JP2001021502A - Flaw inspecting method and system therefor - Google Patents

Flaw inspecting method and system therefor

Info

Publication number
JP2001021502A
JP2001021502A JP11192690A JP19269099A JP2001021502A JP 2001021502 A JP2001021502 A JP 2001021502A JP 11192690 A JP11192690 A JP 11192690A JP 19269099 A JP19269099 A JP 19269099A JP 2001021502 A JP2001021502 A JP 2001021502A
Authority
JP
Japan
Prior art keywords
image
inspection
defect
mask image
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11192690A
Other languages
Japanese (ja)
Other versions
JP3618589B2 (en
Inventor
Mitsuhiro Kitagawa
光博 北側
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19269099A priority Critical patent/JP3618589B2/en
Publication of JP2001021502A publication Critical patent/JP2001021502A/en
Application granted granted Critical
Publication of JP3618589B2 publication Critical patent/JP3618589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flaw inspecting method that employs a masking processing capable of reducing, as far as possible, a dead zone that causes overlooking of flaws, while preventing a positioning error and excessive detection due to product diversity. SOLUTION: A mask image is produced on the basis of each inspection target object itself during actual flaw inspecting process. That is, an inspection target image A is binarized at S2, and is reduced by a predetermined amount at S3, so that the reduced binary image A is used as the mask image for the inspection target image A. Accordingly, it is possible to eliminate a dead zone that causes overlooking of flaws, and to determine an inspection region on the basis of the inspection target image itself that is the actual flaw inspection target so as to cause no problems of positioning error and excessive detection due to product diversity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,例えばプリント基
板の配線パターンやボンディングパッド等の欠陥を検査
する欠陥検査方法及びその装置に係り,詳しくは,検査
対象物の撮像画像を所定のマスク画像でマスキングして
得られた検査領域のみを対象として上記検査対象物の欠
陥を検査する欠陥検査方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection method and apparatus for inspecting, for example, defects such as wiring patterns and bonding pads on a printed circuit board. The present invention relates to a defect inspection method and an apparatus for inspecting a defect of the inspection object only for an inspection region obtained by masking.

【0002】[0002]

【従来の技術】プリント基板等の表面にできた傷,異
物,打痕,汚れ等の欠陥を検出する方法としては,従来
より,検査対象物の撮像画像と良品画像との差分処理を
行って画像全体にわたる両者の濃度差(絶対濃度の差)
を求め,該濃度差が所定の閾値を超える部分を欠陥であ
ると判定する方法が広く用いられている。また,本出願
人は,検査対象物の撮像画像を局所領域に分割し,画素
単位の濃度データがその画素の属する局所領域内の平均
濃度から大きくかけ離れている場合にその画素を欠陥画
素であると判断する,相対的な欠陥判定を用いた欠陥検
査方法を開発し,既に特許出願を完了している(特願平
11−065297号)。この発明により,上記従来の
良品画像を用いた判定方法における,生産ロット毎の濃
度のバラツキなどによる誤判定の問題を解決することが
できた。
2. Description of the Related Art As a method for detecting defects such as scratches, foreign matter, dents, and stains formed on the surface of a printed circuit board or the like, conventionally, a difference process between a picked-up image of an inspection object and a non-defective image is performed. Density difference between the two over the entire image (absolute density difference)
Is widely used, and a portion where the density difference exceeds a predetermined threshold value is determined to be a defect. In addition, the present applicant divides a captured image of an inspection object into local regions, and determines that a pixel is a defective pixel when density data in a pixel unit is far from the average density in the local region to which the pixel belongs. A defect inspection method using relative defect determination has been developed, and a patent application has already been completed (Japanese Patent Application No. 11-065297). According to the present invention, it is possible to solve the problem of the erroneous determination due to the variation in the density for each production lot in the above-described conventional determination method using good-quality images.

【0003】ところで,以上のような撮像画像を用いた
欠陥検出においては,検査時間の短縮,位置決め誤差の
排除などを目的として,マスキング処理を行って検査領
域を特定の領域に絞り込むことが行われている。このマ
スキング処理は,検査対象物の撮像画像と,予め求めら
れたマスク画像との論理積演算によって行われる。上記
マスク画像の生成手順の一例を簡単に説明する。 まず,検査対象物と同種類の試料を用いて,基準と
なる画像Bを撮像する(図7参照)。 上記画像B上でアライメントマークを登録する(図
7参照)。 同種類の試料を複数用いて,と同様の画像を複数
撮像し(A1 〜An ),で登録されたアライメントマ
ークに基づいて位置補正を行う。 上記画像A1 〜An に対して,比較的低い濃度レベ
ル(例えば基材部の濃度とパッドtop部の濃度との間
の濃度値)で2値化を行い,それらの論理積をとって画
像AT(A)を得る。 搬送系の位置決め誤差,製品バラツキ,レジスト境
界部のズレ量などを考慮し,上記画像AT(A)に対し
て収縮処理や部分的削除などを行い,得られた画像をマ
スク画像Mとする(図8参照)。
In the defect detection using the captured image as described above, masking processing is performed to narrow the inspection area to a specific area for the purpose of shortening the inspection time and eliminating a positioning error. ing. This masking process is performed by a logical AND operation of a captured image of the inspection object and a mask image obtained in advance. An example of a procedure for generating the mask image will be briefly described. First, a reference image B is captured using a sample of the same type as the inspection object (see FIG. 7). An alignment mark is registered on the image B (see FIG. 7). Using a plurality of samples of the same type, a plurality of images similar to the above are captured (A 1 to An ), and the position is corrected based on the alignment marks registered in. The images A 1 to An are binarized at a relatively low density level (for example, a density value between the density of the base material portion and the density of the pad top portion), and a logical product thereof is obtained. An image AT (A) is obtained. The image AT (A) is subjected to shrinkage processing, partial deletion, and the like in consideration of the positioning error of the transport system, product variations, the amount of deviation of the resist boundary, and the obtained image is used as the mask image M ( See FIG. 8).

【0004】この欠陥検出において検出対象としている
欠陥は,例えばボンディングパッド等の表面上に存在す
る局部的な異常や大幅な欠けなどであるが,検査領域内
にレジスト境界部など濃度勾配の大きな部分が存在する
と,これを欠陥であると誤検出してしまう可能性があ
る。そこで,上記,の処理を行うことにより,検査
対象物に位置決め誤差などが生じたとしても上記マスク
画像Mによって決定される検査領域内に上記レジスト境
界部などが入ってしまうことがない程度まで,検査領域
を狭めている。
The defect to be detected in this defect detection is, for example, a local abnormality or a large chip on the surface of a bonding pad or the like. Exists, it may be erroneously detected as a defect. Therefore, by performing the above-described processing, even if a positioning error or the like occurs in the inspection target, the resist boundary portion or the like does not enter the inspection area determined by the mask image M until the registration boundary or the like does not enter. The inspection area is narrowed.

【0005】[0005]

【発明が解決しようとする課題】上記従来のマスキング
方法では,各検査対象物に対して,予め生成された共通
のマスク画像(以下,固定マスク画像という)を用い
て,各検査対象物の撮像画像にマスキングを施してい
る。このため,上記固定マスク画像は,位置決め誤差や
製品バラツキを有する全ての検査対象物に適用可能であ
ることが求められ,上記のように全検査対象物の検査領
域の最大公約数的な領域となるようにする必要がある。
このようなことから,上記固定マスク画像によるマスキ
ング処理を行った場合,各検査対象物の検査領域にはそ
れぞれ必ず不感帯(欠陥を検出できない領域)が生じ
る。その結果,外周に近い部分に存在する比較的小さい
欠陥は,上記不感帯に隠れてしまい,検出できない可能
性があった。一般的に,レジスト境界部はレジスト塗布
の誤差が大きく(通常±20μm〜50μm程度),こ
の部分に存在する欠陥は検査対象から除かれることにな
り,上記従来のマスキング方法を用いた欠陥検出では欠
陥見逃しの可能性は非常に高い。本発明は上記事情に鑑
みてなされたものであり,その目的とするところは,位
置決め誤差や製品バラツキによる過検出を防止しつつ,
欠陥見逃しの原因となる不感帯を極力小さくすることが
可能なマスキング処理を用いた欠陥検出方法を提供する
ことである。
In the above-mentioned conventional masking method, each inspection object is imaged by using a common mask image (hereinafter, referred to as a fixed mask image) generated in advance. The image is masked. For this reason, the fixed mask image is required to be applicable to all inspection objects having positioning errors and product variations. As described above, the fixed mask image is an area of the greatest common divisor of the inspection area of all inspection objects. It needs to be.
For this reason, when performing the masking process using the fixed mask image, a dead zone (a region where a defect cannot be detected) always occurs in the inspection region of each inspection object. As a result, a relatively small defect existing in a portion close to the outer periphery is hidden by the dead zone, and may not be detected. In general, there is a large error in resist coating at the resist boundary (normally about ± 20 μm to 50 μm), and defects existing in this part are excluded from the inspection target. In the defect detection using the above-described conventional masking method, The likelihood of missing a defect is very high. The present invention has been made in view of the above circumstances, and has as its object to prevent over-detection due to positioning errors and product variations,
An object of the present invention is to provide a defect detection method using masking processing capable of minimizing a dead zone that causes a defect to be overlooked.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に,本発明は,検査対象物の撮像画像と,上記検査対象
物の検査領域を定めた所定のマスク画像との論理積演算
を行い,得られた検査画像に基づいて上記検査対象物の
欠陥を検査する欠陥検査方法において,上記検査対象物
の撮像画像を所定の濃度閾値に基づいて2値化する2値
化工程と,上記2値化工程で得られた2値化画像,又は
上記2値化画像に所定の収縮処理を施して得られた収縮
2値化画像に基づいて上記マスク画像を生成するマスク
画像生成工程とを具備してなることを特徴とする欠陥検
査方法として構成されている。本欠陥検査方法によれ
ば,実際に欠陥検査の対象となる検査画像そのものに基
づいて検査領域が決定されるため,欠陥見逃しの原因と
なる不感帯を無くすことが可能であり,また,位置決め
誤差や製品バラツキによる過検出の問題も生じない。ま
た,予め,上記検査対象物と同種類の複数の試料の撮像
画像からそれぞれ2値化画像を生成し,それら2値化画
像の論理積演算によって固定マスク画像を生成する固定
マスク画像生成工程を更に具備すると共に,上記マスク
画像生成工程において,上記2値化画像又は上記収縮2
値化画像と上記固定マスク画像生成工程で得られた固定
マスク画像との論理和によって得られる画像を上記マス
ク画像とするように構成すれば,パッドなどの内部に存
在する欠陥だけでなく,パターン欠損についても正確に
検出することが可能となる。また,生成されるマスク画
像で得られる検査領域は,パッドと基材部との間の濃度
勾配の大きい部分を含まず,且つなるべく広くとるため
に,パッドなどのtop部と略同一とすることが望まし
い。従って,上記2値化工程で用いられる濃度閾値を例
えばパッドのtop部外周の濃度にほぼ一致させること
ができる場合には,上記収縮処理は不要である。ただ,
撮像画像の濃度は製品毎にバラツキがあることなどか
ら,全ての検査対象物に対してそのような閾値設定をす
ることは困難であるから,上記濃度閾値を,上記検査対
象物の基材部の濃度と上記パッド部の濃度との間の値に
設定しておき,2値化画像に所定量の収縮処理を施して
上記収縮2値化画像を生成するようにするのが現実的で
あり,且つ容易である。ここで,上記収縮処理は,例え
ば,予め設定された上記パッド部の所定部位の幅若しく
は面積と,それに対応する上記2値化画像上の幅若しく
は面積とが略同一となるように行えばよい。
In order to achieve the above object, the present invention performs an AND operation of a picked-up image of an inspection object and a predetermined mask image defining an inspection area of the inspection object. A defect inspection method for inspecting a defect of the inspection object based on the obtained inspection image; a binarization step of binarizing a captured image of the inspection object based on a predetermined density threshold; A mask image generating step of generating the mask image based on the binarized image obtained in the binarizing step or a contracted binarized image obtained by performing a predetermined contraction process on the binarized image. It is configured as a defect inspection method characterized by the following. According to the present defect inspection method, the inspection area is determined based on the inspection image itself to be actually subjected to the defect inspection, so that it is possible to eliminate a dead zone that may cause a defect to be missed, There is no problem of over-detection due to product variation. In addition, a fixed mask image generating step of generating binary images in advance from captured images of a plurality of samples of the same type as the inspection object and generating a fixed mask image by performing a logical product operation of the binary images is provided. The mask image generating step further includes the binarized image or the contracted image
If the image obtained by the logical sum of the binarized image and the fixed mask image obtained in the fixed mask image generation step is configured to be the mask image, not only the defect existing inside the pad or the like but also the pattern Defects can be accurately detected. In addition, the inspection area obtained from the generated mask image does not include a portion having a large density gradient between the pad and the base portion, and is substantially the same as a top portion such as a pad so as to be as wide as possible. Is desirable. Therefore, if the density threshold value used in the binarization step can be made to substantially coincide with, for example, the density of the outer periphery of the top portion of the pad, the contraction processing is unnecessary. However,
It is difficult to set such a threshold value for all inspection objects because the density of captured images varies from product to product. It is realistic to set a value between the density of the pad portion and the density of the pad portion, and to apply a predetermined amount of contraction processing to the binary image to generate the contracted binary image. And easy. Here, the contraction process may be performed, for example, so that a predetermined width or area of the predetermined portion of the pad portion is substantially equal to a corresponding width or area on the binary image. .

【0007】また,上記欠陥検査方法を実施可能な装置
は,検査対象物の撮像画像と,上記検査対象物の検査領
域を定めた所定のマスク画像との論理積演算を行い,得
られた検査画像に基づいて上記検査対象物の欠陥を検査
する欠陥検査装置において,上記検査対象物の撮像画像
を所定の濃度閾値に基づいて2値化する2値化手段と,
上記2値化手段で得られた2値化画像,又は上記2値化
画像に所定の収縮処理を施して得られた収縮2値化画像
に基づいて上記マスク画像を生成するマスク画像生成手
段とを具備してなることを特徴とする欠陥検査装置とし
て構成されている。更に,予め,上記検査対象物と同種
類の複数の試料の撮像画像からそれぞれ2値化画像を生
成し,それら2値化画像の論理積演算によって固定マス
ク画像を生成する固定マスク画像生成手段を具備すると
共に,上記マスク画像生成手段において,上記2値化画
像又は上記収縮2値化画像と上記固定マスク画像生成手
段で得られた固定マスク画像との論理和によって得られ
る画像を上記マスク画像とするように構成すれば,パッ
ドなどの内部に存在する欠陥だけでなく,パターン欠損
についても正確に検出することが可能となる。
An apparatus capable of performing the above-described defect inspection method performs an AND operation on a captured image of an inspection object and a predetermined mask image defining an inspection area of the inspection object, and obtains an inspection result. A defect inspection apparatus for inspecting a defect of the inspection object based on an image; a binarization unit for binarizing a captured image of the inspection object based on a predetermined density threshold;
Mask image generating means for generating the mask image based on the binarized image obtained by the binarizing means, or a contracted binary image obtained by subjecting the binarized image to a predetermined contraction process; And a defect inspection apparatus characterized by comprising: Further, a fixed mask image generating means for generating binary images in advance from captured images of a plurality of samples of the same type as the inspection object and generating a fixed mask image by performing a logical product operation of the binary images is provided. And the mask image generating means converts an image obtained by the logical sum of the binary image or the contracted binary image and the fixed mask image obtained by the fixed mask image generating means into the mask image This makes it possible to accurately detect not only a defect existing inside a pad or the like but also a pattern defect.

【0008】[0008]

【発明の実施の形態】以下,添付図面を参照して本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は,本発明を
具体化した一例であって,本発明の技術的範囲を限定す
る性格のものではない。ここに,図1は本発明の実施の
形態に係るマスク画像生成方法の処理手順の一例を示す
フロー図,図2は本発明の実施例に係るマスク画像生成
方法の処理手順の一例を示すフロー図,図3は上記マス
ク画像生成方法を実施可能な装置A1の概略構成を示す
ブロック図,図4は検査対象物上のボンディングパッド
とマスク画像で設定される検査領域との関係を,従来技
術(a),実施の形態(b及びc),実施例(d)それ
ぞれについて示した図,図5は2値化処理と収縮処理の
説明図,図6は上段が検査対象画像(左図)とその一断
面における濃度分布(右図),中段が上記検査対象画面
と従来の固定マスク画像とを重ねたもの(左図)とその
一断面における濃度分布(右図),下段が上記検査対象
画面と本実施の形態に係る方法で得られたマスク画像と
を重ねたもの(左図)とその一断面における濃度分布
(右図)を示した図である。本実施の形態に係るマスク
画像生成装置A1は,本発明に係る欠陥検査装置の特徴
部分を具現化した一例であり,図3に示すような概略構
成を有する。プリント基板等の検査対象物0は,ステー
ジ1上にセットされ,照明2に照らされた状態でCCD
カメラ3によってその濃淡画像が撮像される。上記CC
Dカメラ3で撮像された画像は,画像検出処理部4を介
して濃淡画像の形で画像メモリ5に記憶される。演算部
6(2値化手段,マスク画像生成手段,固定マスク画像
生成手段の一例)では,上記画像メモリ5に記憶されて
いる画像を用いて後述する手順によりマスク画像が生成
される。
Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. FIG. 1 is a flowchart showing an example of a processing procedure of a mask image generating method according to an embodiment of the present invention, and FIG. 2 is a flowchart showing an example of a processing procedure of a mask image generating method according to an embodiment of the present invention. FIGS. 3 and 4 are block diagrams showing a schematic configuration of an apparatus A1 capable of performing the above-described mask image generation method. FIG. 4 shows the relationship between a bonding pad on an inspection object and an inspection area set by a mask image according to the prior art. (A), a diagram showing each of the embodiments (b and c), and an example (d), FIG. 5 is an explanatory diagram of the binarization process and the contraction process, and FIG. And the density distribution in one section thereof (right figure), the middle part shows the inspection target screen and the conventional fixed mask image superimposed (left figure), the density distribution in one section thereof (right figure), and the lower part shows the above inspection target Screen and obtained by the method according to the present embodiment It illustrates that overlapped the disk image (left) and concentration distribution in the one cross section (right). The mask image generation device A1 according to the present embodiment is an example of embodying a characteristic portion of the defect inspection device according to the present invention, and has a schematic configuration as shown in FIG. An inspection object 0 such as a printed circuit board is set on a stage 1 and is
The camera 3 captures the grayscale image. CC above
The image captured by the D camera 3 is stored in the image memory 5 through the image detection processing unit 4 in the form of a grayscale image. The arithmetic unit 6 (an example of a binarizing unit, a mask image generating unit, and a fixed mask image generating unit) generates a mask image by using the image stored in the image memory 5 according to a procedure described later.

【0009】続いて,図1を参照しながら,上記マスク
画像生成装置A1を用いて行われるマスク画像生成処理
の手順の一例について説明する。従来の欠陥検査方法で
は,検査対象物の欠陥検出処理を開始する前にその検査
対象物と同種類の複数の試料を用いて固定マスク画像を
生成しておき,実際の欠陥検査処理における各検査対象
物のマスキングには上記予め生成された共通の固定マス
ク画像が用いられていた。しかしながら,本実施の形態
では,マスク画像は,実際の欠陥検査処理の中で各検査
対象物毎に生成される。欠陥検査処理が開始されると,
まず最初の検査対象物0がステージ1上にセットされ,
CCDカメラ3にて撮像される。上記CCDカメラ3か
ら上記画像検出処理部4を経て得られた検査対象画像A
は,画像メモリ5内に格納される(ステップS1)。続
いて,演算部6により,上記画像メモリ5から上記検査
対象画像Aが読み出され,所定の濃度閾値を用いて2値
化処理を施すことによって2値化画像F(Alow)が
生成される。ここで,上記濃度閾値は,図5に示すよう
に,例えばボンディングパッドのtop部と基材部との
間の濃度に設定される(ステップS2;2値化工程の一
例)。更に,上記演算部6において,上記2値化画像F
(Alow)に対して,検査領域(マスク領域)がボン
ディングパッドのtop部と略同一となるように収縮処
理が施される(ステップS3;マスク画像生成工程の一
例)(図5参照)。また,上記収縮処理に先立ってフィ
ルタ処理(孤立点ノイズを除去するためのメディアンフ
ィルタ処理など)を行ってもよい。上記収縮処理によっ
て得られた収縮2値化画像EF(Alow)が上記検査
対象画像Aのマスク画像となる。上記収縮処理により,
ボンディングパッドのtop部と基材部との間の濃度勾
配の大きな部分が検査領域から外される。尚,上記収縮
処理は,例えばボンディングパッドのtop部の幅或い
は面積を予め設定しておき,検査領域の幅或いは面積が
上記設定値と一致するまで収縮を行うようにすればよ
い。上記画像メモリ5内に格納されている上記検査対象
画像Aは,上記ステップS3で得られたマスク画像であ
る収縮2値化画像EF(Alow)との論理積演算によ
りマスキング処理され(ステップS4),得られた検査
画像に基づいて次工程の欠陥検出処理が行われる。
Next, an example of a procedure of a mask image generation process performed using the mask image generation apparatus A1 will be described with reference to FIG. In the conventional defect inspection method, a fixed mask image is generated by using a plurality of samples of the same type as the inspection object before starting the defect detection processing of the inspection object, and each inspection in the actual defect inspection processing is performed. The common fixed mask image generated in advance is used for masking the object. However, in the present embodiment, a mask image is generated for each inspection object in an actual defect inspection process. When the defect inspection process starts,
First, the first inspection object 0 is set on the stage 1,
The image is captured by the CCD camera 3. Inspection target image A obtained from the CCD camera 3 through the image detection processing unit 4
Is stored in the image memory 5 (step S1). Subsequently, the arithmetic unit 6 reads the inspection target image A from the image memory 5 and performs a binarization process using a predetermined density threshold to generate a binarized image F (Alow). . Here, as shown in FIG. 5, the concentration threshold is set, for example, to the concentration between the top portion of the bonding pad and the base material (step S2; an example of a binarization process). Further, in the arithmetic unit 6, the binary image F
(Alow) is subjected to a contraction process so that the inspection region (mask region) is substantially the same as the top portion of the bonding pad (step S3; an example of a mask image generation process) (see FIG. 5). Prior to the contraction process, a filter process (such as a median filter process for removing isolated point noise) may be performed. The contracted binary image EF (Alow) obtained by the contraction processing is a mask image of the inspection target image A. By the above contraction processing,
A portion having a large concentration gradient between the top portion of the bonding pad and the base portion is removed from the inspection area. In the shrinking process, for example, the width or area of the top portion of the bonding pad may be set in advance, and shrinking may be performed until the width or area of the inspection region matches the set value. The inspection target image A stored in the image memory 5 is subjected to a masking process by a logical AND operation with the contracted binary image EF (Alow), which is the mask image obtained in step S3 (step S4). Then, a defect detection process in the next step is performed based on the obtained inspection image.

【0010】上記ステップS3で得られたマスク画像の
検査領域は,図4(b)の斜線部に示すように,現在の
検査対象画像におけるボンディングパッドのtop部に
等しい領域となる。本実施の形態に係るマスク画像生成
処理では,実際に欠陥検査の対象となる検査対象画像そ
のものに基づいて検査領域が決定されるため,検査対象
物毎のレジスト塗布ズレなどの影響はなく,従ってボン
ディングパッドの境界近傍にも不感帯は存在しない。従
来の固定マスク画像では,検査対象物と同種類の複数の
試料を用いてそれらの最大公約数的な領域を検査領域と
するため,図4(a)に示すように,レジスト塗布ズレ
許容範囲は検査領域から外れてしまい,その部分が不感
帯となってしまう。図6は,本実施の形態に係る方法と
従来の固定マスクを用いた方法によってマスキングを行
った結果を比較したものである。図6の上段は検査対象
画像(左図)とその一断面における濃度分布(右図),
中段は上記検査対象画面と従来の固定マスク画像とを重
ねたもの(左図)とその一断面における濃度分布(右
図),下段は上記検査対象画面と本実施の形態に係る方
法で得られたマスク画像とを重ねたもの(左図)とその
一断面における濃度分布(右図)である。図6上段の濃
度分布図(検査対象画像)では,検査対象物のボンディ
ングパッドのtop部の幅は約14.8画素となってい
るが,上記検査対象画面と従来の固定マスク画像とを重
ねた中段の濃度分布図ではマスク幅は約12.6画素と
なっており,実際のボンディングパッドのtop部より
もかなり狭くなっている(即ち不感帯が生じる)ことが
分かる。一方,上記検査対象画面と本実施の形態に係る
方法で得られたマスク画像とを重ねた下段の濃度分布図
では,マスク幅は実際のtop部と同じ14.8画素で
あり,本実施の形態に係る方法ではボンディングパッド
のtop部全面が検査領域となって不感帯が生じないこ
とが分かる。以上説明したように,本実施の形態に係る
マスク画像生成方法を用いれば,欠陥見逃しの原因とな
る不感帯を無くすことが可能で,また,実際に欠陥検査
の対象となる検査対象画像そのものに基づいて検査領域
が決定されるため,位置決め誤差や製品バラツキによる
過検出の問題も生じない。尚,上記ステップS3におけ
る収縮処理は必須ではなく,例えばステップS2におい
て,2値化に用いる濃度閾値をボンディングパッドのt
op部外周の濃度にほぼ一致させることができるのであ
れば,上記収縮処理は不要である。ただ,撮像画像の濃
度は製品毎にバラツキがあることなどから,全ての検査
対象物に対してそのような閾値設定をすることは困難で
あり,上述のように収縮処理によって検査領域をボンデ
ィングパッドのtop部に合わせる方法が現実的であ
る。
The inspection region of the mask image obtained in step S3 is a region equal to the top portion of the bonding pad in the current inspection target image, as shown by the hatched portion in FIG. In the mask image generation processing according to the present embodiment, since the inspection area is determined based on the inspection target image itself that is actually the target of the defect inspection, there is no influence of a resist coating deviation or the like for each inspection target. There is no dead zone near the boundary of the bonding pad. In a conventional fixed mask image, a plurality of samples of the same type as the inspection object are used, and the area of the greatest common denominator is used as the inspection area. Therefore, as shown in FIG. Is out of the inspection area, and that part becomes a dead zone. FIG. 6 compares the results of masking performed by the method according to the present embodiment with the conventional method using a fixed mask. The upper part of FIG. 6 shows the image to be inspected (left figure) and the density distribution in one section thereof (right figure)
The middle part is obtained by overlaying the inspection target screen and the conventional fixed mask image (left figure) and the density distribution in one cross section (right figure), and the lower part is obtained by the inspection target screen and the method according to the present embodiment. (Left figure) and a density distribution (right figure) in one cross section of the mask image. In the density distribution diagram (inspection target image) in the upper part of FIG. 6, the width of the top portion of the bonding pad of the inspection target is about 14.8 pixels, but the inspection target screen and the conventional fixed mask image are overlapped. In the density distribution diagram in the middle stage, the mask width is about 12.6 pixels, and it can be seen that the mask width is considerably smaller than the top portion of the actual bonding pad (that is, a dead zone is generated). On the other hand, in the density distribution diagram in the lower part in which the inspection target screen and the mask image obtained by the method according to the present embodiment are overlapped, the mask width is 14.8 pixels, which is the same as the actual top part, and In the method according to the embodiment, it can be seen that the entire surface of the top portion of the bonding pad becomes the inspection region and no dead zone is generated. As described above, the use of the mask image generation method according to the present embodiment makes it possible to eliminate a dead zone that may cause a defect to be overlooked, and furthermore, based on the inspection target image itself that is actually the target of the defect inspection. Since the inspection area is determined by the inspection, there is no problem of over-detection due to positioning errors and product variations. Note that the contraction processing in step S3 is not essential. For example, in step S2, the density threshold used for binarization is set to t
If the density can be made to substantially match the density on the outer periphery of the op portion, the above-described shrinking process is unnecessary. However, it is difficult to set such a threshold value for all inspection objects because the density of captured images varies from product to product. Is realistic.

【0011】[0011]

【実施例】上記実施の形態に係るマスク画像生成方法を
用いれば,パッドの内部に存在する欠陥については,そ
の外周部分に存在する小さなものまで正確に検出するこ
とが可能である。しかしながら,上記実施の形態に係る
方法では,パッドが大きく欠損しているような欠陥につ
いては検出できなかった。これは,実際に欠陥検査の対
象となる検査対象画像そのものに基づいてマスク画像を
生成しているため,パッドに欠損部分が存在すればその
欠損部分を避けるように検査領域が設定されてしまうか
らである(図4(c)参照)。図2は,図1に示す上記
実施の形態に係るマスク画像生成方法を更に改良し,パ
ターン欠損についても検出できるようにしたものであ
る。ステップS1 〜S3については図1と全く同じであ
るため,説明は省略する。上記実施の形態では,ステッ
プS3で得られた収縮2値化画像EF(Alow)をそ
のままマスク画像としたが,本実施例では,従来の欠陥
検出において用いられていた固定マスク画像Mと上記収
縮2値化画像EF(Alow)との論理和によって得ら
れる画像をマスク画像とする(ステップS3′)。尚,
上記固定マスク画像Mは,欠陥検査処理を開始する前に
上記従来の技術で説明した方法で予め生成しておく(ス
テップS0;固定マスク画像生成工程の一例)。このよ
うな方法で生成したマスク画像の検査領域は,図4
(d)の網かけ部(図4(a)の検査領域Aと図4
(c)の検査領域Bとの和)のようになるから,レジス
ト塗布部近傍の不感帯を排除しつつ,パターン欠損につ
いても正確に検出することが可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By using the mask image generating method according to the above-described embodiment, it is possible to accurately detect a defect existing inside a pad, even a small one existing in an outer peripheral portion thereof. However, the method according to the above-described embodiment cannot detect a defect in which a pad is largely lost. This is because the mask image is generated based on the inspection target image itself that is actually the target of the defect inspection, and therefore, if there is a defective portion on the pad, the inspection area is set to avoid the defective portion. (See FIG. 4C). FIG. 2 shows a further improvement of the method of generating a mask image according to the embodiment shown in FIG. 1 so that a pattern defect can be detected. Steps S1 to S3 are exactly the same as those in FIG. In the above embodiment, the contracted binary image EF (Alow) obtained in step S3 is used as a mask image as it is. In the present embodiment, the fixed mask image M used in the conventional defect detection and the contracted An image obtained by a logical sum with the binarized image EF (Alow) is set as a mask image (step S3 '). still,
The fixed mask image M is generated in advance by the method described in the related art before starting the defect inspection processing (step S0; an example of a fixed mask image generation step). The inspection area of the mask image generated by such a method is shown in FIG.
4 (d) (the inspection area A in FIG.
(Sum of the inspection area B in (c)), it is possible to accurately detect a pattern defect while eliminating a dead zone near the resist-coated portion.

【0012】[0012]

【発明の効果】以上説明したように,本発明は,検査対
象物の撮像画像と,上記検査対象物の検査領域を定めた
所定のマスク画像との論理積演算を行い,得られた検査
画像に基づいて上記検査対象物の欠陥を検査する欠陥検
査方法において,上記検査対象物の撮像画像を所定の濃
度閾値に基づいて2値化する2値化工程と,上記2値化
工程で得られた2値化画像,又は上記2値化画像に所定
の収縮処理を施して得られた収縮2値化画像に基づいて
上記マスク画像を生成するマスク画像生成工程とを具備
してなることを特徴とする欠陥検査方法として構成され
ているため,欠陥見逃しの原因となる不感帯を無くすこ
とが可能であり,また,位置決め誤差や製品バラツキに
よる過検出の問題も生じない。また,予め,上記検査対
象物と同種類の複数の試料の撮像画像からそれぞれ2値
化画像を生成し,それら2値化画像の論理積演算によっ
て固定マスク画像を生成する固定マスク画像生成工程を
更に具備すると共に,上記マスク画像生成工程におい
て,上記2値化画像又は上記収縮2値化画像と上記固定
マスク画像生成工程で得られた固定マスク画像との論理
和によって得られる画像を上記マスク画像とするように
構成すれば,パッドなどの内部に存在する欠陥だけでな
く,パターン欠損についても正確に検出することが可能
となる。
As described above, the present invention performs an AND operation on a captured image of an inspection object and a predetermined mask image defining an inspection area of the inspection object, and obtains an inspection image obtained. In the defect inspection method for inspecting the defect of the inspection object based on the threshold value, a binarization step of binarizing a captured image of the inspection object based on a predetermined density threshold, and a binarization step are provided. And a mask image generating step of generating the mask image based on the binarized image obtained or a contracted binarized image obtained by performing a predetermined contraction process on the binarized image. Since the defect inspection method is configured as described above, it is possible to eliminate a dead zone that causes a defect to be overlooked, and there is no problem of over-detection due to positioning errors or product variations. In addition, a fixed mask image generating step of generating binary images in advance from captured images of a plurality of samples of the same type as the inspection object and generating a fixed mask image by performing a logical product operation of the binary images is provided. In the mask image generating step, the image obtained by the logical sum of the binarized image or the contracted binary image and the fixed mask image obtained in the fixed mask image generating step is used as the mask image. With such a configuration, not only a defect existing inside a pad or the like but also a pattern defect can be accurately detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係るマスク画像生成方
法の処理手順の一例を示すフロー図。
FIG. 1 is a flowchart showing an example of a processing procedure of a mask image generation method according to an embodiment of the present invention.

【図2】 本発明の実施例に係るマスク画像生成方法の
処理手順の一例を示すフロー図。
FIG. 2 is a flowchart illustrating an example of a processing procedure of a mask image generation method according to the embodiment of the present invention.

【図3】 上記マスク画像生成方法を実施可能な装置A
1の概略構成を示すブロック図。
FIG. 3 is an apparatus A that can execute the mask image generating method.
1 is a block diagram showing a schematic configuration of FIG.

【図4】 検査対象物上のボンディングパッドとマスク
画像で設定される検査領域との関係を,従来技術
(a),実施の形態(b及びc),実施例(d)それぞ
れについて示した図。
FIG. 4 is a diagram showing a relationship between a bonding pad on an inspection object and an inspection area set by a mask image for each of the related art (a), the embodiments (b and c), and the example (d). .

【図5】 2値化処理と収縮処理の説明図。FIG. 5 is an explanatory diagram of a binarization process and a contraction process.

【図6】 上段が検査対象画像(左図)とその一断面に
おける濃度分布(右図),中段が上記検査対象画面と従
来の固定マスク画像とを重ねたもの(左図)とその一断
面における濃度分布(右図),下段が上記検査対象画面
と本実施の形態に係る方法で得られたマスク画像とを重
ねたもの(左図)とその一断面における濃度分布(右
図)を示した図。
6 is an image to be inspected (left figure) and a density distribution in one section thereof (right figure), and an upper part is an image in which the inspection object screen is superimposed on the conventional fixed mask image (left figure) and one section thereof. , The lower part shows the overlay of the inspection target screen and the mask image obtained by the method according to the present embodiment (left figure), and the density distribution in one section thereof (right figure). Figure.

【図7】 検査対象物の撮像画像の一例を模式的に示し
た図。
FIG. 7 is a diagram schematically showing an example of a captured image of an inspection object.

【図8】 従来技術に係るマスク画像生成方法の説明
図。
FIG. 8 is an explanatory diagram of a mask image generation method according to the related art.

【符号の説明】[Explanation of symbols]

1…移動ステージ 2…照明 3…CCDカメラ 4…画像検出処理部 5…画像メモリ 6…演算部(2値化手段,マスク画像生成手段,固定マ
スク画像生成手段の一例)
DESCRIPTION OF SYMBOLS 1 ... Moving stage 2 ... Lighting 3 ... CCD camera 4 ... Image detection processing part 5 ... Image memory 6 ... Operation part (an example of a binarization part, a mask image generation part, a fixed mask image generation part)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G051 AA65 AB02 CA03 CA04 EA11 EA23 EA30 EB01 EB09 ED01 ED15 5B057 AA03 BA02 CA08 CA12 CA16 CC03 DA03 DB02 DB09 5L096 AA06 BA03 CA02 DA01 EA02 EA03 EA13 EA14 EA37 EA43 FA19 FA59 GA10 GA22 GA23 GA51  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G051 AA65 AB02 CA03 CA04 EA11 EA23 EA30 EB01 EB09 ED01 ED15 5B057 AA03 BA02 CA08 CA12 CA16 CC03 DA03 DB02 DB09 5L096 AA06 BA03 CA02 DA01 EA02 EA03 EA13 GA23 FA37 GA51

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 検査対象物の撮像画像と,上記検査対象
物の検査領域を定めた所定のマスク画像との論理積演算
を行い,得られた検査画像に基づいて上記検査対象物の
欠陥を検査する欠陥検査方法において,上記検査対象物
の撮像画像を所定の濃度閾値に基づいて2値化する2値
化工程と,上記2値化工程で得られた2値化画像,又は
上記2値化画像に所定の収縮処理を施して得られた収縮
2値化画像に基づいて上記マスク画像を生成するマスク
画像生成工程とを具備してなることを特徴とする欠陥検
査方法。
An AND operation of a captured image of an inspection object and a predetermined mask image defining an inspection area of the inspection object is performed, and a defect of the inspection object is determined based on the obtained inspection image. In the defect inspection method for inspecting, a binarizing step of binarizing a captured image of the inspection object based on a predetermined density threshold, a binarized image obtained in the binarizing step, or the binary image A mask image generating step of generating the mask image based on a contracted binary image obtained by performing a predetermined contraction process on the transformed image.
【請求項2】 予め,上記検査対象物と同種類の複数の
試料の撮像画像からそれぞれ2値化画像を生成し,それ
ら2値化画像の論理積演算によって固定マスク画像を生
成する固定マスク画像生成工程を具備し,上記マスク画
像生成工程において,上記2値化画像又は上記収縮2値
化画像と上記固定マスク画像生成工程で得られた固定マ
スク画像との論理和によって得られる画像を上記マスク
画像とする請求項1記載の欠陥検査方法。
2. A fixed mask image in which a binary image is generated in advance from captured images of a plurality of samples of the same type as the inspection object, and a fixed mask image is generated by a logical product operation of the binary images. A mask image generating step, wherein in the mask image generating step, an image obtained by a logical sum of the binary image or the contracted binary image and the fixed mask image obtained in the fixed mask image generating step is masked. The defect inspection method according to claim 1, wherein the defect inspection method is an image.
【請求項3】 上記検査対象物が基材部面から隆起した
パッド部を有するものであり,上記所定の濃度閾値が,
上記検査対象物の基材部の濃度と上記パッド部の濃度と
の間の値に設定され,上記2値化工程において上記濃度
閾値を用いて得られた2値化画像に所定量の収縮処理を
施して上記収縮2値化画像を生成する請求項1又は2記
載の欠陥検査方法。
3. The method according to claim 2, wherein the inspection object has a pad portion protruding from the surface of the base material portion, and the predetermined density threshold is:
A predetermined amount of shrinking processing is performed on the binarized image obtained by using the density threshold value in the binarizing step and set to a value between the density of the base portion of the inspection object and the density of the pad portion. The defect inspection method according to claim 1 or 2, wherein the shrinking binarized image is generated by performing the following.
【請求項4】 上記予め設定された上記パッド部の所定
部位の幅と,それに対応する上記2値化画像上の幅とが
略同一となるように上記収縮処理を行う請求項3記載の
欠陥検査方法。
4. The defect according to claim 3, wherein the contraction processing is performed so that a predetermined width of the predetermined portion of the pad portion and a corresponding width on the binarized image are substantially the same. Inspection methods.
【請求項5】 上記予め設定された上記パッド部の面積
値と,それに対応する上記2値化画像上の面積値とが略
同一となるように上記収縮処理を行う請求項3記載の欠
陥検査方法。
5. The defect inspection according to claim 3, wherein the contraction processing is performed so that the preset area value of the pad portion is substantially the same as the corresponding area value on the binarized image. Method.
【請求項6】 検査対象物の撮像画像と,上記検査対象
物の検査領域を定めた所定のマスク画像との論理積演算
を行い,得られた検査画像に基づいて上記検査対象物の
欠陥を検査する欠陥検査装置において,上記検査対象物
の撮像画像を所定の濃度閾値に基づいて2値化する2値
化手段と,上記2値化手段で得られた2値化画像,又は
上記2値化画像に所定の収縮処理を施して得られた収縮
2値化画像に基づいて上記マスク画像を生成するマスク
画像生成手段とを具備してなることを特徴とする欠陥検
査装置。
6. An AND operation of a picked-up image of the inspection object and a predetermined mask image defining an inspection area of the inspection object, and determining a defect of the inspection object based on the obtained inspection image. In a defect inspection apparatus for inspecting, a binarizing means for binarizing a captured image of the inspection object based on a predetermined density threshold, a binarized image obtained by the binarizing means, or the binary image A defect inspection apparatus comprising: a mask image generating unit configured to generate the mask image based on a contracted binary image obtained by performing a predetermined contraction process on the transformed image.
【請求項7】 予め,上記検査対象物と同種類の複数の
試料の撮像画像からそれぞれ2値化画像を生成し,それ
ら2値化画像の論理積演算によって固定マスク画像を生
成する固定マスク画像生成手段を具備し,上記マスク画
像生成手段において,上記2値化画像又は上記収縮2値
化画像と上記固定マスク画像生成手段で得られた固定マ
スク画像との論理和によって得られる画像を上記マスク
画像とする請求項6記載の欠陥検査装置。
7. A fixed mask image which previously generates a binary image from captured images of a plurality of samples of the same type as the inspection object, and generates a fixed mask image by performing a logical product operation of the binary images. Generating means for generating an image obtained by the logical sum of the binary image or the contracted binary image and the fixed mask image obtained by the fixed mask image generating means. 7. The defect inspection apparatus according to claim 6, wherein the defect inspection apparatus is an image.
【請求項8】 上記検査対象物が基材部面から隆起した
パッド部を有するものであり,上記所定の濃度閾値が,
上記検査対象物の基材部の濃度と上記パッド部の濃度と
の間の値に設定され,上記2値化手段において上記濃度
閾値を用いて得られた2値化画像に所定量の収縮処理を
施して上記収縮2値化画像を生成する請求項6又は7記
載の欠陥検査装置。
8. The inspection object has a pad portion raised from the surface of the base material portion, and the predetermined density threshold is:
A predetermined amount of shrinkage processing is performed on the binarized image obtained by using the density threshold by the binarization means and set to a value between the density of the base portion of the inspection object and the density of the pad portion. The defect inspection apparatus according to claim 6, wherein the defect inspection apparatus generates the contracted binarized image by performing the following.
【請求項9】 上記予め設定された上記パッド部の所定
部位の幅と,それに対応する上記2値化画像上の幅とが
略同一となるように上記収縮処理を行う請求項8記載の
欠陥検査装置。
9. The defect according to claim 8, wherein the contraction processing is performed such that a predetermined width of the predetermined portion of the pad portion and a corresponding width on the binarized image are substantially the same. Inspection equipment.
【請求項10】 上記予め設定された上記パッド部の面
積値と,それに対応する上記2値化画像上の面積値とが
略同一となるように上記収縮処理を行う請求項8記載の
欠陥検査装置。
10. The defect inspection according to claim 8, wherein the contraction processing is performed so that the preset area value of the pad portion is substantially the same as the corresponding area value on the binarized image. apparatus.
JP19269099A 1999-07-07 1999-07-07 Defect inspection method and apparatus Expired - Fee Related JP3618589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19269099A JP3618589B2 (en) 1999-07-07 1999-07-07 Defect inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19269099A JP3618589B2 (en) 1999-07-07 1999-07-07 Defect inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2001021502A true JP2001021502A (en) 2001-01-26
JP3618589B2 JP3618589B2 (en) 2005-02-09

Family

ID=16295435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19269099A Expired - Fee Related JP3618589B2 (en) 1999-07-07 1999-07-07 Defect inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP3618589B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004348266A (en) * 2003-05-20 2004-12-09 Fanuc Ltd Image processor
JP2007114073A (en) * 2005-10-21 2007-05-10 Dainippon Screen Mfg Co Ltd Stylus trace detecting device and method
CN102837852A (en) * 2011-06-23 2012-12-26 世高株式会社 Package inspection apparatus
JP2013134666A (en) * 2011-12-27 2013-07-08 Dainippon Screen Mfg Co Ltd Binary image generation device, classification device, binary image generation method, and classification method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004348266A (en) * 2003-05-20 2004-12-09 Fanuc Ltd Image processor
US7400760B2 (en) 2003-05-20 2008-07-15 Fanuc Ltd Image processing apparatus
JP2007114073A (en) * 2005-10-21 2007-05-10 Dainippon Screen Mfg Co Ltd Stylus trace detecting device and method
CN102837852A (en) * 2011-06-23 2012-12-26 世高株式会社 Package inspection apparatus
JP2013134666A (en) * 2011-12-27 2013-07-08 Dainippon Screen Mfg Co Ltd Binary image generation device, classification device, binary image generation method, and classification method

Also Published As

Publication number Publication date
JP3618589B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP3669698B2 (en) Inspection method and inspection apparatus for printed matter
TWI412739B (en) Defect detection method and defect detection apparatus
KR20160097651A (en) Apparatus and Method for Testing Pattern of Sample using Validity Image Processing Technique, and computer-readable recording medium with program therefor
JP2001021502A (en) Flaw inspecting method and system therefor
JP2010091360A (en) Method and device for inspecting image
JP2019045451A (en) Inspection apparatus, inspection method and program
JP3018878B2 (en) Picture inspection equipment
JP3233205B2 (en) Circuit inspection method and device
JP4474006B2 (en) Inspection device
JP2561193B2 (en) Print pattern inspection device
JP2000321038A (en) Method for detecting fault of pattern
JP3919207B2 (en) Appearance inspection device
JPH102725A (en) Visual inspection device for tape carrier package
JP4220061B2 (en) Periodic pattern defect inspection method and apparatus
JP2000028334A (en) Method and apparatus for inspecting pattern fault
JP5096940B2 (en) Inspection method and apparatus for printed wiring board
JP2000258353A (en) Defect inspection method and device
JPH10142771A (en) Method for setting sensitivity of inspection apparatus for inspecting pattern and inspection apparatus which allows setting of sensitivity
JP2004193318A (en) Method and device for inspecting mask for charged particle beam exposure
JP4380371B2 (en) Method for extracting bump image of mounting substrate such as semiconductor device, method for inspecting bump image, program for the method, recording medium recording the program, and device for inspecting bump
JPH07218343A (en) Visual inspection device for printed circuit board
JPH0617875B2 (en) Pattern inspection method and apparatus
JP2002015303A (en) Defect detecting method for pattern and its device
JP3056155B2 (en) Foreign matter inspection between leads
JPH0453253B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees