JP4324891B2 - Sheet material - Google Patents

Sheet material Download PDF

Info

Publication number
JP4324891B2
JP4324891B2 JP19571199A JP19571199A JP4324891B2 JP 4324891 B2 JP4324891 B2 JP 4324891B2 JP 19571199 A JP19571199 A JP 19571199A JP 19571199 A JP19571199 A JP 19571199A JP 4324891 B2 JP4324891 B2 JP 4324891B2
Authority
JP
Japan
Prior art keywords
sheet
fiber
fibers
fibrillated acrylic
pan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19571199A
Other languages
Japanese (ja)
Other versions
JP2001020195A (en
Inventor
健一 若宮
和広 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP19571199A priority Critical patent/JP4324891B2/en
Publication of JP2001020195A publication Critical patent/JP2001020195A/en
Application granted granted Critical
Publication of JP4324891B2 publication Critical patent/JP4324891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Artificial Filaments (AREA)
  • Paper (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に金属精製、電気二重層コンデンサー、二次電池の電極隔離板に用いられるシート状材料に関する。詳しくは、電解液の保液性や該液との親和性、耐電解液性や耐酸化性に優れるため低内部抵抗で、長期的に安定なシート状材料に関する。
【0002】
【従来の技術】
従来から、金属精製、電気二重層コンデンサー、二次電池において、正極と負極の電気的短絡を防止するためにシート状の隔離板が使用されている。この隔離板には、使用される電解液の液性に応じた耐電解液性のある素材が各々選ばれ使用されている。特に、酸性電解液を用いる金属精製、電気二重層コンデンサー、二次電池においては、耐酸性に優れるガラス等の無機繊維やポリプロピレンやポリエチレン、ポリエステル等の合成繊維が使用されてきたが、隔離板として必要とされる電解液との親和性や低内部抵抗性、耐電解液性や充電時の正極における耐酸化性、隔離板製作時のプロセス通過性を相互にあるいはそれらの特性全てを満足させる隔離板の開発に関しては、多くの課題が残されてきた。
【0003】
即ちガラス繊維は、その表面が親水性に富むこと、極細の繊維が得られることから、特に吸液量(電解液との初期の馴染み易さの指標)を重要特性とする密閉型の酸性電解液を使用する二次電池用隔離板に使用されてきた。しかしながらガラス繊維はもろく、薄いシートの製作が難しいだけでなく、シート強力が著しく弱く、コンデンサーや二次電池の組立作業にも支障をきたしていた。これに対して例えば特開昭56−99968号公報では、ガラス繊維にろ水度350cc以下のフィブリル化した合成繊維を10重量%以下混合してシート化することが提案されている。しかしながら、このような方法を用いても、特にシートの薄物化の要求が高い高性能の二次電池や電気二重層コンデンサーに対しては、充分なシート強度を充たす薄物化には成功していない。
【0004】
これに対しポリプロピレンやポリエチレンの不織布や織布、もしくはフィルムからなるシートは、薄く強度の高いシートが作成可能である上、電解液に対しても長期に安定であり、種々の二次電池や電気二重層コンデンサーにて使用されている。しかし、ポリプロピレン、ポリエチレンは電解液に対する親和性が極めて悪いため、内部抵抗の上昇をきたし、問題となっていた。この欠点を改良するために、界面活性剤をこれらのシートに含浸させる方法が提案されているが、界面活性剤による電解液の汚染に伴う性能低下や、長期的な性能維持ができないという問題がある。また特公平6−101323号公報には、濃硫酸での処理による、電解液への親和性や保液性の改善が試みられているが、濃硫酸により繊維がダメージを受け、強度が低下するという問題がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、特に酸性電解液を使用する金属精製、電気二重層コンデンサー、二次電池において正極と負極の短絡を防止する隔離板として、充分な耐電解液性を有し、電解液との親和性が高く極めて薄いシートの作成が容易なことから低内部抵抗化が図れるシート状材料を提供することである。
【0006】
【課題を解決するための手段】
上記目的を本発明は、アクリロニトリル比率の高い2種類のアクリル繊維を複合することにより達成した。すなわち、本発明は、少なくとも97重量%のアクリロニトリル(AN)よりなり、ろ水度が450ml以下であるフィブリル化アクリル繊維と、ポリアクリロニトリルでなるポリアクリロニトリル繊維(PAN繊維)を複合してなり、フィブリル化アクリル繊維及びPAN繊維を構成する重合体のイオン性基が、重合体に対していずれも0.025mol/g以下であり、かつ、該フィブリル化アクリル繊維がシートの5重量%以上30重量%以下であることを特徴とするシート状材料である。なお、シート状材料はフィブリル化アクリル繊維のろ水度が200ml以下でありPAN繊維が重量平均分子量15万以上のPANからなること、フィブリル化アクリル繊維がポリアクリロニトリルでなることにより、より高度に発明の目的が達成される。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明に採用するフィブリル化アクリル繊維の原料であるアクリロニトリル系重合体としては、繊維全体としてアクリロニトリル(以下、ANともいう)比率が97重量%以上であり、かつ後述するイオン性基量を満足すれば特に制限はなく単独重合体、公知のコモノマーとの共重合体、あるいはこれらの混合物を用いることができる。ここでAN比率とは、フィブリル化アクリル繊維を構成するアクリロニトリル系重合体中の重合性成分に対するアクリロニトリルの重量%である。
【0008】
フィブリル化アクリル繊維が2種類以上のアクリロニトリル系重合体を混在させた繊維である場合には、2種以上のアクリロニトリル系重合体の全てがAN比率97重量%以上である必要はなく、混在させた重合体全体としてのAN比率が97重量%以上となればよい。また、AN比率の異なる2種以上のフィブリル化アクリル繊維を混在させることもできるが、その場合も2種以上のフィブリル化アクリル繊維の全てがAN比率97重量%以上である必要はなく、混在させた繊維全体としてのAN比率が97重量%以上となればよい。
【0009】
アクリロニトリル比率が97重量%未満になるとアクリロニトリル系繊維が本来持つ耐薬品性、耐熱性が低下し、本発明のシート状材料が電解液中で高温に曝された場合、長期的に繊維物性が低下してきたり、充電時に正極で発生する酸素等により劣化を起こしやすくなる。この長期的耐電解液性や耐熱性、耐酸化性は、フィブリル化アクリル繊維が共重合成分を含まないポリアクリロニトリルでなる場合に、特に際立った性能を示し、好ましい。
【0010】
共重合に用いられるコモノマーとしては他の重合性不飽和ビニル化合物など、アクリロニトリルと共重合するものであれば特に制限はなく、例えばC1〜C4のアルキルアクリレート、アルキルメタクリレート、アクリル酸、メタクリル酸、メタクリロニトリル、アクリルアミド、酢酸ビニル、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、臭化ビニリデン、スチレン、スチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸塩、アリルスルホン酸塩、メタリルスルホン酸塩、エチレン、プロピレン等を挙げることができる。
【0011】
このようなアクリロニトリル系重合体からフィブリル化アクリル繊維の原料となるアクリル繊維を作製するには、湿式紡糸法、乾湿式紡糸法、乾式紡糸法等公知の紡糸技術が適用できる。フィブリル化アクリル繊維は該アクリル繊維を所定の長さにきったものをビーターやレファイナー等公知の叩解機器で叩解することによって作製できる。もしくは、紡糸原液を高圧で噴出させるフラッシュ紡糸等を利用することもできる。
【0012】
なお、ビーターやレファイナーで叩解する場合には、フィブリル化し易いアクリル繊維である方が工業的に有利である。このようなアクリル繊維を作製するためには、例えば、2種以上のアクリロニトリル系重合体を混合した後、公知の溶剤に溶解させて、相分離を起こしやすい紡糸原液を作製し、湿式あるいは乾湿式紡糸するという手段や紡糸原液を湿式紡糸あるいは乾湿式紡糸した後、より高度の延伸等により繊維の分子配向性を高める等で、フィブリル化し易くする手段が挙げられる。
【0013】
本発明が採用するフィブリル化アクリル繊維は、ろ水度が450ml以下、更に好ましくは200ml以下のものである。ここで、ろ水度とは、JISP8121記載の方法に従って測定したカナダ標準ろ水度を指す。ろ水度が450mlを超えると繊維同士の絡み合いが少なくなり、シート強度が弱くなるだけでなく、フィブリル化アクリル繊維が形成するシートの網目構造が粗くなり最大孔径が大きくなるために、電極が短絡しやすくなる。シートの低内部抵抗化やコンパクト化の要求に伴ってシートを薄くするに従い、さらにこの最大孔径を小さく、シート強度を上げる必要があり、このような要求に応えるフィブリル化アクリル繊維のろ水度は、200ml以下である。
【0014】
ろ水度の下限には限定は無く、小さい値のものほどシート強度を維持したシートの薄物化がし易い。しかし、実務的にはフィブリル化アクリル繊維そのもの並びにシート状材料の形成(操作性)そのものが工業的でなくなるので、小さくても50ml以上が推奨される。
【0015】
なお、上述の如くフィブリル化アクリル繊維は、アクリル繊維を、所定の長さにカットしたものをビーターやレファイナー等公知の叩解機器で叩解することによって得られるが、ろ水度の異なるフィブリル化アクリル繊維は、ビーターやレファイナーのパス回数の増減によって調整できる。
【0016】
本発明のシート状材料は、上述してきたフィブリル化アクリル繊維とポリアクリロニトリルでなるPAN繊維を複合してなる。複合の仕方に限定は無く、フィブリル化アクリル繊維とPAN繊維を混合してウエブ化するとか、夫々の繊維で別個にシート状物を形成しそれを積層する、あるいはある繊維層で他の繊維層を挟むようにする、等適宜の方法が目的に応じて採用される。最も容易なのは、後述するが湿式抄造法を利用することである。勿論これらの複合に際して、他の素材の繊維を併用してもかまわない。
【0017】
ところで、フィブリル化アクリル繊維は、シートに強力を与え、シートの緻密化の役割を担っているが、PAN繊維はいわばシートの骨格の役割を負っている。シートの骨格には、電解液の高範囲な温度条件によっても長期的に安定な、優れた耐薬品性と耐熱性、耐酸化性や寸法安定性がより強く要求される。高性能の電気二重層コンデンサーや二次電池に使用される隔離板には更に厳しいこれらの性能が要求され、この目的を達成するためには、共重合物を含まないポリアクリロニトリルよりなるPAN繊維が必須となる。本発明において、PAN繊維は重量平均分子量15万以上のPANからなるものとすることにより、更に耐熱性、耐薬品性が向上し、薄物化されたシートであっても長期的に安定であり、好ましい。なお、ここで言う重量平均分子量(Mw)とは、DMFを溶剤とした30℃における極限粘度[η]を用い、[η]=3.35x10-4Mw-0.72により求めたMwである。
【0018】
本発明の採用するフィブリル化アクリル繊維及びPAN繊維を構成する重合体は、溶液重合や水系懸濁重合等の公知の技術によって作製でき、上述したようにコモノマー、あるいは重合開始剤についても特に限定されるものではない。しかし、重合体に含まれるイオン性基が重合体に対していずれも0.025mmol/g以下とすることが必要であり、これにより好ましい耐電解液性を示し、極めてうすいシートであっても長期的に安定な耐電解液性を与えることができる。ここで言うイオン性基とは、重合開始剤として、イオン性基を持つ重合開始剤、例えば4−4’アゾビス(4−シアノ吉草酸)や過硫酸カリウム又は過硫酸アンモニウムと亜硫酸ナトリウムのようなレドックス触媒を用いた場合に、重合体の末端に導入されるイオン性基及び、フィブリル化アクリル繊維がポリアクリロニトリルでない場合に用いられる、イオン性基を持つコモノマー、例えば、アクリル酸、スチレンスルホン酸等によって導入されるものである。勿論重合体にイオン性基を導入しない重合開始剤、例えば2,2’−アゾビスイソブチロニトリルや2,2’−アゾビス−2,4−ジメチルバレロニトリルを採用すること、又重合体にイオン性基を導入しないコモノマー、例えば、酢酸ビニルやスチレンあるいはフィブリル化アクリル繊維としてポリアクリロニトリルを採用するのが好ましいことは言うまでもない。
【0019】
本発明のシート状材料は上述してきたフィブリル化アクリル繊維とPAN繊維からなり、その配合割合を特に限定するものではないが、フィブリル化アクリル繊維をシートの5重量%以上30重量%以下使用することが好ましい。5重量%未満ではシートの強度が弱くなり、又緻密なシートとならない。一方30重量%を超えると耐電解液性が悪化したり、寸法安定性が悪くなる。本発明のシート状材料の製造方法については、フィブリル化アクリル繊維と2〜10mm程度の目的に応じた長さに切ったPAN繊維を水中に分散させ、通常の湿式抄造を行うか、捲縮加工を施したPAN繊維でウエブを作り、フィブリル化アクリル繊維を振り撒いた後でウォーターパンチ等の方法でシートを形成する不織布加工等、公知のシート化技術を利用できる。又、本発明のシート状材料には、他の無機繊維、有機合成繊維、無機粉体等を目的に応じて配合したり、必要に応じて更に耐電解液性を上げるためシートの表面に樹脂エマルジョン等を塗布もしくはスプレーすることもできるが、有機合成繊維や樹脂エマルジョンを併用する場合には、フィブリル化アクリル繊維やPAN繊維が本来有する電解液との親和性を阻害しないために、シート材料中の20重量%を超えないことが好ましい。
【0020】
【実施例】
以下に本発明の理解を容易にするため実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれにより限定されるものではない。尚、実施例中、部及び百分率は特にことわりのない限り重量基準で示す。
【0021】
フィブリル化アクリル繊維の製造例
常法に従って、AN比率及びイオン性基量の異なるアクリロニトリル系重合体をロダンソーダ水溶液に溶解し湿式紡糸法にてアクリル繊維を作製した。ここでアクリロニトリル系重合体の合成には、コモノマーとしてアクリル酸メチル、重合開始剤として過硫酸アンモニウム、亜硫酸ナトリウムのレドックス触媒を用いた。該アクリル繊維をビーターにて条件を変えて叩解させて、No.1〜6のフィブリル化アクリル繊維を得た。これらのフィブリル化アクリル繊維のNo.、AN比率、イオン性基量及びろ水度は表1に示した。尚、表1において、ろ水度はJISP8121記載の方法に従って測定した。又、イオン性基については、重合体中の触媒系からもたらされた硫黄の、重合体当たりの重量%を原子吸光分析で測定し、次式に従って算出した。
イオン性基(mmol/g)=(硫黄重量%/100)/32
【0022】
【表1】

Figure 0004324891
【0023】
PAN繊維の製造例
常法に従って、重量平均分子量及びイオン性基量の異なるポリアクリロニトリルをロダンソーダ水溶液に溶解し湿式紡糸法にてNo.1〜3のPAN繊維を作製した。ここでポリアクリロニトリルの合成には、重合開始剤として過硫酸アンモニウム、亜硫酸ナトリウムのレドックス触媒を用いた。これらのPAN繊維のNo.、重量平均分子量及びイオン性基量は表2に示した。
【0024】
【表2】
Figure 0004324891
【0025】
実施例1〜6
表1に示す本発明のフィブリル化アクリル繊維20部と6mmにカットした表2に示す本発明のPAN繊維80部を0.2%となるように水中に均一分散させ、円網抄紙機を用いて湿式抄紙した後130℃で熱カレンダー処理を施し、本発明のシート状材料実施例1〜6を得た。
【0026】
これらのシート状材料のかさ密度、保液率、最大孔径、引張強力、耐酸テスト後引張強力を表3に示す。ここで、表3の各物性値は以下に従って測定した。
1.最大孔径;ASTM‐F‐316記載のバブルポイント法により測定した。
2.保液率;10cm×10cmのサンプルを採取し精秤し、その値をW1とした。次に25℃の35%希硫酸液中にこのサンプルを5分浸漬したのち2分間余分な希硫酸を切り、重量を測定し、その値をW2とした。保液率は次式によって算出した。
保液率(%)=(W2−W1)/W1×100
3.引張強力;作製したシートを幅2cm、長さ20cmに裁断して試験体とし、JISL1096A法に準拠してテンシロン測定機で測定した。ここで、つかみ把持長は15cm(縦方向)、引張速度は10cm/分とした。
4.耐酸テスト後引張強力;上記引張強力測定の時と同様にして作製したサンプルを密閉容器に入れ、35%の希硫酸を満たし、50℃にて500時間保持した後水洗し、風乾して試験体とし、3.の引張強力と同様に測定した。
【0027】
【表3】
Figure 0004324891
【0028】
実施例1〜6共、優れた保液率を有し、最大孔径や耐酸テスト後の引張強力について、バランスがとれたシート状材料となっているが、フィブリル化アクリル繊維のろ水度が200ml以下である実施例2、4〜6は、特に最大孔径が小さく、電極の短絡に問題の無い優れたシート状物となっている。又、PAN繊維が重量平均分子量15万以上である実施例2〜6は引張強力及び耐酸テスト後引張強力が高く、フィブリル化アクリル繊維がポリアクリロニトリルである実施例5〜6の耐酸テスト後引張強力は更に良好であり、その中でもフィブリル化アクリル繊維及びPAN繊維のイオン性基が0.025mmol/g以下である実施例6は非常に優れた耐電解液性を有することが明らかである。
【0029】
比較例1〜5
実施例にて使用したフィブリル化アクリル繊維の代りに、表4に示した比較材Aを使用し、PAN繊維の代りに表5に示した比較材Bを使用し、実施例と同様にして抄紙し、比較例1〜5のシート状材料を得た。これらのかさ密度、最大孔径、保液率、引張強力、耐酸テスト後の引張強力を表6に示す。
【0030】
【表4】
Figure 0004324891
【0031】
【表5】
Figure 0004324891
【0032】
【表6】
Figure 0004324891
【0033】
比較例1ではPAN繊維の代りに用いたアクリル繊維のAN比率が低いため特に耐酸テスト後の引張強力が弱い。比較例2では、フィブリル化アクリル繊維のろ水度が高く、適当な最大孔径が得られていない。比較例3ではフィブリル化アクリル繊維のAN比率が低いため耐酸テスト後の引張強力が弱い。比較例4では、ガラス繊維を使用しているためシート状材料の引張強力が低く、加工性に問題がある。比較例5ではポリプロピレン素材を使用しているため、耐酸テスト後の引張強力は優れるものの、保液率が極めて悪い。
【0034】
【発明の効果】
以上述べたように本発明のシート状材料は、最大孔径が小さいために、正極と負極の短絡防止に有利であり、また高度な耐電解液性を有し、しかも電解液との親和性が高く極めて薄いシートの作成が容易なことから低内部抵抗化が図れる。このようなシート状材料は、特に酸性電解液を使用する金属精製、電気二重層コンデンサー、二次電池の電極隔離板として好適に使用できる。かかるシート状材料を提供した点が、本発明の特筆すべき点であり、工業的意義の大なるものがある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sheet-like material mainly used for metal refining, electric double layer capacitors, and electrode separators for secondary batteries. Specifically, the present invention relates to a sheet-like material having a low internal resistance and being stable for a long period of time because it has excellent liquid retention, affinity with the liquid, electrolyte solution resistance and oxidation resistance.
[0002]
[Prior art]
Conventionally, in metal refining, electric double layer capacitors, and secondary batteries, a sheet-like separator is used to prevent an electrical short circuit between the positive electrode and the negative electrode. For the separator, a material having resistance to electrolyte according to the liquidity of the electrolyte used is selected and used. In particular, in metal refining using an acidic electrolyte, electric double layer capacitors, and secondary batteries, inorganic fibers such as glass and synthetic fibers such as polypropylene, polyethylene, and polyester that have excellent acid resistance have been used as separators. Isolation that satisfies the required compatibility with the electrolyte, low internal resistance, resistance to electrolyte, oxidation resistance at the positive electrode during charging, and process passability during the manufacture of separators. Many challenges have been left with regard to plate development.
[0003]
In other words, glass fibers have a hydrophilic surface, and ultrafine fibers can be obtained. Therefore, sealed acidic electrolysis, which has an important characteristic of the amount of liquid absorption (an index of ease of initial compatibility with the electrolyte), is particularly important. It has been used for a separator for a secondary battery using a liquid. However, the glass fiber is fragile, and not only is it difficult to produce a thin sheet, but the sheet strength is extremely weak, which hinders assembly work of capacitors and secondary batteries. On the other hand, for example, Japanese Patent Application Laid-Open No. 56-99968 proposes forming a sheet by mixing 10% by weight or less of fibrillated synthetic fiber having a freeness of 350 cc or less with glass fiber. However, even when such a method is used, thinning that satisfies sufficient sheet strength has not been successfully achieved, particularly for high-performance secondary batteries and electric double layer capacitors that require high sheet thinning. .
[0004]
On the other hand, a sheet made of polypropylene or polyethylene non-woven fabric, woven fabric, or film can be made into a thin and high-strength sheet and is stable for a long period of time with respect to the electrolyte. Used in double layer capacitors. However, since polypropylene and polyethylene have extremely poor affinity for the electrolytic solution, the internal resistance is increased, which is a problem. In order to remedy this drawback, a method of impregnating these sheets with a surfactant has been proposed, but there is a problem that performance degradation due to contamination of the electrolytic solution by the surfactant and long-term performance maintenance cannot be performed. is there. In addition, Japanese Patent Publication No. 6-101323 has attempted to improve the affinity to the electrolyte and the liquid retention by treatment with concentrated sulfuric acid, but the fiber is damaged by concentrated sulfuric acid and the strength decreases. There is a problem.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to have a sufficient electrolytic solution resistance as a separator for preventing a short circuit between a positive electrode and a negative electrode in a metal refining, an electric double layer capacitor, and a secondary battery that use an acidic electrolytic solution. It is an object of the present invention to provide a sheet-like material that can reduce the internal resistance because it is easy to produce a very thin sheet.
[0006]
[Means for Solving the Problems]
The present invention has achieved the above object by combining two types of acrylic fibers having a high acrylonitrile ratio. That is, the present invention is made of at least 97 wt% of acrylonitrile (AN), freeness is complexed with fibrillated acrylic fiber is less than 450 ml, polyacrylonitrile fibers made of polyacrylonitrile (PAN fibers), fibrils The ionic groups of the polymer constituting the fluorinated acrylic fiber and the PAN fiber are both 0.025 mol / g or less with respect to the polymer, and the fibrillated acryl fiber is 5% by weight to 30% by weight of the sheet. The sheet-like material is characterized by the following . In addition, the sheet-like material is more highly invented because the fibrillated acrylic fiber has a freeness of 200 ml or less and the PAN fiber is made of PAN having a weight average molecular weight of 150,000 or more, and the fibrillated acrylic fiber is made of polyacrylonitrile. The purpose of is achieved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The acrylonitrile polymer which is a raw material of the fibrillated acrylic fibers employed in the present invention, acrylonitrile overall fiber (hereinafter also referred to as AN) ratio Ri der 97 wt% or more, and satisfies the ionic group amount described later homopolymer is not particularly limited as long as a copolymer with known comonomers, or may be a mixture thereof. Here, the AN ratio is the weight percent of acrylonitrile with respect to the polymerizable component in the acrylonitrile-based polymer constituting the fibrillated acrylic fiber.
[0008]
When the fibrillated acrylic fiber is a fiber in which two or more types of acrylonitrile-based polymers are mixed, it is not necessary that all of the two or more types of acrylonitrile-based polymers have an AN ratio of 97% by weight or more. The AN ratio as a whole polymer should just be 97 weight% or more. Also, two or more types of fibrillated acrylic fibers having different AN ratios can be mixed, but in this case, it is not necessary that all of the two or more types of fibrillated acrylic fibers have an AN ratio of 97% by weight or more. It is sufficient that the AN ratio as a whole fiber is 97% by weight or more.
[0009]
When the acrylonitrile ratio is less than 97% by weight, the chemical resistance and heat resistance inherent in the acrylonitrile fiber are lowered, and when the sheet-like material of the present invention is exposed to high temperature in the electrolyte, the fiber physical properties are lowered in the long term. Or is easily deteriorated by oxygen or the like generated at the positive electrode during charging. This long-term electrolytic solution resistance, heat resistance, and oxidation resistance are particularly preferable when the fibrillated acrylic fiber is made of polyacrylonitrile containing no copolymer component and exhibits outstanding performance.
[0010]
The comonomer used for copolymerization is not particularly limited as long as it is copolymerizable with acrylonitrile, such as other polymerizable unsaturated vinyl compounds. For example, C1-C4 alkyl acrylate, alkyl methacrylate, acrylic acid, methacrylic acid, methacrylate. Ronitrile, acrylamide, vinyl acetate, vinyl chloride, vinyl bromide, vinyl fluoride, vinylidene chloride, vinylidene bromide, styrene, styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonate, allyl sulfonate , Methallyl sulfonate, ethylene, propylene and the like.
[0011]
In order to produce an acrylic fiber as a raw material for the fibrillated acrylic fiber from such an acrylonitrile-based polymer, a known spinning technique such as a wet spinning method, a dry wet spinning method, or a dry spinning method can be applied. The fibrillated acrylic fiber can be prepared by beating a predetermined length of the acrylic fiber with a known beating device such as a beater or a refiner. Alternatively, flash spinning or the like in which the spinning solution is ejected at a high pressure can be used.
[0012]
In addition, when beaten with a beater or refiner, it is industrially advantageous that the acrylic fiber is easily fibrillated. In order to produce such an acrylic fiber, for example, two or more acrylonitrile polymers are mixed and then dissolved in a known solvent to produce a spinning dope that easily causes phase separation. Examples thereof include means for spinning, and means for facilitating fibrillation by, for example, enhancing the molecular orientation of the fiber by performing higher spinning or the like after wet spinning or dry wet spinning of the spinning solution.
[0013]
The fibrillated acrylic fiber employed in the present invention has a freeness of 450 ml or less, more preferably 200 ml or less. Here, the freeness refers to the Canadian standard freeness measured according to the method described in JISP8121. When the freeness exceeds 450 ml, the entanglement between the fibers decreases and the sheet strength becomes weak, and the network structure of the sheet formed by the fibrillated acrylic fibers becomes rough and the maximum pore diameter increases, so the electrodes are short-circuited. It becomes easy to do. As the sheet is made thinner to meet the demands for lower internal resistance and compactness, it is necessary to further reduce the maximum hole diameter and increase the sheet strength. The freeness of fibrillated acrylic fibers that meet these requirements is , 200 ml or less.
[0014]
There is no limitation on the lower limit of the freeness, and the smaller the value, the easier it is to make the sheet thin while maintaining the sheet strength. However, practically, the fibrillated acrylic fiber itself and the formation (operability) of the sheet-like material itself are not industrial, so at least 50 ml is recommended.
[0015]
As described above, the fibrillated acrylic fiber is obtained by beating an acrylic fiber cut to a predetermined length with a known beating device such as a beater or a refiner. However, the fibrillated acrylic fiber has a different freeness. Can be adjusted by increasing or decreasing the number of passes of the beater or refiner.
[0016]
The sheet-like material of the present invention is formed by combining the above-described fibrillated acrylic fiber and PAN fiber made of polyacrylonitrile. There is no limitation on the method of compounding, and fibrillated acrylic fiber and PAN fiber are mixed to form a web, or a sheet is formed separately from each fiber and laminated, or one fiber layer is another fiber layer. Appropriate methods such as sandwiching between the two are employed depending on the purpose. The simplest method is to use a wet papermaking method as described later. Of course, in combining these, fibers of other materials may be used together.
[0017]
By the way, the fibrillated acrylic fiber gives the sheet strength and plays a role of densification of the sheet, but the PAN fiber has a role of a skeleton of the sheet. The skeleton of the sheet is required to have excellent chemical resistance, heat resistance, oxidation resistance, and dimensional stability that are stable in the long term even under a high temperature range of the electrolytic solution. Separators used in high-performance electric double layer capacitors and secondary batteries are required to have more stringent performance, and in order to achieve this purpose, PAN fibers made of polyacrylonitrile containing no copolymer are used. Required. In the present invention, the PAN fiber is made of PAN having a weight average molecular weight of 150,000 or more, thereby further improving heat resistance and chemical resistance, and even a thin sheet is stable in the long term, preferable. In addition, the weight average molecular weight (Mw) mentioned here is Mw obtained by [η] = 3.35 × 10 −4 Mw −0.72 using intrinsic viscosity [η] at 30 ° C. using DMF as a solvent.
[0018]
The polymer constituting the fibrillated acrylic fiber and PAN fiber employed in the present invention can be prepared by a known technique such as solution polymerization or aqueous suspension polymerization, and the comonomer or the polymerization initiator is also particularly limited as described above. It is not something. However, it is necessary that all ionic groups contained in the polymer be 0.025 mmol / g or less with respect to the polymer, thereby exhibiting favorable electrolytic solution resistance, and even a very light sheet can be used for a long time. Stable electrolytic solution resistance can be provided. The ionic group referred to herein is a polymerization initiator having an ionic group as a polymerization initiator, for example, redox such as 4-4 ′ azobis (4-cyanovaleric acid), potassium persulfate or ammonium persulfate and sodium sulfite. When a catalyst is used, depending on the ionic group introduced at the end of the polymer and a comonomer having an ionic group used when the fibrillated acrylic fiber is not polyacrylonitrile, such as acrylic acid, styrenesulfonic acid, etc. It is to be introduced. Of course, a polymerization initiator that does not introduce an ionic group into the polymer, such as 2,2′-azobisisobutyronitrile or 2,2′-azobis-2,4-dimethylvaleronitrile, is adopted in the polymer. Needless to say, it is preferable to employ polyacrylonitrile as a comonomer that does not introduce an ionic group, such as vinyl acetate, styrene, or fibrillated acrylic fiber.
[0019]
The sheet-like material of the present invention is composed of the fibrillated acrylic fiber and the PAN fiber described above, and the blending ratio is not particularly limited, but the fibrillated acrylic fiber is used in an amount of 5% by weight to 30% by weight of the sheet. Is preferred. If it is less than 5% by weight, the strength of the sheet becomes weak and a dense sheet is not obtained. On the other hand, when it exceeds 30% by weight, the electrolytic solution resistance is deteriorated and the dimensional stability is deteriorated. About the manufacturing method of the sheet-like material of the present invention, fibrillated acrylic fibers and PAN fibers cut to a length corresponding to the purpose of about 2 to 10 mm are dispersed in water and subjected to normal wet papermaking or crimping. A known sheet forming technique such as non-woven fabric processing in which a web is formed with PAN fibers subjected to, and the fibrillated acrylic fibers are sprinkled and then a sheet is formed by a method such as water punching can be used. In addition, the sheet-like material of the present invention is blended with other inorganic fibers, organic synthetic fibers, inorganic powders, etc. depending on the purpose, and if necessary, a resin is added to the surface of the sheet in order to further increase the electrolyte resistance. Emulsions can be applied or sprayed. However, when organic synthetic fibers or resin emulsions are used in combination, the fibrillated acrylic fibers and PAN fibers do not interfere with the original electrolyte solution. It is preferable not to exceed 20% by weight.
[0020]
【Example】
Examples are shown below for facilitating the understanding of the present invention, but these are merely illustrative and the gist of the present invention is not limited thereby. In the examples, parts and percentages are shown on a weight basis unless otherwise specified.
[0021]
Production Example of Fibrilized Acrylic Fiber According to a conventional method, acrylonitrile polymers having different AN ratios and ionic group amounts were dissolved in an aqueous rhodium soda solution, and acrylic fibers were produced by a wet spinning method. Here, for the synthesis of the acrylonitrile polymer, a redox catalyst of methyl acrylate as a comonomer, ammonium persulfate and sodium sulfite as a polymerization initiator was used. The acrylic fiber was beaten by changing the conditions with a beater. 1 to 6 fibrillated acrylic fibers were obtained. No. of these fibrillated acrylic fibers. , AN ratio, ionic group amount and freeness are shown in Table 1. In Table 1, the freeness was measured according to the method described in JISP8121. As for the ionic group, the weight percent of the sulfur produced from the catalyst system in the polymer per polymer was measured by atomic absorption analysis and calculated according to the following formula.
Ionic group (mmol / g) = (Sulfur weight% / 100) / 32
[0022]
[Table 1]
Figure 0004324891
[0023]
Production example of PAN fiber According to a conventional method, polyacrylonitrile having different weight average molecular weight and ionic group amount was dissolved in an aqueous rhodium soda solution, and No. 1 was obtained by a wet spinning method. 1-3 PAN fibers were made. Here, for the synthesis of polyacrylonitrile, a redox catalyst of ammonium persulfate and sodium sulfite was used as a polymerization initiator. No. of these PAN fibers. The weight average molecular weight and ionic group amount are shown in Table 2.
[0024]
[Table 2]
Figure 0004324891
[0025]
Examples 1-6
20 parts of the fibrillated acrylic fiber of the present invention shown in Table 1 and 80 parts of the PAN fiber of the present invention shown in Table 2 cut to 6 mm were uniformly dispersed in water so as to be 0.2%, and a circular paper machine was used. After wet paper making, a thermal calendar process was performed at 130 ° C. to obtain sheet-like materials Examples 1 to 6 of the present invention.
[0026]
Table 3 shows the bulk density, liquid retention rate, maximum pore diameter, tensile strength, and tensile strength after acid resistance test of these sheet-like materials. Here, each physical property value in Table 3 was measured according to the following.
1. Maximum pore diameter: measured by the bubble point method described in ASTM-F-316.
2. Liquid retention rate: A sample of 10 cm × 10 cm was taken and precisely weighed, and the value was defined as W1. Next, after immersing this sample in a 35% dilute sulfuric acid solution at 25 ° C. for 5 minutes, excess dilute sulfuric acid was cut off for 2 minutes, the weight was measured, and the value was defined as W2. The liquid retention rate was calculated by the following formula.
Liquid retention rate (%) = (W2−W1) / W1 × 100
3. Tensile strength: The prepared sheet was cut into a width of 2 cm and a length of 20 cm to obtain a test body, and measured with a Tensilon measuring machine in accordance with the JIS L1096A method. Here, the gripping length was 15 cm (longitudinal direction), and the tensile speed was 10 cm / min.
4). Tensile strength after acid resistance test: A sample prepared in the same manner as in the tensile strength measurement was placed in a sealed container, filled with 35% dilute sulfuric acid, held at 50 ° C. for 500 hours, washed with water, air dried, and a specimen. And 3. The tensile strength was measured in the same manner.
[0027]
[Table 3]
Figure 0004324891
[0028]
Each of Examples 1 to 6 has an excellent liquid retention rate and is a balanced sheet-like material with respect to the maximum pore size and tensile strength after acid resistance test, but the freeness of fibrillated acrylic fiber is 200 ml. Examples 2 and 4 to 6 below are particularly excellent sheet-like materials having a small maximum pore diameter and no problem with electrode short-circuiting. Examples 2 to 6 in which the PAN fiber has a weight average molecular weight of 150,000 or more have high tensile strength and tensile strength after acid resistance test, and the fibrillated acrylic fiber is polyacrylonitrile. It is clear that Example 6 in which the ionic group of the fibrillated acrylic fiber and PAN fiber is 0.025 mmol / g or less has very excellent electrolytic solution resistance.
[0029]
Comparative Examples 1-5
Instead of the fibrillated acrylic fibers used in the examples, the comparative material A shown in Table 4 was used, and instead of the PAN fibers, the comparative material B shown in Table 5 was used. And the sheet-like material of Comparative Examples 1-5 was obtained. Table 6 shows the bulk density, maximum pore diameter, liquid retention rate, tensile strength, and tensile strength after acid resistance test.
[0030]
[Table 4]
Figure 0004324891
[0031]
[Table 5]
Figure 0004324891
[0032]
[Table 6]
Figure 0004324891
[0033]
In Comparative Example 1, since the AN ratio of the acrylic fiber used in place of the PAN fiber is low, the tensile strength after the acid resistance test is particularly weak. In Comparative Example 2, the freeness of the fibrillated acrylic fiber is high, and an appropriate maximum pore size is not obtained. In Comparative Example 3, since the AN ratio of the fibrillated acrylic fiber is low, the tensile strength after the acid resistance test is weak. In Comparative Example 4, since glass fiber is used, the tensile strength of the sheet-like material is low, and there is a problem in workability. In Comparative Example 5, since a polypropylene material is used, the tensile strength after the acid resistance test is excellent, but the liquid retention is extremely poor.
[0034]
【The invention's effect】
As described above, since the sheet material of the present invention has a small maximum pore size, it is advantageous for preventing short circuit between the positive electrode and the negative electrode, has a high resistance to electrolytic solution, and has an affinity for the electrolytic solution. Since it is easy to produce a high and extremely thin sheet, low internal resistance can be achieved. Such a sheet-like material can be suitably used particularly as a metal refining using an acidic electrolyte, an electric double layer capacitor, and an electrode separator for a secondary battery. Providing such a sheet-like material is a notable point of the present invention, and has a great industrial significance.

Claims (3)

少なくとも97重量%のアクリロニトリル(AN)よりなり、ろ水度が450ml以下であるフィブリル化アクリル繊維と、ポリアクリロニトリルでなるポリアクリロニトリル繊維(PAN繊維)を複合してなり、フィブリル化アクリル繊維及びPAN繊維を構成する重合体のイオン性基が、重合体に対していずれも0.025mol/g以下であり、かつ、該フィブリル化アクリル繊維がシートの5重量%以上30重量%以下であることを特徴とするシート状材料。Consists of at least 97 wt% of acrylonitrile (AN), and fibrillated acrylic fiber freeness is below 450 ml, made by combining a polyacrylonitrile fibers (PAN fibers) made of polyacrylonitrile, fibrillated acrylic fibers and PAN fibers The ionic groups of the polymer constituting the polymer are each 0.025 mol / g or less with respect to the polymer, and the fibrillated acrylic fiber is 5% by weight or more and 30% by weight or less of the sheet. a sheet-like material to be. フィブリル化アクリル繊維のろ水度が200ml以下、PAN繊維が重量平均分子量15万以上のPANからなることを特徴とする請求項1に記載のシート状材料。The sheet-like material according to claim 1, wherein the fibrillated acrylic fiber is made of PAN having a freeness of 200 ml or less and the PAN fiber having a weight average molecular weight of 150,000 or more. フィブリル化アクリル繊維がポリアクリロニトリルでなることを特徴とする請求項1または2に記載のシート状材料。The sheet-like material according to claim 1 or 2, wherein the fibrillated acrylic fiber is made of polyacrylonitrile.
JP19571199A 1999-07-09 1999-07-09 Sheet material Expired - Fee Related JP4324891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19571199A JP4324891B2 (en) 1999-07-09 1999-07-09 Sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19571199A JP4324891B2 (en) 1999-07-09 1999-07-09 Sheet material

Publications (2)

Publication Number Publication Date
JP2001020195A JP2001020195A (en) 2001-01-23
JP4324891B2 true JP4324891B2 (en) 2009-09-02

Family

ID=16345715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19571199A Expired - Fee Related JP4324891B2 (en) 1999-07-09 1999-07-09 Sheet material

Country Status (1)

Country Link
JP (1) JP4324891B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645945B2 (en) * 2004-11-04 2011-03-09 日本エクスラン工業株式会社 Polyacrylonitrile-based transparent sheet and method for producing the same
JP2006253408A (en) * 2005-03-10 2006-09-21 Nippon Kodoshi Corp Electric double layer capacitor and separator therefor
JP2006278896A (en) * 2005-03-30 2006-10-12 Tdk Corp Electrochemical device
JP4794914B2 (en) * 2005-06-08 2011-10-19 ニッポン高度紙工業株式会社 Electrolytic capacitor
JP4851219B2 (en) * 2006-03-28 2012-01-11 日本バイリーン株式会社 Electric double layer capacitor separator and electric double layer capacitor
JP5700240B2 (en) * 2010-09-29 2015-04-15 三菱レイヨン株式会社 Acrylic fiber paper and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001020195A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JP6094784B2 (en) Acrylonitrile fiber for electrode, electrode containing the fiber, and lead-acid battery having the electrode
US3692569A (en) Surface-activated fluorocarbon objects
CN109735915B (en) Hypercrosslinked organic nanoparticles and preparation method thereof, modified polymer membrane and preparation method thereof, and gel polymer electrolyte
JP5551525B2 (en) Separator made of ultrafine nonwoven fabric
JP4324891B2 (en) Sheet material
JP4099852B2 (en) Porous sheet for forming gelled solid electrolyte and gelled solid electrolyte sheet using the same
JP4017744B2 (en) Solid-type polymer electrolyte membrane and method for producing the same
RU2249884C2 (en) Glass fiber blanket separator for sealed absorbed-electrolyte lead batteries
JP2000277085A (en) Separator for alkaline battery
JP6292367B1 (en) Acrylonitrile fiber for separator, separator containing the fiber, and lead-acid battery having the separator
JP2005203305A (en) Separator for battery
JPH08195194A (en) Separator for sealed lead-acid battery
JPH076746A (en) Battery separator
JP4090539B2 (en) Lithium ion conductive polymer substrate film
JP3354804B2 (en) Battery separator
JPH1167182A (en) Separator for alkaline battery and manufacture thereof
JP2003342831A (en) Water-absorbing acrylic fiber and method for producing the same and fiber structure containing the fiber
JP2858605B2 (en) Alkaline battery separator
WO1999059173A1 (en) Electric double layer capacitor and method for preparing the same
WO2018062106A1 (en) Acrylonitrillic fiber for separator, separator containing same fiber, and lead-acid battery having same separator
JP2000036433A (en) Electric double-layer capacitor and manufacture thereof
JPH07312215A (en) Battery separator
JPH10106529A (en) Separator for battery
JPH11273453A (en) Manufacture of high polymer gel electrolyte
JP2001110389A (en) Separator for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4324891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees