JP2001020195A - Sheet material - Google Patents

Sheet material

Info

Publication number
JP2001020195A
JP2001020195A JP11195711A JP19571199A JP2001020195A JP 2001020195 A JP2001020195 A JP 2001020195A JP 11195711 A JP11195711 A JP 11195711A JP 19571199 A JP19571199 A JP 19571199A JP 2001020195 A JP2001020195 A JP 2001020195A
Authority
JP
Japan
Prior art keywords
fiber
sheet
sheet material
fibrillated acrylic
pan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11195711A
Other languages
Japanese (ja)
Other versions
JP4324891B2 (en
Inventor
Kenichi Wakamiya
健一 若宮
Kazuhiro Sasaki
和広 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP19571199A priority Critical patent/JP4324891B2/en
Publication of JP2001020195A publication Critical patent/JP2001020195A/en
Application granted granted Critical
Publication of JP4324891B2 publication Critical patent/JP4324891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Artificial Filaments (AREA)
  • Paper (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sheet material having excellent performances especially as a separator preventing the positive and negative poles from short-circuiting in metal refining using an acidic electrolyte, electric double layer capacitors and secondary batteries. SOLUTION: This sheet material is produced by combining fibrillated acrylic fibers made from at least 97 wt.% acrylonitrile(AN) and having a freeness of <=450 mL with polyacrylonitrile fibers (PAN fiber) made of polyacrylonitrile. Since the sheet material has a small maximum pore diameter, it can advantageously prevent short-circuit between the positive pole and the negative pole, has high resistance to electrolyte and also high affinity for electrolyte, enables thin sheets to easily be formed and therefore can impart sheet-like materials having low internal resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に金属精製、電
気二重層コンデンサー、二次電池の電極隔離板に用いら
れるシート状材料に関する。詳しくは、電解液の保液性
や該液との親和性、耐電解液性や耐酸化性に優れるため
低内部抵抗で、長期的に安定なシート状材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet material mainly used for metal refining, an electric double layer capacitor, and an electrode separator of a secondary battery. More specifically, the present invention relates to a sheet-shaped material that has a low internal resistance and is stable over a long period of time because of its excellent liquid retention properties and affinity with the electrolyte, resistance to the electrolyte and oxidation resistance.

【0002】[0002]

【従来の技術】従来から、金属精製、電気二重層コンデ
ンサー、二次電池において、正極と負極の電気的短絡を
防止するためにシート状の隔離板が使用されている。こ
の隔離板には、使用される電解液の液性に応じた耐電解
液性のある素材が各々選ばれ使用されている。特に、酸
性電解液を用いる金属精製、電気二重層コンデンサー、
二次電池においては、耐酸性に優れるガラス等の無機繊
維やポリプロピレンやポリエチレン、ポリエステル等の
合成繊維が使用されてきたが、隔離板として必要とされ
る電解液との親和性や低内部抵抗性、耐電解液性や充電
時の正極における耐酸化性、隔離板製作時のプロセス通
過性を相互にあるいはそれらの特性全てを満足させる隔
離板の開発に関しては、多くの課題が残されてきた。
2. Description of the Related Art Conventionally, in metal refining, electric double layer capacitors, and secondary batteries, a sheet-like separator has been used to prevent an electrical short circuit between a positive electrode and a negative electrode. For this separator, a material having an electrolytic solution resistance corresponding to the liquid property of the electrolytic solution to be used is selected and used. In particular, metal refining using acidic electrolytes, electric double layer capacitors,
In secondary batteries, inorganic fibers such as glass, which has excellent acid resistance, and synthetic fibers such as polypropylene, polyethylene, and polyester, have been used. Many problems have been left in the development of separators that satisfy each other or all of their properties such as resistance to electrolytes, oxidation resistance of the positive electrode during charging, and processability during the production of the separator.

【0003】即ちガラス繊維は、その表面が親水性に富
むこと、極細の繊維が得られることから、特に吸液量
(電解液との初期の馴染み易さの指標)を重要特性とす
る密閉型の酸性電解液を使用する二次電池用隔離板に使
用されてきた。しかしながらガラス繊維はもろく、薄い
シートの製作が難しいだけでなく、シート強力が著しく
弱く、コンデンサーや二次電池の組立作業にも支障をき
たしていた。これに対して例えば特開昭56−9996
8号公報では、ガラス繊維にろ水度350cc以下のフ
ィブリル化した合成繊維を10重量%以下混合してシー
ト化することが提案されている。しかしながら、このよ
うな方法を用いても、特にシートの薄物化の要求が高い
高性能の二次電池や電気二重層コンデンサーに対して
は、充分なシート強度を充たす薄物化には成功していな
い。
[0003] That is, since the glass fiber has a hydrophilic surface and a very fine fiber can be obtained, the hermetic glass fiber is particularly important in the amount of liquid absorption (indicator of initial compatibility with the electrolyte). Has been used for a separator for a secondary battery using an acidic electrolytic solution. However, glass fibers are fragile, and it is difficult not only to manufacture thin sheets, but also the sheet strength is extremely weak, which hinders the assembly work of capacitors and secondary batteries. On the other hand, for example, Japanese Patent Application Laid-Open No. 56-9996
No. 8 proposes mixing glass fiber with 10% by weight or less of fibrillated synthetic fiber having a freeness of 350 cc or less to form a sheet. However, even with such a method, particularly for high-performance secondary batteries and electric double-layer capacitors that require high sheet thickness, thinning that satisfies sufficient sheet strength has not been successful. .

【0004】これに対しポリプロピレンやポリエチレン
の不織布や織布、もしくはフィルムからなるシートは、
薄く強度の高いシートが作成可能である上、電解液に対
しても長期に安定であり、種々の二次電池や電気二重層
コンデンサーにて使用されている。しかし、ポリプロピ
レン、ポリエチレンは電解液に対する親和性が極めて悪
いため、内部抵抗の上昇をきたし、問題となっていた。
この欠点を改良するために、界面活性剤をこれらのシー
トに含浸させる方法が提案されているが、界面活性剤に
よる電解液の汚染に伴う性能低下や、長期的な性能維持
ができないという問題がある。また特公平6−1013
23号公報には、濃硫酸での処理による、電解液への親
和性や保液性の改善が試みられているが、濃硫酸により
繊維がダメージを受け、強度が低下するという問題があ
る。
On the other hand, a sheet made of a nonwoven fabric, a woven fabric, or a film of polypropylene or polyethylene,
A thin, high-strength sheet can be produced, and it is stable for a long time even in an electrolytic solution, and is used in various secondary batteries and electric double layer capacitors. However, polypropylene and polyethylene have extremely low affinity for an electrolytic solution, and therefore increase internal resistance, which has been a problem.
In order to remedy this drawback, a method of impregnating these sheets with a surfactant has been proposed. However, there is a problem that the performance is deteriorated due to the contamination of the electrolyte by the surfactant and that long-term performance cannot be maintained. is there. In addition, 6-1013
In Japanese Patent No. 23, there is an attempt to improve affinity to an electrolytic solution and liquid retention by treatment with concentrated sulfuric acid, but there is a problem that fibers are damaged by concentrated sulfuric acid and strength is reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、特に
酸性電解液を使用する金属精製、電気二重層コンデンサ
ー、二次電池において正極と負極の短絡を防止する隔離
板として、充分な耐電解液性を有し、電解液との親和性
が高く極めて薄いシートの作成が容易なことから低内部
抵抗化が図れるシート状材料を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a metal separator using an acidic electrolyte, an electric double layer capacitor, and a separator having a sufficient electrolytic resistance as a separator for preventing a short circuit between a positive electrode and a negative electrode in a secondary battery. An object of the present invention is to provide a sheet material which has a liquid property, has a high affinity with an electrolytic solution, and is easy to prepare an extremely thin sheet, so that a low internal resistance can be achieved.

【0006】[0006]

【課題を解決するための手段】上記目的を本発明は、ア
クリロニトリル比率の高い2種類のアクリル繊維を複合
することにより達成した。すなわち、本発明は、少なく
とも97重量%のアクリロニトリル(AN)よりなりろ
水度が450ml以下であるフィブリル化アクリル繊維
とポリアクリロニトリルでなるポリアクリロニトリル繊
維(PAN繊維)を複合してなるシート状材料である。
なお、シート状材料はフィブリル化アクリル繊維のろ水
度が200ml以下でありPAN繊維が重量平均分子量
15万以上のPANからなること、フィブリル化アクリ
ル繊維がポリアクリロニトリルでなり、フィブリル化ア
クリル繊維及びPAN繊維を構成する重合体のイオン性
基が重合体に対していずれも0.025mmol/g以
下であることにより、より高度に発明の目的が達成され
る。
The object of the present invention has been attained by combining two types of acrylic fibers having a high acrylonitrile ratio. That is, the present invention relates to a sheet-like material obtained by combining a polyacrylonitrile fiber (PAN fiber) composed of polyacrylonitrile and a fibrillated acrylic fiber comprising at least 97% by weight of acrylonitrile (AN) and having a freeness of 450 ml or less. is there.
In addition, the sheet-like material is that the freeness of the fibrillated acrylic fiber is 200 ml or less, the PAN fiber is made of PAN having a weight average molecular weight of 150,000 or more, the fibrillated acrylic fiber is polyacrylonitrile, and the fibrillated acrylic fiber and PAN are used. When the ionic group of the polymer constituting the fiber is 0.025 mmol / g or less with respect to the polymer, the object of the invention is more highly achieved.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に採用するフィブリル化アクリル繊維の原料であ
るアクリロニトリル系重合体としては、繊維全体として
アクリロニトリル(以下、ANともいう)比率が97重
量%以上であれば特に制限はなく単独重合体、公知のコ
モノマーとの共重合体、あるいはこれらの混合物を用い
ることができる。ここでAN比率とは、フィブリル化ア
クリル繊維を構成するアクリロニトリル系重合体中の重
合性成分に対するアクリロニトリルの重量%である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The acrylonitrile-based polymer, which is a raw material of the fibrillated acrylic fiber used in the present invention, is not particularly limited as long as the acrylonitrile (hereinafter, also referred to as AN) ratio is 97% by weight or more in the whole fiber, and is not particularly limited. A copolymer with a comonomer or a mixture thereof can be used. Here, the AN ratio is the weight% of acrylonitrile based on the polymerizable component in the acrylonitrile-based polymer constituting the fibrillated acrylic fiber.

【0008】フィブリル化アクリル繊維が2種類以上の
アクリロニトリル系重合体を混在させた繊維である場合
には、2種以上のアクリロニトリル系重合体の全てがA
N比率97重量%以上である必要はなく、混在させた重
合体全体としてのAN比率が97重量%以上となればよ
い。また、AN比率の異なる2種以上のフィブリル化ア
クリル繊維を混在させることもできるが、その場合も2
種以上のフィブリル化アクリル繊維の全てがAN比率9
7重量%以上である必要はなく、混在させた繊維全体と
してのAN比率が97重量%以上となればよい。
When the fibrillated acrylic fiber is a fiber in which two or more acrylonitrile polymers are mixed, all of the two or more acrylonitrile polymers are A
The N ratio does not need to be 97% by weight or more, and the AN ratio of the mixed polymer as a whole may be 97% by weight or more. Also, two or more types of fibrillated acrylic fibers having different AN ratios can be mixed.
All of the fibrillated acrylic fibers of more than one kind have an AN ratio of 9
It is not necessary to be 7% by weight or more, and it is sufficient that the AN ratio of the mixed fibers as a whole becomes 97% by weight or more.

【0009】アクリロニトリル比率が97重量%未満に
なるとアクリロニトリル系繊維が本来持つ耐薬品性、耐
熱性が低下し、本発明のシート状材料が電解液中で高温
に曝された場合、長期的に繊維物性が低下してきたり、
充電時に正極で発生する酸素等により劣化を起こしやす
くなる。この長期的耐電解液性や耐熱性、耐酸化性は、
フィブリル化アクリル繊維が共重合成分を含まないポリ
アクリロニトリルでなる場合に、特に際立った性能を示
し、好ましい。
[0009] When the acrylonitrile ratio is less than 97% by weight, the inherent chemical resistance and heat resistance of the acrylonitrile-based fiber are reduced. Physical properties are getting worse,
Deterioration easily occurs due to oxygen or the like generated at the positive electrode during charging. This long-term electrolyte resistance, heat resistance, and oxidation resistance
When the fibrillated acrylic fiber is made of polyacrylonitrile containing no copolymerization component, it shows particularly outstanding performance and is preferable.

【0010】共重合に用いられるコモノマーとしては他
の重合性不飽和ビニル化合物など、アクリロニトリルと
共重合するものであれば特に制限はなく、例えばC1〜
C4のアルキルアクリレート、アルキルメタクリレー
ト、アクリル酸、メタクリル酸、メタクリロニトリル、
アクリルアミド、酢酸ビニル、塩化ビニル、臭化ビニ
ル、フッ化ビニル、塩化ビニリデン、臭化ビニリデン、
スチレン、スチレンスルホン酸、アリルスルホン酸、メ
タリルスルホン酸、スチレンスルホン酸塩、アリルスル
ホン酸塩、メタリルスルホン酸塩、エチレン、プロピレ
ン等を挙げることができる。
The comonomer used in the copolymerization is not particularly limited as long as it can copolymerize with acrylonitrile, such as another polymerizable unsaturated vinyl compound.
C4 alkyl acrylate, alkyl methacrylate, acrylic acid, methacrylic acid, methacrylonitrile,
Acrylamide, vinyl acetate, vinyl chloride, vinyl bromide, vinyl fluoride, vinylidene chloride, vinylidene bromide,
Examples include styrene, styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid salt, allyl sulfonic acid salt, methallyl sulfonic acid salt, ethylene, propylene and the like.

【0011】このようなアクリロニトリル系重合体から
フィブリル化アクリル繊維の原料となるアクリル繊維を
作製するには、湿式紡糸法、乾湿式紡糸法、乾式紡糸法
等公知の紡糸技術が適用できる。フィブリル化アクリル
繊維は該アクリル繊維を所定の長さにきったものをビー
ターやレファイナー等公知の叩解機器で叩解することに
よって作製できる。もしくは、紡糸原液を高圧で噴出さ
せるフラッシュ紡糸等を利用することもできる。
In order to produce an acrylic fiber as a raw material of a fibrillated acrylic fiber from such an acrylonitrile-based polymer, known spinning techniques such as a wet spinning method, a dry-wet spinning method and a dry spinning method can be applied. The fibrillated acrylic fiber can be produced by beating a predetermined length of the acrylic fiber with a known beating machine such as a beater or a refiner. Alternatively, flash spinning or the like in which a spinning solution is jetted at a high pressure can also be used.

【0012】なお、ビーターやレファイナーで叩解する
場合には、フィブリル化し易いアクリル繊維である方が
工業的に有利である。このようなアクリル繊維を作製す
るためには、例えば、2種以上のアクリロニトリル系重
合体を混合した後、公知の溶剤に溶解させて、相分離を
起こしやすい紡糸原液を作製し、湿式あるいは乾湿式紡
糸するという手段や紡糸原液を湿式紡糸あるいは乾湿式
紡糸した後、より高度の延伸等により繊維の分子配向性
を高める等で、フィブリル化し易くする手段が挙げられ
る。
When beaten with a beater or a refiner, an acrylic fiber which is easily fibrillated is industrially advantageous. In order to prepare such an acrylic fiber, for example, after mixing two or more acrylonitrile-based polymers, the mixture is dissolved in a known solvent to prepare a spinning dope that easily causes phase separation, and wet or dry-wet. Examples of the method include spinning and wet spinning or dry-wet spinning of the spinning solution, and then increasing the molecular orientation of the fiber by a higher degree of drawing or the like to facilitate fibrillation.

【0013】本発明が採用するフィブリル化アクリル繊
維は、ろ水度が450ml以下、更に好ましくは200
ml以下のものである。ここで、ろ水度とは、JISP
8121記載の方法に従って測定したカナダ標準ろ水度
を指す。ろ水度が450mlを超えると繊維同士の絡み
合いが少なくなり、シート強度が弱くなるだけでなく、
フィブリル化アクリル繊維が形成するシートの網目構造
が粗くなり最大孔径が大きくなるために、電極が短絡し
やすくなる。シートの低内部抵抗化やコンパクト化の要
求に伴ってシートを薄くするに従い、さらにこの最大孔
径を小さく、シート強度を上げる必要があり、このよう
な要求に応えるフィブリル化アクリル繊維のろ水度は、
200ml以下である。
The fibrillated acrylic fiber used in the present invention has a freeness of 450 ml or less, more preferably 200 ml or less.
ml or less. Here, the freeness is JISP
8121 refers to Canadian standard freeness measured according to the method described in 8121. If the freeness exceeds 450 ml, the entanglement of the fibers decreases, and not only does the sheet strength decrease,
Since the mesh structure of the sheet formed by the fibrillated acrylic fibers becomes coarse and the maximum pore diameter increases, the electrodes are likely to be short-circuited. As the sheet becomes thinner with the demand for lower internal resistance and compactness of the sheet, it is necessary to further reduce the maximum pore size and increase the sheet strength, and the freeness of the fibrillated acrylic fiber that meets such demands is ,
It is 200 ml or less.

【0014】ろ水度の下限には限定は無く、小さい値の
ものほどシート強度を維持したシートの薄物化がし易
い。しかし、実務的にはフィブリル化アクリル繊維その
もの並びにシート状材料の形成(操作性)そのものが工
業的でなくなるので、小さくても50ml以上が推奨さ
れる。
There is no limitation on the lower limit of the freeness, and the smaller the freeness, the easier it is to make the sheet thinner while maintaining the sheet strength. However, in practice, the fibrillated acrylic fiber itself and the formation (operability) of the sheet-like material itself are not industrial, so that at least 50 ml or more is recommended.

【0015】なお、上述の如くフィブリル化アクリル繊
維は、アクリル繊維を、所定の長さにカットしたものを
ビーターやレファイナー等公知の叩解機器で叩解するこ
とによって得られるが、ろ水度の異なるフィブリル化ア
クリル繊維は、ビーターやレファイナーのパス回数の増
減によって調整できる。
As described above, the fibrillated acrylic fiber can be obtained by cutting the acrylic fiber into a predetermined length and beating it with a known beating machine such as a beater or a refiner. Acrylic fibers can be adjusted by increasing or decreasing the number of passes of a beater or refiner.

【0016】本発明のシート状材料は、上述してきたフ
ィブリル化アクリル繊維とポリアクリロニトリルでなる
PAN繊維を複合してなる。複合の仕方に限定は無く、
フィブリル化アクリル繊維とPAN繊維を混合してウエ
ブ化するとか、夫々の繊維で別個にシート状物を形成し
それを積層する、あるいはある繊維層で他の繊維層を挟
むようにする、等適宜の方法が目的に応じて採用され
る。最も容易なのは、後述するが湿式抄造法を利用する
ことである。勿論これらの複合に際して、他の素材の繊
維を併用してもかまわない。
The sheet material of the present invention is a composite of the above-mentioned fibrillated acrylic fiber and PAN fiber made of polyacrylonitrile. There is no limitation on how to combine,
Mixing fibrillated acrylic fiber and PAN fiber to form a web, forming a separate sheet with each fiber and laminating them, or sandwiching another fiber layer with a certain fiber layer, etc. Is adopted according to the purpose. The easiest way is to use a wet papermaking method as described later. Needless to say, fibers of another material may be used in combination at the time of these composites.

【0017】ところで、フィブリル化アクリル繊維は、
シートに強力を与え、シートの緻密化の役割を担ってい
るが、PAN繊維はいわばシートの骨格の役割を負って
いる。シートの骨格には、電解液の高範囲な温度条件に
よっても長期的に安定な、優れた耐薬品性と耐熱性、耐
酸化性や寸法安定性がより強く要求される。高性能の電
気二重層コンデンサーや二次電池に使用される隔離板に
は更に厳しいこれらの性能が要求され、この目的を達成
するためには、共重合物を含まないポリアクリロニトリ
ルよりなるPAN繊維が必須となる。本発明において、
PAN繊維は重量平均分子量15万以上のPANからな
るものとすることにより、更に耐熱性、耐薬品性が向上
し、薄物化されたシートであっても長期的に安定であ
り、好ましい。なお、ここで言う重量平均分子量(M
w)とは、DMFを溶剤とした30℃における極限粘度
[η]を用い、[η]=3.35x10-4Mw-0.72
より求めたMwである。
By the way, the fibrillated acrylic fiber is
While giving strength to the sheet and playing a role in densifying the sheet, the PAN fiber plays a role as a skeleton of the sheet. The skeleton of the sheet is required to have excellent chemical resistance, heat resistance, oxidation resistance, and dimensional stability that are stable over a long period of time even under a high temperature range of the electrolytic solution. Separators used in high-performance electric double-layer capacitors and secondary batteries are required to have even stricter performance.To achieve this purpose, PAN fibers made of polyacrylonitrile containing no copolymer are required. Required. In the present invention,
When the PAN fiber is made of PAN having a weight average molecular weight of 150,000 or more, heat resistance and chemical resistance are further improved, and even a thinned sheet is preferable because it is stable for a long period of time. The weight average molecular weight (M
w) is Mw determined by [η] = 3.35 × 10 −4 Mw −0.72 using intrinsic viscosity [η] at 30 ° C. using DMF as a solvent.

【0018】本発明の採用するフィブリル化アクリル繊
維及びPAN繊維を構成する重合体は、溶液重合や水系
懸濁重合等の公知の技術によって作製でき、上述したよ
うにコモノマー、あるいは重合開始剤についても特に限
定されるものではない。しかし、重合体に含まれるイオ
ン性基が重合体に対していずれも0.025mmol/
g以下とすることにより、更に好ましい耐電解液性を示
し、極めてうすいシートであっても長期的に安定な耐電
解液性を与えることができる。ここで言うイオン性基と
は、重合開始剤として、イオン性基を持つ重合開始剤、
例えば4−4’アゾビス(4−シアノ吉草酸)や過硫酸
カリウム又は過硫酸アンモニウムと亜硫酸ナトリウムの
ようなレドックス触媒を用いた場合に、重合体の末端に
導入されるイオン性基及び、フィブリル化アクリル繊維
がポリアクリロニトリルでない場合に用いられる、イオ
ン性基を持つコモノマー、例えば、アクリル酸、スチレ
ンスルホン酸等によって導入されるものである。勿論重
合体にイオン性基を導入しない重合開始剤、例えば2,
2’−アゾビスイソブチロニトリルや2,2’−アゾビ
ス−2,4−ジメチルバレロニトリルを採用すること、
又重合体にイオン性基を導入しないコモノマー、例え
ば、酢酸ビニルやスチレンあるいはフィブリル化アクリ
ル繊維としてポリアクリロニトリルを採用するのが好ま
しいことは言うまでもない。
The polymer constituting the fibrillated acrylic fiber and the PAN fiber used in the present invention can be produced by a known technique such as solution polymerization or aqueous suspension polymerization. There is no particular limitation. However, the ionic group contained in the polymer was 0.025 mmol /
By setting it to g or less, more favorable electrolytic solution resistance is exhibited, and even a very thin sheet can provide stable electrolytic solution resistance for a long period of time. The ionic group referred to here, as a polymerization initiator, a polymerization initiator having an ionic group,
For example, when a redox catalyst such as 4-4 ′ azobis (4-cyanovaleric acid) or potassium persulfate or ammonium persulfate and sodium sulfite is used, an ionic group introduced to the terminal of the polymer and a fibrillated acrylic It is introduced by a comonomer having an ionic group, such as acrylic acid or styrene sulfonic acid, which is used when the fiber is not polyacrylonitrile. Of course, a polymerization initiator which does not introduce an ionic group into the polymer, for example, 2,
Adopting 2′-azobisisobutyronitrile or 2,2′-azobis-2,4-dimethylvaleronitrile,
Needless to say, it is preferable to employ a comonomer which does not introduce an ionic group into the polymer, for example, vinyl acetate, styrene or polyacrylonitrile as the fibrillated acrylic fiber.

【0019】本発明のシート状材料は上述してきたフィ
ブリル化アクリル繊維とPAN繊維からなり、その配合
割合を特に限定するものではないが、フィブリル化アク
リル繊維をシートの5重量%以上30重量%以下使用す
ることが好ましい。5重量%未満ではシートの強度が弱
くなり、又緻密なシートとならない。一方30重量%を
超えると耐電解液性が悪化したり、寸法安定性が悪くな
る。本発明のシート状材料の製造方法については、フィ
ブリル化アクリル繊維と2〜10mm程度の目的に応じ
た長さに切ったPAN繊維を水中に分散させ、通常の湿
式抄造を行うか、捲縮加工を施したPAN繊維でウエブ
を作り、フィブリル化アクリル繊維を振り撒いた後でウ
ォーターパンチ等の方法でシートを形成する不織布加工
等、公知のシート化技術を利用できる。又、本発明のシ
ート状材料には、他の無機繊維、有機合成繊維、無機粉
体等を目的に応じて配合したり、必要に応じて更に耐電
解液性を上げるためシートの表面に樹脂エマルジョン等
を塗布もしくはスプレーすることもできるが、有機合成
繊維や樹脂エマルジョンを併用する場合には、フィブリ
ル化アクリル繊維やPAN繊維が本来有する電解液との
親和性を阻害しないために、シート材料中の20重量%
を超えないことが好ましい。
The sheet material of the present invention comprises the above-mentioned fibrillated acrylic fiber and PAN fiber, and the mixing ratio thereof is not particularly limited. It is preferred to use. If it is less than 5% by weight, the strength of the sheet will be weak and the sheet will not be dense. On the other hand, if it exceeds 30% by weight, the resistance to the electrolytic solution is deteriorated and the dimensional stability is deteriorated. Regarding the method for producing the sheet material of the present invention, the fibrillated acrylic fiber and the PAN fiber cut to a length of about 2 to 10 mm are dispersed in water and subjected to ordinary wet papermaking or crimping. A known sheet forming technique such as nonwoven fabric processing in which a web is formed from PAN fibers subjected to the above-mentioned step, and a sheet is formed by a method such as water punching after the fibrillated acrylic fibers are sprinkled. Further, the sheet-like material of the present invention may contain other inorganic fibers, organic synthetic fibers, inorganic powders or the like according to the purpose, or a resin may be added to the surface of the sheet in order to further increase the electrolytic solution resistance if necessary. An emulsion or the like can be applied or sprayed. However, when an organic synthetic fiber or a resin emulsion is used in combination, the affinity of the fibrillated acrylic fiber or the PAN fiber with the electrolyte originally contained is not impaired. 20% by weight of
Is preferably not exceeded.

【0020】[0020]

【実施例】以下に本発明の理解を容易にするため実施例
を示すが、これらはあくまで例示的なものであり、本発
明の要旨はこれにより限定されるものではない。尚、実
施例中、部及び百分率は特にことわりのない限り重量基
準で示す。
EXAMPLES The following examples are provided to facilitate understanding of the present invention, but these are merely examples, and the gist of the present invention is not limited thereto. In the examples, parts and percentages are indicated by weight unless otherwise specified.

【0021】フィブリル化アクリル繊維の製造例 常法に従って、AN比率及びイオン性基量の異なるアク
リロニトリル系重合体をロダンソーダ水溶液に溶解し湿
式紡糸法にてアクリル繊維を作製した。ここでアクリロ
ニトリル系重合体の合成には、コモノマーとしてアクリ
ル酸メチル、重合開始剤として過硫酸アンモニウム、亜
硫酸ナトリウムのレドックス触媒を用いた。該アクリル
繊維をビーターにて条件を変えて叩解させて、No.1
〜6のフィブリル化アクリル繊維を得た。これらのフィ
ブリル化アクリル繊維のNo.、AN比率、イオン性基
量及びろ水度は表1に示した。尚、表1において、ろ水
度はJISP8121記載の方法に従って測定した。
又、イオン性基については、重合体中の触媒系からもた
らされた硫黄の、重合体当たりの重量%を原子吸光分析
で測定し、次式に従って算出した。 イオン性基(mmol/g)=(硫黄重量%/100)
/32
Example of Production of Fibrillated Acrylic Fiber An acrylonitrile polymer having an AN ratio and an ionic group content different from each other was dissolved in an aqueous solution of rhoda soda according to a conventional method, and an acrylic fiber was produced by a wet spinning method. Here, in the synthesis of the acrylonitrile-based polymer, a redox catalyst of methyl acrylate as a comonomer and ammonium persulfate and sodium sulfite as a polymerization initiator was used. The acrylic fiber was beaten with a beater under different conditions. 1
~ 6 fibrillated acrylic fibers were obtained. No. 1 of these fibrillated acrylic fibers. , AN ratio, ionic group content and freeness are shown in Table 1. In Table 1, the freeness was measured according to the method described in JISP8121.
The ionic group was calculated by the following equation by measuring the weight percent of the sulfur derived from the catalyst system in the polymer per polymer by atomic absorption analysis. Ionic group (mmol / g) = (wt% sulfur / 100)
/ 32

【0022】[0022]

【表1】 [Table 1]

【0023】PAN繊維の製造例 常法に従って、重量平均分子量及びイオン性基量の異な
るポリアクリロニトリルをロダンソーダ水溶液に溶解し
湿式紡糸法にてNo.1〜3のPAN繊維を作製した。
ここでポリアクリロニトリルの合成には、重合開始剤と
して過硫酸アンモニウム、亜硫酸ナトリウムのレドック
ス触媒を用いた。これらのPAN繊維のNo.、重量平
均分子量及びイオン性基量は表2に示した。
Production Example of PAN Fiber According to a conventional method, polyacrylonitrile having a different weight average molecular weight and an ionic group content was dissolved in an aqueous solution of rodane soda, and the solution was subjected to wet spinning. 1 to 3 PAN fibers were produced.
Here, in the synthesis of polyacrylonitrile, a redox catalyst of ammonium persulfate and sodium sulfite was used as a polymerization initiator. No. of these PAN fibers. , Weight average molecular weight and ionic group content are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】実施例1〜6 表1に示す本発明のフィブリル化アクリル繊維20部と
6mmにカットした表2に示す本発明のPAN繊維80部
を0.2%となるように水中に均一分散させ、円網抄紙
機を用いて湿式抄紙した後130℃で熱カレンダー処理
を施し、本発明のシート状材料実施例1〜6を得た。
Examples 1 to 6 20 parts of the fibrillated acrylic fiber of the present invention shown in Table 1 and 80 parts of the PAN fiber of the present invention shown in Table 2 cut to 6 mm were uniformly dispersed in water so as to be 0.2%. Then, wet papermaking was performed using a circular paper machine, and then subjected to a heat calendering treatment at 130 ° C. to obtain sheet-like materials Examples 1 to 6 of the present invention.

【0026】これらのシート状材料のかさ密度、保液
率、最大孔径、引張強力、耐酸テスト後引張強力を表3
に示す。ここで、表3の各物性値は以下に従って測定し
た。 1.最大孔径;ASTM‐F‐316記載のバブルポイ
ント法により測定した。 2.保液率;10cm×10cmのサンプルを採取し精
秤し、その値をW1とした。次に25℃の35%希硫酸
液中にこのサンプルを5分浸漬したのち2分間余分な希
硫酸を切り、重量を測定し、その値をW2とした。保液
率は次式によって算出した。 保液率(%)=(W2−W1)/W1×100 3.引張強力;作製したシートを幅2cm、長さ20c
mに裁断して試験体とし、JISL1096A法に準拠
してテンシロン測定機で測定した。ここで、つかみ把持
長は15cm(縦方向)、引張速度は10cm/分とし
た。 4.耐酸テスト後引張強力;上記引張強力測定の時と同
様にして作製したサンプルを密閉容器に入れ、35%の
希硫酸を満たし、50℃にて500時間保持した後水洗
し、風乾して試験体とし、3.の引張強力と同様に測定
した。
Table 3 shows the bulk density, liquid retention, maximum pore size, tensile strength, and tensile strength after the acid resistance test of these sheet materials.
Shown in Here, each physical property value of Table 3 was measured as follows. 1. Maximum pore diameter: measured by the bubble point method described in ASTM-F-316. 2. Liquid retention rate: A sample of 10 cm × 10 cm was collected and precisely weighed, and the value was designated as W1. Next, this sample was immersed in a 35% dilute sulfuric acid solution at 25 ° C. for 5 minutes, and then excess dilute sulfuric acid was cut off for 2 minutes, and the weight was measured. The liquid retention was calculated by the following equation. 2. Liquid retention rate (%) = (W2−W1) / W1 × 100 Tensile strength; prepared sheet 2cm wide, 20c long
The test piece was cut into m, and measured with a Tensilon measuring machine in accordance with JIS L1096A method. Here, the grip holding length was 15 cm (vertical direction), and the pulling speed was 10 cm / min. 4. Tensile strength after acid resistance test: A sample prepared in the same manner as in the above tensile strength measurement was placed in a closed container, filled with 35% dilute sulfuric acid, kept at 50 ° C for 500 hours, washed with water, and air-dried to obtain a test specimen. And 3. The tensile strength was measured in the same manner.

【0027】[0027]

【表3】 [Table 3]

【0028】実施例1〜6共、優れた保液率を有し、最
大孔径や耐酸テスト後の引張強力について、バランスが
とれたシート状材料となっているが、フィブリル化アク
リル繊維のろ水度が200ml以下である実施例2、4
〜6は、特に最大孔径が小さく、電極の短絡に問題の無
い優れたシート状物となっている。又、PAN繊維が重
量平均分子量15万以上である実施例2〜6は引張強力
及び耐酸テスト後引張強力が高く、フィブリル化アクリ
ル繊維がポリアクリロニトリルである実施例5〜6の耐
酸テスト後引張強力は更に良好であり、その中でもフィ
ブリル化アクリル繊維及びPAN繊維のイオン性基が
0.025mmol/g以下である実施例6は非常に優
れた耐電解液性を有することが明らかである。
Examples 1 to 6 all have excellent liquid retention, and are sheet materials balanced with respect to the maximum pore diameter and the tensile strength after the acid resistance test. Examples 2 and 4 whose degree is 200 ml or less
No. 6 to No. 6 are particularly excellent sheet-like materials having a small maximum pore diameter and having no problem in electrode short circuit. Examples 2 to 6 in which the PAN fiber had a weight average molecular weight of 150,000 or more had high tensile strength and tensile strength after the acid resistance test, and tensile strength after the acid resistance test in Examples 5 to 6 in which the fibrillated acrylic fiber was polyacrylonitrile. Is even better, and among them, it is clear that Example 6 in which the ionic group of the fibrillated acrylic fiber and the PAN fiber is 0.025 mmol / g or less has extremely excellent electrolytic solution resistance.

【0029】比較例1〜5 実施例にて使用したフィブリル化アクリル繊維の代り
に、表4に示した比較材Aを使用し、PAN繊維の代り
に表5に示した比較材Bを使用し、実施例と同様にして
抄紙し、比較例1〜5のシート状材料を得た。これらの
かさ密度、最大孔径、保液率、引張強力、耐酸テスト後
の引張強力を表6に示す。
Comparative Examples 1 to 5 Comparative materials A shown in Table 4 were used in place of the fibrillated acrylic fibers used in the examples, and Comparative materials B shown in Table 5 were used in place of the PAN fibers. Then, papermaking was performed in the same manner as in the examples to obtain sheet materials of Comparative Examples 1 to 5. Table 6 shows the bulk density, the maximum pore diameter, the liquid retention ratio, the tensile strength, and the tensile strength after the acid resistance test.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【表6】 [Table 6]

【0033】比較例1ではPAN繊維の代りに用いたア
クリル繊維のAN比率が低いため特に耐酸テスト後の引
張強力が弱い。比較例2では、フィブリル化アクリル繊
維のろ水度が高く、適当な最大孔径が得られていない。
比較例3ではフィブリル化アクリル繊維のAN比率が低
いため耐酸テスト後の引張強力が弱い。比較例4では、
ガラス繊維を使用しているためシート状材料の引張強力
が低く、加工性に問題がある。比較例5ではポリプロピ
レン素材を使用しているため、耐酸テスト後の引張強力
は優れるものの、保液率が極めて悪い。
In Comparative Example 1, the tensile strength after the acid resistance test was particularly low because the acrylic fiber used in place of the PAN fiber had a low AN ratio. In Comparative Example 2, the freeness of the fibrillated acrylic fiber was high, and an appropriate maximum pore size was not obtained.
In Comparative Example 3, the tensile strength after the acid resistance test was low because the AN ratio of the fibrillated acrylic fiber was low. In Comparative Example 4,
Since glass fibers are used, the tensile strength of the sheet material is low, and there is a problem in workability. In Comparative Example 5, since the polypropylene material was used, the tensile strength after the acid resistance test was excellent, but the liquid retention was extremely poor.

【0034】[0034]

【発明の効果】以上述べたように本発明のシート状材料
は、最大孔径が小さいために、正極と負極の短絡防止に
有利であり、また高度な耐電解液性を有し、しかも電解
液との親和性が高く極めて薄いシートの作成が容易なこ
とから低内部抵抗化が図れる。このようなシート状材料
は、特に酸性電解液を使用する金属精製、電気二重層コ
ンデンサー、二次電池の電極隔離板として好適に使用で
きる。かかるシート状材料を提供した点が、本発明の特
筆すべき点であり、工業的意義の大なるものがある。
As described above, the sheet-like material of the present invention has a small maximum pore diameter, which is advantageous for preventing short-circuit between the positive electrode and the negative electrode, has a high electrolytic solution resistance, and has a high electrolytic solution resistance. It has a high affinity with, and it is easy to prepare an extremely thin sheet, so that low internal resistance can be achieved. Such a sheet material can be suitably used as an electrode separator of a metal refining using an acidic electrolyte, an electric double layer capacitor, and a secondary battery. Providing such a sheet-like material is a remarkable point of the present invention, and has great industrial significance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも97重量%のアクリロニトリル
(AN)よりなりろ水度が450ml以下であるフィブ
リル化アクリル繊維と、ポリアクリロニトリルでなるポ
リアクリロニトリル繊維(PAN繊維)を複合してなる
シート状材料。
1. A sheet material comprising a composite of a fibrillated acrylic fiber comprising at least 97% by weight of acrylonitrile (AN) and having a freeness of 450 ml or less, and a polyacrylonitrile fiber (PAN fiber) comprising polyacrylonitrile.
【請求項2】フィブリル化アクリル繊維のろ水度が20
0ml以下、PAN繊維が重量平均分子量15万以上の
PANからなることを特徴とする請求項1に記載のシー
ト状材料。
2. The fibrillated acrylic fiber has a freeness of 20.
The sheet-like material according to claim 1, wherein the PAN fiber is made of PAN having a weight average molecular weight of 150,000 or more, with a volume of 0 ml or less.
【請求項3】フィブリル化アクリル繊維がポリアクリロ
ニトリルでなることを特徴とする請求項1または2に記
載のシート状材料。
3. The sheet material according to claim 1, wherein the fibrillated acrylic fiber is made of polyacrylonitrile.
【請求項4】フィブリル化アクリル繊維及びPAN繊維
を構成する重合体のイオン性基が、重合体に対していず
れも0.025mmol/g以下であることを特徴とす
る請求項1〜3のいずれかに記載のシート状材料。
4. The method according to claim 1, wherein the ionic group of the polymer constituting the fibrillated acrylic fiber and the PAN fiber is 0.025 mmol / g or less based on the polymer. A sheet material according to any one of the above.
JP19571199A 1999-07-09 1999-07-09 Sheet material Expired - Fee Related JP4324891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19571199A JP4324891B2 (en) 1999-07-09 1999-07-09 Sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19571199A JP4324891B2 (en) 1999-07-09 1999-07-09 Sheet material

Publications (2)

Publication Number Publication Date
JP2001020195A true JP2001020195A (en) 2001-01-23
JP4324891B2 JP4324891B2 (en) 2009-09-02

Family

ID=16345715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19571199A Expired - Fee Related JP4324891B2 (en) 1999-07-09 1999-07-09 Sheet material

Country Status (1)

Country Link
JP (1) JP4324891B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132014A (en) * 2004-11-04 2006-05-25 Japan Exlan Co Ltd Polyacrylonitrile based transparent sheet and method for producing the same
JP2006253408A (en) * 2005-03-10 2006-09-21 Nippon Kodoshi Corp Electric double layer capacitor and separator therefor
JP2006278896A (en) * 2005-03-30 2006-10-12 Tdk Corp Electrochemical device
JP2006344742A (en) * 2005-06-08 2006-12-21 Nippon Kodoshi Corp Electrolytic capacitor
JP2007266311A (en) * 2006-03-28 2007-10-11 Japan Vilene Co Ltd Separator for electric-double-layer capacitor, and electric-double-layer capacitor
JP2012072519A (en) * 2010-09-29 2012-04-12 Mitsubishi Rayon Co Ltd Acrylic fiber paper and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132014A (en) * 2004-11-04 2006-05-25 Japan Exlan Co Ltd Polyacrylonitrile based transparent sheet and method for producing the same
JP4645945B2 (en) * 2004-11-04 2011-03-09 日本エクスラン工業株式会社 Polyacrylonitrile-based transparent sheet and method for producing the same
JP2006253408A (en) * 2005-03-10 2006-09-21 Nippon Kodoshi Corp Electric double layer capacitor and separator therefor
JP2006278896A (en) * 2005-03-30 2006-10-12 Tdk Corp Electrochemical device
JP2006344742A (en) * 2005-06-08 2006-12-21 Nippon Kodoshi Corp Electrolytic capacitor
JP2007266311A (en) * 2006-03-28 2007-10-11 Japan Vilene Co Ltd Separator for electric-double-layer capacitor, and electric-double-layer capacitor
JP2012072519A (en) * 2010-09-29 2012-04-12 Mitsubishi Rayon Co Ltd Acrylic fiber paper and method for producing the same

Also Published As

Publication number Publication date
JP4324891B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP6094784B2 (en) Acrylonitrile fiber for electrode, electrode containing the fiber, and lead-acid battery having the electrode
CN109735915B (en) Hypercrosslinked organic nanoparticles and preparation method thereof, modified polymer membrane and preparation method thereof, and gel polymer electrolyte
JP6449888B2 (en) Separator paper for chemical batteries
CN109671893B (en) Separator for secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP5551525B2 (en) Separator made of ultrafine nonwoven fabric
CN112615106A (en) Cellulose diaphragm suitable for zinc ion battery and application thereof
JP2001020195A (en) Sheet material
JP4099852B2 (en) Porous sheet for forming gelled solid electrolyte and gelled solid electrolyte sheet using the same
JP4017744B2 (en) Solid-type polymer electrolyte membrane and method for producing the same
JP2000277085A (en) Separator for alkaline battery
JP6061735B2 (en) Battery separator and battery separator manufacturing method
RU2249884C2 (en) Glass fiber blanket separator for sealed absorbed-electrolyte lead batteries
JPH08195194A (en) Separator for sealed lead-acid battery
JP6292367B1 (en) Acrylonitrile fiber for separator, separator containing the fiber, and lead-acid battery having the separator
JPH076746A (en) Battery separator
JP4227209B2 (en) Non-aqueous secondary battery
WO1999059173A1 (en) Electric double layer capacitor and method for preparing the same
JP2858605B2 (en) Alkaline battery separator
JP4030142B2 (en) Thin film electrolyte for lithium ion battery
US20210336311A1 (en) Moisture absorbing and hydrofluoric acid scavenging membranes comprising aramid nanofibers
JPH1167182A (en) Separator for alkaline battery and manufacture thereof
JP2000036433A (en) Electric double-layer capacitor and manufacture thereof
JPH11273453A (en) Manufacture of high polymer gel electrolyte
JP5002102B2 (en) Sealed separator for sealed lead-acid battery
WO2018062106A1 (en) Acrylonitrillic fiber for separator, separator containing same fiber, and lead-acid battery having same separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4324891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees