される。例えば熱硬化性樹脂からなる平面光導波路3は、グレーティング2a,2bを含む基板1主面に形成されている。低屈折率樹脂膜4は、平面光導波路3上に被覆されている。低屈折率樹脂は、例えば、市販されている旭硝子株式会社製のサイトップ(登録商標)のポリ(パーフルオロブテニルビニルエーテル)等を用いることができる。低屈折率樹脂膜4には、グレーティング2a,2b間に位置する平面光導波路3の一部が露出するよう開口して例えば矩形状の反応ホール5を形成している。枠状のセル壁6は、平面光導波路3を露出させる反応ホール5を囲むように低屈折率樹脂膜4上に形成されている。 At both ends of the main surface of the glass substrate 1, an incident side grating 2a and an emission side grating 2b are provided. These gratings 2a and 2b are formed of, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide, lithium niobate, gallium arsenide (GaAs), indium tin oxide (ITO), polyimide, or the like. . For example, the planar optical waveguide 3 made of a thermosetting resin is formed on the main surface of the substrate 1 including the gratings 2a and 2b. The low refractive index resin film 4 is coated on the planar optical waveguide 3. As the low refractive index resin, for example, commercially available Cytop (registered trademark) poly (perfluorobutenyl vinyl ether) manufactured by Asahi Glass Co., Ltd. can be used. For example, a rectangular reaction hole 5 is formed in the low refractive index resin film 4 so as to open a part of the planar optical waveguide 3 positioned between the gratings 2a and 2b. The frame-shaped cell wall 6 is formed on the low refractive index resin film 4 so as to surround the reaction hole 5 exposing the planar optical waveguide 3.

被測定検体の測定対象物質と特異的に反応する第1物質11は、反応ホール(測定域)5から露出する平面光導波路3表面に例えばシランカップリング剤により疎水化処理により固定化されている。被測定検体の測定対象物質と特異的に反応する第2物質12が固定化された微粒子13は、前記物質11が固定化された平面光導波路3表面に分散されている。この微粒子13の分散は、例えば微粒子および水溶性物質を含むスラリを平面光導波路3に塗布、凍結乾燥することによりを形成される。   The first substance 11 that specifically reacts with the measurement target substance of the sample to be measured is immobilized on the surface of the planar optical waveguide 3 exposed from the reaction hole (measurement area) 5 by, for example, a hydrophobic treatment with a silane coupling agent. . The fine particles 13 on which the second substance 12 that specifically reacts with the measurement target substance of the sample to be measured is immobilized are dispersed on the surface of the planar optical waveguide 3 on which the substance 11 is immobilized. The fine particles 13 are dispersed by, for example, applying a slurry containing fine particles and a water-soluble substance to the planar optical waveguide 3 and freeze-drying.

第1実施形態に係る光導波路型センサは、前述した光導波路型センサチップの入射側グレーティング2aから平面光導波路3に光を入射させるための光源(例えば赤色レーザダイオード)21と、出射側グレーティング2bから出射される光を受光する受光素子(例えばフォトダイオード)22を備えている。   The optical waveguide sensor according to the first embodiment includes a light source (for example, a red laser diode) 21 for causing light to enter the planar optical waveguide 3 from the incident side grating 2a of the optical waveguide sensor chip described above, and an output side grating 2b. The light receiving element (for example, photodiode) 22 which receives the light radiate | emitted from is provided.

次に、前述した光導波路型センサを用いて物質の測定方法を図2の(A)〜(C)を参照して説明する。   Next, a method for measuring a substance using the above-described optical waveguide sensor will be described with reference to FIGS.

まず、図2の(A)に示す光導波路型センサチップを用意する。このセンサチップは、グレーティング2a,2bを有する基板1を備えている。平面光導波路3はグレーティング2a,2bを含む基板1主面に形成されている。低屈折率樹脂膜4は、平面光導波路3上に被覆され、グレーティング2a,2b間に位置する平面光導波路3の一部が露出するよう開口して例えば矩形状の反応ホール5が形成されている。被測定検体の測定対象物質(例えば抗原)と特異的に反応する第1物質(例えば第1抗体)11は反応ホール5に露出される平面光導波路3表面に固定化されている。被測定検体の測定対象物質と特異的に反応する第2物質(例えば第2抗体)12が固定化された複数の微粒子13は、平面光導波路3上に分散されている。   First, an optical waveguide sensor chip shown in FIG. This sensor chip includes a substrate 1 having gratings 2a and 2b. The planar optical waveguide 3 is formed on the main surface of the substrate 1 including the gratings 2a and 2b. The low-refractive-index resin film 4 is coated on the planar optical waveguide 3 and is opened so that a part of the planar optical waveguide 3 located between the gratings 2a and 2b is exposed, for example, a rectangular reaction hole 5 is formed. Yes. A first substance (for example, a first antibody) 11 that specifically reacts with a measurement target substance (for example, an antigen) of a sample to be measured is immobilized on the surface of the planar optical waveguide 3 exposed to the reaction hole 5. A plurality of fine particles 13 on which a second substance (for example, a second antibody) 12 that specifically reacts with a measurement target substance of a sample to be measured is immobilized are dispersed on the planar optical waveguide 3.

次いで、反応ホール5内の前記微粒子13の分散領域を含む平面光導波路3表面に被測定検体溶液を滴下する。このとき、滴下した被測定検体溶液中に平面光導波路3表面の第1抗体11と微粒子13の第2抗体12と特異的に反応する抗原が存在しないと、図2の(B)に示すように微粒子13の第2抗体12は平面光導波路3表面の第1抗体11と結合することなく被測定検体溶液14に分散する。この状態で、赤色レーザダイオード21から赤色レーザ光を入射側グレーティング2aから平面光導波路3に入射させ、その平面光導波路3を伝播させて表面(反応ホール5での露出表面)付近にエバネッセント光を発生させても、反応ホール5内の被測定検体溶液14中の微粒子13が分散しているため、微粒子13がエバネッセント光領域に殆ど存在しなくなる。すなわち、微粒子13がエバネッセント光の吸収や散乱に殆ど関与しないため、エバネッセント光の強度の減衰が殆ど起きない。その結果、出射側グレーティング2bから出射される赤色レーザ光をフォトダイオード22で受光した際、そのレーザ光強度が殆ど変化しない。   Next, the analyte solution to be measured is dropped on the surface of the planar optical waveguide 3 including the dispersed region of the fine particles 13 in the reaction hole 5. At this time, if there is no antigen that specifically reacts with the first antibody 11 on the surface of the planar optical waveguide 3 and the second antibody 12 of the fine particles 13 in the dropped sample solution to be measured, as shown in FIG. In addition, the second antibody 12 of the fine particles 13 is dispersed in the analyte solution 14 without being bonded to the first antibody 11 on the surface of the planar optical waveguide 3. In this state, red laser light from the red laser diode 21 is incident on the planar optical waveguide 3 from the incident side grating 2a and propagates through the planar optical waveguide 3 to emit evanescent light near the surface (exposed surface in the reaction hole 5). Even if it is generated, since the fine particles 13 in the sample solution 14 to be measured in the reaction hole 5 are dispersed, the fine particles 13 hardly exist in the evanescent light region. That is, since the fine particles 13 are hardly involved in the absorption and scattering of the evanescent light, the intensity of the evanescent light is hardly attenuated. As a result, when the red laser light emitted from the emission side grating 2b is received by the photodiode 22, the intensity of the laser light hardly changes.

一方、滴下した被測定検体溶液14中に抗原が存在すると、図2の(C)に示すように抗原15は平面光導波路3表面の第1抗体11と抗原抗体反応を生じて結合し、さらに微粒子13の第2抗体12は抗原15と抗原抗体反応を生じて結合する。つまり、平面光導波路3表面の第1抗体11と微粒子13の第2抗体12の間で抗原15を介して抗原抗体反応を生じるために、微粒子13が平面光導波路3表面に対して固定化される。   On the other hand, when an antigen is present in the dropped sample solution 14 to be measured, the antigen 15 binds to the first antibody 11 on the surface of the planar optical waveguide 3 by causing an antigen-antibody reaction as shown in FIG. The second antibody 12 of the fine particle 13 binds to the antigen 15 by causing an antigen-antibody reaction. That is, in order to cause an antigen-antibody reaction via the antigen 15 between the first antibody 11 on the surface of the planar optical waveguide 3 and the second antibody 12 of the particulate 13, the particulate 13 is immobilized on the surface of the planar optical waveguide 3. The

前記被測定検体溶液の滴下直後に赤色レーザダイオード21から赤色レーザ光を入射側グレーティング2aから平面光導波路3に入射させ、その平面光導波路3を伝播させて表面(反応ホール5での露出表面)付近にエバネッセント光を発生させると、微粒子13が平面光導波路3表面に対して固定化されているため、微粒子13がエバネッセント光領域に存在することになる。すなわち、微粒子13がエバネッセント光の吸収や散乱に関与するため、エバネッセント光の強度の減衰が起きる。その結果、出射側グレーティング2bから出射される赤色レーザ光をフォトダイオード22で受光した際、そのレーザ光強度が固定化された微粒子13の影響によって時間の経過に伴って低下する。   Immediately after the sample solution to be measured is dropped, red laser light from the red laser diode 21 is incident on the planar optical waveguide 3 from the incident side grating 2a, and propagates through the planar optical waveguide 3 to expose the surface (exposed surface in the reaction hole 5). When evanescent light is generated in the vicinity, the fine particles 13 are fixed to the surface of the planar optical waveguide 3, and therefore the fine particles 13 exist in the evanescent light region. That is, since the fine particles 13 are involved in the absorption and scattering of the evanescent light, the intensity of the evanescent light is attenuated. As a result, when the red laser light emitted from the emission side grating 2b is received by the photodiode 22, the intensity of the laser light decreases with time due to the influence of the fixed fine particles 13.

フォトダイオード22で受光したレーザ光強度の低下率は、平面光導波路3表面に対して固定化される微粒子13の量、つまり抗原抗体反応に関与する被測定検体溶液14中の抗原濃度に比例する。したがって、抗原濃度が既知の被測定検体溶液において時間の経過に伴うレーザ光強度の低下曲線を作成し、この曲線の所定の時間でのレーザ光強度の低下率を求め、抗原濃度とレーザ光強度の低下率との関係を示す検量線を予め作成する。前記方法で測定した時間とレーザ光強度の低下曲線から所定の時間でのレーザ光強度の低下率を求め、このレーザ光強度の低下率を前記検量線と照合させることにより、被測定検体溶液中の抗原濃度を測定できる。   The rate of decrease in the intensity of the laser beam received by the photodiode 22 is proportional to the amount of fine particles 13 immobilized on the surface of the planar optical waveguide 3, that is, the antigen concentration in the analyte solution 14 to be measured involved in the antigen-antibody reaction. . Therefore, a laser light intensity decrease curve with the passage of time is created in a sample solution whose antigen concentration is known, and the rate of decrease of the laser light intensity over a predetermined time of this curve is obtained. A calibration curve showing the relationship with the decrease rate is prepared in advance. By calculating the laser light intensity decrease rate at a predetermined time from the time measured by the above method and the laser light intensity decrease curve, and comparing the laser light intensity decrease rate with the calibration curve, Can be measured.

なお、前記濃度測定において微粒子を平面光導波路上に水溶性物質と共に分散させることによって、微粒子の分散性が向上する。また、被測定検体溶液を平面光導波路に滴下した時に微粒子と共存する水溶性物質が溶解して微粒子の移動を可能にし、被測定検体溶液中の測定対象物質と微粒子の第2物質との円滑な反応を達成できる。   In the concentration measurement, the dispersibility of the fine particles is improved by dispersing the fine particles together with the water-soluble substance on the planar optical waveguide. In addition, when the sample solution to be measured is dropped onto the planar optical waveguide, the water-soluble substance coexisting with the fine particles dissolves to enable the movement of the fine particles, so that the measurement target substance in the sample solution to be measured and the second substance of the fine particles are smooth. Can achieve a good reaction.

以上、第1実施形態によれば、必要最小の被測定検体量が少量(例えば10μL以下)で、被測定検体を測定域に滴下する1回の操作で被測定検体の測定対処物質の濃度を定量することが可能な光導波路型センサチップ、その製造方法および光導波路型センサを提供することができる。   As described above, according to the first embodiment, the concentration of the measurement target substance in the sample to be measured is reduced by a single operation of dropping the sample to be measured into the measurement area with a small amount of the minimum sample to be measured (for example, 10 μL or less). An optical waveguide sensor chip that can be quantified, a manufacturing method thereof, and an optical waveguide sensor can be provided.

また、第1実施形態によれば、必要最小の被測定検体量が少量(例えば10μL以下)で、被測定検体を測定域に滴下する1回の操作で被測定検体の測定対処物質の濃度を定量することが可能な物質の測定方法を提供できる。   In addition, according to the first embodiment, the concentration of the measurement target substance in the sample to be measured is reduced by a single operation of dropping the sample to be measured into the measurement area with a small amount of the minimum sample to be measured (for example, 10 μL or less). A method for measuring a substance that can be quantified can be provided.

(第2実施形態)
第2実施形態に係る光導波路型センサチップは、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、この光導波路と対向して配置された支持板と、この支持板の前記光導波路と対向する表面に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを備える。
(Second Embodiment)
The optical waveguide sensor chip according to the second embodiment includes an optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on a surface, a support plate disposed to face the optical waveguide, Dispersed on the surface of the support plate facing the optical waveguide, and fine particles on which a second substance that specifically reacts with the substance to be measured is immobilized.

光導波路は、例えば平面光導波路を用いることができる。この平面光導波路は、第1実施形態で説明したのと同様、熱硬化性樹脂または無アルカリガラスから形成することができる。   For example, a planar optical waveguide can be used as the optical waveguide. This planar optical waveguide can be formed from a thermosetting resin or non-alkali glass, as described in the first embodiment.

平面光導波路への被測定検体の測定対象物質と特異的に反応する第1物質は、第1実施形態で説明したのと同様な方法で固定化される。第1物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   The first substance that specifically reacts with the measurement target substance of the analyte to be measured on the planar optical waveguide is immobilized by the same method as described in the first embodiment. As the first substance, for example, when the substance to be measured of the specimen to be measured is an antigen, an antibody can be used.

微粒子は、第1実施形態で説明したのと同様、例えばラテックスビーズのような樹脂ビーズもしくは金コロイドのような金属コロイド、または酸化チタン粒子のような無機酸化物粒子等を用いることができる。微粒子は、アルブミンのようなタンパク質、アガロースのような多糖類、シリカ粒子、カーボン粒子のような非金属粒子も用いることができる。特にラテックスビーズ、金属コロイドが好ましい。微粒子は、50nm〜10μmの径を有することが好ましい。   As described in the first embodiment, for example, resin beads such as latex beads, metal colloids such as gold colloids, or inorganic oxide particles such as titanium oxide particles can be used as the fine particles. As the fine particles, proteins such as albumin, polysaccharides such as agarose, non-metallic particles such as silica particles and carbon particles can also be used. Latex beads and metal colloids are particularly preferable. The fine particles preferably have a diameter of 50 nm to 10 μm.

第2物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   As the second substance, for example, when the substance to be measured of the sample to be measured is an antigen, an antibody can be used.

次に、第2実施形態に係る光導波路型センサチップの製造方法を説明する。   Next, a method for manufacturing an optical waveguide sensor chip according to the second embodiment will be described.

まず、光導波路表面に測定対象物質と特異的に反応する第1物質を固定化する。つづいて、微粒子に被測定検体の測定対象物質と特異的に反応する第2物質を例えば物理吸着、あるいはカルボキシル基やアミノ基等を介した化学結合により固定化する。ひきつづき、第2物質が固定化された微粒子を水溶性物質を含む生理食塩水に分散させてスラリを調製する。このスラリを支持板表面に塗布した後、乾燥して前記支持板上に前記微粒子を分散させる。その後、光導波路に支持板をその微粒子分散面が対向するように一定の距離をあけて配置することにより光導波路型センサチップを製造する。   First, a first substance that specifically reacts with a measurement target substance is immobilized on the surface of the optical waveguide. Subsequently, the second substance that specifically reacts with the measurement target substance of the sample to be measured is immobilized on the fine particles by, for example, physical adsorption or chemical bonding via a carboxyl group, an amino group, or the like. Subsequently, a slurry is prepared by dispersing fine particles on which the second substance is immobilized in a physiological saline containing a water-soluble substance. The slurry is applied to the surface of the support plate and then dried to disperse the fine particles on the support plate. Thereafter, an optical waveguide sensor chip is manufactured by disposing a support plate on the optical waveguide at a predetermined distance so that the fine particle dispersion surface faces the optical waveguide.

このような製造方法において、水溶性物質は例えばポリビニルアルコール、ウシ血清アルブミン(BSA)、ポリエチレングリコール、リン脂質ポリマー、ゼラチン、糖類(例えばスクロース、トレハロース)を用いることができる。また、乾燥は微粒子の分散性を向上するために凍結乾燥が好ましい。   In such a production method, for example, polyvinyl alcohol, bovine serum albumin (BSA), polyethylene glycol, phospholipid polymer, gelatin, saccharides (for example, sucrose, trehalose) can be used as the water-soluble substance. Also, the drying is preferably lyophilized in order to improve the dispersibility of the fine particles.

第2実施形態に係る光導波路型センサを図3を参照して具体的に説明する。図3は、第2実施形態に係る光導波路型センサチップを示す断面図である。   An optical waveguide sensor according to the second embodiment will be specifically described with reference to FIG. FIG. 3 is a cross-sectional view showing an optical waveguide sensor chip according to the second embodiment.

ガラス基板1の主面の両端部には、例えば酸化チタンからなる入射側グレーティング2aおよび出射側グレーティング2bが設けられている。例えば熱硬化性樹脂からなる平面光導波路3は、グレーティング2a,2bを含む基板1主面に形成されている。低屈折率樹脂膜4は、平面光導波路3上に被覆されている。低屈折率樹脂膜4には、グレーティング2a,2b間に位置する平面光導波路3の一部が露出するよう開口して例えば矩形状の反応ホール5を形成している。例えば合成樹脂からなる支持板7は、低屈折率樹脂膜4上に反応ホール5を覆うように形成されている。被測定検体溶液の滴下用穴(図示せず)は、支持板7表面から反応ホール5に向けて穿設されている。   At both ends of the main surface of the glass substrate 1, an incident side grating 2a and an emission side grating 2b made of, for example, titanium oxide are provided. For example, the planar optical waveguide 3 made of a thermosetting resin is formed on the main surface of the substrate 1 including the gratings 2a and 2b. The low refractive index resin film 4 is coated on the planar optical waveguide 3. For example, a rectangular reaction hole 5 is formed in the low refractive index resin film 4 so as to open a part of the planar optical waveguide 3 positioned between the gratings 2a and 2b. For example, the support plate 7 made of synthetic resin is formed on the low refractive index resin film 4 so as to cover the reaction hole 5. A hole (not shown) for dropping the sample solution to be measured is drilled from the surface of the support plate 7 toward the reaction hole 5.

被測定検体の測定対象物質と特異的に反応する第1物質11は、反応ホール(測定域)5に露出される平面光導波路3表面に例えばシランカップリング剤により疎水化処理により固定化されている。被測定検体の測定対象物質と特異的に反応する第2物質12が固定化された微粒子13は、反応ホール5に露出され、平面光導波路3と対向する支持板7表面(下面)に分散されている。この微粒子13の分散は、例えば微粒子および水溶性物質を含むスラリを前記支持板表面に塗布し、凍結乾燥することによりを形成される。   The first substance 11 that specifically reacts with the measurement target substance of the sample to be measured is immobilized on the surface of the planar optical waveguide 3 exposed to the reaction hole (measurement area) 5 by, for example, a hydrophobic treatment with a silane coupling agent. Yes. The fine particles 13 on which the second substance 12 that specifically reacts with the measurement target substance of the sample to be measured is immobilized are exposed to the reaction hole 5 and dispersed on the surface (lower surface) of the support plate 7 facing the planar optical waveguide 3. ing. The dispersion of the fine particles 13 is formed, for example, by applying a slurry containing fine particles and a water-soluble substance to the surface of the support plate and freeze-drying.

第2実施形態に係る光導波路型センサは、前述した光導波路型センサチップの入射側グレーティング2aから平面光導波路3に光を入射させるための光源(例えば赤色レーザダイオード)21と、出射側グレーティング2bから出射される光を受光する受光素子(例えばフォトダイオード)22を備えている。   An optical waveguide sensor according to the second embodiment includes a light source (for example, a red laser diode) 21 for causing light to enter the planar optical waveguide 3 from the incident side grating 2a of the optical waveguide sensor chip described above, and an output side grating 2b. The light receiving element (for example, photodiode) 22 which receives the light radiate | emitted from is provided.

次に、前述した光導波路型センサを用いて物質の測定方法を図4の(A)〜(C)を参照して説明する。   Next, a method for measuring a substance using the above-described optical waveguide sensor will be described with reference to FIGS.

まず、図4の(A)に示す光導波路型センサチップを用意する。このセンサチップは、グレーティング2a,2bを有する基板1を備えている。平面光導波路3はグレーティング2a,2bを含む基板1主面に形成されている。低屈折率樹脂膜4は、平面光導波路3上に被覆され、グレーティング2a,2b間に位置する平面光導波路3の一部が露出するよう開口して例えば矩形状の反応ホール5が形成されている。被測定検体の測定対象物質(例えば抗原)と特異的に反応する第1物質(例えば第1抗体)11は反応ホール5に露出される平面光導波路3表面に固定化されている。支持板7は、低屈折率樹脂膜4上に反応ホール5を覆うように形成されている。被測定検体の測定対象物質と特異的に反応する第2物質(例えば第2抗体)12が固定化された複数の微粒子13は、反応ホール5に露出される支持板7下面に分散されている。   First, an optical waveguide sensor chip shown in FIG. This sensor chip includes a substrate 1 having gratings 2a and 2b. The planar optical waveguide 3 is formed on the main surface of the substrate 1 including the gratings 2a and 2b. The low-refractive-index resin film 4 is coated on the planar optical waveguide 3 and is opened so that a part of the planar optical waveguide 3 located between the gratings 2a and 2b is exposed, for example, a rectangular reaction hole 5 is formed. Yes. A first substance (for example, a first antibody) 11 that specifically reacts with a measurement target substance (for example, an antigen) of a sample to be measured is immobilized on the surface of the planar optical waveguide 3 exposed to the reaction hole 5. The support plate 7 is formed on the low refractive index resin film 4 so as to cover the reaction hole 5. A plurality of fine particles 13 on which a second substance (for example, a second antibody) 12 that specifically reacts with the measurement target substance of the sample to be measured is immobilized are dispersed on the lower surface of the support plate 7 exposed to the reaction hole 5. .

次いで、反応ホール5内に被測定検体溶液を被測定検体溶液の滴下用穴(図示せず)を通して滴下する。このとき、滴下した被測定検体溶液中に平面光導波路3表面の第1抗体11と微粒子13の第2抗体12と特異的に反応する抗原が存在しないと、図4の(B)に示すように微粒子13の第2抗体12は平面光導波路3表面の第1抗体11と結合することなく、被測定検体溶液14中に分散する。この状態で、赤色レーザダイオード21から赤色レーザ光を入射側グレーティング2aから平面光導波路3に入射させ、その平面光導波路3を伝播させて表面(反応ホール5での露出表面)付近にエバネッセント光を発生させても、被測定検体溶液14中に微粒子13が分散するため、微粒子13がエバネッセント光領域に殆ど存在しなくなる。すなわち、微粒子13がエバネッセント光の吸収や散乱に殆ど関与しないため、エバネッセント光の強度の減衰が殆ど起きない。その結果、出射側グレーティング2bから出射される赤色レーザ光をフォトダイオード22で受光した際、そのレーザ光強度が殆ど変化しない。   Next, the sample solution to be measured is dropped into the reaction hole 5 through a hole (not shown) for dropping the sample solution to be measured. At this time, if there is no antigen that specifically reacts with the first antibody 11 on the surface of the planar optical waveguide 3 and the second antibody 12 of the fine particles 13 in the dropped sample solution to be measured, as shown in FIG. In addition, the second antibody 12 of the fine particles 13 is dispersed in the analyte solution 14 without being bonded to the first antibody 11 on the surface of the planar optical waveguide 3. In this state, red laser light from the red laser diode 21 is incident on the planar optical waveguide 3 from the incident side grating 2a and propagates through the planar optical waveguide 3 to emit evanescent light near the surface (exposed surface in the reaction hole 5). Even if it is generated, the fine particles 13 are dispersed in the sample solution 14 to be measured, so that the fine particles 13 hardly exist in the evanescent light region. That is, since the fine particles 13 are hardly involved in the absorption and scattering of the evanescent light, the intensity of the evanescent light is hardly attenuated. As a result, when the red laser light emitted from the emission side grating 2b is received by the photodiode 22, the intensity of the laser light hardly changes.

一方、滴下した被測定検体溶液14中に抗原が存在すると、図4の(C)に示すように抗原15は平面光導波路3表面の第1抗体11と抗原抗体反応を生じて結合し、さらに微粒子13の第2抗体12は抗原15と抗原抗体反応を生じて結合する。つまり、平面光導波路3表面の第1抗体11と微粒子13の第2抗体12の間で抗原15を介して抗原抗体反応を生じるために、微粒子13が平面光導波路3表面に対して固定化される。   On the other hand, when an antigen is present in the dropped sample solution 14 to be measured, the antigen 15 binds to the first antibody 11 on the surface of the planar optical waveguide 3 by causing an antigen-antibody reaction as shown in FIG. The second antibody 12 of the fine particle 13 binds to the antigen 15 by causing an antigen-antibody reaction. That is, in order to cause an antigen-antibody reaction via the antigen 15 between the first antibody 11 on the surface of the planar optical waveguide 3 and the second antibody 12 of the particulate 13, the particulate 13 is immobilized on the surface of the planar optical waveguide 3. The

前記被測定検体溶液の滴下直後に赤色レーザダイオード21から赤色レーザ光を入射側グレーティング2aから平面光導波路3に入射させ、その平面光導波路3を伝播させて表面(反応ホール5での露出表面)付近にエバネッセント光を発生させると、微粒子13が平面光導波路3表面に対して固定化されているため、微粒子13がエバネッセント光領域に存在することになる。すなわち、微粒子13がエバネッセント光の吸収や散乱に関与するため、エバネッセント光の強度の減衰が起きる。その結果、出射側グレーティング2bから出射される赤色レーザ光をフォトダイオード22で受光した際、そのレーザ光強度が固定化された微粒子13の影響によって時間の経過に伴って低下する。   Immediately after the sample solution to be measured is dropped, red laser light from the red laser diode 21 is incident on the planar optical waveguide 3 from the incident side grating 2a, and propagates through the planar optical waveguide 3 to expose the surface (exposed surface in the reaction hole 5). When evanescent light is generated in the vicinity, the fine particles 13 are fixed to the surface of the planar optical waveguide 3, and therefore the fine particles 13 exist in the evanescent light region. That is, since the fine particles 13 are involved in the absorption and scattering of the evanescent light, the intensity of the evanescent light is attenuated. As a result, when the red laser light emitted from the emission side grating 2b is received by the photodiode 22, the intensity of the laser light decreases with time due to the influence of the fixed fine particles 13.

フォトダイオード22で受光したレーザ光強度の低下率は、平面光導波路3表面に対して固定化される微粒子13の量、つまり抗原抗体反応に関与する被測定検体溶液14中の抗原濃度に比例する。したがって、抗原濃度が既知の被測定検体溶液において時間の経過に伴うレーザ光強度の低下曲線を作成し、この曲線の所定の時間でのレーザ光強度の低下率を求め、抗原濃度とレーザ光強度の低下率との関係を示す検量線を予め作成する。前記方法で測定した時間とレーザ光強度の低下曲線から所定の時間でのレーザ光強度の低下率を求め、このレーザ光強度の低下率を前記検量線と照合させることにより、被測定検体溶液中の抗原濃度を測定できる。   The rate of decrease in the intensity of the laser beam received by the photodiode 22 is proportional to the amount of fine particles 13 immobilized on the surface of the planar optical waveguide 3, that is, the antigen concentration in the analyte solution 14 to be measured involved in the antigen-antibody reaction. . Therefore, a laser light intensity decrease curve with the passage of time is created in a sample solution whose antigen concentration is known, and the rate of decrease of the laser light intensity over a predetermined time of this curve is obtained. A calibration curve showing the relationship with the decrease rate is prepared in advance. By calculating the laser light intensity decrease rate at a predetermined time from the time measured by the above method and the laser light intensity decrease curve, and comparing the laser light intensity decrease rate with the calibration curve, Can be measured.

なお、前記濃度測定において微粒子を平面光導波路上に水溶性物質と共に分散させることによって、微粒子の分散性が向上する。また、被測定検体溶液を平面光導波路に滴下した時に微粒子と共存する水溶性物質が溶解して微粒子の移動を可能にし、被測定検体溶液中の測定対象物質と微粒子の第2物質との円滑な反応を達成できる。   In the concentration measurement, the dispersibility of the fine particles is improved by dispersing the fine particles together with the water-soluble substance on the planar optical waveguide. In addition, when the sample solution to be measured is dropped onto the planar optical waveguide, the water-soluble substance coexisting with the fine particles dissolves to enable the movement of the fine particles, so that the measurement target substance in the sample solution to be measured and the second substance of the fine particles are smooth. Can achieve a good reaction.

以上、第2実施形態によれば、必要最小の被測定検体量が少量(例えば10μL以下)で、被測定検体を測定域に滴下する1回の操作で被測定検体の測定対処物質の濃度を定量することが可能な光導波路型センサチップ、その製造方法および光導波路型センサを提供することができる。   As described above, according to the second embodiment, the concentration of the measurement target substance in the sample to be measured is reduced by a single operation of dropping the sample to be measured into the measurement area with a small amount of the minimum sample to be measured (for example, 10 μL or less). An optical waveguide sensor chip that can be quantified, a manufacturing method thereof, and an optical waveguide sensor can be provided.

また、第2実施形態によれば、必要最小の被測定検体量が少量(例えば10μL以下)で、被測定検体を測定域に滴下する1回の操作で被測定検体の測定対処物質の濃度を定量することが可能な物質の測定方法を提供できる。   Moreover, according to the second embodiment, the concentration of the measurement target substance in the sample to be measured is reduced by a single operation of dropping the sample to be measured in a measurement area with a small amount of the minimum sample to be measured (for example, 10 μL or less). A method for measuring a substance that can be quantified can be provided.

(第3実施形態)
第3実施形態に係る物質の測定方法を以下に説明する。
(Third embodiment)
A method for measuring a substance according to the third embodiment will be described below.

最初に、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意する。つづいて、光導波路表面に被測定検体溶液を滴下して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させる。ひきつづき、光導波路表面を洗浄する。次いで、光導波路表面に前記測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を滴下して被測定検体溶液の測定対象物質と微粒子の第2物質との間で特異的に反応させる。その後、光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出することにより被測定検体溶液中の測定対象物質の濃度を測定する。   First, an optical waveguide sensor chip including an optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on a surface is prepared. Subsequently, the analyte solution to be measured is dropped on the surface of the optical waveguide to cause a specific reaction between the first substance on the surface of the optical waveguide and the substance to be measured in the analyte solution to be measured. Subsequently, the surface of the optical waveguide is cleaned. Next, a dispersion liquid of fine particles on which a second substance that specifically reacts with the measurement target substance is immobilized is dropped on the surface of the optical waveguide, so that the measurement target substance in the sample solution is measured between the measurement target substance and the second fine substance substance. React specifically. Thereafter, the concentration of the measurement target substance in the sample solution to be measured is measured by detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the measurement target substance.

光導波路は、例えば平面光導波路を用いることができる。この平面光導波路は、第1実施形態で説明したのと同様、熱硬化性樹脂または無アルカリガラスから形成することができる。平面光導波路への被測定検体の測定対象物質と特異的に反応する第1物質は、第1実施形態で説明したのと同様な方法で固定化される。第1物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   For example, a planar optical waveguide can be used as the optical waveguide. This planar optical waveguide can be formed from a thermosetting resin or non-alkali glass, as described in the first embodiment. The first substance that specifically reacts with the measurement target substance of the analyte to be measured on the planar optical waveguide is immobilized by the same method as described in the first embodiment. As the first substance, for example, when the substance to be measured of the specimen to be measured is an antigen, an antibody can be used.

洗浄は、例えば緩衝液と界面活性剤等を組み合わせた溶液、界面活性剤を含有するリン酸緩衝生理食塩水(PBS)、Tris−塩酸緩衝生理食塩水、グッドバッファー緩衝生理食塩水、リン酸緩衝液等からなる洗浄液が用いて行うことができる。   For washing, for example, a solution in which a buffer solution and a surfactant are combined, a phosphate buffered saline solution (PBS) containing a surfactant, a Tris-HCl buffered saline solution, a Good buffer buffered saline solution, a phosphate buffer solution. It can be carried out using a cleaning liquid comprising a liquid or the like.

微粒子は、第1実施形態で説明したのと同様、例えばラテックスビーズのような樹脂ビーズもしくは金コロイドのような金属コロイド、または酸化チタン粒子のような無機酸化物粒子等を用いることができる。微粒子は、アルブミンのようなタンパク質、アガロースのような多糖類、シリカ粒子、カーボン粒子のような非金属粒子も用いることができる。特に、ラテックスビーズ、金属コロイドが好ましい。微粒子は、50nm〜10μmの径を有することが好ましい。   As described in the first embodiment, for example, resin beads such as latex beads, metal colloids such as gold colloids, or inorganic oxide particles such as titanium oxide particles can be used as the fine particles. As the fine particles, proteins such as albumin, polysaccharides such as agarose, non-metallic particles such as silica particles and carbon particles can also be used. In particular, latex beads and metal colloids are preferable. The fine particles preferably have a diameter of 50 nm to 10 μm.

第2物質は、第1実施形態で説明したのと同様な方法で微粒子に固定化される。第2物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   The second substance is immobilized on the fine particles by the same method as described in the first embodiment. As the second substance, for example, when the substance to be measured of the sample to be measured is an antigen, an antibody can be used.

微粒子の分散液は、例えばリン酸、トリスヒドロキシメチルアミノメタン、ホウ酸、酢酸、クエン酸、炭酸等を含む緩衝液あるいはグッドバッファーに、ウシ血清アルブミン(BSA)、カゼイン、ポリエチレングリコール等の安定化剤、Tween、Triton−X等の非イオン界面活性剤を添加したもの、またはリン酸緩衝生理食塩水(PBS)等を含む。   The dispersion of fine particles is stabilized with bovine serum albumin (BSA), casein, polyethylene glycol, etc. in a buffer or good buffer containing, for example, phosphoric acid, trishydroxymethylaminomethane, boric acid, acetic acid, citric acid, carbonic acid, etc. Agents, non-ionic surfactants such as Tween and Triton-X, or phosphate buffered saline (PBS).

第3実施形態に係る物質の測定方法を図5に示す光導波路型センサチップおよび図6の(A)〜(C)を参照して具体的に説明する。   A method for measuring a substance according to the third embodiment will be specifically described with reference to the optical waveguide sensor chip shown in FIG. 5 and (A) to (C) of FIG.

まず、図5および図6の(A)に示す光導波路型センサチップを用意する。このセンサチップは、第1実施形態で説明した図1の微粒子の分散層を持たない以外、同様な構造を有する。すなわち、グレーティング2a,2bを有する基板1を備えている。平面光導波路3はグレーティング2a,2bを含む基板1主面に形成されている。低屈折率樹脂膜4は、平面光導波路3上に被覆され、グレーティング2a,2b間に位置する平面光導波路3の一部が露出するよう開口して例えば矩形状の反応ホール5が形成されている。被測定検体の測定対象物質(例えば抗原)と特異的に反応する第1物質(例えば第1抗体)11は反応ホール5に露出される平面光導波路3表面に固定化されている。図5において、反応ホール5に位置する平面光導波路3でのエバネッセント光の変化を測定するために入射側グレーティング2aに光を入射させるレーザ発振器(例えば赤色レーザダイオード)21を設置し、出射側グレーティング2bから出射される光を受光する光電変換素子(フォトダイオード)22を設置する。   First, an optical waveguide sensor chip shown in FIGS. 5 and 6A is prepared. This sensor chip has a similar structure except that it does not have the fine particle dispersion layer of FIG. 1 described in the first embodiment. That is, a substrate 1 having gratings 2a and 2b is provided. The planar optical waveguide 3 is formed on the main surface of the substrate 1 including the gratings 2a and 2b. The low-refractive-index resin film 4 is coated on the planar optical waveguide 3 and is opened so that a part of the planar optical waveguide 3 located between the gratings 2a and 2b is exposed, for example, a rectangular reaction hole 5 is formed. Yes. A first substance (for example, a first antibody) 11 that specifically reacts with a measurement target substance (for example, an antigen) of a sample to be measured is immobilized on the surface of the planar optical waveguide 3 exposed to the reaction hole 5. In FIG. 5, in order to measure the change of the evanescent light in the planar optical waveguide 3 located in the reaction hole 5, a laser oscillator (for example, a red laser diode) 21 for making light incident on the incident side grating 2a is installed, and the emission side grating is provided. A photoelectric conversion element (photodiode) 22 that receives light emitted from 2b is installed.

次いで、反応ホール5内に被測定検体溶液を滴下する。このとき、図6の(B)に示すように滴下した被測定検体溶液中の抗原15は、平面光導波路3表面の第1抗体11と抗原抗体反応を生じて結合する。   Next, the sample solution to be measured is dropped into the reaction hole 5. At this time, as shown in FIG. 6B, the antigen 15 in the sample solution to be dropped is bonded to the first antibody 11 on the surface of the planar optical waveguide 3 by causing an antigen-antibody reaction.

次いで、洗浄処理して平面光導波路3表面の第1抗体11と反応しない抗原15を洗い流す。つづいて、測定対象物質である抗原と特異的に反応する第2物質(例えば第2抗体)が固定化された微粒子の分散液を反応ホール5内に滴下する。このとき、図6の(C)に示すように分散液16中で平面光導波路3表面の第1抗体11と抗原抗体反応した測定対象物質である抗原15と微粒子13の第2抗体12とが抗原抗体反応して結合される。すなわち、平面光導波路3表面の第1抗体11と微粒子13の第2抗体12の間で抗原15を介して抗原抗体反応を生じるために、微粒子13が平面光導波路3表面に対して固定化される。   Next, a washing process is performed to wash away the antigen 15 that does not react with the first antibody 11 on the surface of the planar optical waveguide 3. Subsequently, a dispersion liquid of fine particles on which a second substance (for example, a second antibody) that specifically reacts with an antigen as a measurement target substance is immobilized is dropped into the reaction hole 5. At this time, as shown in FIG. 6C, the antigen 15 as the measurement target substance that has undergone an antigen-antibody reaction with the first antibody 11 on the surface of the planar optical waveguide 3 in the dispersion liquid 16 and the second antibody 12 of the fine particles 13 are present. It is bound by antigen-antibody reaction. That is, in order to cause an antigen-antibody reaction via the antigen 15 between the first antibody 11 on the surface of the planar optical waveguide 3 and the second antibody 12 of the particulate 13, the particulate 13 is immobilized on the surface of the planar optical waveguide 3. The

微粒子の分散液の滴下直後に赤色レーザダイオード21から赤色レーザ光を入射側グレーティング2aから平面光導波路3に入射させ、その平面光導波路3を伝播させて表面(反応ホール5での露出表面)付近にエバネッセント光を発生させると、微粒子13が平面光導波路3表面に対して固定化されているため、エバネッセント光領域に微粒子13が存在することになる。すなわち、微粒子13がエバネッセント光の吸収や散乱に関与するため、エバネッセント光の強度の減衰が起きる。その結果、出射側グレーティング2bから出射される赤色レーザ光をフォトダイオード22で受光した際、そのレーザ光強度が固定化された微粒子13の影響によって時間の経過に伴って低下する。   Immediately after the dispersion of the fine particle is dropped, red laser light is incident from the incident side grating 2a to the planar optical waveguide 3 and propagates through the planar optical waveguide 3 to be near the surface (exposed surface in the reaction hole 5). When evanescent light is generated, the fine particles 13 are fixed to the surface of the planar optical waveguide 3, and therefore the fine particles 13 exist in the evanescent light region. That is, since the fine particles 13 are involved in the absorption and scattering of the evanescent light, the intensity of the evanescent light is attenuated. As a result, when the red laser light emitted from the emission side grating 2b is received by the photodiode 22, the intensity of the laser light decreases with time due to the influence of the fixed fine particles 13.

フォトダイオード22で受光したレーザ光強度の低下率は、平面光導波路3表面に対して固定化される微粒子13の量、つまり抗原抗体反応に関与する被測定検体溶液14中の抗原濃度に比例する。したがって、抗原濃度が既知の被測定検体溶液において時間の経過に伴うレーザ光強度の低下曲線を作成し、この曲線の所定の時間でのレーザ光強度の低下率を求め、抗原濃度とレーザ光強度の低下率との関係を示す検量線を予め作成する。前記方法で測定した時間とレーザ光強度の低下曲線から所定の時間でのレーザ光強度の低下率を求め、このレーザ光強度の低下率を前記検量線と照合させることにより、被測定検体溶液中の抗原濃度を測定できる。   The rate of decrease in the intensity of the laser beam received by the photodiode 22 is proportional to the amount of fine particles 13 immobilized on the surface of the planar optical waveguide 3, that is, the antigen concentration in the analyte solution 14 to be measured involved in the antigen-antibody reaction. . Therefore, a laser light intensity decrease curve with the passage of time is created in a sample solution whose antigen concentration is known, and the rate of decrease of the laser light intensity over a predetermined time of this curve is obtained. A calibration curve showing the relationship with the decrease rate is prepared in advance. By calculating the laser light intensity decrease rate at a predetermined time from the time measured by the above method and the laser light intensity decrease curve, and comparing the laser light intensity decrease rate with the calibration curve, Can be measured.

以上、第3実施形態によれば必要最小の被測定検体量が少量(例えば10μL以下)で、被測定検体溶液の測定域への滴下、洗浄および微粒子分散液の測定域への滴下の3回の操作で被測定検体の測定対処物質の濃度を定量することが可能な被測定検体の測定対象物の測定方法を提供することができる。   As described above, according to the third embodiment, the minimum required amount of sample to be measured is small (for example, 10 μL or less), and the dropping of the sample solution to be measured into the measurement region, washing, and dropping of the fine particle dispersion into the measurement region are performed three times. Thus, it is possible to provide a method for measuring a measurement object of a sample to be measured, which can quantify the concentration of a substance to be measured in the sample to be measured.

特に、第3実施形態では被測定検体溶液の測定域への滴下後に洗浄を行うため、被測定検体溶液の測定対象物質(例えば抗原)の濃度が高い場合に有効である。   In particular, the third embodiment is effective when the concentration of the substance to be measured (for example, antigen) in the sample solution to be measured is high because the washing is performed after dropping the sample solution to be measured to the measurement area.

(第4実施形態)
第4実施形態に係る物質の測定方法を以下に説明する。
(Fourth embodiment)
A method for measuring a substance according to the fourth embodiment will be described below.

最初に、測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意する。予め、被測定検体溶液および被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子を例えばマイクロチューブのような容器内で混合し、微粒子の第2物質と被測定検体溶液の測定対象物質とを特異的に反応させる。つづいて、前記混合液を前記センサチップの光導波路表面に滴下して光導波路表面の第1物質と微粒子の第2物質に反応した被測定検体溶液の測定対象物質とを特異的に反応させる。次いで、光導波路表面に第1物質および測定対象物質を介して固定化された微粒子、つまり光導波路表面に固定化された微粒子、による光学的変化を検出することにより被測定検体溶液中の測定対象物質の濃度を測定する。   First, an optical waveguide sensor chip including an optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on a surface is prepared. In advance, fine particles on which a second substance that specifically reacts with a measurement target solution and a measurement target substance of the measurement target is mixed in a container such as a microtube, and the second substance and the measurement target are mixed. Specifically react with the substance to be measured in the sample solution. Subsequently, the mixed solution is dropped on the surface of the optical waveguide of the sensor chip to specifically react the first substance on the surface of the optical waveguide and the measurement target substance of the sample solution to be measured that has reacted with the second substance of the fine particles. Next, the measurement target in the sample solution to be measured is detected by detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the measurement target substance, that is, the microparticles immobilized on the surface of the optical waveguide. Measure the concentration of the substance.

光導波路は、例えば平面光導波路を用いることができる。この平面光導波路は、第1実施形態で説明したのと同様、熱硬化性樹脂または無アルカリガラスから形成することができる。平面光導波路への被測定検体の測定対象物質と特異的に反応する第1物質は、第1実施形態で説明したのと同様な方法で固定化される。第1物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   For example, a planar optical waveguide can be used as the optical waveguide. This planar optical waveguide can be formed from a thermosetting resin or non-alkali glass, as described in the first embodiment. The first substance that specifically reacts with the measurement target substance of the analyte to be measured on the planar optical waveguide is immobilized by the same method as described in the first embodiment. As the first substance, for example, when the substance to be measured of the specimen to be measured is an antigen, an antibody can be used.

微粒子は、第1実施形態で説明したのと同様、例えばラテックスビーズのような樹脂ビーズもしくは金コロイドのような金属コロイド、または酸化チタン粒子のような無機酸化物粒子等を用いることができ、特にラテックスビーズ、金属コロイドが好ましい。   As described in the first embodiment, for example, resin beads such as latex beads, metal colloids such as gold colloid, or inorganic oxide particles such as titanium oxide particles can be used as the fine particles. Latex beads and metal colloids are preferred.

微粒子は、50nm〜10μmの径を有することが好ましい。   The fine particles preferably have a diameter of 50 nm to 10 μm.

第2物質は、第1実施形態で説明したのと同様な方法で微粒子に固定化される。第2物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   The second substance is immobilized on the fine particles by the same method as described in the first embodiment. As the second substance, for example, when the substance to be measured of the sample to be measured is an antigen, an antibody can be used.

微粒子は、例えばリン酸、トリスヒドロキシメチルアミノメタン、ホウ酸、酢酸、クエン酸、炭酸等を含む緩衝液あるいはグッドバッファーに、ウシ血清アルプミン(BSA)、カゼイン、ポリエチレングリコール等の安定化剤、Tween、Triton−X等の非イオン界面活性剤を添加したもの、またはリン酸緩衝生理食塩水(PBS)等に分散して微粒子の分散液を調製することができる。   For example, the microparticles are prepared by adding a buffer such as phosphoric acid, trishydroxymethylaminomethane, boric acid, acetic acid, citric acid, carbonic acid or the like, a good buffer, a stabilizer such as bovine serum alpmin (BSA), casein, polyethylene glycol, A dispersion of fine particles can be prepared by dispersing in a non-ionic surfactant such as Triton-X or in phosphate buffered saline (PBS).

被測定検体溶液および被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の混合において、微粒子は分散液の状態であっても、固体(例えば乾固物、凍結物または粉末)の状態であってもよい。具体的には、予め微粒子の分散液を調製して、この分散液と被測定検体溶液を例えばマイクロチューブのような容器内で混合してもよい。また、被測定検体溶液および第2物質が固定化された微粒子を例えばマイクロチューブのような容器内で混合するにあたり、容器内に水溶性物質を含む微粒子の分散液を先に入れ、乾燥、例えば凍結乾燥させて容器内面に微粒子を水溶性物質を介在して分散させ、その後容器内に被測定検体溶液を入れて混合してもよい。水溶性物質は例えばポリビニルアルコール、ウシ血清アルブミン(BSA)、ポリエチレングリコール、リン脂質ポリマー、ゼラチン、糖類(例えばスクロース、トレハロース)を用いることができる。   In the mixing of microparticles in which the sample solution to be measured and the second substance that specifically reacts with the measurement target substance of the sample to be measured are immobilized, the microparticles are in a solid state (for example, dried solids, frozen A product or a powder). Specifically, a dispersion of fine particles may be prepared in advance, and this dispersion and the sample solution to be measured may be mixed in a container such as a microtube. In addition, when mixing the sample solution to be measured and the fine particles on which the second substance is immobilized, for example, in a container such as a microtube, a dispersion of fine particles containing a water-soluble substance is first put in the container and dried, for example, It is possible to freeze-dry and disperse the fine particles on the inner surface of the container with a water-soluble substance interposed therebetween, and then put the sample solution to be measured in the container and mix it. As the water-soluble substance, for example, polyvinyl alcohol, bovine serum albumin (BSA), polyethylene glycol, phospholipid polymer, gelatin, and saccharides (for example, sucrose and trehalose) can be used.

第4実施形態に係る測定方法を前述した図5に示す光導波路型センサチップおよび図7の(A),(B)を参照して具体的に説明する。   A measurement method according to the fourth embodiment will be specifically described with reference to the optical waveguide sensor chip shown in FIG. 5 and FIGS. 7A and 7B.

まず、図5および図7の(A)に示すように反応ホール5に露出した平面光導波路3表面に被測定検体の測定対象物質(例えば抗原)と特異的に反応する第1物質(例えば第1抗体)11を固定化した光導波路型センサを用意する。   First, as shown in FIG. 5 and FIG. 7A, a first substance (for example, a first substance) that specifically reacts with a measurement target substance (for example, an antigen) of a sample to be measured on the surface of the planar optical waveguide 3 exposed in the reaction hole 5. An optical waveguide sensor having 1 antibody 11 immobilized thereon is prepared.

予め、被測定検体溶液および測定対象物質である抗原と特異的に反応する第2物質(例えば第2抗体)が固定化された微粒子の分散液を例えばマイクロチューブ内で混合し、被測定検体溶液の光源と微粒子の第2抗体とを抗原抗体反応を生じさせる。   In advance, for example, in a microtube, a dispersion liquid of fine particles on which a sample substance to be measured and a second substance (for example, a second antibody) that specifically reacts with an antigen that is a measurement target substance is immobilized is mixed, and the sample solution to be measured is obtained. An antigen-antibody reaction is caused between the light source and the second antibody of fine particles.

次いで、反応ホール5内に前記混合液を滴下する。このとき、図7の(B)に示すよう混合液の既に第2抗体と抗原抗体反応した被測定検体溶液中の抗原15は、平面光導波路3表面の第1抗体11と抗原抗体反応を生じて結合する。すなわち、微粒子13の第2抗体12が予め結合された抗原15は平面光導波路3表面の第1抗体11に抗原抗体反応を生じる結合し、結果として微粒子13が平面光導波路3表面に対して固定化される。   Next, the mixed solution is dropped into the reaction hole 5. At this time, as shown in FIG. 7B, the antigen 15 in the sample solution that has already undergone an antigen-antibody reaction with the second antibody in the mixed solution causes an antigen-antibody reaction with the first antibody 11 on the surface of the planar optical waveguide 3. And combine. That is, the antigen 15 to which the second antibody 12 of the fine particle 13 is previously bound is bonded to the first antibody 11 on the surface of the planar optical waveguide 3 to cause an antigen-antibody reaction. As a result, the particulate 13 is fixed to the surface of the planar optical waveguide 3. It becomes.

前記被測定検体溶液および微粒子の分散液の滴下直後に赤色レーザダイオード21から赤色レーザ光を入射側グレーティング2aから平面光導波路3に入射させ、その平面光導波路3を伝播させて表面(反応ホール5での露出表面)付近にエバネッセント光を発生させると、微粒子13が平面光導波路3表面に対して固定化されているため、エバネッセント光領域に微粒子13が存在することになる。すなわち、微粒子13がエバネッセント光の吸収や散乱に関与するため、エバネッセント光の強度の減衰が起きる。その結果、出射側グレーティング2bから出射される赤色レーザ光をフォトダイオード22で受光した際、そのレーザ光強度が固定化された微粒子13の影響によって時間の経過に伴って低下する。   Immediately after dropping of the analyte solution to be measured and the dispersion liquid of the fine particles, red laser light is incident from the incident side grating 2a to the planar optical waveguide 3 through the incident side grating 2a, and propagates through the planar optical waveguide 3 to cause the surface (reaction hole 5). When evanescent light is generated in the vicinity of the exposed surface), the fine particles 13 are fixed to the surface of the planar optical waveguide 3, so that the fine particles 13 exist in the evanescent light region. That is, since the fine particles 13 are involved in the absorption and scattering of the evanescent light, the intensity of the evanescent light is attenuated. As a result, when the red laser light emitted from the emission side grating 2b is received by the photodiode 22, the intensity of the laser light decreases with time due to the influence of the fixed fine particles 13.

フォトダイオード22で受光したレーザ光強度の低下率は、平面光導波路3表面に対して固定化される微粒子13の量、つまり抗原抗体反応に関与する被測定検体溶液14中の抗原濃度に比例する。したがって、抗原濃度が既知の被測定検体溶液において時間の経過に伴うレーザ光強度の低下曲線を作成し、この曲線の所定の時間でのレーザ光強度の低下率を求め、抗原濃度とレーザ光強度の低下率との関係を示す検量線を予め作成する。前記方法で測定した時間とレーザ光強度の低下曲線から所定の時間でのレーザ光強度の低下率を求め、このレーザ光強度の低下率を前記検量線と照合させることにより、被測定検体溶液中の抗原濃度を測定できる。   The rate of decrease in the intensity of the laser beam received by the photodiode 22 is proportional to the amount of fine particles 13 immobilized on the surface of the planar optical waveguide 3, that is, the antigen concentration in the analyte solution 14 to be measured involved in the antigen-antibody reaction. . Therefore, a laser light intensity decrease curve with the passage of time is created in a sample solution whose antigen concentration is known, and the rate of decrease of the laser light intensity over a predetermined time of this curve is obtained. A calibration curve showing the relationship with the decrease rate is prepared in advance. By calculating the laser light intensity decrease rate at a predetermined time from the time measured by the above method and the laser light intensity decrease curve, and comparing the laser light intensity decrease rate with the calibration curve, Can be measured.

以上、第4実施形態によれば必要最小の被測定検体量が少量(例えば10μL以下)で、被測定検体溶液および微粒子分散液を測定域に滴下の1回の操作で被測定検体の測定対処物質の濃度を定量することが可能な被測定検体の測定対象物の測定方法を提供することができる。   As described above, according to the fourth embodiment, the measurement target sample is measured by a single operation of dropping the sample solution to be measured and the fine particle dispersion liquid into the measurement region with a small amount of the minimum sample to be measured (for example, 10 μL or less). It is possible to provide a method for measuring an object to be measured of a sample to be measured capable of quantifying the concentration of a substance.

なお、前述した第4実施形態において光導波路表面に滴下される被測定検体溶液および微粒子の分散液は予め混合する代わりに、被測定検体溶液および微粒子の分散液を光導波路表面に同時に滴下してもよい。   In the above-described fourth embodiment, the sample solution to be measured and the dispersion liquid of the fine particles dropped on the surface of the optical waveguide are simultaneously dropped on the surface of the optical waveguide instead of mixing in advance. Also good.

前述した第4実施形態において、被測定検体溶液および微粒子の分散液は光導波路表面に混合後に滴下したが、被測定検体溶液を滴下後に微粒子の分散液を滴下する順序、微粒子の分散液を滴下後に被測定検体溶液を滴下する順序、にしてもよい。このような順序での物質の測定方法でも、第4実施形態と同様、必要最小の被測定検体量が少量(例えば10μL以下)でも被測定検体の測定対処物質の濃度を定量することができる。   In the fourth embodiment described above, the sample solution to be measured and the fine particle dispersion are dropped on the optical waveguide surface after mixing, but the order in which the fine particle dispersion is dropped after dropping the sample solution to be measured, and the fine particle dispersion are dropped. The order of dropping the sample solution to be measured later may be used. Even in the method for measuring substances in such an order, the concentration of the substance to be measured in the sample to be measured can be quantified even if the minimum amount of sample to be measured is small (for example, 10 μL or less) as in the fourth embodiment.

(第5実施形態)
第5実施形態に係る物質測定用キットを以下に説明する。
(Fifth embodiment)
A substance measurement kit according to the fifth embodiment will be described below.

物質測定用キットは、光導波路型センサチップと、被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を収容した包装体とを組み合わせて構成される。光導波路型センサチップは、被測定検体の測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、この光導波路上に配置され、光導波路に対向して測定域を形成するための凹部を有し、かつこの測定域と連通する導入孔および排出孔が開口されたキャップとを備える。   The substance measurement kit is configured by combining an optical waveguide sensor chip and a package containing a dispersion of fine particles on which a second substance that specifically reacts with a measurement target substance of a sample to be measured is immobilized. . The optical waveguide sensor chip includes an optical waveguide in which a first substance that specifically reacts with a measurement target substance of a sample to be measured is immobilized on the surface, and is disposed on the optical waveguide and faces the optical waveguide in a measurement region. And a cap having an introduction hole and a discharge hole communicating with the measurement area.

平面光導波路への被測定検体の測定対象物質と特異的に反応する第1物質は、第1実施形態で説明したのと同様な方法で固定化される。第1物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   The first substance that specifically reacts with the measurement target substance of the analyte to be measured on the planar optical waveguide is immobilized by the same method as described in the first embodiment. As the first substance, for example, when the substance to be measured of the specimen to be measured is an antigen, an antibody can be used.

包装体に収容される微粒子は、第1実施形態で説明したのと同様、例えばスチレン製のラテックスビーズのような樹脂ビーズもしくは金コロイドのような金属コロイド、または酸化チタン粒子のような無機酸化物粒子等を用いることができる。微粒子は、アルブミンのようなタンパク質、アガロースのような多糖類、シリカ粒子、カーボン粒子のような非金属粒子も用いることができる。特に、ラテックスビーズ、金属コロイドが好ましい。微粒子は、50nm〜10μmの径を有することが好ましい。   As described in the first embodiment, the fine particles contained in the package are, for example, resin beads such as latex beads made of styrene, metal colloids such as gold colloid, or inorganic oxides such as titanium oxide particles. Particles or the like can be used. As the fine particles, proteins such as albumin, polysaccharides such as agarose, non-metallic particles such as silica particles and carbon particles can also be used. In particular, latex beads and metal colloids are preferable. The fine particles preferably have a diameter of 50 nm to 10 μm.

第2物質は、第1実施形態で説明したのと同様な方法で微粒子に固定化される。第2物質は、例えば被測定検体の測定対象物質が抗原の場合、抗体を用いることができる。   The second substance is immobilized on the fine particles by the same method as described in the first embodiment. As the second substance, for example, when the substance to be measured of the sample to be measured is an antigen, an antibody can be used.

微粒子の分散液は、例えばリン酸、トリスヒドロキシメチルアミノメタン、ホウ酸、酢酸、クエン酸、炭酸等を含む緩衝液あるいはグッドバッファーに、ウシ血清アルプミン(BSA)、カゼイン、ポリエチレングリコール等の安定化剤、Tween、Triton−X等の非イオン界面活性剤を添加したもの、またはリン酸緩衝生理食塩水(PBS)等を含む。   The fine particle dispersion is stabilized with bovine serum alpmin (BSA), casein, polyethylene glycol, etc. in a buffer or good buffer containing, for example, phosphoric acid, trishydroxymethylaminomethane, boric acid, acetic acid, citric acid, carbonic acid, etc. Agents, non-ionic surfactants such as Tween and Triton-X, or phosphate buffered saline (PBS).

包装体は、例えばポリエチレン膜またはポリエチレンとポリエチレンテレフタレートの積層膜から作ることができる。また、包装体はマイクロチューブ、プラスチックボトル、ガラス瓶を用いることができる。   The package can be made of, for example, a polyethylene film or a laminated film of polyethylene and polyethylene terephthalate. Moreover, a microtube, a plastic bottle, and a glass bottle can be used for a package.

第5実施形態に係る物質測定用キットを図8の(a),(b)を参照して具体的に説明する。図8の(a)は、光導波路型センサチップを示す平面図、同図(b)は同図(a)の断面図である。   The substance measurement kit according to the fifth embodiment will be specifically described with reference to FIGS. 8 (a) and 8 (b). FIG. 8A is a plan view showing an optical waveguide sensor chip, and FIG. 8B is a cross-sectional view of FIG.

ガラス基板31の主面の両端部には、例えば酸化チタンからなる入射側グレーティング32aおよび出射側グレーティング32bが設けられている。例えば熱硬化性樹脂からなる平面光導波路33は、グレーティング32a,32bを含む基板31主面に形成されている。例えばアクリル樹脂のような樹脂から作られるキャップ34は、平面光導波路33の主面および側面を覆うように配置されている。なお、ここでは、キャップ34の材料に、所定の低屈折率を有する他の樹脂等を代用することも可能である。キャップ34には、平面光導波路33表面との間で例えば矩形状の測定域35を形成するための矩形凹部36を有する。また、キャップ34にはその表面から測定域35に至る導入孔37および排出孔38が開口されている。被測定検体の測定対象物質と特異的に反応する第1物質11は、測定域35に露出される平面光導波路33表面に例えばシランカップリング剤により疎水化処理により固定化されている。このような平面光導波路33、キャップ34等により光導波路型センサチップを構成している。   At both ends of the main surface of the glass substrate 31, an incident side grating 32a and an emission side grating 32b made of, for example, titanium oxide are provided. For example, the planar optical waveguide 33 made of a thermosetting resin is formed on the main surface of the substrate 31 including the gratings 32a and 32b. For example, the cap 34 made of a resin such as an acrylic resin is disposed so as to cover the main surface and the side surface of the planar optical waveguide 33. Here, it is also possible to substitute another resin having a predetermined low refractive index for the material of the cap 34. The cap 34 has a rectangular recess 36 for forming, for example, a rectangular measurement area 35 between the surface of the planar optical waveguide 33. The cap 34 has an introduction hole 37 and a discharge hole 38 extending from the surface thereof to the measurement area 35. The first substance 11 that specifically reacts with the measurement target substance of the sample to be measured is immobilized on the surface of the planar optical waveguide 33 exposed to the measurement region 35 by, for example, a hydrophobic treatment with a silane coupling agent. The planar optical waveguide 33, the cap 34, and the like constitute an optical waveguide sensor chip.

被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液は、例えばポリエチレン製の包装体(図示せず)に収容されて、前述の光導波路型センサチップと組み合わされて測定用のキットを構成している。   A dispersion liquid of fine particles in which a second substance that specifically reacts with a measurement target substance of a sample to be measured is immobilized is accommodated in, for example, a polyethylene package (not shown), and the above-described optical waveguide sensor chip. The measurement kit is combined with the above.

次に、前述したキットを使用して物質の測定方法を図9の(A)〜(C)を参照して説明する。なお、測定域に露出する平面光導波路でのエバネッセント光の変化を測定するために入射側グレーティング32aに光を入射させるレーザ発振器(例えば赤色レーザダイオード)21を設置し、出射側グレーティング32bから出射される光を受光する光電変換素子(フォトダイオード)22を設置する。   Next, a method for measuring a substance using the kit described above will be described with reference to FIGS. In order to measure the change of the evanescent light in the planar optical waveguide exposed in the measurement area, a laser oscillator (for example, a red laser diode) 21 that makes light incident on the incident side grating 32a is installed, and is emitted from the output side grating 32b. A photoelectric conversion element (photodiode) 22 that receives light is installed.

まず、図8および図9の(A)に示すように測定域35に露出される平面光導波路33表面に被測定検体の測定対象物質(例えば抗原)と特異的に反応する第1物質(例えば第1抗体)11を固定化した光導波路型センサチップを用意する。   First, as shown in FIG. 8 and FIG. 9A, a first substance (for example, a substance that specifically reacts with a measurement target substance (for example, an antigen) of the sample to be measured on the surface of the planar optical waveguide 33 exposed in the measurement area 35). An optical waveguide sensor chip having a first antibody 11 immobilized thereon is prepared.

次いで、測定域35内に被測定検体溶液を導入孔37を通して滴下する。このとき、図9の(B)に示すように滴下した被測定検体溶液14中の抗原15は、平面光導波路33表面の第1抗体11と抗原抗体反応を生じて結合する。   Next, the analyte solution to be measured is dropped into the measurement area 35 through the introduction hole 37. At this time, as shown in FIG. 9B, the antigen 15 in the sample solution 14 dropped is bonded to the first antibody 11 on the surface of the planar optical waveguide 33 by causing an antigen-antibody reaction.

次いで、包装体中の微粒子の分散液をキャップ34の導入孔37を通して測定域35内の平面光導波路33表面に導入すると共に、被測定検体溶液を排出孔38を通して外部に排出する。この間、被測定検体液中の未反応の抗原は分散液とともに洗い流される。同時に、図9の(C)に示すように分散液16中の微粒子13の第2抗体12が平面光導波路33表面の第1抗体11と抗原抗体反応した測定対象物質である抗原15と抗原抗体反応して結合される。すなわち、平面光導波路33表面の第1抗体11と微粒子13の第2抗体12の間で抗原15を介して抗原抗体反応を生じるために、微粒子13が平面光導波路33表面に対して固定化される。   Next, the dispersion liquid of fine particles in the package is introduced to the surface of the planar optical waveguide 33 in the measurement area 35 through the introduction hole 37 of the cap 34, and the sample solution to be measured is discharged to the outside through the discharge hole 38. During this time, the unreacted antigen in the sample liquid to be measured is washed away together with the dispersion. At the same time, as shown in FIG. 9C, the second antibody 12 of the fine particles 13 in the dispersion 16 reacts with the first antibody 11 on the surface of the planar optical waveguide 33 and undergoes an antigen-antibody reaction. Combined in reaction. That is, in order to cause an antigen-antibody reaction via the antigen 15 between the first antibody 11 on the surface of the planar optical waveguide 33 and the second antibody 12 of the particulate 13, the particulate 13 is immobilized on the surface of the planar optical waveguide 33. The

前記微粒子の分散液の導入直後に赤色レーザダイオード21から赤色レーザ光を入射側グレーティング32aから平面光導波路33に入射させ、その平面光導波路33を伝播させて表面(測定域35での露出表面)付近にエバネッセント光を発生させた場合、分散液16中で微粒子13が平面光導波路33表面に対して固定化されるため、エバネッセント光領域に微粒子13が存在することになる。すなわち、微粒子13がエバネッセント光の吸収や散乱に関与するため、エバネッセント光の強度の減衰が起きる。その結果、出射側グレーティング32bから出射される赤色レーザ光をフォトダイオード22で受光した際、そのレーザ光強度が固定化された微粒子13の影響によって時間の経過に伴って低下する。   Immediately after the dispersion of fine particles is introduced, red laser light is incident on the planar optical waveguide 33 from the incident side grating 32a and propagated through the planar optical waveguide 33 to be exposed (surface exposed in the measurement area 35). When evanescent light is generated in the vicinity, the fine particles 13 are fixed to the surface of the planar optical waveguide 33 in the dispersion liquid 16, so that the fine particles 13 exist in the evanescent light region. That is, since the fine particles 13 are involved in the absorption and scattering of the evanescent light, the intensity of the evanescent light is attenuated. As a result, when the red laser light emitted from the emission side grating 32b is received by the photodiode 22, the intensity of the laser light decreases with time due to the influence of the fixed fine particles 13.

フォトダイオード22で受光したレーザ光強度の低下率は、平面光導波路33表面に対して固定化される微粒子13の量、つまり抗原抗体反応に関与する被測定検体溶液14中の抗原濃度に比例する。したがって、抗原濃度が既知の被測定検体溶液において時間の経過に伴うレーザ光強度の低下曲線を作成し、この曲線の所定の時間でのレーザ光強度の低下率を求め、抗原濃度とレーザ光強度の低下率との関係を示す検量線を予め作成する。前記方法で測定した時間とレーザ光強度の低下曲線から所定の時間でのレーザ光強度の低下率を求め、このレーザ光強度の低下率を前記検量線と照合させることにより、被測定検体溶液中の抗原濃度を測定できる。   The rate of decrease in the intensity of the laser beam received by the photodiode 22 is proportional to the amount of fine particles 13 immobilized on the surface of the planar optical waveguide 33, that is, the antigen concentration in the analyte solution 14 to be measured involved in the antigen-antibody reaction. . Therefore, a laser light intensity decrease curve with the passage of time is created in a sample solution whose antigen concentration is known, and the rate of decrease of the laser light intensity over a predetermined time of this curve is obtained. A calibration curve showing the relationship with the decrease rate is prepared in advance. By calculating the laser light intensity decrease rate at a predetermined time from the time measured by the above method and the laser light intensity decrease curve, and comparing the laser light intensity decrease rate with the calibration curve, Can be measured.

以上、第5実施形態の物質測定用キットによれば、光導波路と測定域への被測定検体溶液の滴下および微粒子の分散液の導入・排出が可能な構造の光導波路型センサチップ並びに微粒子の分散液を収容した包装体を組み合わせて構成するため、必要最小の被測定検体量が少量(例えば10μL以下)で、被測定検体溶液の測定域への滴下および微粒子の分散液の測定域への導入・排出の2回の操作で被測定検体の測定対処物質の濃度を定量することができる。   As described above, according to the substance measurement kit of the fifth embodiment, the optical waveguide sensor chip having a structure capable of dropping the analyte solution to be measured into the optical waveguide and the measurement region and introducing / discharging the fine particle dispersion, and the fine particle Since the package containing the dispersion liquid is combined, the required minimum amount of sample to be measured is a small amount (for example, 10 μL or less), the sample solution to be measured is dropped into the measurement area, and the dispersion of fine particles into the measurement area. The concentration of the substance to be measured in the sample to be measured can be quantified by two operations of introduction and discharge.

特に、物質測定用キットの使用による被測定検体の測定対象物の測定方法おいて、被測定検体溶液の測定域への滴下後に微粒子の分散液の測定域への導入・排出を行うため、被測定検体溶液の測定対象物質(例えば抗原)の濃度が高い場合にも有効である。   In particular, in the measurement method of the measurement object of the sample to be measured by using the substance measurement kit, since the dispersion liquid of fine particles is introduced into and discharged from the measurement region after dropping the sample solution to be measured, This is also effective when the concentration of the substance to be measured (for example, antigen) in the measurement sample solution is high.

以下、本発明の実施例を前述した図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings described above.

(実施例1)
屈折率1.52の無アルカリガラス基板1に屈折率が2.2〜2.4の酸化チタンをスパッタリングして厚さ50nmの酸化チタン膜を成膜した後、リソグラフィーとドライエッチングによりガラス基板1上にグレーティング2a,2bを形成した。つづいて、グレーティング2a,2bを含むガラス基板1上にエポキシ樹脂溶液をスピンコートした後、焼成することにより厚さ約30μmの平面光導波路3を形成した。焼成後の平面光導波路3の屈折率は1.56であった。ひきつづき、平面光導波路3上に低屈折率樹脂で、市販されている旭硝子株式会社製のサイトップ(登録商標)のポリ(パーフルオロブテニルビニルエーテル)をスクリーン印刷することにより矩形状の反応ホール(測定域)5が開口された低屈折率樹脂4を形成した。
Example 1
A titanium oxide film having a thickness of 50 nm is formed by sputtering titanium oxide having a refractive index of 2.2 to 2.4 on an alkali-free glass substrate 1 having a refractive index of 1.52. Then, the glass substrate 1 is formed by lithography and dry etching. The gratings 2a and 2b were formed on the top. Subsequently, an epoxy resin solution was spin-coated on the glass substrate 1 including the gratings 2a and 2b, and then fired to form the planar optical waveguide 3 having a thickness of about 30 μm. The refractive index of the planar optical waveguide 3 after firing was 1.56. Subsequently, a rectangular reaction hole (by a low refractive index resin on the planar optical waveguide 3 and screen-printed with a commercially available Cytop (registered trademark) poly (perfluorobutenyl vinyl ether) manufactured by Asahi Glass Co., Ltd. ( A low refractive index resin 4 having an opening 5 in the measurement area) was formed.

次いで、反応ホール5から露出する平面光導波路3表面をシランカップリング剤により疎水化し、そこへ抗インスリン抗体11を疎水性相互作用により固定化した。その後、低屈折率樹脂4上に枠状のセル壁6を反応ホール5を囲うように形成した。   Next, the surface of the planar optical waveguide 3 exposed from the reaction hole 5 was hydrophobized with a silane coupling agent, and the anti-insulin antibody 11 was immobilized thereon by hydrophobic interaction. Thereafter, a frame-like cell wall 6 was formed on the low refractive index resin 4 so as to surround the reaction hole 5.

また、リン酸緩衝生理食塩水(PBS)にブロッキングワン(ナカライテスク株式会社製)を2.5倍に希釈されるように添加して溶液を調製した。つづいて、この溶液に抗インスリン抗体が固定化された平均粒径760nmの青色ラテックスビーズを分散してビーズ分散濃度が4重量%のビーズ分散液を調製した。なお、ブロッキングワンは、非特異吸着を抑制するためのブロッキング剤で、4〜8重量%のトリス(ヒドロキシメチル)アミノメタン、1〜2重量%のアルブミン、2〜6重量%のカゼイン、10重量%以下の高分子化合物、1重量%以下の防腐剤および約重量3%の4M−水酸化ナトリウム溶液を含む水溶液である。   Further, blocking one (manufactured by Nacalai Tesque Co., Ltd.) was added to phosphate buffered saline (PBS) so as to be diluted 2.5 times to prepare a solution. Subsequently, blue latex beads having an average particle diameter of 760 nm on which the anti-insulin antibody was immobilized were dispersed in this solution to prepare a bead dispersion having a bead dispersion concentration of 4% by weight. Blocking One is a blocking agent for suppressing non-specific adsorption, 4 to 8% by weight of tris (hydroxymethyl) aminomethane, 1 to 2% by weight of albumin, 2 to 6% by weight of casein, 10% by weight. % Aqueous polymer compound, 1% by weight or less of an antiseptic and about 3% by weight of a 4M sodium hydroxide solution.

この抗インスリン抗体が固定化されたビーズ分散液を前記反応ホール5に10μL滴下し、−80℃で予備凍結した後、約1日凍結乾燥することによりビーズが予め配された図1に示す光導波路型センサチップを製造した。この凍結乾燥時には、前記組成のビーズ分散液に二糖類であるトレハロースを3重量%、界面活性剤であるTweenを0.1重量%添加した。これらの成分は、ビーズ分散液の再分散性の向上を目的として添加した。   1 μL of this anti-insulin antibody-immobilized bead dispersion is dropped into the reaction hole 5 and pre-frozen at −80 ° C., and then freeze-dried for about 1 day to place the beads in advance. A waveguide sensor chip was manufactured. At the time of this lyophilization, 3% by weight of trehalose as a disaccharide and 0.1% by weight of Tween as a surfactant were added to the bead dispersion having the above composition. These components were added for the purpose of improving the redispersibility of the bead dispersion.

得られたセンサチップの反応ホール内に被測定検体溶液である濃度1.6ng/mLおよび6.4ng/mLのインスリン溶液をそれぞれ10μL滴下し抗原抗体反応を行った。被測定検体溶液の滴下直後に赤色LED21から波長655nmの赤色光を入射側グレーティング2aを通して平面光導波路3に入射させ、その平面光導波路3を伝播させて表面(反応ホール5での露出表面)付近にエバネッセント光を発生させ、出射側グレーティング2bから出射される赤色光をフォトダイオード22で受光し、その光強度を測定した。すなわち、時間経過に伴う光強度の変化を測定した。   10 μL each of insulin solutions having concentrations of 1.6 ng / mL and 6.4 ng / mL, which are analyte solutions, were dropped into the reaction hole of the obtained sensor chip, and antigen-antibody reaction was performed. Immediately after the sample solution to be measured is dropped, red light having a wavelength of 655 nm is incident on the planar optical waveguide 3 through the incident side grating 2a and propagates through the planar optical waveguide 3 to be near the surface (exposed surface in the reaction hole 5). Then, evanescent light was generated, red light emitted from the emission side grating 2b was received by the photodiode 22, and the light intensity was measured. That is, the change in light intensity over time was measured.

6.4ng/mLのインスリン溶液については、同様な操作を3回(合計4回)行って、時間経過に伴う光強度の変化を測定した。これらの結果を図10に示す。   About the 6.4 ng / mL insulin solution, the same operation was performed 3 times (a total of 4 times), and the change of the light intensity with time passage was measured. These results are shown in FIG.

図10において被測定検体溶液の滴下直後の光強度を100%とし、その時間経過での光強度の変化を示す。図10には、濃度1.6ng/mLのインスリン溶液の結果をS1、濃度6.4ng/mLの4つのインスリン溶液の結果をS2−1,S2−2,S2−3,S2−4、として示す。また、被測定検体溶液としてインスリンの希釈溶媒のみ(ブランク)を用いて同様な操作を行って、時間経過に伴うレーザ光強度の変化を測定した結果を図10にBとして示す。   In FIG. 10, the light intensity immediately after dropping of the sample solution to be measured is assumed to be 100%, and the change in light intensity over time is shown. FIG. 10 shows that the result of the insulin solution having a concentration of 1.6 ng / mL is S1, and the results of the four insulin solutions having a concentration of 6.4 ng / mL are S2-1, S2-2, S2-3, and S2-4. Show. Moreover, the same operation was performed using only the insulin dilution solvent (blank) as the sample solution to be measured, and the result of measuring the change in the laser light intensity over time is shown as B in FIG.

図10から明らかなように所定時間におけるレーザ光強度の低下率が被測定検体溶液中のインスリン濃度と相関することがわかる。また、インスリン濃度が同一(6.4ng/mL)の4つの被測定検体溶液において、所定時間におけるレーザ光強度の低下率が近似し、再現性のよい濃度測定が可能であることがわかる。   As is apparent from FIG. 10, it can be seen that the rate of decrease of the laser light intensity at a predetermined time correlates with the insulin concentration in the sample solution to be measured. In addition, it can be seen that, in the four analyte solutions having the same insulin concentration (6.4 ng / mL), the rate of decrease of the laser light intensity at a predetermined time is approximate, and concentration measurement with good reproducibility is possible.

(実施例2)
屈折率1.52の無アルカリガラス基板1に屈折率が2.2〜2.4の酸化チタンをスパッタリングして厚さ50nmの酸化チタン膜を成膜した後、リソグラフィーとドライエッチングによりガラス基板1上にグレーティング2a,2bを形成した。つづいて、グレーティング2a,2bを含むガラス基板1上にエポキシ樹脂溶液をスピンコートした後、焼成することにより厚さ約30μmの平面光導波路3を形成した。焼成後の平面光導波路3の屈折率は1.56であった。ひきつづき、平面光導波路3上に低屈折率樹脂で、市販されている旭硝子株式会社製のサイトップ(登録商標)のポリ(パーフルオロブテニルビニルエーテル)をスクリーン印刷することにより矩形状の反応ホール(測定域)5が開口された低屈折率樹脂4を形成して図5に示す光導波路型センサチップを製造した。
(Example 2)
A titanium oxide film having a thickness of 50 nm is formed by sputtering titanium oxide having a refractive index of 2.2 to 2.4 on an alkali-free glass substrate 1 having a refractive index of 1.52. Then, the glass substrate 1 is formed by lithography and dry etching. The gratings 2a and 2b were formed on the top. Subsequently, an epoxy resin solution was spin-coated on the glass substrate 1 including the gratings 2a and 2b, and then fired to form the planar optical waveguide 3 having a thickness of about 30 μm. The refractive index of the planar optical waveguide 3 after firing was 1.56. Subsequently, a rectangular reaction hole (by a low refractive index resin on the planar optical waveguide 3 and screen-printed with a commercially available Cytop (registered trademark) poly (perfluorobutenyl vinyl ether) manufactured by Asahi Glass Co., Ltd. ( An optical waveguide sensor chip shown in FIG. 5 was manufactured by forming a low refractive index resin 4 having a measurement area 5 opened.

得られた光導波路型センサチップの反応ホールに被測定検体溶液である濃度1.6および6.4ng/mLのインスリン溶液をそれぞれ10μL滴下し、37℃で10分間抗原抗体反応を行った。つづいて、トリス緩衝生理食塩水(TBS)からなる洗浄バッファ液で、反応ホール内の余剰のインスリンを洗浄した。洗浄後の反応ホールに実施例1と同様なビーズ分散液を20μL滴下した。ビーズ分散液滴下直後から実施例1と同様に赤色LED21およびフォトダイオード22を用いて光強度の変化を測定した。   10 μL each of insulin solutions having concentrations of 1.6 and 6.4 ng / mL, which are analyte solutions, were dropped into the reaction hole of the obtained optical waveguide sensor chip, and an antigen-antibody reaction was performed at 37 ° C. for 10 minutes. Subsequently, excess insulin in the reaction hole was washed with a washing buffer solution composed of Tris-buffered saline (TBS). 20 μL of the same bead dispersion as in Example 1 was dropped into the reaction hole after washing. The change in light intensity was measured using the red LED 21 and the photodiode 22 in the same manner as in Example 1 immediately after the bead-dispersed droplet.

6.4ng/mLのインスリン溶液については、同様な操作を3回(合計4回)行って、時間経過に伴う光強度の変化を測定した。被測定検体溶液の滴下直後の光強度を100%とし、その時間経過での光強度の変化を図11に示す。図11には、濃度1.6ng/mLのインスリン溶液の結果をS1、濃度6.4ng/mLの4つのインスリン溶液の結果をS2−1,S2−2,S2−3,S2−4、として示す。また、被測定検体溶液としてインスリンの希釈溶媒のみ(ブランク)を用いて同様な操作を行って、時間経過に伴うレーザ光強度の変化を測定した結果を図11にBとして示す。   About the 6.4 ng / mL insulin solution, the same operation was performed 3 times (a total of 4 times), and the change of the light intensity with time passage was measured. The light intensity immediately after dropping of the sample solution to be measured is assumed to be 100%, and the change in light intensity over time is shown in FIG. In FIG. 11, the result of the insulin solution with a concentration of 1.6 ng / mL is S1, and the results of the four insulin solutions with a concentration of 6.4 ng / mL are S2-1, S2-2, S2-3, and S2-4. Show. Moreover, the same operation was performed using only the insulin dilution solvent (blank) as the sample solution to be measured, and the result of measuring the change in the intensity of the laser beam with the lapse of time is shown as B in FIG.

図11から明らかなように所定時間におけるレーザ光強度の低下率が被測定検体溶液中のインスリン濃度と相関することがわかる。また、インスリン濃度が同一(6.4ng/mL)の4つの被測定検体溶液において、所定時間におけるレーザ光強度の低下率が近似し、再現性のよい濃度測定が可能であることがわかる。   As is clear from FIG. 11, it can be seen that the rate of decrease in laser light intensity at a predetermined time correlates with the insulin concentration in the sample solution to be measured. In addition, it can be seen that, in the four analyte solutions having the same insulin concentration (6.4 ng / mL), the rate of decrease of the laser light intensity at a predetermined time is approximate, and concentration measurement with good reproducibility is possible.

(実施例3)
実施例2と同様な光導波路型センサチップの反応ホールに実施例1と同様なビーズ分散液を10μL滴下し、その直後に被測定検体溶液である濃度1.6ng/mLおよび6.4ng/mLのインスリン溶液をそれぞれ10μL滴下してピペッティングにより攪拌した。攪拌直後から実施例1と同様に赤色LED21およびフォトダイオード22を用いて光強度の変化を測定した。
(Example 3)
10 μL of the same bead dispersion as in Example 1 is dropped into the reaction hole of the optical waveguide sensor chip similar to that in Example 2, and immediately after that, concentrations of the analyte solution to be measured are 1.6 ng / mL and 6.4 ng / mL. 10 μL of each insulin solution was added dropwise and stirred by pipetting. Immediately after stirring, the change in light intensity was measured using the red LED 21 and the photodiode 22 in the same manner as in Example 1.

6.4ng/mLのインスリン溶液については、同様な操作を3回(合計4回)行って、時間経過に伴う光強度の変化を測定した。被測定検体溶液の滴下直後の光強度を100%とし、その時間経過での光強度の変化を図12に示す。図12には、濃度1.6ng/mLのインスリン溶液の結果をS1、濃度6.4ng/mLの4つのインスリン溶液の結果をS2−1,S2−2,S2−3,S2−4、として示す。また、被測定検体溶液としてインスリンの希釈溶媒のみ(ブランク)を用いて同様な操作を行って、時間経過に伴うレーザ光強度の変化を測定した結果を図12にBとして示す。   About the 6.4 ng / mL insulin solution, the same operation was performed 3 times (a total of 4 times), and the change of the light intensity with time passage was measured. The light intensity immediately after dropping of the sample solution to be measured is assumed to be 100%, and the change in light intensity over time is shown in FIG. FIG. 12 shows that the result of the insulin solution with a concentration of 1.6 ng / mL is S1, and the results of the four insulin solutions with a concentration of 6.4 ng / mL are S2-1, S2-2, S2-3, and S2-4. Show. Moreover, the same operation was performed using only the diluted solvent of insulin (blank) as the sample solution to be measured, and the result of measuring the change in the laser light intensity over time is shown as B in FIG.

図12から明らかなように所定時間におけるレーザ光強度の低下率が被測定検体溶液中のインスリン濃度と相関することがわかる。また、インスリン濃度が同一(6.4ng/mL)の4つの被測定検体溶液において、所定時間におけるレーザ光強度の低下率が近似し、再現性のよい濃度測定が可能であることがわかる。   As is clear from FIG. 12, it can be seen that the rate of decrease of the laser light intensity at a predetermined time correlates with the insulin concentration in the sample solution to be measured. In addition, it can be seen that, in the four analyte solutions having the same insulin concentration (6.4 ng / mL), the rate of decrease of the laser light intensity at a predetermined time is approximate, and concentration measurement with good reproducibility is possible.

なお、実施例3においてビーズ分散液とインスリン溶液の滴下の順番を逆にても、同時に滴下しても、実施例3と同様にレーザ光強度の低下率が被測定検体溶液中のインスリン濃度と相関することを確認した。   In Example 3, whether the bead dispersion liquid and the insulin solution were dropped in the reverse order or simultaneously, the rate of decrease in laser light intensity was similar to the insulin concentration in the sample solution to be measured, as in Example 3. It was confirmed that there was a correlation.

(実施例4)
予め、実施例1と同様なビーズ分散液をマイクロチューブに50μL入れて凍結乾燥させた。この凍結乾燥時には、実施例1と同様に前記ビーズ分散液に二糖類であるトレハロースを3重量%、界面活性剤であるTweenを0.1重量%添加した。つついて、マイクロチューブに被測定検体溶液である濃度1.6ng/mLおよび6.4ng/mLのインスリン溶液をそれぞれ50μL滴下、混合して抗原抗体反応を行った。次いで、マイクロチューブ内の混合液20μLを実施例2と同様な図5に示す光導波路型センサチップの反応ホールに滴下し、滴下直後から実施例1と同様に赤色LED21およびフォトダイオード22を用いて光強度の変化を測定した。
Example 4
In advance, 50 μL of the same bead dispersion as in Example 1 was placed in a microtube and freeze-dried. At the time of freeze-drying, 3% by weight of trehalose as a disaccharide and 0.1% by weight of Tween as a surfactant were added to the bead dispersion as in Example 1. At the same time, 50 μL each of insulin solutions having a concentration of 1.6 ng / mL and 6.4 ng / mL, which are sample solution to be measured, were dropped into a microtube and mixed to perform an antigen-antibody reaction. Next, 20 μL of the mixed solution in the microtube is dropped into the reaction hole of the optical waveguide sensor chip shown in FIG. 5 similar to that of the second embodiment, and the red LED 21 and the photodiode 22 are used just as in the first embodiment immediately after the dropping. The change in light intensity was measured.

6.4ng/mLのインスリン溶液については、同様な操作を3回(合計4回)行って、時間経過に伴う光強度の変化を測定した。被測定検体溶液の滴下直後の光強度を100%とし、その時間経過での光強度の変化を図13に示す。図13には、濃度1.6ng/mLのインスリン溶液の結果をS1、濃度6.4ng/mLの4つのインスリン溶液の結果をS2−1,S2−2,S2−3,S2−4、として示す。また、被測定検体溶液としてインスリンの希釈溶媒のみ(ブランク)を用いて同様な操作を行って、時間経過に伴うレーザ光強度の変化を測定した結果を図13にBとして示す。   About the 6.4 ng / mL insulin solution, the same operation was performed 3 times (a total of 4 times), and the change of the light intensity with time passage was measured. The light intensity immediately after dropping of the sample solution to be measured is assumed to be 100%, and the change in light intensity over time is shown in FIG. FIG. 13 shows that the result of the insulin solution with a concentration of 1.6 ng / mL is S1, and the results of the four insulin solutions with a concentration of 6.4 ng / mL are S2-1, S2-2, S2-3, and S2-4. Show. Moreover, the same operation was performed using only the diluted solvent of insulin (blank) as the sample solution to be measured, and the result of measuring the change in laser light intensity over time is shown as B in FIG.

図13から明らかなように所定時間におけるレーザ光強度の低下率が被測定検体溶液中のインスリン濃度と相関することがわかる。また、インスリン濃度が同一(6.4ng/mL)の4つの被測定検体溶液において、所定時間におけるレーザ光強度の低下率が近似し、再現性のよい濃度測定が可能であることがわかる。   As is apparent from FIG. 13, it can be seen that the rate of decrease of the laser light intensity at a predetermined time correlates with the insulin concentration in the sample solution to be measured. In addition, it can be seen that, in the four analyte solutions having the same insulin concentration (6.4 ng / mL), the rate of decrease of the laser light intensity at a predetermined time is approximate, and concentration measurement with good reproducibility is possible.

第1実施形態に係る光導波路型センサチップを有する光導波路型センサを示す断面図。Sectional drawing which shows the optical waveguide type sensor which has the optical waveguide type sensor chip concerning 1st Embodiment. 第1実施形態における被測定検体の測定対象物質の測定工程を示す概略図。Schematic which shows the measurement process of the measuring object substance of the to-be-measured sample in 1st Embodiment. 第2実施形態に係る光導波路型センサチップを有する光導波路型センサを示す断面図。Sectional drawing which shows the optical waveguide type sensor which has the optical waveguide type sensor chip concerning 2nd Embodiment. 第2実施形態における物質の測定工程を示す概略図。Schematic which shows the measurement process of the substance in 2nd Embodiment. 第3実施形態に係る物質の測定方法に用いられる光導波路型センサチップを示す断面図。Sectional drawing which shows the optical waveguide type sensor chip used for the measuring method of the substance which concerns on 3rd Embodiment. 第3実施形態における物質の測定工程を示す概略図。Schematic which shows the measurement process of the substance in 3rd Embodiment. 第4実施形態における物質の測定工程を示す概略図。Schematic which shows the measurement process of the substance in 4th Embodiment. 第5実施形態に係る物質測定用キットの光導波路型センサチップを示す断面図。Sectional drawing which shows the optical waveguide type sensor chip of the substance measurement kit which concerns on 5th Embodiment. 第5実施形態における物質の測定工程を示す概略図。Schematic which shows the measurement process of the substance in 5th Embodiment. 実施例1のインスリンの濃度測定における時間経過に伴うレーザ光強度の変化を示す特性図。The characteristic view which shows the change of the laser beam intensity with time progress in the density | concentration measurement of the insulin of Example 1. FIG. 実施例2のインスリンの濃度測定における時間経過に伴うレーザ光強度の変化を示す特性図。The characteristic view which shows the change of the laser beam intensity with progress of time in the density | concentration measurement of the insulin of Example 2. FIG. 実施例3のインスリンの濃度測定における時間経過に伴うレーザ光強度の変化を示す特性図。FIG. 5 is a characteristic diagram showing a change in laser light intensity with time in measuring the concentration of insulin in Example 3. 実施例4のインスリンの濃度測定における時間経過に伴うレーザ光強度の変化を示す特性図。The characteristic view which shows the change of the laser beam intensity with time progress in the density | concentration measurement of the insulin of Example 4. FIG.

符号の説明Explanation of symbols

1,31…ガラス基板、2a,2b,32a,32b…グレーティング、3,33…平面光導波路、5…反応ホール、11…第1物質、12…第2物質、13…微粒子、15…測定対象物質、34…キャップ、35…測定域、37…導入孔、38…排出孔。   DESCRIPTION OF SYMBOLS 1,31 ... Glass substrate, 2a, 2b, 32a, 32b ... Grating, 3, 33 ... Planar optical waveguide, 5 ... Reaction hole, 11 ... 1st substance, 12 ... 2nd substance, 13 ... Fine particle, 15 ... Measurement object Substance, 34 ... cap, 35 ... measurement area, 37 ... introduction hole, 38 ... discharge hole.

Claims (23)

測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路;および
前記光導波路上に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子;
を備えることを特徴とする光導波路型センサチップ。
An optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on the surface; and fine particles that are dispersed on the optical waveguide and in which a second substance that specifically reacts with the measurement target substance is immobilized ;
An optical waveguide sensor chip comprising:
測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路;
前記光導波路と対向して配置された支持板;および
前記支持板の前記光導波路と対向する表面に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子;
を備えることを特徴とする光導波路型センサチップ。
An optical waveguide in which a first substance that specifically reacts with a substance to be measured is immobilized on the surface;
A support plate disposed opposite to the optical waveguide; and fine particles on which a second substance that is dispersed on the surface of the support plate facing the optical waveguide and specifically reacts with the measurement target substance is immobilized;
An optical waveguide sensor chip comprising:
前記光導波路は、板状のガラスであることを特徴とする請求項1または2記載の光導波路型センサチップ。   3. The optical waveguide sensor chip according to claim 1, wherein the optical waveguide is a plate-like glass. 前記光導波路は、厚さ3〜300μmの有機系樹脂膜であることを特徴とする請求項1または2記載の光導波路型センサチップ。   The optical waveguide sensor chip according to claim 1, wherein the optical waveguide is an organic resin film having a thickness of 3 to 300 μm. 前記微粒子は、樹脂ビーズであることを特徴とする請求項1または2記載の光導波路型センサチップ。   3. The optical waveguide sensor chip according to claim 1, wherein the fine particles are resin beads. 前記微粒子は、金属コロイドであることを特徴とする請求項1または2記載の光導波路型センサチップ。   3. The optical waveguide sensor chip according to claim 1, wherein the fine particles are metal colloids. 前記測定対象物質が抗原で、前記光導波路表面および前記微粒子に固定化された前記測定対象物質と特異的に反応する第1、第2物質がそれぞれ抗体であることを特徴とする請求項1〜6のいずれか1項に記載の光導波路型センサチップ。   The first and second substances that specifically react with the measurement target substance immobilized on the surface of the optical waveguide and the fine particles are antigens, respectively, and the measurement target substance is an antibody. 7. The optical waveguide sensor chip according to claim 6. 前記微粒子は、前記光導波路表面にブロッキング層を介して分散されることを特徴とする請求項1記載の光導波路型センサチップ。   2. The optical waveguide sensor chip according to claim 1, wherein the fine particles are dispersed on the surface of the optical waveguide via a blocking layer. 光導波路表面に測定対象物質と特異的に反応する第1物質を固定化すること;
前記光導波路上に前記測定対象物質と特異的に反応する第2物質が固定化された微粒子を含むスラリを塗布すること;および
前記塗布後に乾燥して前記光導波路上に前記微粒子を分散すること;
を含むことを特徴とする光導波路型センサチップの製造方法。
Immobilizing a first substance that specifically reacts with the substance to be measured on the surface of the optical waveguide;
Applying a slurry containing fine particles on which a second substance that specifically reacts with the substance to be measured is immobilized on the optical waveguide; and drying after the application to disperse the fine particles on the optical waveguide. ;
A method for manufacturing an optical waveguide sensor chip, comprising:
光導波路表面に測定対象物質と特異的に反応する第1物質を固定化すること;
支持板表面に前記測定対象物質と特異的に反応する第2物質が固定化された微粒子を含むスラリを塗布すること;
前記塗布後に乾燥して前記支持板上に前記微粒子を分散すること;および
前記光導波路に前記支持板をその微粒子分散面が対向するように一定の距離をあけて配置すること;
を含むことを特徴とする光導波路型センサチップの製造方法。
Immobilizing a first substance that specifically reacts with the substance to be measured on the surface of the optical waveguide;
Applying a slurry containing fine particles on which a second substance that specifically reacts with the measurement target substance is immobilized on the surface of the support plate;
Drying after the coating to disperse the fine particles on the support plate; and disposing the support plate on the optical waveguide at a certain distance so that the fine particle dispersion surface faces each other;
A method for manufacturing an optical waveguide sensor chip, comprising:
前記スラリは、水溶性物質を含むことを特徴とする請求項9または10記載の光導波路型チップの製造方法。   11. The method for manufacturing an optical waveguide chip according to claim 9, wherein the slurry contains a water-soluble substance. 測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、前記光導波路上に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを備える光導波路型センサチップを用意すること;
前記センサチップの光導波路表面に被測定検体溶液を滴下して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させると共に、前記測定対象物質と前記光導波路上に分散された微粒子の第2物質との間で特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法。
An optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on the surface, and fine particles that are dispersed on the optical waveguide and in which a second substance that specifically reacts with the measurement target substance is immobilized An optical waveguide sensor chip comprising:
The analyte solution to be measured is dropped on the surface of the optical waveguide of the sensor chip to cause a specific reaction between the first substance on the surface of the optical waveguide and the substance to be measured in the analyte solution, and the substance to be measured and the Reacting specifically with the second substance of the fine particles dispersed on the optical waveguide; and detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the measurement target substance. To do;
A method for measuring a substance, comprising:
測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意すること;
前記センサチップの光導波路表面に被測定検体溶液を滴下して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させること;
前記光導波路表面を洗浄すること;
前記光導波路表面に被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を滴下して被測定検体溶液の測定対象物質と微粒子の第2物質との間で特異的に反応させること;および
光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法。
Providing an optical waveguide sensor chip including an optical waveguide having a first substance that specifically reacts with a measurement target substance immobilized on the surface;
Dropping the analyte solution to be measured on the surface of the optical waveguide of the sensor chip to cause a specific reaction between the first substance on the surface of the optical waveguide and the substance to be measured in the analyte solution;
Cleaning the surface of the optical waveguide;
A dispersion liquid of fine particles in which a second substance that specifically reacts with the measurement target substance of the sample to be measured is dropped onto the surface of the optical waveguide to drop between the measurement target substance of the measurement target solution and the second substance of the fine particles. And detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured;
A method for measuring a substance, comprising:
測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意すること;
被測定検体溶液、および被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子を予め混合し、微粒子の第2物質と被測定検体溶液の測定対象物質とを特異的に反応させること;
前記混合液を前記センサチップの光導波路表面に滴下して前記光導波路表面の第1物質と微粒子の第2物質に反応した被測定検体溶液の測定対象物質とを特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法。
Providing an optical waveguide sensor chip including an optical waveguide having a first substance that specifically reacts with a measurement target substance immobilized on the surface;
A sample solution and a microparticle to which a second substance that specifically reacts with the measurement target substance of the sample to be measured is mixed in advance, and the second substance of the microparticle and the measurement target substance of the sample solution are specified Reacting automatically;
Dropping the mixed liquid onto the surface of the optical waveguide of the sensor chip and causing the first substance on the surface of the optical waveguide to react specifically with the measurement target substance of the analyte solution to be reacted with the second substance of the fine particles; Detecting an optical change caused by fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured;
A method for measuring a substance, comprising:
測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意すること;
前記センサチップの光導波路表面に被測定検体溶液を滴下して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させること;
前記光導波路表面に被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を滴下して前記測定対象物質と微粒子の第2物質との間で特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法。
Providing an optical waveguide sensor chip including an optical waveguide having a first substance that specifically reacts with a measurement target substance immobilized on the surface;
Dropping the analyte solution to be measured on the surface of the optical waveguide of the sensor chip to cause a specific reaction between the first substance on the surface of the optical waveguide and the substance to be measured in the analyte solution;
A dispersion liquid of fine particles in which a second substance that specifically reacts with the measurement target substance of the specimen to be measured is dropped on the surface of the optical waveguide, and specific between the measurement target substance and the second fine substance substance. And detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured;
A method for measuring a substance, comprising:
測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路を備える光導波路型センサチップを用意すること;
前記センサチップの光導波路表面に被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を滴下すること;
前記分散液が滴下された前記光導波路表面に被測定検体溶液を滴下して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させると共に前記測定対象物質と前記分散液中の微粒子の第2物質との間で特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法。
Providing an optical waveguide sensor chip including an optical waveguide having a first substance that specifically reacts with a measurement target substance immobilized on the surface;
Dropping a dispersion liquid of fine particles on which a second substance that specifically reacts with a measurement target substance of a sample to be measured is immobilized on the optical waveguide surface of the sensor chip;
A sample solution to be measured is dropped on the surface of the optical waveguide to which the dispersion liquid has been dropped to cause a specific reaction between the first substance on the surface of the optical waveguide and the substance to be measured in the sample solution to be measured. Reacting specifically between the substance and the second substance of the fine particles in the dispersion; and detecting optical changes caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured To do;
A method for measuring a substance, comprising:
測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、前記光導波路と対向して配置された支持板と、前記支持板の前記光導波路と対向する表面に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを備える光導波路型センサチップを用意すること;
前記センサチップの光導波路と前記支持板の間に被測定検体溶液を注入して光導波路表面の第1物質と被測定検体溶液中の測定対象物質との間で特異的に反応させると共に、前記測定対象物質と前記支持板に分散された微粒子の第2物質との間で特異的に反応させること;および
前記光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法。
An optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on the surface, a support plate disposed to face the optical waveguide, and a surface of the support plate that is opposed to the optical waveguide are dispersed on the surface. And providing an optical waveguide sensor chip comprising fine particles on which a second substance that specifically reacts with the measurement target substance is immobilized;
The analyte solution to be measured is injected between the optical waveguide of the sensor chip and the support plate to cause a specific reaction between the first substance on the surface of the optical waveguide and the analyte to be measured in the analyte solution. Reacting specifically between the substance and the second substance of the fine particles dispersed on the support plate; and optical change by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured Detecting
A method for measuring a substance, comprising:
被測定検体の測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、この光導波路表面に配置され、前記光導波路表面との間で測定域を形成するための凹部を有し、かつこの測定域と連通する導入孔および排出孔が開口されたキャップとを備える光導波路型センサチップ;および
被測定検体の測定対象物質と特異的に反応する第2物質が固定化された微粒子の分散液を収容した包装体;
を組み合わせたことを特徴とする物質測定用キット。
An optical waveguide in which a first substance that specifically reacts with a measurement target substance of a sample to be measured is immobilized on the surface, and disposed on the surface of the optical waveguide to form a measurement area between the surface of the optical waveguide An optical waveguide sensor chip having a recess and a cap having an introduction hole and a discharge hole communicating with the measurement area; and a second substance that specifically reacts with the measurement target substance of the sample to be measured is fixed A package containing a dispersion of micronized fine particles;
A substance measurement kit characterized by combining the above.
請求項18記載の物質測定用キットの使用において、
被測定検体溶液を光導波路型センサチップのキャップの導入孔を通して測定域内の光導波路表面に滴下して光導波路表面に固定化された第1物質と被測定検体溶液の測定対象物質とを特異的に反応させること;
包装体内の微粒子の分散液を前記キャップの導入孔を通して測定域内の光導波路表面に導入すると共に、被測定検体溶液を排出孔を通して排出する間、特異的に反応された被測定検体溶液の測定対象物質と微粒子の第2物質との間で特異的に反応させること;および
光導波路表面に第1物質および測定対象物質を介して固定化された微粒子による光学的変化を検出すること;
を含むことを特徴とする物質の測定方法。
Use of the substance measurement kit according to claim 18,
A sample substance to be measured is dropped onto the surface of the optical waveguide in the measurement region through the introduction hole of the cap of the optical waveguide sensor chip, and the first substance immobilized on the surface of the optical waveguide and the substance to be measured of the sample solution to be measured are specifically determined. Reacting with;
While the dispersion of fine particles in the package is introduced to the surface of the optical waveguide in the measurement area through the introduction hole of the cap, the measurement target of the measurement target solution specifically reacted while the measurement target solution is discharged through the discharge hole Reacting specifically between the substance and the second substance of the fine particles; and detecting an optical change caused by the fine particles immobilized on the surface of the optical waveguide via the first substance and the substance to be measured;
A method for measuring a substance, comprising:
前記被測定検体溶液の測定対象物質が抗原で、この測定対象物質と特異的に反応する前記第1、第2の物質が抗体であることを特徴とする請求項12〜17または19のいずれか1項に記載の物質の測定方法。   20. The measurement target substance of the sample solution to be measured is an antigen, and the first and second substances that specifically react with the measurement target substance are antibodies. The method for measuring a substance according to item 1. 前記被測定検体溶液の測定対象物質が抗原で、この測定対象物質と特異的に反応する前記第1、第2の物質が抗体であることを特徴とする請求項18記載の物質測定用キット。   19. The substance measurement kit according to claim 18, wherein the substance to be measured in the sample solution to be measured is an antigen, and the first and second substances that react specifically with the substance to be measured are antibodies. 測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と、前記光導波路上に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを有する光導波路型センサチップ;
前記光導波路に光を入射させる光源;および
前記光導波路から出射される光を受光する受光素子;
を備えることを特徴とする光導波路型センサ。
An optical waveguide in which a first substance that specifically reacts with a measurement target substance is immobilized on the surface, and fine particles that are dispersed on the optical waveguide and in which a second substance that specifically reacts with the measurement target substance is immobilized An optical waveguide sensor chip having:
A light source that makes light incident on the optical waveguide; and a light receiving element that receives light emitted from the optical waveguide;
An optical waveguide sensor comprising:
測定対象物質と特異的に反応する第1物質が表面に固定化された光導波路と前記光導波路と対向して配置された支持板と、前記支持板の前記光導波路と対向する表面に分散され、前記測定対象物質と特異的に反応する第2物質が固定化された微粒子とを有する光導波路型センサチップ;
前記光導波路に光を入射させる光源;および
前記光導波路から出射される光を受光する受光素子;
を備えることを特徴とする光導波路型センサ。
The first substance that specifically reacts with the measurement target substance is dispersed on the surface of the optical waveguide fixed on the surface, the support plate disposed opposite to the optical waveguide, and the surface of the support plate facing the optical waveguide. An optical waveguide sensor chip having fine particles on which a second substance that specifically reacts with the substance to be measured is immobilized;
A light source that makes light incident on the optical waveguide; and a light receiving element that receives light emitted from the optical waveguide;
An optical waveguide sensor comprising:
JP2008274708A 2007-11-07 2008-10-24 Optical waveguide sensor chip, optical waveguide sensor chip manufacturing method, substance measurement method, substance measurement kit, and optical waveguide sensor Active JP5424610B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008274708A JP5424610B2 (en) 2007-11-07 2008-10-24 Optical waveguide sensor chip, optical waveguide sensor chip manufacturing method, substance measurement method, substance measurement kit, and optical waveguide sensor
US12/266,023 US20090124024A1 (en) 2007-11-07 2008-11-06 Optical-waveguide sensor chip, method of manufacturing the same, method of measuring substance, substance-measuring kit and optical-waveguide sensor
US13/462,196 US8642319B2 (en) 2007-11-07 2012-05-02 Optical-waveguide sensor chip, method of manufacturing the same, method of measuring substance, substance-measuring kit and optical-waveguide sensor
US14/141,268 US9075017B2 (en) 2007-11-07 2013-12-26 Optical-waveguide sensor chip, method of manufacturing the same, method of measuring substance, substance-measuring kit and optical-waveguide sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007290210 2007-11-07
JP2007290210 2007-11-07
JP2008274708A JP5424610B2 (en) 2007-11-07 2008-10-24 Optical waveguide sensor chip, optical waveguide sensor chip manufacturing method, substance measurement method, substance measurement kit, and optical waveguide sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013242887A Division JP2014066720A (en) 2007-11-07 2013-11-25 Optical-waveguide sensor chip, method of manufacturing optical-waveguide sensor chip, method of measuring substance, substance-measuring kit, and optical-waveguide sensor

Publications (2)

Publication Number Publication Date
JP2009133842A true JP2009133842A (en) 2009-06-18
JP5424610B2 JP5424610B2 (en) 2014-02-26

Family

ID=40734355

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008274708A Active JP5424610B2 (en) 2007-11-07 2008-10-24 Optical waveguide sensor chip, optical waveguide sensor chip manufacturing method, substance measurement method, substance measurement kit, and optical waveguide sensor
JP2013242887A Pending JP2014066720A (en) 2007-11-07 2013-11-25 Optical-waveguide sensor chip, method of manufacturing optical-waveguide sensor chip, method of measuring substance, substance-measuring kit, and optical-waveguide sensor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013242887A Pending JP2014066720A (en) 2007-11-07 2013-11-25 Optical-waveguide sensor chip, method of manufacturing optical-waveguide sensor chip, method of measuring substance, substance-measuring kit, and optical-waveguide sensor

Country Status (2)

Country Link
JP (2) JP5424610B2 (en)
CN (1) CN101451995A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111764A1 (en) * 2010-03-12 2011-09-15 コニカミノルタホールディングス株式会社 Storage sensor substrate, dried sensor substrate, method for producing storage sensor substrate, and method for producing dried sensor substrate
JP2012037253A (en) * 2010-08-03 2012-02-23 Tanaka Kikinzoku Kogyo Kk Reagent composition for immuno-chromatography and measuring method using the same
JP2012173220A (en) * 2011-02-23 2012-09-10 Toshiba Corp Optical waveguide type biochemical sensor chip, optical waveguide type biosensor, and substance measuring kit
JP2012215553A (en) * 2011-03-30 2012-11-08 Toshiba Corp Optical waveguide type measurement system, measurement method, and optical waveguide type sensor chip
JP2013061298A (en) * 2011-09-14 2013-04-04 Toshiba Corp Optical waveguide type measuring system, measuring method and optical waveguide type sensor chip
JP2013148560A (en) * 2012-01-23 2013-08-01 Toshiba Corp Sensor chip, measurement system and measuring method
JP2013195404A (en) * 2012-03-22 2013-09-30 Toshiba Corp Measurement method, sensor chip and measurement device
CN103764403A (en) * 2011-06-30 2014-04-30 联邦国营企业"Goznak" Valuable document with an optically variable structure (variants)
JP2015025820A (en) * 2014-11-04 2015-02-05 株式会社東芝 Optical waveguide type measurement system and measurement method for glycosylated hemoglobin
US9274104B2 (en) 2011-03-30 2016-03-01 Kabushiki Kaisha Toshiba Measuring system using optical waveguide, measuring device, measuring method, optical waveguide type sensor chip, and magnetic fine particle
US9645145B2 (en) 2014-12-12 2017-05-09 Tohoku University Sensor chip, detection system, and method of detecting target substance in analyte
JP2017526912A (en) * 2014-07-29 2017-09-14 エルディーアイピー, エルエルシー Waveguide-based partially encapsulated sensing chip, system and method of use
US10551318B2 (en) 2006-03-10 2020-02-04 Ldip, Llc Waveguide-based optical scanning systems
US10590493B2 (en) 2006-03-10 2020-03-17 Ldip, Llc Waveguide-based detection system with scanning light source
US10809255B2 (en) 2016-09-06 2020-10-20 Canon Medical Systems Corporation Specimen measurement apparatus
JP2021076416A (en) * 2019-11-06 2021-05-20 キヤノンメディカルシステムズ株式会社 Analysis method and optical analyzer
US11181479B2 (en) 2015-02-27 2021-11-23 Ldip, Llc Waveguide-based detection system with scanning light source

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268981B2 (en) * 2010-03-24 2013-08-21 株式会社東芝 Optical sensor
CN103713124B (en) * 2013-12-27 2015-12-09 中国科学院苏州生物医学工程技术研究所 A kind of kit for trace of albumin in tracer liquid and method of operating thereof
US20170342470A1 (en) * 2014-12-12 2017-11-30 Konica Minolta, Inc. Diluent for fluorescent nano particles, kit for immunofluorescent staining which utilizes same, solution for immunofluorescent staining, immunofluorescent staining method, and gene staining method
US10371700B2 (en) 2016-06-02 2019-08-06 Canon Medical Systems Corporation In-vitro diagnostic
JP2019060839A (en) * 2017-09-22 2019-04-18 株式会社Lixil Toilet device
CN111742212B (en) 2019-01-08 2024-02-20 京东方科技集团股份有限公司 Fluid detection panel and fluid detection device
CN109632660B (en) * 2019-01-17 2022-04-05 京东方科技集团股份有限公司 Fluid detection panel
JP7399674B2 (en) * 2019-10-18 2023-12-18 キヤノンメディカルシステムズ株式会社 Specimen suspension, manufacturing method of specimen suspension, and detection method
CN110865060A (en) * 2019-11-29 2020-03-06 中国人民大学 Method for detecting glycocholic acid by one-step method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979821A (en) * 1988-01-27 1990-12-25 Ortho Diagnostic Systems Inc. Cuvette for receiving liquid sample
JPH06213892A (en) * 1993-01-13 1994-08-05 Daikin Ind Ltd Optical measuring device
JPH0763760A (en) * 1993-08-31 1995-03-10 Daikin Ind Ltd Optical method and device for measuring immunity
JP2001021565A (en) * 1999-07-07 2001-01-26 Japan Science & Technology Corp Fluoroimmunoassay and device therefor
JP2001133460A (en) * 1999-11-08 2001-05-18 Tosoh Corp High-sensitivity immunity measurement reagent of hepatitis b virus surface antigen
JP2005156527A (en) * 2003-11-07 2005-06-16 Sekisui Chem Co Ltd Optical measurement device and optical measurement method of specific binder using it
JP2007240361A (en) * 2006-03-09 2007-09-20 Sekisui Chem Co Ltd Localized plasmon enhancing sensor
JP2008216046A (en) * 2007-03-05 2008-09-18 Fujifilm Corp Local plasmon enhanced fluorescence sensor
JP2009115665A (en) * 2007-11-07 2009-05-28 Toshiba Corp Material measuring method and material measuring kit
JP2010071693A (en) * 2008-09-16 2010-04-02 Fujifilm Corp Sensing method, sensing device, inspection chip, and inspection kit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017009A (en) * 1986-06-26 1991-05-21 Ortho Diagnostic Systems, Inc. Scattered total internal reflectance immunoassay system
US5599668A (en) * 1994-09-22 1997-02-04 Abbott Laboratories Light scattering optical waveguide method for detecting specific binding events
EP0918984B1 (en) * 1996-08-16 2001-06-27 Zeptosens AG Optical detector
JP2005099011A (en) * 2003-08-29 2005-04-14 Toshiba Corp Antigen measurement apparatus and method, pallet, and antibody chip package
JP4231051B2 (en) * 2003-08-29 2009-02-25 株式会社東芝 Method for measuring the concentration of a substance to be measured, kit for measuring the concentration of a substance to be measured, and sensor chip
JP4436109B2 (en) * 2003-11-07 2010-03-24 積水化学工業株式会社 Optical measuring apparatus and optical measuring method for specific binding substance using the same
US7541197B2 (en) * 2004-06-29 2009-06-02 Los Alamos National Security, Llc Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris
JP4673714B2 (en) * 2004-12-27 2011-04-20 株式会社東芝 Optical waveguide type biochemical sensor chip and manufacturing method thereof
JP4761867B2 (en) * 2005-07-26 2011-08-31 株式会社東芝 Optical sensor chip
JP2007078607A (en) * 2005-09-16 2007-03-29 Yokogawa Electric Corp Detection method of deposit in microflow channel, and microflow channel using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979821A (en) * 1988-01-27 1990-12-25 Ortho Diagnostic Systems Inc. Cuvette for receiving liquid sample
JPH06213892A (en) * 1993-01-13 1994-08-05 Daikin Ind Ltd Optical measuring device
JPH0763760A (en) * 1993-08-31 1995-03-10 Daikin Ind Ltd Optical method and device for measuring immunity
JP2001021565A (en) * 1999-07-07 2001-01-26 Japan Science & Technology Corp Fluoroimmunoassay and device therefor
JP2001133460A (en) * 1999-11-08 2001-05-18 Tosoh Corp High-sensitivity immunity measurement reagent of hepatitis b virus surface antigen
JP2005156527A (en) * 2003-11-07 2005-06-16 Sekisui Chem Co Ltd Optical measurement device and optical measurement method of specific binder using it
JP2007240361A (en) * 2006-03-09 2007-09-20 Sekisui Chem Co Ltd Localized plasmon enhancing sensor
JP2008216046A (en) * 2007-03-05 2008-09-18 Fujifilm Corp Local plasmon enhanced fluorescence sensor
JP2009115665A (en) * 2007-11-07 2009-05-28 Toshiba Corp Material measuring method and material measuring kit
JP2010071693A (en) * 2008-09-16 2010-04-02 Fujifilm Corp Sensing method, sensing device, inspection chip, and inspection kit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590493B2 (en) 2006-03-10 2020-03-17 Ldip, Llc Waveguide-based detection system with scanning light source
US10551318B2 (en) 2006-03-10 2020-02-04 Ldip, Llc Waveguide-based optical scanning systems
WO2011111764A1 (en) * 2010-03-12 2011-09-15 コニカミノルタホールディングス株式会社 Storage sensor substrate, dried sensor substrate, method for producing storage sensor substrate, and method for producing dried sensor substrate
JP5929752B2 (en) * 2010-03-12 2016-06-08 コニカミノルタ株式会社 Storage sensor substrate and storage sensor substrate and dry sensor substrate manufacturing method
JP2012037253A (en) * 2010-08-03 2012-02-23 Tanaka Kikinzoku Kogyo Kk Reagent composition for immuno-chromatography and measuring method using the same
JP2012173220A (en) * 2011-02-23 2012-09-10 Toshiba Corp Optical waveguide type biochemical sensor chip, optical waveguide type biosensor, and substance measuring kit
JP2012215553A (en) * 2011-03-30 2012-11-08 Toshiba Corp Optical waveguide type measurement system, measurement method, and optical waveguide type sensor chip
US9274104B2 (en) 2011-03-30 2016-03-01 Kabushiki Kaisha Toshiba Measuring system using optical waveguide, measuring device, measuring method, optical waveguide type sensor chip, and magnetic fine particle
CN103764403A (en) * 2011-06-30 2014-04-30 联邦国营企业"Goznak" Valuable document with an optically variable structure (variants)
JP2013061298A (en) * 2011-09-14 2013-04-04 Toshiba Corp Optical waveguide type measuring system, measuring method and optical waveguide type sensor chip
JP2013148560A (en) * 2012-01-23 2013-08-01 Toshiba Corp Sensor chip, measurement system and measuring method
JP2013195404A (en) * 2012-03-22 2013-09-30 Toshiba Corp Measurement method, sensor chip and measurement device
JP2017526912A (en) * 2014-07-29 2017-09-14 エルディーアイピー, エルエルシー Waveguide-based partially encapsulated sensing chip, system and method of use
JP2015025820A (en) * 2014-11-04 2015-02-05 株式会社東芝 Optical waveguide type measurement system and measurement method for glycosylated hemoglobin
US9645145B2 (en) 2014-12-12 2017-05-09 Tohoku University Sensor chip, detection system, and method of detecting target substance in analyte
US11181479B2 (en) 2015-02-27 2021-11-23 Ldip, Llc Waveguide-based detection system with scanning light source
US10809255B2 (en) 2016-09-06 2020-10-20 Canon Medical Systems Corporation Specimen measurement apparatus
JP2021076416A (en) * 2019-11-06 2021-05-20 キヤノンメディカルシステムズ株式会社 Analysis method and optical analyzer
JP7479821B2 (en) 2019-11-06 2024-05-09 キヤノンメディカルシステムズ株式会社 Analysis method and optical analysis device

Also Published As

Publication number Publication date
JP5424610B2 (en) 2014-02-26
CN101451995A (en) 2009-06-10
JP2014066720A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5424610B2 (en) Optical waveguide sensor chip, optical waveguide sensor chip manufacturing method, substance measurement method, substance measurement kit, and optical waveguide sensor
US9075017B2 (en) Optical-waveguide sensor chip, method of manufacturing the same, method of measuring substance, substance-measuring kit and optical-waveguide sensor
de Puig et al. Challenges of the nano–bio interface in lateral flow and dipstick immunoassays
Plowman et al. Multiple-analyte fluoroimmunoassay using an integrated optical waveguide sensor
US7498145B2 (en) Concentration measuring method, concentration measuring kit, and sensor chip for use in the method
CA2177362C (en) Sensor device for sandwich assay
JPH05504830A (en) Sensor for optical analysis
Robinson Optical immunosensing systems—meeting the market needs
US8530152B2 (en) Methods of reducing non-specific interaction in metal nanoparticle assays
Burenin et al. Direct immunosensing by spectral correlation interferometry: assay characteristics versus antibody immobilization chemistry
Zhou et al. Integrating a microwave resonator and a microchannel with an immunochromatographic strip for stable and quantitative biodetection
JP2013515956A (en) Sample measuring apparatus and method
Das et al. Computational modeling for intelligent surface plasmon resonance sensor design and experimental schemes for real‐time plasmonic biosensing: A Review
JP4970217B2 (en) Method for measuring substances
JP5268981B2 (en) Optical sensor
Lu et al. Dissolution-enhanced luminescence enhanced digital microfluidics immunoassay for sensitive and automated detection of H5N1
JP3668973B2 (en) Reader cuvette for quantifying substances using the evanescent field method
US6870237B1 (en) Repeated structure of nanometer thin films with symmetric or asymmetric configuration for SPR signal modulation
Haushalter et al. Multiplex flow assays
JP2009115666A (en) Optical waveguide type sensor
TWI653449B (en) Fluorescent immunodetection device and method combining photonic crystal and magnetic beads
JPH0224459B2 (en)
CN112304906B (en) Dual-channel probe type 81-degree inclined fiber bragg grating sensor system and preparation method and application thereof
JP5766642B2 (en) Measuring method, sensor chip, and measuring apparatus
JP2000258418A (en) Measuring method by using immuno-chromatography and test body analytical tool used therein

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R151 Written notification of patent or utility model registration

Ref document number: 5424610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350