JP2001015399A - Wafer heating device - Google Patents

Wafer heating device

Info

Publication number
JP2001015399A
JP2001015399A JP18445899A JP18445899A JP2001015399A JP 2001015399 A JP2001015399 A JP 2001015399A JP 18445899 A JP18445899 A JP 18445899A JP 18445899 A JP18445899 A JP 18445899A JP 2001015399 A JP2001015399 A JP 2001015399A
Authority
JP
Japan
Prior art keywords
insulating layer
wafer
thickness
sintered body
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18445899A
Other languages
Japanese (ja)
Other versions
JP3865973B2 (en
Inventor
Kyoji Uchiyama
京治 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18445899A priority Critical patent/JP3865973B2/en
Publication of JP2001015399A publication Critical patent/JP2001015399A/en
Application granted granted Critical
Publication of JP3865973B2 publication Critical patent/JP3865973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a time required for heating up or cooling down a wafer to a prescribed processing temperature, by a method wherein the one primary surface of a uniform hot plate which is prescribed in thickness and formed of silicon carbide or boron carbide sintered body is made to serve as a mounting surface where a wafer is mounted, and a feeding section connected to a heating resistor is provided on the other primary surface of the uniform hot plate through the intermediary of an insulating layer. SOLUTION: The one primary surface of a uniform heating plate 2 which is formed of silicon carbide sintered body or boron carbide sintered body is made to serve as a mounting surface 3 where a semiconductor wafer W is mounted, and a heating resistor 5 is provided on the other primary surface of the uniform heating plate through the intermediary of an insulating layer 4 of glass or resin. A feeding section 6 which applies an electric power to the heating resistor 5 is electrically connected to the heating resistor 5. Moreover, the uniform heating plate 2 is as thick as 2 to 7 mm. When the insulating layer 4 is formed of glass, it is preferable that the insulating layer 4 ranges from 100 to 350 μm in thickness (s) and has a thermal expansion coefficient of 32 to 44×10-7/ deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にウエハを20
0℃以下の温度に加熱するのに用いるウエハ加熱装置に
関するものであり、例えば、半導体ウエハや液晶基板あ
るいは回路基板等のウエハ上に塗布されたレジスト液を
乾燥焼き付けしてレジスト膜を形成するのに好適なもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a wafer heating apparatus used to heat a wafer to a temperature of 0 ° C. or lower. For example, a resist solution applied to a wafer such as a semiconductor wafer, a liquid crystal substrate, or a circuit board is dried and baked to form a resist film. It is suitable for.

【0002】[0002]

【従来の技術】例えば、半導体装置の製造工程におけ
る、成膜処理、エッチング処理、レジスト膜の貼付等で
は、半導体ウエハを加熱するためにウエハ加熱装置が用
いられている。
2. Description of the Related Art For example, a wafer heating apparatus is used to heat a semiconductor wafer in a film forming process, an etching process, a resist film attaching process, etc. in a semiconductor device manufacturing process.

【0003】このうち半導体ウエハ上へのレジスト膜の
貼付にあたっては、図5に示すような、アルミニウム合
金やステンレス鋼等の金属から成る均熱板22の一方の
主面を、半導体ウエハWを載せる載置面23とし、他方
の主面には複数個のシーズヒータ25を当接させ、押せ
板24にて保持して成るウエハ加熱装置21が用いられ
ている。なお、27は、均熱板22を支持するための支
持枠、26はシーズヒータ25と電気的に接続された給
電部である。
When a resist film is applied on a semiconductor wafer, one main surface of a heat equalizing plate 22 made of a metal such as an aluminum alloy or stainless steel is placed on the semiconductor wafer W as shown in FIG. A wafer heating device 21 is used, which is a mounting surface 23 and a plurality of sheathed heaters 25 are in contact with the other main surface and are held by a pressing plate 24. Reference numeral 27 denotes a support frame for supporting the heat equalizing plate 22, and reference numeral 26 denotes a power supply unit electrically connected to the sheath heater 25.

【0004】そして、ウエハ加熱装置21の載置面23
に、レジスト液が塗布された半導体ウエハWを載せたあ
と、シーズヒータ25を発熱させることにより、均熱板
22を介して載置面23上の半導体ウエハWを加熱し、
レジスト液を乾燥焼付けして半導体ウエハW上にレジス
ト膜を貼付するようになっていた。
The mounting surface 23 of the wafer heating device 21
After the semiconductor wafer W coated with the resist solution is placed thereon, the sheath heater 25 is heated to heat the semiconductor wafer W on the mounting surface 23 via the soaking plate 22,
The resist solution was dried and baked to attach a resist film on the semiconductor wafer W.

【0005】[0005]

【発明が解決しようとする課題】ところが、図5のウエ
ハ加熱装置21では、均熱板22の熱変形を抑える観点
から板厚が15mm以上と非常に厚く、熱容量が大きい
ために、半導体ウエハWを所定の処理温度に加熱するま
での時間や処理温度から室温付近に冷却するまでの時間
が長くなり、生産性が悪かった。
However, the wafer heating apparatus 21 shown in FIG. 5 has a very large plate thickness of 15 mm or more from the viewpoint of suppressing thermal deformation of the heat equalizing plate 22, and has a large heat capacity. The time required to heat the product to a predetermined processing temperature and the time required to cool from the processing temperature to around room temperature were increased, resulting in poor productivity.

【0006】一方、成膜処理やエッチング処理では、図
6に示すような、アルミナ、窒化珪素、あるいは窒化ア
ルミニウムを主成分とする絶縁性セラミックスから成る
円盤状体32内に発熱抵抗体35を埋設し、前記円盤状
体32の一方の主面を半導体ウエハWの載置面33とす
るとともに、他方の主面に前記発熱抵抗体35と電気的
に接続された給電部36を具備して成るウエハ加熱装置
31が用いられている。
On the other hand, in the film forming process and the etching process, as shown in FIG. 6, a heating resistor 35 is buried in a disk 32 made of an insulating ceramic mainly composed of alumina, silicon nitride or aluminum nitride. One main surface of the disc-shaped body 32 is used as the mounting surface 33 of the semiconductor wafer W, and the other main surface is provided with a power supply portion 36 electrically connected to the heating resistor 35. A wafer heating device 31 is used.

【0007】しかしながら、アルミナや窒化珪素を主成
分とする絶縁性セラミックスは、熱伝導がそれほど良く
ないため、載置面33の温度ばらつきが比較的大きく、
また、発熱抵抗体35が円盤状体32中に埋設されてい
ることから、トリミングを施しての抵抗値調整ができ
ず、載置面33の温度ばらつきを制御することができな
かった。
However, insulating ceramics containing alumina or silicon nitride as a main component are not so good in heat conduction, so that the temperature variation of the mounting surface 33 is relatively large.
In addition, since the heating resistor 35 is embedded in the disk-shaped body 32, the resistance value cannot be adjusted by performing trimming, and the temperature variation of the mounting surface 33 cannot be controlled.

【0008】その為、円盤状体32がアルミナや窒化珪
素を主成分とする絶縁性セラミックスより成る図6のウ
エハ加熱装置31を用いて半導体ウエハW上にレジスト
膜を貼付けるため、半導体ウエハWを加熱すると、温度
ムラのために乾燥焼付けされるレジスト膜の組織が粗く
なり、露光処理時におけるレジスト膜の感光精度が悪い
ためにパターン形状が不均一なものとなり、近年、要求
されている微細な配線を高密度に形成することは難しい
ものであった。
For this reason, a resist film is stuck on the semiconductor wafer W using the wafer heating device 31 shown in FIG. 6 in which the disc-shaped body 32 is made of an insulating ceramic containing alumina or silicon nitride as a main component. When heating is performed, the structure of the resist film to be dried and baked due to temperature unevenness becomes coarse, and the pattern shape becomes uneven due to poor photosensitivity of the resist film at the time of exposure processing. It has been difficult to form a simple wiring at a high density.

【0009】これに対し、窒化アルミニウムを主成分と
する絶縁性セラミックスは、熱伝導率が80W/m・K
以上の優れた特性を有することから、載置面33を均熱
化し易いものの、窒化アルミニウムは化1のように大気
中の水分と反応してアンモニアガスを発生し、このアン
モニアガスが半導体ウエハW上に乾燥焼付けされるレジ
スト膜の組織に悪影響を与え、露光処理時におけるレジ
スト膜の感光精度を劣化させるといった課題があり、ア
ンモニアガスの濃度が1ppb程度でも問題となってい
た。
On the other hand, insulating ceramics containing aluminum nitride as a main component have a thermal conductivity of 80 W / m · K.
Due to the above excellent characteristics, the mounting surface 33 is easily heated to a uniform temperature, but aluminum nitride reacts with moisture in the atmosphere as shown in Chemical Formula 1 to generate ammonia gas, and this ammonia gas is used for the semiconductor wafer W. There is a problem that the structure of the resist film to be dried and baked thereon is adversely affected, and the exposure accuracy of the resist film during exposure processing is deteriorated.

【0010】[0010]

【化1】 Embedded image

【0011】[0011]

【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、板厚が2mm〜7mmである炭化珪素質焼結
体又は炭化硼素質焼結体から成る均熱板の一方の主面を
ウエハを載せる載置面とするとともに、他方の主面に絶
縁層を介して発熱抵抗体及び該発熱抵抗体と電気的に接
続される給電部を設けてウエハ加熱装置を構成したもの
である。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention has been made in consideration of the above problems, and has one main surface of a heat equalizing plate made of a silicon carbide sintered body or a boron carbide sintered body having a thickness of 2 mm to 7 mm. Is a mounting surface on which a wafer is placed, and a heating element is provided on the other main surface via an insulating layer, and a power supply unit electrically connected to the heating resistor is provided to constitute a wafer heating apparatus. .

【0012】また、本発明は、前記絶縁層を、0℃〜2
00℃の温度範囲における熱膨張係数が32〜44×1
-7/℃であるガラスにより形成し、その厚みを100
μm〜350μmとするか、あるいは前記絶縁層を、ポ
リイミド樹脂により形成し、その厚みを30〜150μ
mとしたものである。
[0012] The present invention also provides the insulating layer, wherein the insulating layer is formed at 0 ° C to 2 ° C.
The coefficient of thermal expansion in the temperature range of 00 ° C. is 32 to 44 × 1
It is formed of glass of 0 -7 / ° C, and its thickness is 100
μm to 350 μm, or the insulating layer is formed of a polyimide resin and has a thickness of 30 to 150 μm.
m.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0014】図1は本発明に係るウエハ加熱装置の一例
を示す断面図で、炭化珪素質焼結体又は炭化硼素質焼結
体から成る均熱板2の一方の主面を、例えばウエハとし
て半導体ウエハWを載せる載置面3とするとともに、他
方の主面にガラス又は樹脂等の絶縁層4を介して発熱抵
抗体5を形成したものである。
FIG. 1 is a sectional view showing an example of a wafer heating apparatus according to the present invention, in which one main surface of a heat equalizing plate 2 made of a silicon carbide sintered body or a boron carbide sintered body is used as a wafer, for example. In addition to the mounting surface 3 on which the semiconductor wafer W is mounted, a heating resistor 5 is formed on the other main surface via an insulating layer 4 such as glass or resin.

【0015】発熱抵抗体5のパターン形状としては、図
2又は図3に示すような、円弧状の電極部5aと直線状
の電極部5bとから成る略同心円状をしたものや図示し
ていないが渦巻き状をしたものなど、載置面3を均一に
加熱できるパターン形状であれば良い。
As shown in FIG. 2 or FIG. 3, the pattern shape of the heating resistor 5 is a substantially concentric circle composed of an arc-shaped electrode portion 5a and a linear electrode portion 5b, and is not shown. Any shape may be used as long as the mounting surface 3 can be uniformly heated, such as a spiral shape.

【0016】なお、7はウエハ加熱装置1を設置するた
めの支持枠で、ウエハ加熱装置1の均熱板2が支持枠7
の開口部を覆うように設置してある。また、6は発熱抵
抗体5へ通電するための電気的に接続された給電部、8
は支持枠7内に昇降自在に設置され、半導体ウエハWを
載置面3上に載せたり、載置面3より持ち上げるための
リフトピンである。
Reference numeral 7 denotes a support frame on which the wafer heating device 1 is installed.
Is installed so as to cover the opening. Reference numeral 6 denotes a power supply unit electrically connected to supply current to the heating resistor 5;
Numeral denotes lift pins which are installed in the support frame 7 so as to be able to move up and down, and which mount the semiconductor wafer W on the mounting surface 3 and lift it from the mounting surface 3.

【0017】そして、このウエハ加熱装置1により半導
体ウエハWを加熱するには、不図示の搬送アームにて載
置面3の上方まで運ばれた半導体ウエハWをリフトピン
8にて支持したあと、リフトピン8を降下させて半導体
ウエハWを載置面3上に載せる。次に、給電部6に通電
して発熱抵抗体5を発熱させ、絶縁層4及び均熱板2を
介して載置面3上の半導体ウエハWを加熱するのである
が、本発明によれば、均熱板2を炭化珪素質焼結体又は
炭化硼素質焼結体により形成してあることから、熱を加
えても変形が小さく、板厚を薄くできるため、所定の処
理温度に加熱するまでの昇温時間及び所定の処理温度か
ら室温付近に冷却するまでの冷却時間を短くすることが
でき、生産性を高めることができるとともに、60W/
m・K以上の熱伝導率を有することから、薄い板厚でも
発熱抵抗体5のジュール熱を素早く伝達し、載置面3の
温度ばらつきを極めて小さくすることができる。しか
も、大気中の水分等と反応してガスを発生させることも
ないため、半導体ウエハW上へのレジスト膜の貼付に用
いたとしても、レジスト膜の組織に悪影響を与えること
がなく、微細な配線を高密度に形成することが可能であ
る。
In order to heat the semiconductor wafer W by the wafer heating apparatus 1, the semiconductor wafer W carried above the mounting surface 3 by a transfer arm (not shown) is supported by lift pins 8, and then lift pins The semiconductor wafer W is mounted on the mounting surface 3 by lowering 8. Next, power is supplied to the power supply unit 6 to cause the heat generating resistor 5 to generate heat, thereby heating the semiconductor wafer W on the mounting surface 3 via the insulating layer 4 and the heat equalizing plate 2. According to the present invention, Since the heat equalizing plate 2 is formed of a silicon carbide based sintered body or a boron carbide based sintered body, deformation is small even when heat is applied, and the plate thickness can be reduced, so that the plate is heated to a predetermined processing temperature. , And the cooling time from the predetermined processing temperature to cooling to around room temperature can be shortened, and the productivity can be increased.
Since it has a thermal conductivity of at least m · K, the Joule heat of the heating resistor 5 can be quickly transmitted even with a small thickness, and the temperature variation of the mounting surface 3 can be extremely reduced. Moreover, since it does not react with moisture in the atmosphere and generate gas, even if it is used for attaching the resist film on the semiconductor wafer W, it does not adversely affect the structure of the resist film and has a fine structure. Wiring can be formed at high density.

【0018】また、使用条件等によって、載置面3の温
度分布がばらつくことがあるが、本発明によれば、均熱
板2、絶縁層4、発熱抵抗体5の三層構造とし、発熱抵
抗体5を露出させてあることから、使用条件等に合わせ
て載置面3の温度分布が均一となるように、発熱抵抗体
5にトリミングを施して抵抗値を調整するもできる。と
ころで、このような特性を満足するには、均熱板2の板
厚2mm〜7mmとすることが良い。これは、板厚tが
2mm未満であると、板厚が薄すぎるために温度ばらつ
きを平準化するという均熱板2として効果が小さく、発
熱抵抗体5におけるジュール熱のばらつきがそのまま載
置面3の温度ばらつきとして表れるため、載置面3の均
熱化が難しいからであり、逆に板厚tが7mmを越える
と、均熱板2が高熱伝導率を有する炭化珪素質焼結体や
炭化硼素質焼結体から成ると言えども金属と比較して熱
伝導率が小さいために、均熱板2の熱容量が大きくなり
過ぎ、所定の処理温度に加熱するまでの昇温時間や処理
温度から室温付近に冷却するまでの冷却時間が長くな
り、生産性を向上させることができないからである。
Although the temperature distribution of the mounting surface 3 may vary depending on the use conditions and the like, according to the present invention, a three-layer structure of the heat equalizing plate 2, the insulating layer 4, and the heat generating resistor 5 is used. Since the resistor 5 is exposed, the resistance value can be adjusted by trimming the heating resistor 5 so that the temperature distribution on the mounting surface 3 becomes uniform according to the use conditions and the like. By the way, in order to satisfy such characteristics, the thickness of the heat equalizing plate 2 is preferably set to 2 mm to 7 mm. This is because if the plate thickness t is less than 2 mm, the plate thickness is too thin and the temperature variation is leveled out, and the effect as the heat equalizing plate 2 is small. This is because it is difficult to equalize the temperature of the mounting surface 3 because it appears as a temperature variation of 3. In contrast, when the thickness t exceeds 7 mm, the heat equalizing plate 2 has a high thermal conductivity. Even though it is made of a boron carbide sintered body, the heat capacity of the heat equalizing plate 2 becomes too large because the thermal conductivity is smaller than that of the metal, and the temperature rising time and the processing temperature until heating to the predetermined processing temperature. This is because the cooling time from cooling to near room temperature becomes longer, and the productivity cannot be improved.

【0019】なお、均熱板2を形成する炭化珪素質焼結
体としては、主成分の炭化珪素に対し、焼結助剤として
硼素(B)と炭素(C)を含有した焼結体や、主成分の
炭化珪素に対し、焼結助剤としてアルミナ(Al
2 3 )とイットリア(Y2 3 )を含有した焼結体を
用いることができ、また、炭化珪素はα型を主体とする
ものあるいはβ型を主体とするもの、のいずれであって
も構わない。
The silicon carbide sintered body forming the heat equalizing plate 2 may be a sintered body containing boron (B) and carbon (C) as sintering aids with respect to silicon carbide as a main component. Alumina (Al) as a sintering aid for silicon carbide as the main component
A sintered body containing 2 O 3 ) and yttria (Y 2 O 3 ) can be used, and the silicon carbide is either an α-type or a β-type. No problem.

【0020】また、均熱板2を形成する炭化硼素質焼結
体としては、主成分の炭化硼素に対し、焼結助剤として
硼酸(B2 3 )を含有した焼結体や、主成分の炭化硼
素に対し、焼結助剤として炭化珪素(SiC)を含有し
た焼結体を用いることができる。
As the boron carbide sintered body forming the heat equalizing plate 2, a sintered body containing boric acid (B 2 O 3 ) as a sintering aid with respect to boron carbide as a main component, A sintered body containing silicon carbide (SiC) as a sintering aid for the component boron carbide can be used.

【0021】さらに、均熱板2の載置面3と反対側の主
面は、ガラスや樹脂から成る絶縁層4との密着性を高め
る観点から、平面度20μm以下、面粗さを中心線平均
粗さ(Ra)で0.1μm〜0.5μmに研磨しておく
ことが好ましい。
Further, the main surface of the heat equalizing plate 2 opposite to the mounting surface 3 has a flatness of 20 μm or less and a surface roughness of the center line from the viewpoint of enhancing the adhesion to the insulating layer 4 made of glass or resin. It is preferable to polish to an average roughness (Ra) of 0.1 μm to 0.5 μm.

【0022】一方、半導電性を有する均熱板2と発熱抵
抗体5との間の絶縁を保つ絶縁層4としては、ガラス又
は樹脂を用いることができ、ガラスを用いる場合、その
厚みsが100μm未満では、耐電圧が1.5kVを下
回り、絶縁性が保てず、逆に厚みsが350μmを越え
ると、均熱板2を形成する炭化珪素質焼結体や炭化硼素
質焼結体との熱膨張差が大きくなり過ぎるために、クラ
ックが発生して絶縁層4として機能しなくなる。その
為、絶縁層4としてガラスを用いる場合、絶縁層4の厚
みsは100μm〜350μmの範囲で形成することが
好ましく、望ましくは200μm〜350μmの範囲で
形成することが良い。
On the other hand, glass or resin can be used as the insulating layer 4 for maintaining insulation between the heat equalizing plate 2 and the heat generating resistor 5 having semi-conductivity. When the thickness is less than 100 μm, the withstand voltage is lower than 1.5 kV, and the insulation property cannot be maintained. On the other hand, when the thickness s exceeds 350 μm, the silicon carbide-based sintered body or the boron carbide-based sintered body forming the heat equalizing plate 2 is formed. Since the difference in thermal expansion between them becomes too large, cracks occur and the insulating layer 4 does not function. Therefore, when glass is used as the insulating layer 4, the thickness s of the insulating layer 4 is preferably formed in the range of 100 μm to 350 μm, and more preferably in the range of 200 μm to 350 μm.

【0023】また、絶縁層4を形成するガラスの特性と
しては、結晶質又は非晶質のいずれでも良く、耐熱温度
が200℃以上でかつ0℃〜200℃の温度域における
熱膨張係数が32〜44×10-7/℃の範囲にあるもの
を適宜選択して用いることが好ましい。即ち、熱膨張係
数が前記範囲を外れたガラスを用いると、均熱板2を形
成する炭化珪素質焼結体や炭化硼素質焼結体との熱膨張
差が大きくなりすぎるため、ガラスの焼付け後の冷却時
においてクラックや剥離等の欠陥が生じ易いからであ
る。
The glass forming the insulating layer 4 may be either crystalline or amorphous, and has a heat resistance of 200 ° C. or higher and a thermal expansion coefficient of 32 ° C. in a temperature range of 0 ° C. to 200 ° C. It is preferable to appropriately select and use those in the range of up to 44 × 10 −7 / ° C. That is, if glass having a thermal expansion coefficient outside the above-mentioned range is used, the difference in thermal expansion between the silicon carbide-based sintered body and the boron carbide-based sintered body forming the heat equalizing plate 2 becomes too large. This is because defects such as cracks and peeling are likely to occur during the subsequent cooling.

【0024】次に、絶縁層4に樹脂を用いる場合、その
厚みsが30μm未満では、耐電圧が1.5kVを下回
り、絶縁性が保てなくなるとともに、発熱抵抗体5にレ
ーザ加工等によってトリミングを施した際に絶縁層4を
傷付け、絶縁層4として機能しなくなり、逆に厚みsが
150μmを越えると、樹脂の焼付け時に発生する溶剤
や水分の蒸発量が多くなり、均熱板2との間にフクレと
呼ばれる泡状の剥離部ができ、この剥離部の存在により
熱伝達が悪くなるため、載置面3の均熱化が阻害され
る。その為、絶縁層4として樹脂を用いる場合、絶縁層
4の厚みsは30μm〜150μmの範囲で形成するこ
とが好ましく、望ましくは60μm〜150μmの範囲
で形成することが良い。
Next, when a resin is used for the insulating layer 4, if the thickness s is less than 30 μm, the withstand voltage falls below 1.5 kV, the insulation cannot be maintained, and the heating resistor 5 is trimmed by laser processing or the like. When the insulating layer 4 is damaged, the insulating layer 4 does not function as the insulating layer 4. On the other hand, when the thickness s exceeds 150 μm, the amount of evaporation of the solvent and moisture generated during baking of the resin increases, and A bubble-like peeling portion called a blister is formed between them, and the presence of this peeling portion deteriorates heat transfer, so that the soaking of the mounting surface 3 is hindered. Therefore, when a resin is used as the insulating layer 4, the thickness s of the insulating layer 4 is preferably formed in a range of 30 μm to 150 μm, and more preferably in a range of 60 μm to 150 μm.

【0025】また、絶縁層4を形成する樹脂としては、
200℃以上の耐熱性と、発熱抵抗体5との密着性を考
慮すると、ポリイミド樹脂、ポリイミドアミド樹脂、ポ
リアミド樹脂等が好ましい。
The resin for forming the insulating layer 4 is as follows.
Considering the heat resistance of 200 ° C. or more and the adhesion to the heating resistor 5, a polyimide resin, a polyimide amide resin, a polyamide resin, or the like is preferable.

【0026】なお、ガラスや樹脂から成る絶縁層4を均
熱板2上に被着する手段としては、前記ガラスペースト
又は樹脂ペーストを均熱板2の中心部に適量落とし、ス
ピンコーティング法にて伸ばして均一に塗布するか、あ
るいはスクリーン印刷法、ディッピング法、スプレーコ
ーティング法等にて均一に塗布したあと、ガラスペース
トにあっては、600℃の温度で、樹脂ペーストにあっ
ては、300℃以上の温度で焼き付ければ良い。また、
絶縁層4としてガラスを用いる場合、予め炭化珪素質焼
結体又は炭化硼素質焼結体から成る均熱板2を1200
℃程度の温度に加熱し、絶縁層4を被着する表面を酸化
処理しておくことで、ガラスから成る絶縁層4との密着
性を高めることができる。
As a means for applying the insulating layer 4 made of glass or resin on the heat equalizing plate 2, an appropriate amount of the glass paste or the resin paste is dropped on the center of the heat equalizing plate 2 and spin coating is performed. After spreading and applying evenly, or evenly applying by screen printing, dipping, spray coating, etc., at a temperature of 600 ° C. for glass paste and 300 ° C. for resin paste What is necessary is just to bake at the above temperature. Also,
When glass is used as the insulating layer 4, the heat equalizing plate 2 made of a silicon carbide sintered body or a boron carbide
By heating to a temperature of about ° C. and oxidizing the surface on which the insulating layer 4 is to be adhered, the adhesion with the insulating layer 4 made of glass can be increased.

【0027】さらに、絶縁層4上に被着する発熱抵抗体
5としては、金(Au) 、銀(Ag)、銅(Cu)、パ
ラジウム(Pd)等の金属単体を、蒸着法やメッキ法に
て直接被着するか、あるいは前記金属単体や酸化レニウ
ム(Re2 3 )、ランタンマンガネート(LaMnO
3 )等の酸化物を導電材として含む樹脂ペーストやガラ
スペーストを用意し、所定のパターン形状にスクリーン
印刷法等にて印刷したあと焼付けて前記導電材を樹脂や
ガラスから成るマトリックスで結合すれば良い。メトリ
ックスとしてガラスを用いる場合、結晶化ガラス、非晶
質ガラスのいずれでも良いが、熱サイクルによる抵抗値
の変化を抑えるために結晶化ガラスを用いることが好ま
しい。
Further, as the heating resistor 5 to be deposited on the insulating layer 4, a simple metal such as gold (Au), silver (Ag), copper (Cu), palladium (Pd) is formed by a vapor deposition method or a plating method. Directly, or the above-mentioned metal simple substance, rhenium oxide (Re 2 O 3 ), lanthanum manganate (LaMnO 2 )
3 ) A resin paste or a glass paste containing an oxide such as an oxide as a conductive material is prepared, printed in a predetermined pattern shape by a screen printing method or the like, and then baked to bond the conductive material with a matrix made of resin or glass. good. When glass is used as a metric, either crystallized glass or amorphous glass may be used, but it is preferable to use crystallized glass in order to suppress a change in resistance value due to a heat cycle.

【0028】ただし、発熱抵抗体5に銀又は銅を用いる
場合、マイグレーションが発生する恐れがあるため、こ
のような場合には、発熱抵抗体5を覆うように絶縁層4
と同一の材質から成る保護膜を30μm程度の厚みで被
覆しておけば良い。
However, when silver or copper is used for the heating resistor 5, migration may occur. In such a case, the insulating layer 4 covers the heating resistor 5.
A protective film made of the same material as described above may be coated with a thickness of about 30 μm.

【0029】ところで、図1では発熱抵抗体5に給電部
6を導電性接着剤にて接合した例を示したが、図4に示
すように、発熱抵抗体5に対し、給電ピン9をスプリン
グ10で押しつけるようにしても構わない。
FIG. 1 shows an example in which the power supply section 6 is joined to the heating resistor 5 with a conductive adhesive. However, as shown in FIG. You may press it with 10.

【0030】[0030]

【実施例】(実施例1)熱伝導率が80W/m・Kの炭
化珪素質焼結体に研削加工を施し、板厚を異ならせた外
径230mmの円盤状をした均熱板を複数製作し、各均
熱板の一方の主面に絶縁層を被着するため、ガラス粉末
に対してバインダーとしてのエチルセルロースと有機溶
剤としてのテルピネオールを混練して作製したガラスペ
ーストをスクリーン印刷法にて敷設し、150℃に加熱
して有機溶剤を乾燥させたあと、550℃で30分間脱
脂処理を施し、さらに700〜900℃の温度で焼き付
けを行うことにより、ガラスから成る厚み200μmの
絶縁層を形成し、次いで絶縁層上に発熱抵抗体を被着す
るため、導電材としてAu粉末とPd粉末を添加したガ
ラスペーストを、スクリーン印刷法にて図3に示すパタ
ーン形状に印刷したあと、150℃に加熱して有機溶剤
を乾燥させ、さらに550℃で30分間脱脂処理を施し
たあと、700〜900℃の温度で焼き付けを行うこと
により、厚みが50μmの発熱抵抗体を形成し、しかる
のち発熱抵抗体に給電部を導電性接着剤にて固着するこ
とにより、ウエハ加熱装置を製作した。
(Example 1) A plurality of disc-shaped soaking plates having a diameter of 230 mm and different thicknesses obtained by subjecting a silicon carbide sintered body having a thermal conductivity of 80 W / m · K to a grinding process and having different thicknesses. The glass paste produced by kneading ethyl cellulose as a binder and terpineol as an organic solvent with glass powder to produce an insulating layer on one main surface of each heat equalizing plate by screen printing. After laying, heating to 150 ° C. to dry the organic solvent, a degreasing treatment is performed at 550 ° C. for 30 minutes, and further baking is performed at a temperature of 700 to 900 ° C. to form an insulating layer made of glass having a thickness of 200 μm. Then, in order to apply a heating resistor on the insulating layer, a glass paste to which Au powder and Pd powder are added as a conductive material is printed in a pattern shape shown in FIG. 3 by a screen printing method. Thereafter, the organic solvent is dried by heating to 150 ° C., and further subjected to a degreasing treatment at 550 ° C. for 30 minutes, and then baked at a temperature of 700 to 900 ° C. to form a heating resistor having a thickness of 50 μm. Thereafter, the wafer heating device was manufactured by fixing the power supply portion to the heating resistor with a conductive adhesive.

【0031】そして、各ウエハ加熱装置の給電部に通電
して発熱抵抗体を発熱させることにより、載置面の中央
を150℃に保持し、その時の温度分布をサーモビュア
(日本電子データム社製 JTG−5200型)を用い
て測定したあと、通電を止めて自然冷却させ、載置面の
中央が100℃に冷却されるまでの時間を測定した。な
お、載置面上の温度分布の測定にあたっては、PCD2
00上の任意の6点の温度を測定し、それらの最大値と
最小値との差を温度バラツキとして測定した。
Then, by energizing the power supply section of each wafer heating device to generate heat in the heating resistor, the center of the mounting surface is maintained at 150 ° C., and the temperature distribution at that time is measured by a thermoviewer (JTG made by JEOL Datum). -5200), the current was stopped, and the device was naturally cooled, and the time until the center of the mounting surface was cooled to 100 ° C. was measured. When measuring the temperature distribution on the mounting surface, PCD2
The temperature at any six points on the sample No. 00 was measured, and the difference between the maximum value and the minimum value was measured as the temperature variation.

【0032】そして、評価にあたっては、載置面の温度
バラツキが10℃以内で、かつ冷却時間が4分以内であ
ったものを良好として判断した。
In the evaluation, a sample in which the temperature variation of the mounting surface was within 10 ° C. and the cooling time was within 4 minutes was judged as good.

【0033】それぞれの結果は表1に示す通りである。The results are as shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】この結果、まず、均熱板の板厚が厚くなる
につれて、載置面の温度バラツキが小さくなり、その反
面、冷却時間が長くなることが判る。即ち、載置面の温
度バラツキと冷却時間とは相反する特性であることが判
る。そして、均熱板の板厚を2mm〜7mmとすること
で、載置面の温度バラツキを10℃以内、冷却時間を4
分以内とできることが判る。
As a result, first, it can be seen that as the thickness of the soaking plate increases, the temperature variation on the mounting surface decreases, while the cooling time increases. In other words, it can be seen that the temperature variation of the mounting surface and the cooling time have opposite characteristics. By setting the thickness of the heat equalizing plate to 2 mm to 7 mm, the temperature variation of the mounting surface is within 10 ° C., and the cooling time is 4 minutes.
You can see that it can be done within minutes.

【0036】よって、均熱板の板厚は2mm〜7mmと
することが良く、好ましくは2.5mm〜4mmの範囲
で形成することが良いことが判る。
Therefore, it is understood that the thickness of the heat equalizing plate is preferably set to 2 mm to 7 mm, and more preferably, to 2.5 mm to 4 mm.

【0037】(実施例2)次に、均熱板の板厚を4mm
とし、絶縁層の厚みを異ならせるとともに、絶縁層に熱
膨張係数の異なるガラスを用いる以外は実施例1と同様
の条件にてウエハ加熱装置を試作し、絶縁層の耐電圧に
ついて調べる実験を行った。
Example 2 Next, the thickness of the soaking plate was set to 4 mm.
An experiment was conducted in which a wafer heating device was prototyped under the same conditions as in Example 1 except that the thickness of the insulating layer was changed and glass having a different coefficient of thermal expansion was used for the insulating layer, and the withstand voltage of the insulating layer was examined. Was.

【0038】なお、各ウエハ加熱装置は、試作後に載置
面の温度分布をサーモビュアで測定し、温度が高い箇所
の発熱抵抗体にAuから成る導電シートを貼り付け、載
置面の温度バラツキが1℃以内となるようにトリミング
調整した。
In each wafer heating device, the temperature distribution on the mounting surface is measured with a thermoviewer after the trial production, and a conductive sheet made of Au is attached to the heating resistor at a location where the temperature is high, and the temperature variation on the mounting surface is reduced. Trimming was adjusted to be within 1 ° C.

【0039】そして、耐電圧の評価は、給電部に通電す
る電圧値を0.5kVから順次10秒間ずつ保持しなが
ら上げていった時の絶縁層の漏れ電流量を、耐電圧計
(菊水電子工業社製:TOS5051)にて測定し、こ
の漏れ電流量が20mAを越えた時を絶縁破壊として判
断し、その時の電圧値を耐電圧とした。そして、この耐
電圧が1.5kV以上であるものを良好として判断し
た。
The withstand voltage was evaluated by measuring the amount of leakage current of the insulating layer when increasing the voltage supplied to the power supply unit from 0.5 kV for 10 seconds while maintaining the voltage value. (TOS5051 manufactured by Kogyo Co., Ltd.). When the leakage current exceeded 20 mA, it was judged as dielectric breakdown, and the voltage value at that time was regarded as withstand voltage. Those having a withstand voltage of 1.5 kV or more were judged to be good.

【0040】それぞれの結果は表2に示す通りである。The results are as shown in Table 2.

【0041】[0041]

【表2】 [Table 2]

【0042】この結果、絶縁層を形成するガラスの0℃
〜200℃の温度域における熱膨張係数が32×10-7
/℃未満あるいは44×10-7/℃を越えたものは、給
電部に0.5kVの電圧を印加した時に絶縁層にクラッ
クが発生した。
As a result, the temperature of the glass forming the insulating layer was reduced to 0 ° C.
The coefficient of thermal expansion in the temperature range of ~ 200 ° C is 32 × 10 -7
When the voltage was lower than / ° C or higher than 44 × 10 -7 / ° C, a crack occurred in the insulating layer when a voltage of 0.5 kV was applied to the power supply section.

【0043】また、絶縁層を形成するガラスとして0℃
〜200℃の温度域における熱膨張係数が32〜44×
10-7/℃であっても、その厚みが100μm未満で
は、1.5kV以上の耐電圧を満足することができず、
逆に厚みが600μmを越えると、製造過程における絶
縁層の冷却時にクラックが発生した。
Further, the glass for forming the insulating layer is 0 ° C.
The coefficient of thermal expansion in the temperature range of ~ 200 ° C is 32-44x
Even if the thickness is 10 −7 / ° C., if the thickness is less than 100 μm, the withstand voltage of 1.5 kV or more cannot be satisfied,
Conversely, if the thickness exceeded 600 μm, cracks occurred during cooling of the insulating layer during the manufacturing process.

【0044】これに対し、0℃〜200℃の温度域にお
ける熱膨張係数が32〜44×10-7/℃の範囲にあ
り、その厚みを100μm〜350μmとすれば、クラ
ック等の発生がなく、1.5kV以上の耐電圧を得るこ
とがき、十分な絶縁性を確保することができた。
On the other hand, if the coefficient of thermal expansion in the temperature range of 0 ° C. to 200 ° C. is in the range of 32 to 44 × 10 −7 / ° C. and the thickness is 100 μm to 350 μm, cracks and the like will not occur. , 1.5 kV or more, and a sufficient insulating property could be secured.

【0045】よって、絶縁層をガラスにより形成する場
合、0℃〜200℃の温度域における熱膨張係数が32
〜44×10-7/℃の範囲にあるガラスを用いるととも
に、その厚みを100μm〜350μmとすれば良いこ
とが判る。
Therefore, when the insulating layer is formed of glass, the coefficient of thermal expansion in the temperature range of 0 ° C. to 200 ° C. is 32.
It can be seen that it is sufficient to use glass in the range of up to 44 × 10 −7 / ° C. and to set the thickness to 100 μm to 350 μm.

【0046】(実施例3)次に、熱伝導率が80W/m
・Kの炭化珪素質焼結体に研削加工を施し、外径230
mm、板厚4mmの円盤状をした均熱板を複数製作し、
各均熱板の一方の主面に絶縁層を被着するため、ポリイ
ミドワニス(宇部興産製:UワニスS)をスピンコータ
ーにて厚みを変えて被着したあと、70℃の温度で乾燥
させ、さらに400℃〜450℃の温度で焼き付けを行
うことにより、ポリイミド樹脂から成る絶縁層を形成
し、次いで絶縁層上に発熱抵抗体を被着するため、導電
材としてAu粉末とPd粉末を添加したPbO系のガラ
スペーストを、スクリーン印刷法にて図3に示すパター
ン形状に印刷したあと、400〜450℃の温度で焼き
付けを行うことにより、厚みが50μmの発熱抵抗体を
形成し、しかるのち発熱抵抗体に給電部を導電性接着剤
にて固着することにより、ウエハ加熱装置を製作した。
Example 3 Next, the thermal conductivity was 80 W / m.
Grinding the silicon carbide sintered body of K, outer diameter 230
mm, a plurality of disk-shaped soaking plates with a plate thickness of 4 mm,
In order to apply an insulating layer to one main surface of each heat equalizing plate, polyimide varnish (U varnish S: U varnish S) is applied by changing the thickness with a spin coater, and then dried at a temperature of 70 ° C. Further, baking is performed at a temperature of 400 ° C. to 450 ° C. to form an insulating layer made of a polyimide resin, and then Au powder and Pd powder are added as conductive materials to form a heating resistor on the insulating layer. The printed PbO-based glass paste is printed in a pattern shape shown in FIG. 3 by a screen printing method, and then baked at a temperature of 400 to 450 ° C. to form a heating resistor having a thickness of 50 μm. A wafer heating device was manufactured by fixing the power supply portion to the heating resistor with a conductive adhesive.

【0047】そして、ポリイミド樹脂から成る絶縁層の
耐電圧及びフクレの有無を確認するため、まず、耐電圧
の測定にあっては、給電部に通電する電圧値を0.5k
Vから順次10秒間ずつ保持しながら上げていった時の
絶縁層の漏れ電流量を、耐電圧計(菊水電子工業社製:
TOS5051)にて測定し、この漏れ電流量が20m
Aを越えた時を絶縁破壊として判断し、その時の電圧値
を耐電圧とするとともに、フクレの測定にあっては、均
熱板と絶縁層との間にフクレがないかを目視により確認
した。
In order to check the withstand voltage of the insulating layer made of the polyimide resin and the presence or absence of blisters, first, in measuring the withstand voltage, the voltage value applied to the power supply unit was set to 0.5 kV.
The amount of leakage current of the insulating layer when the voltage was sequentially increased for 10 seconds from V was measured using a withstand voltage meter (manufactured by Kikusui Electronics Corporation:
TOS5051), the leakage current amount was 20 m
When the voltage exceeded A, it was judged as dielectric breakdown, the voltage value at that time was regarded as the withstand voltage, and in the measurement of blisters, it was visually confirmed whether blisters were present between the heat equalizing plate and the insulating layer. .

【0048】そして、フクレがなく、耐電圧が1.5k
V以上であるものを良好として判断した。
There is no blister and the withstand voltage is 1.5k.
Those with V or more were judged as good.

【0049】それぞれの結果は表3に示す通りである。The results are as shown in Table 3.

【0050】[0050]

【表3】 [Table 3]

【0051】この結果、絶縁層をポリイミド樹脂にて形
成する場合、その厚みを30μm〜150μmとすれ
ば、フクレの発生がなく、また1.5kV以上の耐電圧
を得ることができるため、十分な絶縁性を確保すること
ができた。
As a result, when the insulating layer is formed of a polyimide resin, if the thickness is 30 μm to 150 μm, no blistering occurs and a withstand voltage of 1.5 kV or more can be obtained. Insulation was able to be secured.

【0052】[0052]

【発明の効果】以上のように、本発明によれば、板厚が
2mm〜7mmである炭化珪素質焼結体又は炭化硼素質
焼結体から成る均熱板の一方の主面をウエハを載せる載
置面とするとともに、他方の主面に絶縁層を介して発熱
抵抗体と該発熱抵抗体と電気的に接続される給電部を設
けてウエハ加熱装置を構成したことから、均熱板での熱
容量を小さくできるため、所定の処理温度に加熱するま
での時間及び所定の処理温度から室温付近に冷却するま
での時間を短くすることができ、生産性を高めることが
できる。また、優れた熱伝導率を有するとともに、ウエ
ハ加熱装置を製作したあとに発熱抵抗体の抵抗値を調整
するトリミングを施すことができるため、載置面におけ
る温度ムラを極めて小さくすることができる。しかも、
大気中の水分と反応することがないため、本発明のウエ
ハ加熱装置を、ウエハ上へのレジスト膜の貼付に用いた
時には、レジスト膜の組織に悪影響を与えることがな
く、露光処理時には優れた感光精度を得ることができ
る。
As described above, according to the present invention, one main surface of a soaking plate made of a silicon carbide sintered body or a boron carbide sintered body having a plate thickness of 2 mm to 7 mm is attached to a wafer. Since the wafer heating device is provided with a mounting surface on which the heat is generated and a power supply section electrically connected to the heat generating resistor via the insulating layer on the other main surface, the heat equalizing plate is provided. Since the heat capacity at the time of heating can be reduced, the time required for heating to the predetermined processing temperature and the time required for cooling from the predetermined processing temperature to around room temperature can be shortened, and the productivity can be increased. In addition, since the substrate has excellent thermal conductivity and can be subjected to trimming for adjusting the resistance value of the heating resistor after manufacturing the wafer heating apparatus, temperature unevenness on the mounting surface can be extremely reduced. Moreover,
Since it does not react with moisture in the atmosphere, when the wafer heating apparatus of the present invention is used for attaching a resist film on a wafer, it does not adversely affect the structure of the resist film, and is excellent during exposure processing. Sensitivity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のウエハ加熱装置の一例を示す断面図で
ある。
FIG. 1 is a sectional view showing an example of a wafer heating apparatus according to the present invention.

【図2】本発明のウエハ加熱装置に備える発熱抵抗体の
パターン形状を示す平面図である。
FIG. 2 is a plan view showing a pattern shape of a heating resistor provided in the wafer heating device of the present invention.

【図3】本発明のウエハ加熱装置に備える発熱抵抗体の
他のパターン形状を示す平面図である。
FIG. 3 is a plan view showing another pattern shape of the heating resistor provided in the wafer heating apparatus of the present invention.

【図4】本発明のウエハ加熱装置に備える他の給電構造
を示す部分断面図である。
FIG. 4 is a partial cross-sectional view showing another power supply structure provided in the wafer heating apparatus of the present invention.

【図5】従来のウエハ加熱装置を示す断面図である。FIG. 5 is a sectional view showing a conventional wafer heating apparatus.

【図6】従来の他のウエハ加熱装置を示す断面図であ
る。
FIG. 6 is a sectional view showing another conventional wafer heating apparatus.

【符号の説明】[Explanation of symbols]

1:ウエハ加熱装置 2:均熱板 3:載置面 4:絶
縁層 5:発熱抵抗体 6:給電部 7:支持枠 8:リフトピン W:半導体
ウエハ
1: Wafer heating device 2: Heat equalizing plate 3: Placement surface 4: Insulation layer 5: Heating resistor 6: Power supply unit 7: Support frame 8: Lift pin W: Semiconductor wafer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】板厚が2〜7mmである炭化珪素質焼結体
又は炭化硼素質焼結体から成る均熱板の一方の主面をウ
エハを載せる載置面とするとともに、他方の主面に絶縁
層を介して発熱抵抗体及び該発熱抵抗体と電気的に接続
される給電部を具備して成るウエハ加熱装置。
1. A heat equalizing plate made of a silicon carbide sintered body or a boron carbide sintered body having a thickness of 2 to 7 mm is used as a mounting surface on which a wafer is mounted and the other main surface. A wafer heating apparatus comprising: a heating resistor on a surface thereof; and a power supply unit electrically connected to the heating resistor via an insulating layer.
【請求項2】前記絶縁層は、0℃〜200℃の温度範囲
における熱膨張係数が32〜44×10-7/℃であるガ
ラスから成り、その厚みが100μm〜350μmであ
る請求項1に記載のウエハ加熱装置。
2. The insulating layer is made of glass having a coefficient of thermal expansion of 32 to 44 × 10 −7 / ° C. in a temperature range of 0 ° C. to 200 ° C., and has a thickness of 100 μm to 350 μm. A wafer heating apparatus as described in the above.
【請求項3】前記絶縁層は、ポリイミド樹脂から成り、
その厚みが30〜150μmである請求項1に記載のウ
エハ加熱装置。
3. The insulating layer is made of a polyimide resin.
2. The wafer heating device according to claim 1, wherein the thickness is 30 to 150 [mu] m.
JP18445899A 1999-06-29 1999-06-29 Wafer heating device Expired - Fee Related JP3865973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18445899A JP3865973B2 (en) 1999-06-29 1999-06-29 Wafer heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18445899A JP3865973B2 (en) 1999-06-29 1999-06-29 Wafer heating device

Publications (2)

Publication Number Publication Date
JP2001015399A true JP2001015399A (en) 2001-01-19
JP3865973B2 JP3865973B2 (en) 2007-01-10

Family

ID=16153514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18445899A Expired - Fee Related JP3865973B2 (en) 1999-06-29 1999-06-29 Wafer heating device

Country Status (1)

Country Link
JP (1) JP3865973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045618A (en) * 2001-07-31 2003-02-14 Kyocera Corp Wafer heating device
JP2020073420A (en) * 2018-08-13 2020-05-14 エスケーシー ソルミックス カンパニー,リミテッド Boron carbide sintered body and etcher including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045618A (en) * 2001-07-31 2003-02-14 Kyocera Corp Wafer heating device
JP4688363B2 (en) * 2001-07-31 2011-05-25 京セラ株式会社 Wafer heating device
JP2020073420A (en) * 2018-08-13 2020-05-14 エスケーシー ソルミックス カンパニー,リミテッド Boron carbide sintered body and etcher including the same

Also Published As

Publication number Publication date
JP3865973B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
US6534751B2 (en) Wafer heating apparatus and ceramic heater, and method for producing the same
JP4025497B2 (en) Wafer heating device
JP3559549B2 (en) Wafer heating device
JP3872256B2 (en) Wafer heating device
JP3805318B2 (en) Wafer heating device
JP4480354B2 (en) Wafer heating device
JP3865973B2 (en) Wafer heating device
JP4593770B2 (en) Wafer heating device
JP4325894B2 (en) Wafer heating device
JP4002409B2 (en) Wafer heating device
JP4975146B2 (en) Wafer heating device
JP3771795B2 (en) Wafer heating device
JP3559548B2 (en) Wafer heating device
JP3921429B2 (en) Wafer heating device
JP3929840B2 (en) Wafer heating device
JP2001313243A (en) Wafer heater
JP3921433B2 (en) Wafer heating device
JP4189243B2 (en) Wafer support member
JP2003168649A (en) Wafer heating device
JP3924509B2 (en) Wafer heating device
JP2003318097A (en) Wafer supporting member
JP3784253B2 (en) Wafer heating device
JP2003257813A (en) Wafer heater
JP2001237166A (en) Wafer heating device
JP2001077183A (en) Ceramic substrate and its manufacture for semiconductor manufacture and checking

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees