JP2001013092A5 - - Google Patents

Download PDF

Info

Publication number
JP2001013092A5
JP2001013092A5 JP1999182364A JP18236499A JP2001013092A5 JP 2001013092 A5 JP2001013092 A5 JP 2001013092A5 JP 1999182364 A JP1999182364 A JP 1999182364A JP 18236499 A JP18236499 A JP 18236499A JP 2001013092 A5 JP2001013092 A5 JP 2001013092A5
Authority
JP
Japan
Prior art keywords
crystal
axis
plane
crystal ingot
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999182364A
Other languages
Japanese (ja)
Other versions
JP2001013092A (en
JP4227706B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP18236499A priority Critical patent/JP4227706B2/en
Priority claimed from JP18236499A external-priority patent/JP4227706B2/en
Publication of JP2001013092A publication Critical patent/JP2001013092A/en
Publication of JP2001013092A5 publication Critical patent/JP2001013092A5/ja
Application granted granted Critical
Publication of JP4227706B2 publication Critical patent/JP4227706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項】 略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線を前記測定平面に非対称な検出開口で部分的に検出する検出器を備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記検出器のピーク出力の大きさを用いて検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを有することを特徴とする結晶方位測定装置。
【請求項】 略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線をそれぞれ部分的に検出する前記ω軸方向に並設された複数の検出器を備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記複数の検出器のピーク出力の大きさを比較して検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを有することを特徴とする結晶方位測定装置。
【請求項】 略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線を前記ω軸方向に移動することで部分的に検出する検出器を備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記検出器のピーク出力を与える移動位置を用いて検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを有することを特徴とする結晶方位測定装置。
【請求項】 略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源、略前記測定平面上に配置された回折X線の検出器及びこの検出器の前面を前記ω軸方向に移動することで所定の広がりを持った回折X線を部分的に通過させるコリメータを備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記検出器のピーク出力を与える前記コリメータの移動位置を用いて検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを有することを特徴とする結晶方位測定装置。
【請求項】 前記データ処理部は、前記ω回転の複数の位置でそれぞれ求めた前記倒れ角を用いて前記ω軸に略平行な別の結晶面法線h0 の前記ω軸に対する傾斜方向を求める機能を持つことを特徴とする請求項乃至の何れかに記載の結晶方位測定装置。
【請求項】 請求項乃至の何れかに記載の結晶方位測定装置により、前記ω回転の複数の位置で検出された結晶面についてそれぞれ前記倒れ角を求める第1の段階と、この倒れ角より前記ω軸に略平行な別の結晶面法線h0 の前記ω軸に対する傾斜方位を求める第2の段階と、この傾斜方位を基に前記検出された結晶面を選択して前記結晶インゴットの周方向基準の加工方位を決める第3の段階とを有することを特徴とする結晶方位測定方法。
【請求項】 略円筒状である結晶インゴットを保持し、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線を前記測定平面に非対称な検出開口で部分的に検出する検出器を備えた測定部を用い、この測定部又は前記結晶インゴットの何れかを略前記ω軸の周りにω回転させながら前記測定平面に沿って前記X線を放射し、前記検出器のピーク出力を与える回転位置から検出された結晶面の法線の方位を求める第1の段階と、一周の前記ω回転の間の複数の結晶面に対応する各ピーク出力の大きさを互いに比較して前記検出された結晶面を選択し、前記結晶インゴットの周方向基準の加工方位を決める第2の段階とを有することを特徴とする結晶方位測定方法。
【請求項】 略円筒状である結晶インゴットを保持し、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線をそれぞれ部分的に検出する前記ω軸方向に並設された複数の検出器を備えた測定部を用い、この測定部又は前記結晶インゴットの何れかを略前記ω軸の周りにω回転させながら前記測定平面に沿って前記X線を放射し、前記複数の検出器のピーク出力を与える回転位置から検出された結晶面の法線の方位を求める第1の段階と、一周の前記ω回転の間の各検出器の複数の結晶面に対応する各ピーク出力の大きさを互いに比較して前記検出された結晶面を選択し、前記結晶インゴットの周方向基準の加工方位を決める第2の段階とを有することを特徴とする結晶方位測定方法。
[Claims]
1. A means for holding a crystal ingot that is substantially cylindrical, and X-rays are emitted toward substantially one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis, which is the axis of the crystal ingot. A measuring unit provided with an X-ray source and a detector that partially detects diffracted X-rays having a predetermined spread with a detection aperture asymmetrical to the measuring plane, and either the measuring unit or the crystal ingot is described as ω. It has an ω rotation mechanism that rotates ω around the axis, and a data processing unit that obtains the tilt angle of the normal line of the crystal plane detected in the ω axis direction using the magnitude of the peak output of the detector. A crystal orientation measuring device characterized by.
2. A means for holding a crystal ingot that is substantially cylindrical, and X-rays are emitted toward substantially one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis, which is the axis of the crystal ingot. A measuring unit provided with a plurality of detectors arranged side by side in the ω-axis direction for partially detecting an X-ray source and diffracted X-rays having a predetermined spread, and either this measuring unit or the crystal ingot. Data for obtaining the tilt angle of the normal line of the crystal plane detected in the ω-axis direction by comparing the magnitudes of the peak outputs of the plurality of detectors with the ω-rotation mechanism that ω-rotates the crystal plane around the ω-axis. A crystal orientation measuring device characterized by having a processing unit.
3. A means for holding a crystal ingot that is substantially cylindrical, and X-rays are emitted toward substantially one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis, which is the axis of the crystal ingot. A measuring unit equipped with a detector that partially detects an X-ray source and diffracted X-rays having a predetermined spread by moving in the ω-axis direction, and either the measuring unit or the crystal ingot is described as ω. It has an ω rotation mechanism that rotates ω around the axis, and a data processing unit that obtains the tilt angle of the normal line of the crystal plane detected in the ω axis direction using the moving position that gives the peak output of the detector. A crystal orientation measuring device characterized by this.
A holding unit of the crystal ingot is wherein substantially cylindrical, emits X-rays toward a substantially one point of the side face of the crystal ingot in the vertical measuring plane ω axis is an axis of said crystal ingot An X-ray source, a detector of diffracted X-rays arranged substantially on the measurement plane, and a diffracted X-ray having a predetermined spread are partially passed by moving the front surface of the detector in the ω-axis direction. Detection using a measuring unit equipped with a collimator, an ω rotation mechanism that rotates either the measuring unit or the crystal ingot by ω around the ω axis, and the moving position of the collimator that gives the peak output of the detector. A crystal orientation measuring device comprising a data processing unit for obtaining a tilt angle of the normal of the crystal plane in the ω-axis direction.
Wherein said data processing unit, the inclination direction with respect to the ω axis of another crystalline surface normal h 0 substantially parallel to the ω axis using the inclination angle determined by a plurality of positions of the ω rotation The crystal orientation measuring apparatus according to any one of claims 1 to 4 , wherein the crystal orientation measuring apparatus has a function of obtaining the above.
By 6. crystal orientation measuring apparatus according to any one of claims 1 to 4, a first step of determining the tilt angle, respectively for a plurality of detected crystal plane at a position of the ω rotation, the collapse The second step of obtaining the tilt direction of another crystal plane normal h 0 substantially parallel to the ω axis from the angle with respect to the ω axis, and the detected crystal plane is selected based on this tilt direction to select the crystal. A method for measuring a crystal orientation, which comprises a third step of determining a processing orientation based on the circumferential direction of an ingot.
7. X that holds a crystal ingot that is substantially cylindrical and emits X-rays toward substantially one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis that is the axis of the crystal ingot. Using a measuring unit equipped with a detector that partially detects a radiation source and diffracted X-rays having a predetermined spread with a detection opening asymmetrical to the measuring plane, either the measuring unit or the crystal ingot is substantially described above. The first step of radiating the X-ray along the measurement plane while rotating ω around the ω axis and determining the direction of the normal line of the crystal plane detected from the rotation position that gives the peak output of the detector. , The magnitude of each peak output corresponding to the plurality of crystal planes during the ω rotation in one round is compared with each other, the detected crystal plane is selected, and the processing direction based on the circumferential direction of the crystal ingot is determined. A method for measuring crystal orientation, which comprises two steps.
8. hold the crystal ingot is substantially cylindrical, emits X-rays toward a substantially one point of the side face of the crystal ingot in the vertical measuring plane ω axis is an axis of the crystal ingot X Using a measuring unit provided with a plurality of detectors arranged side by side in the ω-axis direction to partially detect a radiation source and diffracted X-rays having a predetermined spread, either this measuring unit or the crystal ingot. Is emitted about the X-ray along the measurement plane while rotating ω about the ω axis, and the direction of the normal line of the crystal plane detected from the rotation position that gives the peak output of the plurality of detectors is obtained. The detected crystal planes were selected by comparing the magnitudes of the peak outputs corresponding to the plurality of crystal planes of each detector during the first step and the ω rotation around the circumference with each other, and the crystal ingot was selected. A method for measuring a crystal orientation, which comprises a second step of determining a processing orientation based on a circumferential direction.

【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の結晶方位測定装置は、略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線を前記測定平面に非対称な検出開口で部分的に検出する検出器を備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記検出器のピーク出力の大きさを用いて検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを有することを要旨とする。この構成により、側面測定により、所定の広がりを持った回折X線が測定平面に非対称な検出開口を持つ検出器で部分的に検出され、結晶インゴットをω軸に対し回転させたときのこの検出器のピーク出力の大きさにより、側面に略直交する複数の結晶面法線のω軸方向への倒れ角を求めることができて(オフカットの場合でも)周方向基準を決定することが可能となる。次いで、このように、側面に略直交する複数の結晶面法線のω軸方向への倒れ角が求められることで、これらの結晶面法線と位置関係が既知である略ω軸方向の結晶面法線のω軸からの傾斜方向を求めることができて、これを基にスライス面を決定することが可能となる。
0008
[Means for solving problems]
In order to solve the above problems, the crystal orientation measuring device according to claim 1 has a substantially cylindrical crystal ingot holding means and the crystal ingot in a measurement plane perpendicular to the ω axis, which is the axis of the crystal ingot. A measuring unit equipped with an X-ray source that emits X-rays toward approximately one point on the side surface of the crystal and a detector that partially detects diffracted X-rays having a predetermined spread with a detection aperture asymmetrical to the measurement plane. , The ω rotation mechanism that ω rotates either this measuring unit or the crystal ingot around the ω axis, and the ω axis of the normal line of the crystal plane detected by using the magnitude of the peak output of the detector. The gist is to have a data processing unit that obtains the tilt angle in the direction. With this configuration, by side measurement, diffracted X-rays with a predetermined spread are partially detected by a detector having a detection aperture that is asymmetric in the measurement plane, and this detection when the crystal ingot is rotated with respect to the ω axis. Depending on the magnitude of the peak output of the vessel, it is possible to determine the tilt angle of multiple crystal plane normals that are substantially orthogonal to the side surface in the ω axis direction (even in the case of off-cut), and it is possible to determine the circumferential direction reference. It becomes. Next, by obtaining the tilt angles of a plurality of crystal plane normals substantially orthogonal to the side surface in the ω-axis direction in this way, crystals in the substantially ω-axis direction whose positional relationship with these crystal plane normals is known. The direction of inclination of the surface normal from the ω axis can be obtained, and the slice plane can be determined based on this.

請求項記載の結晶方位測定装置は、略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線をそれぞれ部分的に検出する前記ω軸方向に並設された複数の検出器を備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記複数の検出器のピーク出力の大きさを比較して検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを有することを要旨とする。この構成により、側面測定により、所定の広がりを持った回折X線がω軸方向に並設された複数の検出器でそれぞれ部分的に検出され、結晶インゴットをω軸に対し回転させたときのこの複数の検出器のピーク出力の大きさを比較することにより、側面に略直交する複数の結晶面法線のω軸方向への倒れ角を求めることができて(オフカットの場合でも)周方向基準を決定することが可能となる。次いで、このように、側面に略直交する複数の結晶面法線のω軸方向への倒れ角が求められることで、これらの結晶面法線と位置関係が既知である略ω軸方向の結晶面法線のω軸からの傾斜方向を求めることができて、これを基にスライス面を決定することが可能となる。 The crystal orientation measuring device according to claim 2 is directed toward a substantially cylindrical holding means of the crystal ingot and substantially one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis which is the axis of the crystal ingot. A measuring unit provided with a plurality of detectors arranged side by side in the ω-axis direction for partially detecting an X-ray source that emits X-rays and diffracted X-rays having a predetermined spread, and the measuring unit or In the direction of the ω axis of the normal line of the crystal plane detected by comparing the magnitudes of the peak outputs of the plurality of detectors with the ω rotation mechanism that ω rotates any of the crystal ingots around the ω axis. The gist is to have a data processing unit that obtains the tilt angle of. With this configuration, when the diffraction X-rays having a predetermined spread are partially detected by a plurality of detectors arranged side by side in the ω-axis direction by the side surface measurement, and the crystal ingot is rotated with respect to the ω-axis. By comparing the magnitudes of the peak outputs of these multiple detectors, it is possible to determine the tilt angles of multiple crystal plane normals that are substantially orthogonal to the side surface in the ω axis direction (even in the case of off-cut). It becomes possible to determine the direction reference. Next, by obtaining the tilt angles of a plurality of crystal plane normals substantially orthogonal to the side surface in the ω-axis direction in this way, crystals in the substantially ω-axis direction whose positional relationship with these crystal plane normals is known. The direction of inclination of the surface normal from the ω axis can be obtained, and the slice plane can be determined based on this.

請求項記載の結晶方位測定装置は、略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線を前記ω軸方向に移動することで部分的に検出する検出器を備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記検出器のピーク出力を与える移動位置を用いて検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを有することを要旨とする。この構成により、側面測定により、所定の広がりを持った回折X線がω軸方向に移動可能な検出器で部分的に検出され、結晶インゴットをω軸に対し回転させたときのこの検出器のピーク出力を与える移動位置を用いることにより、側面に略直交する複数の結晶面法線のω軸方向への倒れ角を求めることができて(オフカットの場合でも)周方向基準を決定することが可能となる。次いで、このように、側面に略直交する複数の結晶面法線のω軸方向への倒れ角が求められることで、これらの結晶面法線と位置関係が既知である略ω軸方向の結晶面法線のω軸からの傾斜方向を求めることができて、これを基にスライス面を決定することが可能となる。 The crystal orientation measuring device according to claim 3 is directed toward a substantially cylindrical holding means of the crystal ingot and substantially one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis which is the axis of the crystal ingot. A measuring unit equipped with an X-ray source that emits X-rays and a detector that partially detects diffracted X-rays having a predetermined spread by moving in the ω-axis direction, and the measuring unit or the crystal ingot. The tilt angle of the normal line of the crystal plane detected in the ω-axis direction is obtained by using the ω rotation mechanism that ω-rotates any of the above ω-axis and the moving position that gives the peak output of the detector. The gist is to have a data processing unit. With this configuration, by side measurement, diffracted X-rays with a predetermined spread are partially detected by a detector that can move in the ω-axis direction, and the crystal ingot is rotated with respect to the ω-axis. By using the movement position that gives the peak output, it is possible to obtain the tilt angle of multiple crystal plane normals that are substantially orthogonal to the side surface in the ω-axis direction (even in the case of off-cut), and to determine the circumferential direction reference. Is possible. Next, by obtaining the tilt angles of a plurality of crystal plane normals substantially orthogonal to the side surface in the ω-axis direction in this way, crystals in the substantially ω-axis direction whose positional relationship with these crystal plane normals is known. The direction of inclination of the surface normal from the ω axis can be obtained, and the slice plane can be determined based on this.

請求項記載の結晶方位測定装置は、略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源、略前記測定平面上に配置された回折X線の検出器及びこの検出器の前面を前記ω軸方向に移動することで所定の広がりを持った回折X線を部分的に通過させるコリメータを備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記検出器のピーク出力を与える前記コリメータの移動位置を用いて検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを有することを要旨とする。この構成により、側面測定により、所定の広がりを持った回折X線がω軸方向に移動可能なコリメータを部分的に通過して検出器で検出され、結晶インゴットをω軸に対し回転させたときの検出器のピーク出力を与えるコリメータの移動位置を用いることにより、側面に略直交する複数の結晶面法線のω軸方向への倒れ角を求めることができて(オフカットの場合でも)周方向基準を決定することが可能となる。次いで、このように、側面に略直交する複数の結晶面法線のω軸方向への倒れ角が求められることで、これらの結晶面法線と位置関係が既知である略ω軸方向の結晶面法線のω軸からの傾斜方向を求めることができて、これを基にスライス面を決定することが可能となる。 The crystal orientation measuring device according to claim 4 is directed toward a substantially cylindrical holding means of the crystal ingot and substantially one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis which is the axis of the crystal ingot. X-ray source that radiates X-rays, a detector of diffracted X-rays arranged substantially on the measurement plane, and diffracted X-rays having a predetermined spread by moving the front surface of the detector in the ω-axis direction. A measuring unit provided with a collimeter that partially passes the detector, an ω rotation mechanism that rotates either the measuring unit or the crystal ingot by ω around the ω axis, and the collimator that gives the peak output of the detector. The gist is to have a data processing unit for obtaining the tilt angle of the normal line of the crystal plane detected by using the moving position in the ω-axis direction. With this configuration, when diffracted X-rays with a predetermined spread partially pass through a collimator that can move in the ω-axis direction and are detected by a detector by side-by-side measurement, and the crystal ingot is rotated with respect to the ω-axis. By using the moving position of the collimator that gives the peak output of the detector, it is possible to obtain the tilt angle of multiple crystal plane normals that are substantially orthogonal to the side surface in the ω axis direction (even in the case of off-cut). It becomes possible to determine the direction reference. Next, by obtaining the tilt angles of a plurality of crystal plane normals substantially orthogonal to the side surface in the ω-axis direction in this way, crystals in the substantially ω-axis direction whose positional relationship with these crystal plane normals is known. The direction of inclination of the surface normal from the ω axis can be obtained, and the slice plane can be determined based on this.

請求項記載の結晶方位測定装置は、上記請求項乃至の何れかに記載の結晶方位測定装置において、前記データ処理部は、前記ω回転の複数の位置でそれぞれ求めた前記倒れ角を用いて前記ω軸に略平行な別の結晶面法線h0 の前記ω軸に対する傾斜方向を求める機能を持つことを要旨とする。この構成により、データ処理部は、側面に略直交する複数の結晶面法線に対し位置関係が既知であるω軸に略平行な別の結晶面法線h0 のω軸に対する傾斜方向を求め、これを基にスライス面を決定する。 The crystal orientation measuring apparatus according to claim 5 is the crystal orientation measuring apparatus according to any one of claims 1 to 4 , wherein the data processing unit obtains the tilt angle obtained at a plurality of positions of the ω rotation. The gist is that it has a function of finding the inclination direction of another crystal plane normal h 0 substantially parallel to the ω axis with respect to the ω axis. With this configuration, the data processing unit obtains the inclination direction of another crystal plane normal h 0 substantially parallel to the ω axis whose positional relationship is known with respect to a plurality of crystal plane normals substantially orthogonal to the side surface. , The slice plane is determined based on this.

請求項記載の結晶方位測定方法は、上記請求項乃至の何れかに記載の結晶方位測定装置により、前記ω回転の複数の位置で検出された結晶面についてそれぞれ前記倒れ角を求める第1の段階と、この倒れ角より前記ω軸に略平行な別の結晶面法線h0 の前記ω軸に対する傾斜方位を求める第2の段階と、この傾斜方位を基に前記検出された結晶面を選択して前記結晶インゴットの周方向基準の加工方位を決める第3の段階とを有することを要旨とする。この構成により、側面に略直交する複数の結晶面法線に対し位置関係が既知であるω軸に略平行な別の結晶面法線h0 のω軸に対する傾斜方位を求め、この傾斜方位を基に所定の結晶面を選択し、この選択された結晶面法線より周方向基準を決定する。 The crystal orientation measuring method according to claim 6 is a method of obtaining the tilt angle of each of the crystal planes detected at a plurality of positions of the ω rotation by the crystal orientation measuring apparatus according to any one of claims 1 to 4. The first step, the second step of obtaining the tilt direction of another crystal plane normal line h 0 substantially parallel to the ω axis from the tilt angle with respect to the ω axis, and the detected crystal based on this tilt direction. It is a gist to have a third step of selecting a surface and determining a processing direction based on the circumferential direction of the crystal ingot. With this configuration, the tilt direction of another crystal plane normal h 0 , which is substantially parallel to the ω axis whose positional relationship is known with respect to a plurality of crystal plane normals substantially orthogonal to the side surface, is obtained, and this tilt direction is determined. A predetermined crystal plane is selected based on the group, and the circumferential reference is determined from the selected crystal plane normal.

請求項記載の結晶方位測定方法は、略円筒状である結晶インゴットを保持し、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線を前記測定平面に非対称な検出開口で部分的に検出する検出器を備えた測定部を用い、この測定部又は前記結晶インゴットの何れかを略前記ω軸の周りにω回転させながら前記測定平面に沿って前記X線を放射し、前記検出器のピーク出力を与える回転位置から検出された結晶面の法線の方位を求める第1の段階と、一周の前記ω回転の間の複数の結晶面に対応する各ピーク出力の大きさを互いに比較して前記検出された結晶面を選択し、前記結晶インゴットの周方向基準の加工方位を決める第2の段階とを有することを要旨とする。この構成により、結晶インゴットをω軸の周りにω回転させながら、所定の広がりを持った回折X線のピーク出力を測定平面に非対称な検出開口を持つ検出器で検出し、一周のω回転の間の検出された各ピーク出力の大きさを互いに比較することで所定の結晶面を選択し、この選択された結晶面法線より周方向基準を決定する。 The crystal orientation measuring method according to claim 7 holds a crystal ingot having a substantially cylindrical shape, and aims at substantially one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis, which is the axis of the crystal ingot. Using a measuring unit equipped with an X-ray source that emits X-rays and a detector that partially detects diffracted X-rays having a predetermined spread with a detection aperture asymmetrical to the measuring plane, the measuring unit or the crystal ingot. The direction of the normal line of the crystal plane detected from the rotation position that emits the X-ray along the measurement plane while rotating ω around the ω axis and gives the peak output of the detector. The detected crystal plane is selected by comparing the magnitudes of the peak outputs corresponding to the plurality of crystal planes during the first step to be obtained and the ω rotation in one round with each other, and the circumferential direction reference of the crystal ingot is selected. The gist is to have a second stage of determining the processing direction of. With this configuration, while rotating the crystal ingot ω around the ω axis, the peak output of the diffracted X-ray with a predetermined spread is detected by a detector with an asymmetric detection aperture in the measurement plane, and the ω rotation around the circumference. A predetermined crystal plane is selected by comparing the magnitudes of the detected peak outputs during the period with each other, and the circumferential reference is determined from the selected crystal plane normal.

請求項記載の結晶方位測定方法は、略円筒状である結晶インゴットを保持し、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線をそれぞれ部分的に検出する前記ω軸方向に並設された複数の検出器を備えた測定部を用い、この測定部又は前記結晶インゴットの何れかを略前記ω軸の周りにω回転させながら前記測定平面に沿って前記X線を放射し、前記複数の検出器のピーク出力を与える回転位置から検出された結晶面の法線の方位を求める第1の段階と、一周の前記ω回転の間の各検出器の複数の結晶面に対応する各ピーク出力の大きさを互いに比較して前記検出された結晶面を選択し、前記結晶インゴットの周方向基準の加工方位を決める第2の段階とを有することを要旨とする。
この構成により、結晶インゴットをω軸の周りにω回転させながら、所定の広がりを持った回折X線のピーク出力をω軸方向に並設された複数の検出器でそれぞれ部分的に検出し、一周のω回転の間の複数の検出器の各ピーク出力の大きさを互いに比較することで所定の結晶面を選択し、この選択された結晶面法線より周方向基準を決定する。
The crystal orientation measuring method according to claim 8 holds a crystal ingot having a substantially cylindrical shape, and aims at substantially one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis, which is the axis of the crystal ingot. Using a measuring unit having a plurality of detectors arranged side by side in the ω-axis direction, which partially detects an X-ray source that emits X-rays and a diffracted X-ray having a predetermined spread, this measuring unit or A crystal plane detected from a rotation position that emits the X-ray along the measurement plane while rotating any of the crystal ingots substantially around the ω axis and gives peak outputs of the plurality of detectors. The detected crystal plane is selected by comparing the magnitude of each peak output corresponding to the plurality of crystal planes of each detector during the first step of determining the direction of the normal and the ω rotation around the circumference. However, it is a gist to have a second step of determining the processing direction based on the circumferential direction of the crystal ingot.
With this configuration, while rotating the crystal ingot ω around the ω axis, the peak output of the diffracted X-rays having a predetermined spread is partially detected by a plurality of detectors arranged side by side in the ω axis direction. A predetermined crystal plane is selected by comparing the magnitudes of the peak outputs of the plurality of detectors during one round of ω rotation with each other, and the circumferential reference is determined from the selected crystal plane normal.

【0041】
【発明の効果】
以上説明したように、請求項1記載の結晶方位測定装置によれば、略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線を前記測定平面に非対称な検出開口で部分的に検出する検出器を備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記検出器のピーク出力の大きさを用いて検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを具備させたため、側面測定により、所定の広がりを持った回折X線を測定平面に非対称な検出開口を持つ検出器で部分的に検出し、結晶インゴットをω軸に対し回転させたときのこの検出器のピーク出力の大きさにより、側面に略直交する複数の結晶面法線のω軸方向への倒れ角を求めることができてオフカットの場合でも周方向基準を決定することができる。次いで、このように、側面に略直交する複数の結晶面法線のω軸方向への倒れ角が求められることで、これらの結晶面法線と位置関係が既知である略ω軸方向の結晶面法線のω軸からの傾斜方向を求めることができて、これを基にスライス面を決定することができる。したがって、スライス面方向の結晶面と側面方向の測定する結晶面とが直交していない一般的な結晶インゴットに対し、測定部の回転及び方向転換を行わずに、側面測定により周方向基準を決定することができ、さらにスライス面の決定もすることができる。
[0041]
【Effect of the invention】
As described above, according to the crystal orientation measuring apparatus according to claim 1 , the crystal ingot is held in a substantially cylindrical shape and the crystal ingot is in a measurement plane perpendicular to the ω axis, which is the axis of the crystal ingot. A measuring unit equipped with an X-ray source that emits X-rays toward substantially one point on the side surface of the above-mentioned surface and a detector that partially detects diffracted X-rays having a predetermined spread with a detection opening asymmetrical to the measurement plane. , The ω rotation mechanism that ω rotates either this measuring unit or the crystal ingot around the ω axis, and the ω axis of the normal of the crystal plane detected by using the magnitude of the peak output of the detector. Since it is equipped with a data processing unit that obtains the tilt angle in the direction, diffraction X-rays with a predetermined spread are partially detected by a detector having an asymmetric detection aperture on the measurement plane by side measurement, and a crystal ingot. From the magnitude of the peak output of this detector when the is rotated with respect to the ω axis, it is possible to obtain the tilt angles of multiple crystal plane normals that are substantially perpendicular to the side surface in the ω axis direction. But the circumferential reference can be determined. Next, by obtaining the tilt angles of a plurality of crystal plane normals substantially orthogonal to the side surface in the ω-axis direction in this way, crystals in the substantially ω-axis direction whose positional relationship with these crystal plane normals is known. The direction of inclination of the surface normal from the ω axis can be obtained, and the slice plane can be determined based on this. Therefore, for a general crystal ingot in which the crystal plane in the slice plane direction and the crystal plane to be measured in the side surface direction are not orthogonal to each other, the circumferential direction reference is determined by the side surface measurement without rotating or changing the direction of the measuring unit. And also the slice plane can be determined.

請求項記載の結晶方位測定装置によれば、略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線をそれぞれ部分的に検出する前記ω軸方向に並設された複数の検出器を備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記複数の検出器のピーク出力の大きさを比較して検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを具備させたため、側面測定により、所定の広がりを持った回折X線をω軸方向に並設した複数の検出器でそれぞれ部分的に検出し、結晶インゴットをω軸に対し回転させたときのこの複数の検出器のピーク出力の大きさを比較することにより、側面に略直交する複数の結晶面法線のω軸方向への倒れ角を求めることができてオフカットの場合でも周方向基準を決定することができる。次いで、このように、側面に略直交する複数の結晶面法線のω軸方向への倒れ角が求められることで、これらの結晶面法線と位置関係が既知である略ω軸方向の結晶面法線のω軸からの傾斜方向を求めることができて、これを基にスライス面を決定することができる。したがって、スライス面方向の結晶面と側面方向の測定する結晶面とが直交していない一般的な結晶インゴットに対し、測定部の回転及び方向転換を行わずに、側面測定により周方向基準を決定することができ、さらにスライス面の決定もすることができる。 According to the crystal orientation measuring apparatus according to claim 2, the holding means of the crystal ingot having a substantially cylindrical shape and substantially one point on the side surface of the crystal ingot in the measurement plane perpendicular to the ω axis which is the axis of the crystal ingot. A measuring unit provided with a plurality of detectors arranged side by side in the ω-axis direction for partially detecting an X-ray source that emits X-rays toward the surface and diffracted X-rays having a predetermined spread, and this measurement. The ω axis of the normal of the crystal plane detected by comparing the magnitudes of the peak outputs of the plurality of detectors with the ω rotation mechanism that ω rotates either the part or the crystal ingot around the ω axis. Since it is equipped with a data processing unit that determines the tilt angle in the direction, diffraction X-rays with a predetermined spread are partially detected by a plurality of detectors arranged side by side in the ω-axis direction by side measurement, and crystals are crystallized. By comparing the magnitudes of the peak outputs of these multiple detectors when the ingot is rotated with respect to the ω axis, the tilt angles of multiple crystal plane normals substantially perpendicular to the side surface in the ω axis direction can be obtained. Even in the case of off-cut, the circumferential reference can be determined. Next, by obtaining the tilt angles of a plurality of crystal plane normals substantially orthogonal to the side surface in the ω-axis direction in this way, crystals in the substantially ω-axis direction whose positional relationship with these crystal plane normals is known. The direction of inclination of the surface normal from the ω axis can be obtained, and the slice plane can be determined based on this. Therefore, for a general crystal ingot in which the crystal plane in the slice plane direction and the crystal plane to be measured in the side surface direction are not orthogonal to each other, the circumferential direction reference is determined by the side surface measurement without rotating or changing the direction of the measuring unit. And also the slice plane can be determined.

請求項記載の結晶方位測定装置によれば、略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線を前記ω軸方向に移動することで部分的に検出する検出器を備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記検出器のピーク出力を与える移動位置を用いて検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを具備させたため、側面測定により、所定の広がりを持った回折X線をω軸方向に移動可能な検出器で部分的に検出し、結晶インゴットをω軸に対し回転させたときのこの検出器のピーク出力を与える移動位置を用いることにより、側面に略直交する複数の結晶面法線のω軸方向への倒れ角を求めることができてオフカットの場合でも周方向基準を決定することができる。次いで、このように、側面に略直交する複数の結晶面法線のω軸方向への倒れ角が求められることで、これらの結晶面法線と位置関係が既知である略ω軸方向の結晶面法線のω軸からの傾斜方向を求めることができて、これを基にスライス面を決定することができる。したがって、スライス面方向の結晶面と側面方向の測定する結晶面とが直交していない一般的な結晶インゴットに対し、測定部の回転及び方向転換を行わずに、側面測定により周方向基準を決定することができ、さらにスライス面の決定もすることができる。 According to the crystal orientation measuring apparatus according to claim 3, the holding means of the crystal ingot having a substantially cylindrical shape and substantially one point on the side surface of the crystal ingot in the measurement plane perpendicular to the ω axis which is the axis of the crystal ingot. A measuring unit including an X-ray source that emits X-rays toward the surface and a detector that partially detects diffracted X-rays having a predetermined spread by moving in the ω-axis direction, and the measuring unit or the above. The tilt angle of the normal of the crystal plane detected in the ω-axis direction by using the ω rotation mechanism that ω-rotates any of the crystal ingots around the ω-axis and the moving position that gives the peak output of the detector. Since the data processing unit for obtaining the above is provided, the diffraction X-ray having a predetermined spread is partially detected by the detector movable in the ω-axis direction by the side surface measurement, and the crystal ingot is rotated with respect to the ω-axis. By using the moving position that gives the peak output of this detector at the time, it is possible to obtain the tilt angle of a plurality of crystal plane normals substantially orthogonal to the side surface in the ω axis direction, and the circumferential direction even in the case of off-cut. Criteria can be determined. Next, by obtaining the tilt angles of a plurality of crystal plane normals substantially orthogonal to the side surface in the ω-axis direction in this way, crystals in the substantially ω-axis direction whose positional relationship with these crystal plane normals is known. The direction of inclination of the surface normal from the ω axis can be obtained, and the slice plane can be determined based on this. Therefore, for a general crystal ingot in which the crystal plane in the slice plane direction and the crystal plane to be measured in the side surface direction are not orthogonal to each other, the circumferential direction reference is determined by the side surface measurement without rotating or changing the direction of the measuring unit. And also the slice plane can be determined.

請求項記載の結晶方位測定装置によれば、略円筒状である結晶インゴットの保持手段と、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源、略前記測定平面上に配置された回折X線の検出器及びこの検出器の前面を前記ω軸方向に移動することで所定の広がりを持った回折X線を部分的に通過させるコリメータを備えた測定部と、この測定部又は前記結晶インゴットの何れかを前記ω軸の周りにω回転させるω回転機構と、前記検出器のピーク出力を与える前記コリメータの移動位置を用いて検出された結晶面の法線の前記ω軸方向への倒れ角を求めるデータ処理部とを具備させたため、側面測定により、所定の広がりを持った回折X線をω軸方向に移動可能としたコリメータを部分的に通過させて検出器で検出し、結晶インゴットをω軸に対し回転させたときの検出器のピーク出力を与えるコリメータの移動位置を用いることにより、側面に略直交する複数の結晶面法線のω軸方向への倒れ角を求めることができてオフカットの場合でも周方向基準を決定することができる。次いで、このように、側面に略直交する複数の結晶面法線のω軸方向への倒れ角が求められることで、これらの結晶面法線と位置関係が既知である略ω軸方向の結晶面法線のω軸からの傾斜方向を求めることができて、これを基にスライス面を決定することができる。したがって、スライス面方向の結晶面と側面方向の測定する結晶面とが直交していない一般的な結晶インゴットに対し、測定部の回転及び方向転換を行わずに、側面測定により周方向基準を決定することができ、さらにスライス面の決定もすることができる。 According to the crystal orientation measuring apparatus according to claim 4, the holding means of the crystal ingot having a substantially cylindrical shape and substantially one point on the side surface of the crystal ingot in the measurement plane perpendicular to the ω axis which is the axis of the crystal ingot. An X-ray source that radiates X-rays toward, a detector of diffracted X-rays arranged substantially on the measurement plane, and diffraction having a predetermined spread by moving the front surface of the detector in the ω-axis direction. A measuring unit provided with a collimeter that partially passes X-rays, an ω rotation mechanism that ω-rotates either the measuring unit or the crystal ingot around the ω axis, and the detector that provides a peak output of the detector. Since it is provided with a data processing unit for obtaining the tilt angle of the normal of the crystal plane detected by using the moving position of the collimator in the ω axis direction, diffracted X-rays having a predetermined spread are ω by side measurement. By using the moving position of the collimator that gives the peak output of the detector when the crystal ingot is rotated with respect to the ω axis by partially passing the collimator that can be moved in the axial direction and detecting it with the detector, the side surface is used. It is possible to obtain the tilt angles of a plurality of crystal plane normals substantially orthogonal to the ω axis direction, and to determine the circumferential direction reference even in the case of off-cut. Next, by obtaining the tilt angles of a plurality of crystal plane normals substantially orthogonal to the side surface in the ω-axis direction in this way, crystals in the substantially ω-axis direction whose positional relationship with these crystal plane normals is known. The direction of inclination of the surface normal from the ω axis can be obtained, and the slice plane can be determined based on this. Therefore, for a general crystal ingot in which the crystal plane in the slice plane direction and the crystal plane to be measured in the side surface direction are not orthogonal to each other, the circumferential direction reference is determined by the side surface measurement without rotating or changing the direction of the measuring unit. And also the slice plane can be determined.

請求項記載の結晶方位測定装置によれば、前記データ処理部は、前記ω回転の複数の位置でそれぞれ求めた前記倒れ角を用いて前記ω軸に略平行な別の結晶面法線h0 の前記ω軸に対する傾斜方向を求める機能を持つようにしたため、データ処理部は、側面に略直交する複数の結晶面法線に対し位置関係が既知であるω軸に略平行な別の結晶面法線h0 のω軸に対する傾斜方向を求め、これを基にスライス面を決定する。したがって、スライス面方向の結晶面と側面方向の測定する結晶面とが直交していない一般的な結晶インゴットに対し、測定部の回転及び方向転換を行わずに、側面測定により周方向基準とスライス面の両方を確実に決定することができる。 According to the crystal orientation measuring apparatus according to claim 5 , the data processing unit uses the tilt angles obtained at the plurality of positions of the ω rotation to obtain another crystal plane normal h substantially parallel to the ω axis. Since it has a function of obtaining the inclination direction of 0 with respect to the ω axis, the data processing unit has another crystal substantially parallel to the ω axis whose positional relationship is known with respect to a plurality of crystal plane normals substantially orthogonal to the side surface. The inclination direction of the surface normal h 0 with respect to the ω axis is obtained, and the slice plane is determined based on this. Therefore, for a general crystal ingot in which the crystal plane in the slice plane direction and the crystal plane to be measured in the side surface direction are not orthogonal to each other, the circumferential direction reference and the slice are measured by the side surface measurement without rotating and changing the direction of the measuring unit. Both faces can be reliably determined.

請求項記載の結晶方位測定方法によれば、上記請求項乃至の何れかに記載の結晶方位測定装置により、前記ω回転の複数の位置で検出された結晶面についてそれぞれ前記倒れ角を求める第1の段階と、この倒れ角より前記ω軸に略平行な別の結晶面法線h0 の前記ω軸に対する傾斜方位を求める第2の段階と、この傾斜方位を基に前記検出された結晶面を選択して前記結晶インゴットの周方向基準の加工方位を決める第3の段階とを具備させたため、スライス面方向の結晶面と側面方向の測定する結晶面とが直交していない一般的な結晶インゴットに対し、測定部の回転及び方向転換を行わずに、側面測定によりオフカットの場合でも周方向基準を確実に決定することができる。 According to the crystal orientation measuring method according to claim 6 , the tilt angle is determined for each of the crystal planes detected at a plurality of positions of the ω rotation by the crystal orientation measuring apparatus according to any one of claims 1 to 4. The detection is performed based on the first step of obtaining the tilt direction, the second step of obtaining the tilt direction of another crystal plane normal line h 0 substantially parallel to the ω axis from the tilt angle with respect to the ω axis, and the tilt direction. Since the crystal plane is selected and the third step of determining the processing direction based on the circumferential direction of the crystal ingot is provided, the crystal plane in the slice plane direction and the crystal plane to be measured in the side surface direction are generally not orthogonal to each other. For a typical crystal ingot, the circumferential direction reference can be reliably determined even in the case of off-cut by side measurement without rotating and changing the direction of the measuring unit.

請求項記載の結晶方位測定方法によれば、略円筒状である結晶インゴットを保持し、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線を前記測定平面に非対称な検出開口で部分的に検出する検出器を備えた測定部を用い、この測定部又は前記結晶インゴットの何れかを略前記ω軸の周りにω回転させながら前記測定平面に沿って前記X線を放射し、前記検出器のピーク出力を与える回転位置から検出された結晶面の法線の方位を求める第1の段階と、一周の前記ω回転の間の複数の結晶面に対応する各ピーク出力の大きさを互いに比較して前記検出された結晶面を選択し、前記結晶インゴットの周方向基準の加工方位を決める第2の段階とを具備させたため、スライス面方向の結晶面と側面方向の測定する結晶面とが直交していない一般的な結晶インゴットに対し、測定部の回転及び方向転換を行わずに、側面測定によりオフカットの場合でも周方向基準を決定することができる。 According to the crystal orientation measuring method according to claim 7 , a crystal ingot having a substantially cylindrical shape is held, and at approximately one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis, which is the axis of the crystal ingot. Using a measuring unit equipped with an X-ray source that emits X-rays toward the surface and a detector that partially detects diffracted X-rays having a predetermined spread with a detection opening asymmetrical to the measurement plane, the measuring unit or the above-mentioned measuring unit. The X-ray is emitted along the measurement plane while rotating ω around the ω axis of any of the crystal ingots, and the normal line of the crystal plane detected from the rotation position that gives the peak output of the detector. The detected crystal plane is selected by comparing the magnitudes of the peak outputs corresponding to the plurality of crystal planes during the first step of determining the orientation and the ω rotation in one round, and the circumference of the crystal ingot is selected. Since the second step of determining the processing direction based on the direction is provided, the rotation of the measuring unit and the rotation of the measuring unit are performed with respect to a general crystal ingot in which the crystal plane in the slice plane direction and the crystal plane to be measured in the side surface direction are not orthogonal to each other. The circumferential reference can be determined by side view measurement even in the case of off-cut without changing the direction.

請求項記載の結晶方位測定方法によれば、略円筒状である結晶インゴットを保持し、前記結晶インゴットの軸であるω軸に垂直な測定平面内で当該結晶インゴットの側面の略1点に向けてX線を放射するX線源及び所定の広がりを持った回折X線をそれぞれ部分的に検出する前記ω軸方向に並設された複数の検出器を備えた測定部を用い、この測定部又は前記結晶インゴットの何れかを略前記ω軸の周りにω回転させながら前記測定平面に沿って前記X線を放射し、前記複数の検出器のピーク出力を与える回転位置から検出された結晶面の法線の方位を求める第1の段階と、一周の前記ω回転の間の各検出器の複数の結晶面に対応する各ピーク出力の大きさを互いに比較して前記検出された結晶面を選択し、前記結晶インゴットの周方向基準の加工方位を決める第2の段階とを具備させたため、上記請求項記載の発明の効果と同様の効果がある。 According to the crystal orientation measuring method according to claim 8 , a crystal ingot having a substantially cylindrical shape is held, and at approximately one point on the side surface of the crystal ingot in a measurement plane perpendicular to the ω axis, which is the axis of the crystal ingot. This measurement is performed using a measuring unit provided with a plurality of detectors arranged side by side in the ω-axis direction, which partially detects an X-ray source that emits X-rays toward the surface and a diffracted X-ray having a predetermined spread. A crystal detected from a rotation position that emits the X-ray along the measurement plane while rotating either a part or the crystal ingot substantially around the ω axis and gives peak outputs of the plurality of detectors. The detected crystal planes are compared with each other by comparing the magnitude of each peak output corresponding to a plurality of crystal planes of each detector during the first step of determining the direction of the plane normal and the ω rotation around the circumference. Is provided, and a second step of determining the processing direction based on the circumferential direction of the crystal ingot is provided, so that the same effect as that of the invention according to claim 7 is obtained.

JP18236499A 1999-06-28 1999-06-28 Crystal orientation measuring apparatus and crystal orientation measuring method Expired - Lifetime JP4227706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18236499A JP4227706B2 (en) 1999-06-28 1999-06-28 Crystal orientation measuring apparatus and crystal orientation measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18236499A JP4227706B2 (en) 1999-06-28 1999-06-28 Crystal orientation measuring apparatus and crystal orientation measuring method

Publications (3)

Publication Number Publication Date
JP2001013092A JP2001013092A (en) 2001-01-19
JP2001013092A5 true JP2001013092A5 (en) 2006-07-20
JP4227706B2 JP4227706B2 (en) 2009-02-18

Family

ID=16117030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18236499A Expired - Lifetime JP4227706B2 (en) 1999-06-28 1999-06-28 Crystal orientation measuring apparatus and crystal orientation measuring method

Country Status (1)

Country Link
JP (1) JP4227706B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904543B2 (en) * 2003-10-14 2007-04-11 株式会社リガク X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
JP4833905B2 (en) * 2007-04-13 2011-12-07 新日本製鐵株式会社 Crystal orientation determination device
CN108362720A (en) * 2018-02-23 2018-08-03 丹东新东方晶体仪器有限公司 A kind of semiconductor grade monocrystalline silicon crystal bar orientation test system

Similar Documents

Publication Publication Date Title
JP2008039776A (en) Method and apparatus for imaging with imaging detectors having small fields of view
EP0500339B1 (en) Method and apparatus for detecting a crystallographic axis of a single crystal ingot for "of" determination
JP3205402B2 (en) Method and apparatus for determining crystal orientation
JP2001013092A5 (en)
JP2003194741A (en) X-ray diffractometer, method of measuring reflected x-ray, and method of drawing up reciprocal lattice space map
WO2006095467A1 (en) X-ray diffraction analyzing method and analyzer
JP3519292B2 (en) X-ray diffraction measurement method for minute area and X-ray diffraction apparatus for minute area
JP6842084B2 (en) Portable 3-axis stress measuring device
JP3127103B2 (en) Orientation measurement method for single crystal ingot
JP4227706B2 (en) Crystal orientation measuring apparatus and crystal orientation measuring method
JP3703125B2 (en) X-ray apparatus and X-ray measurement method
JPH0743331B2 (en) Detector
EP1477795A1 (en) X-ray diffractometer for grazing incidence diffraction of horizontally oriented samples
JPH112614A (en) X-ray measuring method of single crystal axial orientation and device
JP3741398B2 (en) X-ray measuring method and X-ray measuring apparatus
JP2005077271A (en) Apparatus for determining two sides of crystal and apparatus for determining crystal slope orientation
JP3553362B2 (en) X-ray analyzer
JPH05288616A (en) X-ray residual stress measuring method
JPH11281595A (en) Fully automatic pole point figure measuring apparatus
JP3626965B2 (en) X-ray apparatus and X-ray measurement method
JP2006162407A (en) Lattice constant measuring device and method
JP3236688B2 (en) Small area X-ray diffractometer
JPH0933700A (en) X-ray monochromator and x-ray diffractor using it
JP2952284B2 (en) X-ray optical system evaluation method
JP2567840B2 (en) Crystal orientation determination device