JP5002102B2 - Sealed separator for sealed lead-acid battery - Google Patents

Sealed separator for sealed lead-acid battery Download PDF

Info

Publication number
JP5002102B2
JP5002102B2 JP2001301460A JP2001301460A JP5002102B2 JP 5002102 B2 JP5002102 B2 JP 5002102B2 JP 2001301460 A JP2001301460 A JP 2001301460A JP 2001301460 A JP2001301460 A JP 2001301460A JP 5002102 B2 JP5002102 B2 JP 5002102B2
Authority
JP
Japan
Prior art keywords
sealed lead
separator
mass
acid battery
inorganic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001301460A
Other languages
Japanese (ja)
Other versions
JP2003109566A (en
Inventor
敬明 松波
真琴 清水
秀夫 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2001301460A priority Critical patent/JP5002102B2/en
Publication of JP2003109566A publication Critical patent/JP2003109566A/en
Application granted granted Critical
Publication of JP5002102B2 publication Critical patent/JP5002102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄型で耐短絡性に優れ、しかも、電池化成時の液飛び量が無機質粉体を含まない通常のガラス繊維主体セパレータと同等レベルで、かつ高率放電性能に優れた密閉型鉛蓄電池用セパレータに関する。
【0002】
【従来の技術】
従来、密閉型鉛蓄電池用に用いられるセパレータは、硫酸電解液の保持体としての役目を兼ねる微細ガラス繊維を主体として抄造したガラスマットセパレータ使用されている。一方、近年のポータブル機器、コードレス機器、コンピュータのバックアップ電源をはじめ、大型の据置用電池や、さらには電気自動車へとその用途は拡大しており、これに伴なって高率放電特性の一層の向上が求められている。このためには、密閉型鉛蓄電池は、極板を薄くしてセル内の極板枚数を増やし、かつ、極板間隔を1mm以下と極端に狭くすることが必要となり、そこで使用されるセパレータには、薄型化が要求される。
しかしながら、極板間隔を狭くした場合、電池化成時及び電池充放電時の電解液比重変化に伴なう硫酸鉛の溶解析出によりデンドライトショートが発生しやすくなる問題点があった。
このようなセパレータとして平均繊維径0.5〜1.0μmの極微細ガラス繊維と無機質粉体を分子量100万以上のイオン性高分子凝集剤により結合させた平均孔径5μm以下としたセパレ−タ(特開平2001−185114号公報)が提案されている。
【0003】
【発明が解決しようとする課題】
上記のセパレータにおいては、通常の微細ガラス繊維のみからなるセパレータに比べて、極微細ガラス繊維を主体に無機質粉体が配合されていることで、デンドライトショート防止性能や電解液保持性は著しく優れているものの、
(1)ガス透過が起こり難く、化成時の減液量が著しく多く、寿命が短くなる
(2)電解液保持能力が高すぎるため、電解液の移動が起こり難く高率放電特性が低い
という問題点があり、当初の高率放電特性を向上させる目的を達成できなかった。
【0004】
【課題を解決するための手段】
本発明の密閉型鉛蓄電池用セパレータは、上記の問題点を解決するために、請求項1記載の通り、微細ガラス繊維を主体とし無機質粉体及び有機繊維とともに湿式混抄された密閉型鉛蓄電池用セパレータにおいて、前記微細ガラス繊維はBET法に基づく平均繊維径が0.5μm以上であり、前記無機質粉体は比表面積が150〜450m /gであり、前記無機質粉体の含有量が15〜40質量%であり、湿潤液体として水で濡らした時のガス透過開始圧力(バブルポイント)が10kPa以下(0を除く)で、かつ、透気度が厚さ1mm当たりに換算して1.7秒/100ml以下(0を除く)であることを特徴とする。
また、請求項2記載の密閉型鉛蓄電池用セパレータは、請求項1記載の密閉型鉛蓄電池用セパレータにおいて、前記有機繊維の含有量が6〜15質量%である
また、請求項3記載の密閉型鉛蓄電池用セパレータは、請求項1または2に記載の密閉型鉛蓄電池用セパレータにおいて、前記無機質粉体は二酸化珪素であることを特徴とする。
また、請求項4記載の密閉型鉛蓄電池用セパレータは、請求項1乃至3の何れか1項に記載の密閉型鉛蓄電池用セパレータにおいて、前記有機繊維は、芯鞘型熱接着性合成繊維、フィブリル状有機繊維の単独または混合からなることを特徴とする。
また、請求項5記載の密閉型鉛蓄電池用セパレータは、請求項1乃至4の何れか1項に記載の密閉型鉛蓄電池用セパレータにおいて、前記材料群からなる抄紙スラリーの全固体質量に対してイオン性高分子凝集剤を0.01質量%〜0.1質量%含有させ結合させた後、抄紙、乾燥させたことを特徴とする。
【0005】
【発明の実施の形態】
本発明は、耐デンドライトショート性を付与するため無機質粉体を配合した微細ガラス繊維を主体とするセパレータにおいて、湿潤液体として水で濡らした時のガス透過開始圧力が10kPa以下とし、かつ、透気度が厚さ1mm当たりに換算して1.7秒/100ml以下としたことを特徴とするものである。
湿潤液体として水で濡らした時のガス透過開始圧力を10kPa以下とすることで、化成末期に正極から発生する酸素ガスの圧力により容易にセパレータ内部にガス透過経路が形成され、無機質粉体を含まない通常の微細ガラス繊維を主体としたセパレータと同等レベルまで液飛び量を低減することが可能となる。
また、透気度を厚さ1mm当たりに換算して1.7秒/100ml以下とすることでセパレータ内部に保持される電解液の移動性を向上させ、無機質粉体を含まない通常の微細ガラス繊維を主体としたセパレータと同等レベルまで高率放電特性を向上させることが可能となる。
【0006】
また、紙層構造を決定する微細ガラス繊維の平均繊維径は、前記したような水湿潤時のガス透過開始圧力と透気度を満足させるために、0.5μm以上の平均繊維径からなるガラス繊維を単独もしくは混合により使用することができる。
尚、前記ガラス繊維としては、例えば、耐酸性を有するCガラスを溶融・紡糸して得られる。
【0007】
また、無機質粉体としては、耐酸性を有するタルク、珪藻土、二酸化珪素等が使用可能であるが、無機質粉体の混抄によるセパレータ内部の孔構造の経路複雑化の観点や、純度の高い材料が得られる点から、比表面積が150m2/g〜450m2/gの二酸化珪素の使用が好ましい。
尚、前記二酸化珪素粉体の添加量は、15〜40質量%が好ましい。これは、15質量%未満では、孔経路の複雑化による効果が小さいため、耐短絡性の優れたセパレータを得ることができず、また、40質量%を超えると著しく孔経路が複雑化することから所望するガス透過開始圧力、透気度を達成させることが困難となる。
【0008】
また、前記有機繊維としては、薄型化による強度低下を補うために、芯鞘型接着性合成繊維、フィブリル状有機繊維を単独または混合して使用することができる。芯鞘型接着性合成繊維としては、芯成分ポリエステル、鞘成分変性ポリエステル(例えば、株式会社クラレ製N720タイプ)、芯成分ポリエステル、鞘成分ポリエチレン(例えば、株式会社クラレ製N710タイプ)などのような繊維が利用できる。またフィブリル状有機繊維としては、叩解性を有するアクリル繊維(例えば、旭化成工業株式会社製カシミロンA104)、通常の天然パルプなどが利用できる。
尚、前記有機繊維の添加量は、充分な電池組立作業性と電解液の濡れ性の両面から含有量は6〜15質量%とすることが好ましい。
【0009】
また、前記材料群に対して、イオン性高分子凝集剤として、アクリルアミドを含有する水溶性のカチオン性共重合体やエチレンイミン等のカチオン性高分子凝集剤を添加できるが、アニオン性、或いは、ノニオン性高分子凝集剤との併用も可能である。このようなイオン性高分子凝集剤は、微細ガラス繊維と無機質粉体を含有した無機材料を主体とする抄紙全材料に対してフロック形成を促し、そのフロック形成により無機質粉体の繊維材料への定着効率を著しく高めるとともに、無機材料を主体とした材料を相互に緩く結合するため、柔らかい密閉型鉛蓄電池用セパレータが得られる。
尚、イオン性高分子凝集剤の添加量は、抄紙スラリーの全固体質量を基準として0.01質量%〜0.1質量%の範囲が好ましい。これは、0.01質量%未満では、無機質粉体の繊維材料への定着効率が著しく低下するとともに、材料間の結合効果が期待できず、また、0.1質量%を超えると強いフロックを形成し、シート均質度の低下、即ち、地合の低下をもたらすからである。
また、前記のイオン性高分子凝集剤の分子量は、100万以上とすることが好ましく、100万未満では、無機質粉体の繊維材料への定着効率が低下し、多量の無機質粉体を混抄することが困難となるため好ましくない。
【0010】
【実施例】
次に、本発明の具体的な実施例を比較例とともに説明する。
〔実施例1〕
平均繊維径0.7μm(比表面積2.3m2/g)の耐酸性ガラス繊維25部、平均繊維径4μm(比表面積0.4m2/g)の耐酸性ガラス繊維48部、芯鞘型接着性PET繊維10部と比表面積230m2/gの二酸化珪素17部を水流型分散機を用いて混合分散させた後、分子量150万のカチオン性アクリルアミド0.03部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ0.85mmの密閉型鉛蓄電池用セパレータを得た。なお、本実施例以下、その配合量を表す部は、質量部を示すものとする。
【0011】
〔実施例2〕
平均繊維径0.7μm(比表面積2.3m2/g)の耐酸性ガラス繊維20部、平均繊維径4μm(比表面積0.4m2/g)の耐酸性ガラス繊維53部、芯鞘型接着性PET繊維7部、フィブリル状アクリル繊維3部、比表面積230m2/gの二酸化珪素17部を水流型分散機を用いて混合分散させた後、分子量150万のカチオン性アクリルアミド0.03部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ0.84mmの密閉型鉛蓄電池用セパレータを得た。
【0012】
〔実施例3〕
平均繊維径1.5μm(比表面積1.0m2/g)の耐酸性ガラス繊維73部、接着性合成繊維10部、比表面積230m2/gの二酸化珪素17部を水流型分散機を用いて混合分散させた後、分子量150万のカチオン性アクリルアミド0.03部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ0.87mmの密閉型鉛蓄電池用セパレータを得た。
【0013】
〔比較例1〕
平均繊維径0.7μm(比表面積2.3m2/g)の耐酸性ガラス繊維97部、フィブリル状アクリル繊維3部を水流型分散機を用いて混合分散させた後、抄紙pH3.0の条件で抄造後、乾燥を行い、厚さ0.83mmの密閉型鉛蓄電池用セパレータを得た。
【0014】
〔比較例2〕
平均繊維径0.7μm(比表面積2.3m2/g)の耐酸性ガラス繊維70部、芯鞘型接着性PET繊維10部、比表面積230m2/gの二酸化珪素20部を水流型分散機を用いて混合分散させた後、分子量150万のカチオン性アクリルアミド0.03部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ0.85mmの密閉型鉛蓄電池用セパレータを得た。
【0015】
実施例1乃至3、比較例1及び2で得られたセパレータについて、セパレータの特性と、このセパレータを電池に組み込んで試験した時の電池特性をそれぞれ評価した。結果を表1に示す。
【0016】
【表1】

Figure 0005002102
【0017】
上記表1から明らかなように、本実施例の密閉型鉛蓄電池用セパレータのみが、目的とする電池組立作業性、耐デンドライトショート性、電槽化成時の液飛び量及び高率放電特性を満足することが確認できた。
また、比較例1のセパレータでは、二酸化珪素粉体を含まないため電槽化成中にデンドライトショートを発生しやすく、また、有機繊維の含有量が少ないため電池組立作業性が悪くなる問題があり、正常に組み上がった電池の性能は、化成時液飛び量、初期容量及び高率放電持続時間比の評価項目については満足するものであったが、短絡が発生しやすく工業的には不向きなものであった。さらに、比較例2では、微細ガラス繊維を主体に二酸化珪素を配合し、有機繊維も多くしたため、電池組立作業性、耐デンドライトショート性の点では、充分な性能を有しているが、ガス透過開始圧力が高く、透気度も大きいため、化成時の液飛び量が多く、高率放電特性が著しく劣る電池しか得られなかった。
【0018】
【発明の効果】
以上説明したように、本発明の密閉型鉛蓄電池用セパレータによれば、微細ガラス繊維、無機質粉体及び有機繊維を主体として湿式混抄された密閉型鉛蓄電池用セパレータにおいて、湿潤液体として水で濡らした時のガス透過開始圧力(バブルポイント)が10kPa以下で、かつ、透気度が厚さ1mm当たりに換算して1.7秒/100ml以下を満足するセパレータを用いることで、充分な電池組立作業性を有し、耐デンドライトショート性に優れ、さらに、電槽化成時の液飛び量が少なく(電池寿命の延長)、高率放電特性に優れた密閉型鉛蓄電池を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a sealed lead that is thin and excellent in short circuit resistance, and has the same level as a normal glass fiber-based separator that does not contain inorganic powder, and has a high rate discharge performance. The present invention relates to a storage battery separator.
[0002]
[Prior art]
Conventionally, as a separator used for a sealed lead-acid battery, a glass mat separator made mainly of fine glass fibers that also serve as a holding body for a sulfuric acid electrolyte is used. On the other hand, in recent years, the use of portable devices, cordless devices, computer backup power supplies, large stationary batteries, and even electric vehicles has been expanded. There is a need for improvement. For this purpose, the sealed lead-acid battery needs to make the electrode plates thinner, increase the number of electrode plates in the cell, and extremely reduce the electrode plate interval to 1 mm or less. Is required to be thin.
However, when the distance between the electrode plates is narrowed, there is a problem that a dendrite short circuit is likely to occur due to dissolution and precipitation of lead sulfate accompanying a change in specific gravity of the electrolyte during battery formation and battery charge / discharge.
As such a separator, a separator having an average pore diameter of 5 μm or less in which ultrafine glass fibers having an average fiber diameter of 0.5 to 1.0 μm and inorganic powder are bonded with an ionic polymer flocculant having a molecular weight of 1 million or more ( Japanese Patent Laid-Open No. 2001-185114) has been proposed.
[0003]
[Problems to be solved by the invention]
In the above separator, compared to a separator made of only ordinary fine glass fibers, the inorganic powder is mainly composed of ultrafine glass fibers, so that the dendrite short-circuit prevention performance and the electrolyte retention are remarkably superior. Although
(1) Gas permeation hardly occurs, the amount of liquid reduction during chemical conversion is remarkably large, and the service life is shortened. (2) Since the electrolyte holding capacity is too high, the electrolyte does not easily move and the high rate discharge characteristics are low. There were points, and the purpose of improving the initial high rate discharge characteristics could not be achieved.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, a separator for a sealed lead-acid battery according to the present invention is for a sealed lead-acid battery which is wet-mixed together with inorganic powder and organic fiber mainly composed of fine glass fibers as described in claim 1. In the separator, the fine glass fiber has an average fiber diameter based on the BET method of 0.5 μm or more, the inorganic powder has a specific surface area of 150 to 450 m 2 / g, and the content of the inorganic powder is 15 to 40% by mass, the gas permeation start pressure (bubble point) when wetted with water as a wetting liquid is 10 kPa or less (excluding 0) , and the air permeability is 1.7 per 1 mm thickness. Second / 100 ml or less (excluding 0) .
Moreover, the separator for sealed lead-acid batteries according to claim 2 is the separator for sealed lead-acid batteries according to claim 1, wherein the content of the organic fiber is 6 to 15% by mass .
Moreover, the separator for sealed lead-acid batteries according to claim 3 is the separator for sealed lead-acid batteries according to claim 1 or 2, wherein the inorganic powder is silicon dioxide .
Moreover, the separator for sealed lead-acid batteries according to claim 4 is the separator for sealed lead-acid batteries according to any one of claims 1 to 3, wherein the organic fiber is a core-sheath type thermoadhesive synthetic fiber, It is characterized by consisting of fibrillar organic fibers alone or mixed.
Moreover, the separator for sealed lead-acid batteries according to claim 5 is the separator for sealed lead-acid batteries according to any one of claims 1 to 4 , with respect to the total solid mass of the papermaking slurry comprising the material group. An ionic polymer flocculant is contained in an amount of 0.01% by mass to 0.1% by mass, bonded and then papermaking and drying.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a separator mainly composed of fine glass fibers blended with an inorganic powder to give dendrite short resistance, and the gas permeation start pressure when wetted with water as a wetting liquid is 10 kPa or less, and The degree of conversion per 1 mm thickness is 1.7 sec / 100 ml or less.
By setting the gas permeation start pressure when it is wetted with water as a wetting liquid to 10 kPa or less, a gas permeation path is easily formed inside the separator by the pressure of oxygen gas generated from the positive electrode at the end of conversion, and contains inorganic powder. It is possible to reduce the amount of liquid splash to the same level as a separator mainly composed of ordinary fine glass fibers.
Moreover, the mobility of the electrolyte solution held inside the separator is improved by converting the air permeability per 1 mm thickness to 1.7 seconds / 100 ml or less, and ordinary fine glass not containing inorganic powder It becomes possible to improve the high rate discharge characteristics to the same level as the separator mainly composed of fibers.
[0006]
In addition, the average fiber diameter of the fine glass fiber that determines the paper layer structure is a glass having an average fiber diameter of 0.5 μm or more in order to satisfy the gas permeation start pressure and air permeability when wet with water as described above. as possible out to use by a single or mixed fibers.
The glass fiber is obtained, for example, by melting and spinning acid-resistant C glass.
[0007]
In addition, as the inorganic powder, acid-resistant talc, diatomaceous earth, silicon dioxide, etc. can be used, but there is a viewpoint of complication of the path structure of the pore structure inside the separator due to the mixing of the inorganic powder, and a material with high purity. terms obtained, the specific surface area is preferred to use the silicon dioxide 150m 2 / g~450m 2 / g.
In addition, as for the addition amount of the said silicon dioxide powder, 15-40 mass% is preferable. This is because if the amount is less than 15% by mass, the effect of complication of the hole path is small, so that a separator with excellent short circuit resistance cannot be obtained, and if it exceeds 40% by mass, the hole path is significantly complicated. Therefore, it becomes difficult to achieve the desired gas permeation start pressure and air permeability.
[0008]
In addition, as the organic fiber, a core-sheath type adhesive synthetic fiber and a fibrillar organic fiber can be used alone or as a mixture in order to compensate for a decrease in strength due to thinning. Examples of the core-sheath-type adhesive synthetic fiber include a core component polyester, a sheath component-modified polyester (for example, N720 type manufactured by Kuraray Co., Ltd.), a core component polyester, and a sheath component polyethylene (for example, N710 type manufactured by Kuraray Co., Ltd.). Fiber is available. As the fibrillar organic fiber, an acrylic fiber having a beating property (for example, cashimilon A104 manufactured by Asahi Kasei Kogyo Co., Ltd.), ordinary natural pulp, and the like can be used.
The organic fiber is preferably added in an amount of 6 to 15% by mass in terms of sufficient battery assembly workability and electrolyte wettability.
[0009]
Moreover, a cationic polymer flocculant such as a water-soluble cationic copolymer containing acrylamide or ethyleneimine can be added as an ionic polymer flocculant to the material group, but anionic or A combination with a nonionic polymer flocculant is also possible. Such an ionic polymer flocculant promotes the formation of flocks for all papermaking materials mainly composed of inorganic materials containing fine glass fibers and inorganic powders, and the formation of flocs to fiber materials of inorganic powders. Since the fixing efficiency is remarkably increased and materials mainly composed of inorganic materials are loosely bonded to each other, a soft sealed lead-acid battery separator can be obtained.
The addition amount of the ionic polymer flocculant is preferably in the range of 0.01% by mass to 0.1% by mass based on the total solid mass of the papermaking slurry. If the amount is less than 0.01% by mass, the fixing efficiency of the inorganic powder to the fiber material is remarkably lowered, and the bonding effect between the materials cannot be expected. This is because the sheet is formed and the sheet homogeneity is lowered, that is, the formation is lowered.
The molecular weight of the ionic polymer flocculant is preferably 1 million or more. When the molecular weight is less than 1 million, the fixing efficiency of the inorganic powder to the fiber material is lowered, and a large amount of the inorganic powder is mixed. This is not preferable because it becomes difficult.
[0010]
【Example】
Next, specific examples of the present invention will be described together with comparative examples.
[Example 1]
25 parts acid-resistant glass fibers having an average fiber diameter of 0.7 μm (specific surface area 2.3 m 2 / g), 48 parts acid-resistant glass fibers having an average fiber diameter of 4 μm (specific surface area 0.4 m 2 / g), core-sheath type adhesion 10 parts of reactive PET fiber and 17 parts of silicon dioxide having a specific surface area of 230 m 2 / g were mixed and dispersed using a water flow type disperser, and then an aqueous solution containing 0.03 part of cationic acrylamide having a molecular weight of 1,500,000 was added. Mixing for a minute, a papermaking slurry was obtained. Next, papermaking and drying were performed using the slurry, to obtain a sealed lead-acid battery separator having a thickness of 0.85 mm. In addition, the part showing the compounding quantity below a present Example shall show a mass part.
[0011]
[Example 2]
20 parts acid resistant glass fiber with an average fiber diameter of 0.7 μm (specific surface area 2.3 m 2 / g), 53 parts acid resistant glass fiber with an average fiber diameter of 4 μm (specific surface area 0.4 m 2 / g), core-sheath type adhesion After mixing and dispersing 7 parts of conductive PET fiber, 3 parts of fibrillar acrylic fiber and 17 parts of silicon dioxide having a specific surface area of 230 m 2 / g using a water flow type disperser, 0.03 part of cationic acrylamide having a molecular weight of 1,500,000 was added. The aqueous solution containing it was added and mixed for 10 minutes to obtain a papermaking slurry. Next, papermaking and drying were performed using the slurry, to obtain a sealed lead-acid battery separator having a thickness of 0.84 mm.
[0012]
Example 3
Using an aqueous flow disperser, 73 parts of acid-resistant glass fiber having an average fiber diameter of 1.5 μm (specific surface area of 1.0 m 2 / g), 10 parts of adhesive synthetic fiber, and 17 parts of silicon dioxide having a specific surface area of 230 m 2 / g are used. After mixing and dispersing, an aqueous solution containing 0.03 part of cationic acrylamide having a molecular weight of 1,500,000 was added and mixed for 10 minutes to obtain a papermaking slurry. Next, papermaking and drying were performed using the slurry, to obtain a sealed lead-acid battery separator having a thickness of 0.87 mm.
[0013]
[Comparative Example 1]
After 97 parts of acid-resistant glass fibers having an average fiber diameter of 0.7 μm (specific surface area of 2.3 m 2 / g) and 3 parts of fibrillar acrylic fibers were mixed and dispersed using a water flow type disperser, the conditions for papermaking pH 3.0 After papermaking, drying was performed to obtain a sealed lead-acid battery separator having a thickness of 0.83 mm.
[0014]
[Comparative Example 2]
Water-type disperser containing 70 parts of acid-resistant glass fibers having an average fiber diameter of 0.7 μm (specific surface area of 2.3 m 2 / g), 10 parts of core-sheath-type adhesive PET fibers, and 20 parts of silicon dioxide having a specific surface area of 230 m 2 / g Then, an aqueous solution containing 0.03 part of cationic acrylamide having a molecular weight of 1,500,000 was added and mixed for 10 minutes to obtain a papermaking slurry. Next, papermaking and drying were performed using the slurry, to obtain a sealed lead-acid battery separator having a thickness of 0.85 mm.
[0015]
With respect to the separators obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the characteristics of the separator and the battery characteristics when this separator was incorporated in a battery and tested were evaluated. The results are shown in Table 1.
[0016]
[Table 1]
Figure 0005002102
[0017]
As is apparent from Table 1 above, only the sealed lead-acid battery separator of this example satisfies the target battery assembly workability, dendrite short-circuit resistance, the amount of liquid splash during battery case formation, and the high rate discharge characteristics. I was able to confirm.
Further, in the separator of Comparative Example 1, since it does not contain silicon dioxide powder, it is easy to generate a dendrite short during the formation of the battery case, and there is a problem that the battery assembly workability is deteriorated because the organic fiber content is small. The performance of the assembled battery was satisfactory with respect to the evaluation items of the amount of liquid leakage during formation, initial capacity, and high-rate discharge duration ratio, but it was prone to short circuit and not industrially suitable. Met. Furthermore, in Comparative Example 2, since silicon dioxide was mainly blended with fine glass fibers and organic fibers were increased, the battery assembly workability and the dendrite short resistance were sufficient, but the gas permeation was good. Since the starting pressure was high and the air permeability was large, only a battery with a large amount of liquid splash during formation and a remarkably inferior high rate discharge characteristic was obtained.
[0018]
【Effect of the invention】
As described above, according to the sealed lead-acid battery separator of the present invention, in the sealed lead-acid battery separator that is wet-mixed mainly composed of fine glass fiber, inorganic powder, and organic fiber, the wet liquid is wetted with water. Sufficient battery assembly by using a separator that has a gas permeation start pressure (bubble point) of 10 kPa or less and an air permeability of 1.7 seconds / 100 ml or less per 1 mm thickness. It is possible to obtain a sealed lead-acid battery that has workability, excellent dendrite short-circuit resistance, and has a small amount of liquid splash during battery cell formation (extension of battery life) and excellent high-rate discharge characteristics.

Claims (5)

微細ガラス繊維を主体とし無機質粉体及び有機繊維とともに湿式混抄された密閉型鉛蓄電池用セパレータにおいて、前記微細ガラス繊維はBET法に基づく平均繊維径が0.5μm以上であり、前記無機質粉体は比表面積が150〜450m /gであり、前記無機質粉体の含有量が15〜40質量%であり、
湿潤液体として水で濡らした時のガス透過開始圧力(バブルポイント)が10kPa以下(0を除く)で、かつ、透気度が厚さ1mm当たりに換算して1.7秒/100ml以下(0を除く)であることを特徴とする密閉型鉛蓄電池用セパレータ。
In a sealed lead-acid battery separator mainly composed of fine glass fibers and wet-mixed with inorganic powder and organic fibers, the fine glass fibers have an average fiber diameter based on the BET method of 0.5 μm or more. The specific surface area is 150 to 450 m 2 / g, the content of the inorganic powder is 15 to 40% by mass,
The gas permeation start pressure (bubble point) when wetted with water as a wetting liquid is 10 kPa or less (excluding 0) , and the air permeability is 1.7 sec / 100 ml or less (0 A separator for sealed lead-acid batteries, characterized in that
前記有機繊維の含有量が6〜15質量%であることを特徴とする請求項1記載の密閉型鉛蓄電池用セパレータ。 2. The sealed lead-acid battery separator according to claim 1, wherein the content of the organic fiber is 6 to 15% by mass . 前記無機質粉体は二酸化珪素であることを特徴とする請求項1または2記載の密閉型鉛蓄電池用セパレータ。The sealed lead-acid battery separator according to claim 1 or 2, wherein the inorganic powder is silicon dioxide . 前記有機繊維は、芯鞘型熱接着性合成繊維、フィブリル状有機繊維の単独または混合からなることを特徴とする請求項1乃至3の何れか1項に記載の密閉型鉛蓄電池用セパレータ。The organic fibers are sealed lead separator for battery according to any one of claims 1 to 3, characterized in that core-sheath type heat-adhesive synthetic fibers, from a single or mixed fibrillar organic fibers. 前記材料群からなる抄紙スラリーの全固体質量に対してイオン性高分子凝集剤を0.01質量%〜0.1質量%含有させ結合させた後、抄紙、乾燥させたことを特徴とする請求項1乃至4の何れか1項に記載の密閉型鉛蓄電池用セパレータ。The ionic polymer flocculant is contained in an amount of 0.01% by mass to 0.1% by mass with respect to the total solid mass of the papermaking slurry consisting of the above material group, bonded, and then papermaking and drying. Item 5. The sealed lead-acid battery separator according to any one of Items 1 to 4.
JP2001301460A 2001-09-28 2001-09-28 Sealed separator for sealed lead-acid battery Expired - Lifetime JP5002102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301460A JP5002102B2 (en) 2001-09-28 2001-09-28 Sealed separator for sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301460A JP5002102B2 (en) 2001-09-28 2001-09-28 Sealed separator for sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JP2003109566A JP2003109566A (en) 2003-04-11
JP5002102B2 true JP5002102B2 (en) 2012-08-15

Family

ID=19121866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301460A Expired - Lifetime JP5002102B2 (en) 2001-09-28 2001-09-28 Sealed separator for sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP5002102B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245428A (en) * 2012-05-29 2013-12-09 Shinshu Univ Separator, method for producing separator and apparatus for producing separator
WO2014208596A1 (en) * 2013-06-25 2014-12-31 日立化成株式会社 Separator for electrochemical elements and lithium ion secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266850A (en) * 1988-08-31 1990-03-06 Yuasa Battery Co Ltd Sealed lead-acid battery
JPH09134716A (en) * 1995-09-05 1997-05-20 Nippon Muki Co Ltd Separator for sealed lead-acid battery, and its manufacture
JPH11250889A (en) * 1998-03-04 1999-09-17 Nippon Glass Fiber Co Ltd Low resistance battery separator

Also Published As

Publication number Publication date
JP2003109566A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
JP5432813B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JP5396399B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JP4928137B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
WO2000055930A1 (en) Sealed lead-acid battery separator
JP2002313305A (en) Separator for use in lead acid battery and lead acid battery using it
JP5002102B2 (en) Sealed separator for sealed lead-acid battery
JP3979467B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JP4091294B2 (en) Alkaline storage battery
JPH07201310A (en) Separator for sealed lead-acid battery and its manufacture and sealed lead-acid battery
JP3060632B2 (en) Separators for liquid lead-acid batteries
JPH08195194A (en) Separator for sealed lead-acid battery
JP2001102027A (en) Enclosed lead battery
JP2632716B2 (en) Sealed lead-acid battery
JP2985229B2 (en) Storage battery separator
JP4699686B2 (en) Current collector for electrochemical device, battery using the same, and electric double layer capacitor using the same
JP2002304977A (en) Separator for sealed lead-acid battery and sealed lead- acid battery having the separator built-in
JP2817350B2 (en) Storage battery separator
JP2001185114A (en) Separator for sealed lead battery
JPS61245463A (en) Enclosed lead storage battery
JPH0422061A (en) Separator for storage battery
KR20240044427A (en) Pasting paper for lead acid batteries
JP2003308818A (en) Separator for sealed lead storage battery
WO2015080150A1 (en) Lead storage cell separator and lead storage cell
JPH11339754A (en) Battery separator and battery using this
JP3114419B2 (en) Sealed storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Ref document number: 5002102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250