JP2005077396A - Optical waveguide for analysis - Google Patents

Optical waveguide for analysis Download PDF

Info

Publication number
JP2005077396A
JP2005077396A JP2003346339A JP2003346339A JP2005077396A JP 2005077396 A JP2005077396 A JP 2005077396A JP 2003346339 A JP2003346339 A JP 2003346339A JP 2003346339 A JP2003346339 A JP 2003346339A JP 2005077396 A JP2005077396 A JP 2005077396A
Authority
JP
Japan
Prior art keywords
dna
optical waveguide
gold
light
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003346339A
Other languages
Japanese (ja)
Inventor
Shu Honda
周 本田
Kenji Kato
健次 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICROTEC NITION KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
MICROTEC NITION KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICROTEC NITION KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical MICROTEC NITION KK
Priority to JP2003346339A priority Critical patent/JP2005077396A/en
Publication of JP2005077396A publication Critical patent/JP2005077396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an optical waveguide for analyzing simply and inexpensively a biotechnology-related material such as DNA or an environment-related material, qualitatively or quantitatively by an optical waveguide method. <P>SOLUTION: Many extremely-fine materials (nano-dots, nano-particles, nano-lines or the like of various materials including gold) are arranged at intervals in the light-passable degree on the optical waveguide surface, and thereby evanescent light oozes out from the clearance to the surface and the evanescent light acts on a component bonded to the surface of the fine material. Hereby the evanescent light oozing out from the waveguide surface is absorbed by DNA, and shows an absorbance in proportion to the DNA concentration. Namely, qualitative/quantitative analysis is enabled from the absorbance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光を通さない物質(金等)であっても、その表面に固定した被測定検体(DNA等)を光導波路法により微量の試料で安価に定性・定量測定する方法を提供する。  The present invention provides a method for qualitatively and quantitatively measuring a sample to be measured (DNA or the like) immobilized on the surface of a substance (such as gold) that does not transmit light with a small amount of sample by an optical waveguide method at low cost. .

▲1▼光導波路基盤全面に金等の薄膜層を設け、この上に被測定検体を固定・結合させる方式では、エバネッセント光は薄膜によって吸収され、薄膜表面に到達することは出来ない。そのため、光を通さない物質に被測定検体を結合させて測定しようとする方法は光導波路法に適用できない欠点があった。  (1) In a system in which a thin film layer such as gold is provided on the entire surface of the optical waveguide substrate, and the specimen to be measured is fixed and coupled thereto, the evanescent light is absorbed by the thin film and cannot reach the surface of the thin film. For this reason, there is a drawback in that the method of measuring by combining a sample to be measured with a substance that does not transmit light cannot be applied to the optical waveguide method.

▲2▼具体的な一例を次に示す。
チオール基(−SH)を一方の端に修飾したDNAプローブは、−SとAu(111)面との結合により金薄膜上に固定される。一般に使用されているDNAチップは、ガラス、プラスチック、シリコン単結晶等の基盤の上にCr,Ti等の下地層を設け、其の上に金薄層を積層しAu(111)面を最表面に形成するようにした構造を有している。この構造の薄層を光導波路表面全面に形成すると、膜厚が厚い為、エバネッセント光は吸収され金の表面にとどかない。其の為、金の表面に固定したDNAに修飾した蛍光物質を励起することは出来ない。又、同様に金の表面に固定したDNAによるエバネッセント波の吸収を測定することは出来ない。
(2) A specific example is shown below.
A DNA probe in which a thiol group (-SH) is modified at one end is immobilized on a gold thin film by bonding of -S and Au (111) surface. A commonly used DNA chip has a base layer made of Cr, Ti, etc. on a substrate made of glass, plastic, silicon single crystal, etc., and a thin gold layer is laminated on it, and the Au (111) surface is the outermost surface. It has the structure formed in. When a thin layer having this structure is formed on the entire surface of the optical waveguide, the evanescent light is absorbed and does not reach the gold surface because the film thickness is large. Therefore, it is not possible to excite a fluorescent substance modified with DNA immobilized on the gold surface. Similarly, absorption of evanescent waves by DNA immobilized on the gold surface cannot be measured.

▲3▼金薄層上Au(111)面に固定したDNAプローブに、未知試料中のターゲットDNAをハイブリダイズさせる。この二本鎖DNAに特定の挿入剤をインターカレートし、電極基盤との間に流れる電流を測定する方法がある。この方法では電極の構造が複雑且つ高度の製造技術を必要とするため、チップのコストが非常に高くなるという欠点がある。  (3) The target DNA in the unknown sample is hybridized to the DNA probe fixed on the Au (111) surface on the gold thin layer. There is a method in which a specific intercalating agent is intercalated into this double-stranded DNA and the current flowing between the electrode substrate and the electrode substrate is measured. This method has a drawback that the cost of the chip becomes very high because the structure of the electrode is complicated and requires advanced manufacturing techniques.

▲4▼金薄層上Au(111)面にチオール基を介してDNAプローブを固定し、これにターゲットDNAをハイブリダイズさせる。こうして形成された二本鎖DNAを表面プラズモン共鳴法(SPR)により測定する方法がある。この方法は使用する試料の量が多いという欠点がある。  (4) A DNA probe is immobilized on the Au (111) surface on the gold thin layer via a thiol group, and the target DNA is hybridized thereto. There is a method for measuring the double-stranded DNA thus formed by surface plasmon resonance (SPR). This method has the disadvantage of using a large amount of sample.

▲5▼金ナノ粒子にチオール基を介してDNAプローブを固定し、ここにターゲットDNAをハイブリダイズさせる。この複数の金ナノ粒子を凝集させ、その濃淡からDNAを検出する方法がある。この方法では複数の種類のDNAを特定することは出来ない。又、必要とする試料の量も多い。  (5) A DNA probe is immobilized on gold nanoparticles via a thiol group, and a target DNA is hybridized thereto. There is a method of aggregating the plurality of gold nanoparticles and detecting DNA from the density thereof. This method cannot identify multiple types of DNA. In addition, a large amount of sample is required.

光を通さない物質(金等)であっても、その表面に固定した被測定検体(DNA等)を光導波路法により微量の試料で安価に定性・定量測定する方法を提供することを課題とする。  It is an object to provide a method for qualitatively and quantitatively measuring a sample to be measured (DNA, etc.) immobilized on the surface of a substance (such as gold) that does not transmit light with a small amount of sample by an optical waveguide method at low cost. To do.

以上の課題を解決する為の基本的な手段と具体的な応用例について以下に示す。
検体を結合させる物質(金等)をナノオーダの微粒子、薄膜のドット或は細線にし、お互いに光が通る程度の間隔を置くように光導波路表面に配置する。検体を結合させる物質の表面に被測定検体(DNA等)を結合させる。微粒子の場合は被検体を表面に結合させてから光導波路表面に配置する方法も可能である。
The basic means for solving the above problems and specific application examples are shown below.
The substance (gold or the like) that binds the specimen is made into nano-order fine particles, thin-film dots or thin lines, and is arranged on the surface of the optical waveguide so as to have a distance that allows light to pass through each other. A sample to be measured (DNA or the like) is bound to the surface of a substance to which the sample is bound. In the case of fine particles, it is also possible to place the analyte on the surface and then place it on the surface of the optical waveguide.

DNAの測定方法を例にして以下に具体的な方法を示す。
エバネッセント光が金の表面に固定したDNAに到達出来る様に光導波路表面に、ある程度の間隔を設けて複数の金のナノドット或いはナノオーダの線を形成し、又はナノ粒子を配置し、この金にチオール基を介してDNAプローブを固定する。ここに試料を滴下し、プローブにターゲットDNAをハイブリダイズさせた後試料を洗い流し、ハイブリダイズした二本鎖のターゲットDNAのみ金に固定した状態にする。其の後、この二本鎖DNAに蛍光物質を吸着させ、光導波路に励起光を入射させる。励起光はドット、又は 粒子の間を通して導波路表面から金表面に固定したDNAに到達し、DNAに付着した蛍光物質を励起する。蛍光強度は導波路表面に対抗するように設けられた検出器により測定される。蛍光発光強度によりDNAを定性或いは定量する。
A specific method will be described below by taking a DNA measurement method as an example.
In order to allow evanescent light to reach the DNA immobilized on the gold surface, a plurality of gold nanodots or nano-order lines are formed on the surface of the optical waveguide at a certain interval, or nanoparticles are arranged, and thiol is placed on the gold. The DNA probe is immobilized via the group. A sample is dropped here, the target DNA is hybridized to the probe, and then the sample is washed away so that only the hybridized double-stranded target DNA is fixed to gold. Thereafter, a fluorescent substance is adsorbed on the double-stranded DNA, and excitation light is incident on the optical waveguide. Excitation light reaches the DNA fixed on the gold surface from the waveguide surface through dots or particles, and excites the fluorescent substance attached to the DNA. The fluorescence intensity is measured by a detector provided to oppose the waveguide surface. Qualitatively or quantitatively determine DNA by fluorescence emission intensity.

又、ターゲット二本鎖DNAのみ金表面に固定した後、光導波路に紫外線を入射させ、この光をドット或いは細線、又は 粒子の間を通して導波路表面から金表面に固定したDNAに到達させ、DNAにより吸収させ、光導波路出射口側に設けた検出器により吸光度を検出し、吸光度の大小によりDNAを定性或いは定量する。In addition, after fixing only the target double-stranded DNA to the gold surface, ultraviolet light is incident on the optical waveguide, and this light is made to reach the DNA fixed on the gold surface from the waveguide surface through the dots, fine wires, or particles. Then, the absorbance is detected by a detector provided on the exit side of the optical waveguide, and DNA is qualitatively or quantitatively determined by the magnitude of the absorbance.

▲1▼透光性物質に結合した被検体は勿論の事、非透光性物質を利用してその表面に結合した被検体を光導波路法により測定できるようになる。
具体例を次に示す:
金と−SH基との結合即ちチオレート結合により金にDNAを固定する方法が一般に使用されている。光導波路表面に金の薄膜を形成し、これにDNAを固定する一般の方法では金薄膜の厚さが数百〜数千nmあり、エバネッセント波はこの膜を透過できないため金表面に固定したDNAの測定は出来ない。即ち光導波路分光法はDNA測定には応用できない。しかし、本発明により光導波路分光法がDNA測定に利用できるようになる。
{Circle around (1)} It is possible to measure not only an object bonded to a light-transmitting substance but also an object bonded to the surface using a non-light-transmitting substance by the optical waveguide method.
Specific examples are as follows:
In general, a method of immobilizing DNA on gold by a bond between gold and a -SH group, that is, a thiolate bond is generally used. In a general method of forming a gold thin film on the surface of an optical waveguide and immobilizing DNA on this, the thickness of the gold thin film is several hundred to several thousand nm, and evanescent waves cannot penetrate this film, so DNA immobilized on the gold surface Cannot be measured. That is, optical waveguide spectroscopy cannot be applied to DNA measurement. However, the present invention enables optical waveguide spectroscopy to be used for DNA measurement.

▲2▼光導波路分光法はコストが非常に安いため、安価な測定方法を提供できる。
▲3▼微量の試料で測定が出来る。
▲4▼測定が容易である。
▲5▼複数の試料を1つの導波路チップで測定することが出来る。
(2) Optical waveguide spectroscopy is very inexpensive and can provide an inexpensive measurement method.
(3) Measurement is possible with a small amount of sample.
(4) Measurement is easy.
(5) A plurality of samples can be measured with one waveguide chip.

▲6▼チップのコストが安い。
例えば、既に開発されている電流検出方法や、また電気化学発光法でDNAを検出する方法では測定チップのコストが非常に高価であるが、この方法では半分以下にコスト低減できる可能性がある。
▲7▼本発明による方法はバイオ、環境関連物質など広範囲の分野で利用でき、光導波路による分析範囲を大幅に拡大することが出来る。
(6) The cost of the chip is low.
For example, the current detection method that has already been developed and the method of detecting DNA by the electrochemiluminescence method have a very expensive measuring chip, but this method may reduce the cost to half or less.
(7) The method according to the present invention can be used in a wide range of fields such as biotechnology and environment-related substances, and can greatly expand the analysis range by an optical waveguide.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明による実施例を次に示す。
光導波路DNA検出チップに関する実施例を以下に示す。
Examples according to the present invention will be described below.
Examples relating to the optical waveguide DNA detection chip are shown below.

▲1▼蛍光検出方式用光導波路ナノドットDNA評価チップ:
図−1に概要図を示す。
ガラス、石英ガラス、プラスチック等の光導波路▲6▼上に金のナノドットを、間隔をあけて多数固定する。この金ドットにDNAプローブを固定し、未知試料中のターゲットDNAをハイブリダイズさせ、更に蛍光色素を吸着させる。この状態で導波路▲6▼のの側面から励起光▲1▼を入射する。導波路表面には金のナノドット間の隙間を通ってエバネッセント波が導波路表面に浸出し、DNA▲3▼に吸着した蛍光色素▲5▼を励起する。こうして励起された蛍光▲4▼を導波路表面に対峙するように設置された検出器(図−9−▲14▼)により検出する。この蛍光強度は導波路表面に形成された金ナノドットに固定されたds−DNAの数に比例するので,定性及び定量分析する事が可能である。
(1) Optical waveguide nanodot DNA evaluation chip for fluorescence detection method:
Figure 1 shows a schematic diagram.
A large number of gold nanodots are fixed on an optical waveguide (6) made of glass, quartz glass, plastic or the like at intervals. A DNA probe is fixed to the gold dot, a target DNA in an unknown sample is hybridized, and a fluorescent dye is further adsorbed. In this state, the excitation light (1) is incident from the side surface of the waveguide (6). An evanescent wave leaches out of the waveguide surface through the gap between the gold nanodots to excite the fluorescent dye (5) adsorbed on the DNA (3). The fluorescence (4) thus excited is detected by a detector (FIG. 9- (14)) installed so as to face the waveguide surface. Since the fluorescence intensity is proportional to the number of ds-DNAs immobilized on the gold nanodots formed on the waveguide surface, qualitative and quantitative analysis is possible.

▲2▼多数同時計測用導波路:
上記の導波路を図−2に示すように分岐し複数個の検出部を設けることも出来る。図に示すように導波路を複数個に分岐し,複数個のDNAプローブ固定領域を設け、ここにターゲットDNAをハイブリダイズさせる。更に蛍光色素を吸着させ、左側から入射した励起光により蛍光を発生させる。ここでは4分岐の例を示したが,分岐数には制限はない。
(2) Waveguide for multiple simultaneous measurement:
The above waveguide can be branched as shown in FIG. 2 to provide a plurality of detectors. As shown in the figure, the waveguide is branched into a plurality of parts, a plurality of DNA probe fixing regions are provided, and the target DNA is hybridized there. Further, a fluorescent dye is adsorbed, and fluorescence is generated by excitation light incident from the left side. Although an example of four branches is shown here, the number of branches is not limited.

▲3▼吸光度測定方式DNAチップ:
図−3は図−1で説明した蛍光測定用チップの内、蛍光色素▲5▼を吸着させないで、DNAの光吸収を測定するものである。入射光▲1▼−1は光導波路▲6▼を透過するときそのエバネッセント波(例:波長λ≒260nm)はDNAに吸収される。従って、出射光▲7▼の吸収スペクトルを測定すれば,導波路表面のDNA濃度を測定することが出来る。
(3) Absorbance measurement method DNA chip:
FIG. 3 is for measuring the light absorption of DNA without adsorbing the fluorescent dye (5) in the fluorescence measuring chip described in FIG. When the incident light (1) -1 passes through the optical waveguide (6), its evanescent wave (eg, wavelength λ≈260 nm) is absorbed by DNA. Therefore, if the absorption spectrum of the outgoing light (7) is measured, the DNA concentration on the surface of the waveguide can be measured.

▲4▼多数同時測定用吸光度測定方式DNAチップ:
図−4に示すように、DNA固定領域を図−3に示す構造をもった導波路DNAチップにすることにより複数のDNAを1つのチップに固定し光吸収測定法により測定することが可能である。
(4) Absorbance measurement method for multiple simultaneous measurement DNA chip:
As shown in Fig. 4, it is possible to fix a plurality of DNAs on a single chip by using a waveguide DNA chip having the structure shown in Fig. 3 as the DNA fixing region, and to measure by a light absorption measurement method. is there.

▲5▼蛍光測定用光導波路DNAナノ粒子チップ;
図−5に示すように、金ナノ粒子▲2▼−1の表面にチオール基(−SH)等を介してチオレート結合によりDNAプローブを固定し、これにターゲットDNAをハイブリダイズさせたものを光が透過できる程度の間隔をおいて光導波路表面に置くか接着或いは吸着させる。入射した励起光▲1▼のエバネッセント光はナノ粒子間の隙間を通って伝播し、DNAに吸着した蛍光色素▲5▼を励起し、蛍光を発する。この蛍光強度を蛍光検出器(図−9−▲14▼)により測定すれば其の濃度を測定することが出来る。
(5) Optical waveguide DNA nanoparticle chip for fluorescence measurement;
As shown in FIG. 5, a DNA probe immobilized on the surface of a gold nanoparticle {circle around (2)}-1 via a thiol group (—SH), etc., by thiolate bonding, and hybridized with the target DNA is light. It is placed on the surface of the optical waveguide with an interval that allows transmission of light, or is adhered or adsorbed. The incident evanescent light of the excitation light (1) propagates through the gaps between the nanoparticles, excites the fluorescent dye (5) adsorbed on the DNA, and emits fluorescence. If this fluorescence intensity is measured by a fluorescence detector (FIG. 9- <14>), its concentration can be measured.

▲6▼吸光度測定用金ナノ粒子DNAチップ:
図−6に示すように、入射光▲1▼−1のエバネッセント光は金ナノ粒子▲2▼−1の間を通って伝播し、ナノ粒子に固定したDNA▲3▼の吸収を受けた後、導波路出口から出射する(▲7▼−1)する。ナノ粒子は液体中であっても測定できる。即ち、DNA固定ナノ粒子を含む液体を光導波路表面に乗せても良い。
(6) Gold nanoparticle DNA chip for measuring absorbance:
As shown in FIG. 6, after the evanescent light of the incident light (1) -1 propagates through the gold nanoparticles (2) -1, and receives the absorption of the DNA (3) immobilized on the nanoparticles. Then, the light exits from the waveguide exit (7) -1. Nanoparticles can be measured even in liquid. That is, a liquid containing DNA-immobilized nanoparticles may be placed on the surface of the optical waveguide.

▲7▼蛍光測定用金ナノラインチップ;
図−1,3,5,6に示す金ナノドット▲2▼及びナノ粒子▲2▼−1を、線幅、高さ(厚さ)、及び間隔が数nm〜数百nm程度の金ナノライン▲2▼−2に置き換えた光導波路チップも同じ目的に応用できる。図−7に一例を模式的に示す。光導波路▲6▼の表面に光の進行方向に直角に、或いは傾斜角をもって金薄膜線▲2▼−2を上記条件を満たすように複数設ける。この金線薄膜の上に既に述べた方法にてDNA▲3▼を固定し、更に蛍光色素▲4▼を吸着させる。このようにして出来た光導波路チップに励起光▲1▼を入射させ、金ナノライン(金薄膜線)の間を通って表面に滲みだしたエバネッセント波が蛍光色素▲4▼を励起し、DNA濃度に応じた蛍光▲5▼を発生する。この蛍光▲4▼強度は導波路の面にお互いに対峙する様に設置された検出器(図−9−▲14▼)により検出する。
(7) Gold nanoline chip for fluorescence measurement;
Gold nanodots {2} and nanoparticles {circle around (2)}-1 shown in FIGS. 1, 3, 5 and 6 are converted into gold nanolines having a line width, height (thickness), and interval of several nanometers to several hundred nanometers. The optical waveguide chip replaced with 2 ▼ -2 can be applied for the same purpose. An example is schematically shown in FIG. A plurality of gold thin film wires {circle around (2)}-2 are provided on the surface of the optical waveguide {circle around (6)} so as to satisfy the above conditions at right angles to the light traveling direction or at an inclination angle. On this gold wire thin film, DNA {circle around (3)} is fixed by the method already described, and further fluorescent dye {circle around (4)} is adsorbed. Excitation light (1) is made incident on the optical waveguide chip thus formed, and the evanescent wave that has exuded to the surface through the gold nanoline (gold thin film line) excites the fluorescent dye (4), and the DNA concentration Fluorescence (5) corresponding to is generated. The intensity of fluorescence (4) is detected by a detector (FIG. 9- (14)) installed so as to face each other on the surface of the waveguide.

▲8▼吸光度測定用金ナノラインチップ;
図−8に示すように、図−7に於いてDNA▲3▼に蛍光色素▲4▼を吸着させずに、其の儘の状態で入射させた入射光▲1▼のエバネッセント波は金ナノライン▲2▼−2の間を通って滲み出し、金ナノライン表面に固定したDNA▲3▼に吸収され、出射光▲7▼として光導波路端面から放射される。この光を分光器(図−9−▲12▼)により吸光度を測定することによりDNAを測定することが出来る。
(8) Gold nanoline chip for absorbance measurement;
As shown in FIG. 8, the evanescent wave of the incident light (1) incident on the DNA (3) without adsorbing the fluorescent dye (4) in FIG. It oozes out through (2) -2, is absorbed by DNA (3) immobilized on the gold nanoline surface, and is emitted from the end face of the optical waveguide as outgoing light (7). DNA can be measured by measuring the absorbance of this light with a spectroscope (Fig. 9-12).

図−5,6,7,8に示す構造のチップを,夫々図−2、及び図−4のDNA固定領域に設けて、複数のDNAを測定するチップを形成することが出来る。Chips having the structure shown in FIGS. 5, 6, 7 and 8 can be provided in the DNA fixing regions of FIGS. 2 and 4, respectively, to form a chip for measuring a plurality of DNAs.

上記のチップを使った測定システムの一例を次に示す。
図−9は本発明によるチップを使用した蛍光測定法と吸光度測定法の両方に関する測定システムの概要を示すものである。
An example of a measurement system using the above chip is shown below.
FIG. 9 shows an outline of a measurement system for both the fluorescence measurement method and the absorbance measurement method using the chip according to the present invention.

先ず、蛍光測定法について示す。蛍光測定の場合には、一般に蛍光色素の励起波長は可視光領域にある。従って可視光領域(VIS)の光源▲8▼;タングステン或いはタングステンハロゲンランプ、又はLED等が使われることが多い。光源で発生された光は集光レンズ▲9▼により集光され、光導波路チップ▲10▼の端面に入射する。この光は図に示すように導波路内で全反射を繰り返しながら導波路内を進み、反対側端面から出射する。途中、導波路表面に滲みだしたエバネッセント光は金微粒子或いはナノドット▲2▼等に固定したDNA▲3▼に吸着した蛍光色素▲5▼を励起し、蛍光を発生する。この蛍光強度を検出器▲14▼で計数し、計算機▲13▼により事前に作成した検量線等を用いて濃度に変換する。First, a fluorescence measurement method will be described. In the case of fluorescence measurement, the excitation wavelength of the fluorescent dye is generally in the visible light region. Therefore, a visible light region (VIS) light source (8); a tungsten or tungsten halogen lamp, or an LED is often used. The light generated by the light source is collected by the condenser lens (9) and enters the end face of the optical waveguide chip (10). As shown in the figure, this light travels in the waveguide while repeating total reflection in the waveguide, and is emitted from the opposite end face. On the way, the evanescent light that has oozed out on the surface of the waveguide excites the fluorescent dye (5) adsorbed on the DNA (3) fixed to the gold fine particles or the nanodot (2) or the like to generate fluorescence. This fluorescence intensity is counted by the detector (14) and converted into a concentration using a calibration curve or the like prepared in advance by the computer (13).

次に吸光度測定法について示す。光導波路表面に固定した金ナノ粒子、或いはナノドット▲2▼等にチオレート結合により固定されたDNA▲3▼は紫外線(波長λ≒260nm)の吸収スペクトルを有している。従ってこの波長での吸光度を測定することによって定性定量測定が出来る。図−9に示す光源▲8▼(UV光源;ハロゲンランプ等)から発せられた光は蛍光測定法の場合と同様に光導波路チップ▲11▼の端面に入射させる。この光は導波路内を反射を繰り返しながら進み右端から透過光として出射する。途中エバネッセント光は表面に滲みだし、光導波路表面(下面)に固定された金ナノドット▲2▼或いはナノ粒子▲2▼−1等に固定されたDNA▲3▼に吸収される。光導波路チップ▲10▼より出射した透過光はレンズ▲11▼により集光され分光器▲12▼により吸収スペクトルの測定が行われる。データは計算機▲13▼により処理されスペクトルの表示及び濃度への換算が行われる。Next, an absorbance measurement method will be described. The gold nanoparticles fixed on the surface of the optical waveguide, or the DNA {circle around (3)} fixed to the nanodot {circle around (2)} by a thiolate bond has an ultraviolet (wavelength λ≈260 nm) absorption spectrum. Therefore, qualitative quantitative measurement can be performed by measuring the absorbance at this wavelength. Light emitted from the light source (8) (UV light source; halogen lamp, etc.) shown in FIG. 9 is incident on the end face of the optical waveguide chip (11) as in the fluorescence measurement method. The light travels through the waveguide while being repeatedly reflected, and is emitted as transmitted light from the right end. On the way, the evanescent light oozes out on the surface and is absorbed by the gold nanodot (2) fixed on the optical waveguide surface (lower surface) or the DNA (3) fixed on the nanoparticle (2) -1. The transmitted light emitted from the optical waveguide chip (10) is collected by the lens (11) and the absorption spectrum is measured by the spectroscope (12). The data is processed by a computer (13) to display a spectrum and convert it to a concentration.

以上はAu−S結合(チオレート結合)を利用したDNAの測定について示した。しかし、この方法はチオレート結合のみならず、それ以外の方法でバイオ関連物質一般や環境関連物質(環境ホルモン、残留農薬等)を結合させても、測定することが出来る。其の例を以下に示す。The above shows the measurement of DNA using Au-S bond (thiolate bond). However, this method can be measured not only by thiolate binding but also by binding bio-related substances in general and environment-related substances (environmental hormones, residual agricultural chemicals, etc.) by other methods. The example is shown below.

生物特有の抗原抗体反応を利用して環境中の化学物質を種々のナノ粒子に結合させ、光導波路表面に配すことにより、高感度検出する。即ち、抗体或いは抗原をナノ粒子に結合させ、抗原抗体反応により有害化学物質をこれに固定させ、光導波路表面に配する。其の状態で光吸収分光法により測定する、或いは 蛍光物質を修飾して蛍光強度を測定することにより定性・定量分析する。Highly sensitive detection is performed by binding chemical substances in the environment to various nanoparticles using an antigen-antibody reaction peculiar to living organisms and arranging them on the surface of the optical waveguide. That is, an antibody or an antigen is bonded to nanoparticles, and a harmful chemical substance is fixed to the nanoparticle by an antigen-antibody reaction and disposed on the surface of the optical waveguide. Measure qualitatively and quantitatively by measuring the light intensity using light absorption spectroscopy in that state, or by modifying the fluorescent substance and measuring the fluorescence intensity.

ナノ粒子にペプチドを合成し、これにダイオキシンに蛍光色素を結合した色素複合体を修飾し、光導波路表面に配置し、蛍光測定することによりダイオキシン等が高感度で検出できる。Dioxins and the like can be detected with high sensitivity by synthesizing peptides with nanoparticles, modifying a dye complex in which a fluorescent dye is bound to dioxins, arranging the complex on the surface of an optical waveguide, and measuring the fluorescence.

以上のように本発明は種々の物質の測定に応用が開ける可能性を秘めている。As described above, the present invention has the potential to be applied to the measurement of various substances.

「実施形態の効果」
この実施形態によれば、金等の光を通さない物質の表面に固定したDNAの吸光度測定が可能になること、或いは、金等の表面に固定したDNAに吸着させた蛍光色素を励起し発光させDNAを測定することが出来ようになる。
"Effect of the embodiment"
According to this embodiment, it is possible to measure the absorbance of DNA immobilized on the surface of a substance such as gold that does not transmit light, or to excite the fluorescent dye adsorbed on the DNA immobilized on the surface of gold or the like to emit light. And DNA can be measured.

図−1は蛍光計測用導波路DNAナノドットチップの模式図である。FIG. 1 is a schematic diagram of a waveguide DNA nanodot chip for fluorescence measurement. 図−2は多数同時測定用導波路DNAチップの模式図である。FIG. 2 is a schematic diagram of a waveguide DNA chip for simultaneous measurement. 図−3は光吸収測定方式のDNAナノドットチップの模式図である。FIG. 3 is a schematic diagram of a light absorption measurement type DNA nanodot chip. 図−4は多数同時測定用吸光度測定方式DNAナノドットチップの模式図である。FIG. 4 is a schematic diagram of an absorbance measurement method DNA nanodot chip for multiple simultaneous measurement. 図−5は蛍光計測用光導波路DNAナノ粒子チップの模式図である。FIG. 5 is a schematic diagram of an optical waveguide DNA nanoparticle chip for fluorescence measurement. 図−6は吸光度測定用光導波路DNAナノ粒子チップの模式図である。FIG. 6 is a schematic diagram of an optical waveguide DNA nanoparticle chip for absorbance measurement. 図−7は蛍光計測用光導波路DNAナノラインチップの模式図である。FIG. 7 is a schematic diagram of an optical waveguide DNA nanoline chip for fluorescence measurement. 図−8は吸光度測定用光導波路DNAナノラインチップの模式図である。FIG. 8 is a schematic diagram of an optical waveguide DNA nanoline chip for absorbance measurement. 図−9は光導波路チップを使ったDNA測定システムの構成概要図を示す。FIG. 9 shows a schematic configuration diagram of a DNA measurement system using an optical waveguide chip.

符号の説明Explanation of symbols

▲1▼励起光、▲1▼−1入射光、▲2▼ナノドット、▲2▼−1ナノ粒子、▲2▼−2金ナノライン、▲3▼DNA、▲4▼蛍光、▲5▼蛍光色素、▲6▼光導波路、▲7▼透過光、▲7▼−1出射光、▲8▼光源、▲9▼集光レンズ、▲10▼光導波路チップ、▲11▼集光レンズ、▲12▼分光器、▲13▼計算機、▲14▼蛍光検出器(1) Excitation light, (1) -1 incident light, (2) Nanodot, (2) -1 Nanoparticle, (2) -2 Gold nanoline, (3) DNA, (4) Fluorescence, (5) Fluorescent dye , (6) Optical waveguide, (7) Transmitted light, (7) -1 Outgoing light, (8) Light source, (9) Condensing lens, (10) Optical waveguide chip, (11) Condensing lens, (12) Spectrometer, (13) Calculator, (14) Fluorescence detector

Claims (8)

光導波路表面に、被測定検体(DNA、バイオ関連物質、環境ホルモン等)を固定した数〜数百nm程度の大きさの基体を光が通過する程度の間隔を置いて配置したことを特長とする検出用素子  It is characterized in that a substrate with a size of several to several hundreds of nanometers on which the sample to be measured (DNA, bio-related substances, environmental hormones, etc.) is fixed is placed on the surface of the optical waveguide at an interval that allows light to pass. Detection element 被測定検体を固定する基体が金のナノドットであることを特徴とする請求項1の検出用素子  2. The detection element according to claim 1, wherein the substrate on which the sample to be measured is fixed is a gold nanodot. 被測定検体を固定する基体が金のナノ粒子であることを特徴とする請求項1の検出用素子  2. The detection element according to claim 1, wherein the substrate on which the sample to be measured is fixed is gold nanoparticles. 被測定検体を固定する基体が金薄膜のナノラインであることを特徴とする請求項1の検出用素子  2. The detection element according to claim 1, wherein the substrate to which the analyte is measured is a gold thin film nanoline. 被測定検体を固定する基体が金以外の物質で構成された請求項1の検出素子  The detection element according to claim 1, wherein the substrate for fixing the sample to be measured is made of a material other than gold. 複数に分岐した光導波路において、それぞれ任意の被測定検体(DNA等)を吸着した導波路表面に含まれる蛍光物質を同時に励起することを特徴とする請求項1の検出素子  2. The detection element according to claim 1, wherein in the optical waveguide branched into a plurality, the fluorescent substances contained on the surface of the waveguide each adsorbing an arbitrary analyte (DNA or the like) are simultaneously excited. 請求項6に示される検出素子において、半導体等のエリアセンサーを受光部とし、複数の導波路の発光強度を同時に測定することを特長とする請求項1の検出システム  7. The detection system according to claim 6, wherein an area sensor such as a semiconductor is used as a light receiving unit, and the light emission intensities of a plurality of waveguides are simultaneously measured. 単数、又は複数に分岐した光導波路において、それぞれ任意の被測定検体(DNA等)を吸着した導波路により吸収される吸光度を測定することを特徴とする検出システム  A detection system for measuring absorbance absorbed by a waveguide in which an arbitrary analyte (DNA or the like) is adsorbed in an optical waveguide branched into a single or plural optical waveguides
JP2003346339A 2003-08-28 2003-08-28 Optical waveguide for analysis Pending JP2005077396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346339A JP2005077396A (en) 2003-08-28 2003-08-28 Optical waveguide for analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346339A JP2005077396A (en) 2003-08-28 2003-08-28 Optical waveguide for analysis

Publications (1)

Publication Number Publication Date
JP2005077396A true JP2005077396A (en) 2005-03-24

Family

ID=34419533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346339A Pending JP2005077396A (en) 2003-08-28 2003-08-28 Optical waveguide for analysis

Country Status (1)

Country Link
JP (1) JP2005077396A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033203A (en) * 2005-07-26 2007-02-08 Toshiba Corp Optical sensor chip
JP2008070214A (en) * 2006-09-13 2008-03-27 Yokohama National Univ Optial waveguide type dna sensor and dna detection method
JP2009537148A (en) * 2006-05-16 2009-10-29 アプライド バイオシステムズ インコーポレイテッド System, method and apparatus for unimolecular alignment
JPWO2008126146A1 (en) * 2007-03-30 2010-07-15 富士通株式会社 Organic substance detection device and manufacturing method thereof
JP2012115174A (en) * 2010-11-30 2012-06-21 Hitachi High-Technologies Corp Nucleic acid analysis device, and nucleic acid analysis system using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033203A (en) * 2005-07-26 2007-02-08 Toshiba Corp Optical sensor chip
JP2009537148A (en) * 2006-05-16 2009-10-29 アプライド バイオシステムズ インコーポレイテッド System, method and apparatus for unimolecular alignment
JP2008070214A (en) * 2006-09-13 2008-03-27 Yokohama National Univ Optial waveguide type dna sensor and dna detection method
JPWO2008126146A1 (en) * 2007-03-30 2010-07-15 富士通株式会社 Organic substance detection device and manufacturing method thereof
JP2012115174A (en) * 2010-11-30 2012-06-21 Hitachi High-Technologies Corp Nucleic acid analysis device, and nucleic acid analysis system using the same

Similar Documents

Publication Publication Date Title
US4368047A (en) Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
KR101879794B1 (en) SPR sensor device with nanostructure
EP0167335A2 (en) Method of detecting binding reaction between ligand and anti-ligand
EP3394597B1 (en) Optical detection of a substance in fluid
KR101242138B1 (en) Photonic Biosensor, Photonic Biosensor Array, and Method for Detecting Biomaterials Using Them
US20080130003A1 (en) Chemical sensing apparatus and chemical sensing method
US20100252751A1 (en) Microelectronic opiacal evanescent field sensor
JP5701778B2 (en) Detection device for detecting target substances
JP4885019B2 (en) Surface plasmon enhanced fluorescence sensor
US20160161406A1 (en) Cartridge for analyzing specimen by means of local surface plasmon resonance and method using same
JP2007218900A (en) Element for detecting target substance
FI128503B (en) Sample plate and analyzing method
JP2005532563A (en) Molecular detector device
JP2010145272A (en) Assay method using plasmon exciting sensor
US20100221842A1 (en) Sensor device for the detection of target components
JP6073317B2 (en) Optical device for assay execution
JP2009258034A (en) Method and apparatus for detecting radiation light from surface plasmon, sample cell for detecting radiation light from surface plasmon and kit
KR20160040478A (en) Surface plasmon resonance sensor system capable of real-time monitoring of the sample and analysis method using the same
US20100096561A1 (en) Methods and systems for detection with front irradiation
JP2009080011A (en) Fluorescence detection method
JP2005077396A (en) Optical waveguide for analysis
Hageneder et al. Plasmonically amplified bioassay–Total internal reflection fluorescence vs. epifluorescence geometry
JP2008157923A (en) Chemically sensing device and method
CN101317085A (en) Bio chip device with a sample compartment and a light sensitive element, method for the detection of fluorescent particles within at least one sample compartment of a bio chip device
US20110195516A1 (en) Wire grid substrate structure and method for manufacturing such a substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071103

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071103

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930