JP2001011549A - METHOD FOR LEACHING In FROM In-CONTAINING OXIDE - Google Patents

METHOD FOR LEACHING In FROM In-CONTAINING OXIDE

Info

Publication number
JP2001011549A
JP2001011549A JP18808999A JP18808999A JP2001011549A JP 2001011549 A JP2001011549 A JP 2001011549A JP 18808999 A JP18808999 A JP 18808999A JP 18808999 A JP18808999 A JP 18808999A JP 2001011549 A JP2001011549 A JP 2001011549A
Authority
JP
Japan
Prior art keywords
leaching
scrap
acid
containing oxide
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18808999A
Other languages
Japanese (ja)
Other versions
JP4169871B2 (en
Inventor
Choju Nagata
長寿 永田
Fumiyoshi Saito
文良 齋藤
Kibu Cho
其武 張
Takeshi Aoyanagi
岳史 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP18808999A priority Critical patent/JP4169871B2/en
Publication of JP2001011549A publication Critical patent/JP2001011549A/en
Application granted granted Critical
Publication of JP4169871B2 publication Critical patent/JP4169871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of extracting In from In-contg. scrap contg. In in the state of In oxide under mild acid treating conditions. SOLUTION: In-contg. scrap is subjected to mechanochemical treatment, e.g. of being subjected to dry pulverizing for a prescribed time by a planetary mill in the coexistence of ceramic powder of alumina (Al2O3), or the like, the crystal structure of In oxide (In2O3) is made amorphous, and after that, it is leached into a sulfuric acid of about 1 to 5N, by which In can be leached at >=80% high leaching ratio from the In-contg. scrap even at room temp. In this way, compared to the case of the conventional methods acid or alkali of high temp. and high concn., the intrusion of impurities from a melting tank is made small, there is no need of particularly increasing the acid resistance of the material of the melting tank, and the operating environment is moreover improved. The separability between In and Al in the leaching is also better.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、In含有酸化物か
らのIn浸出方法に関し、特に液晶ディスプレー等のI
TO透明導電膜を形成するため工業的に実施されている
スッパタリング装置のクリーニングの際に発生するIT
Oスクラップ等のIn含有酸化物からのIn浸出方法に
関する。
The present invention relates to a method for leaching In from an In-containing oxide, and more particularly to a method for leaching In from an In-containing oxide.
IT generated at the time of cleaning of a sputtering machine which is industrially implemented to form a TO transparent conductive film
The present invention relates to a method for leaching In from an In-containing oxide such as O scrap.

【0002】[0002]

【従来の技術】従来、このようなIn酸化物態でInを
含むスクラップからのInの浸出方法としては、高温
度、高濃度のアルカリや酸で溶解するのが一般的であ
る。
2. Description of the Related Art Conventionally, as a method for leaching In from a scrap containing In in the form of In oxide, it is common to dissolve it with a high-temperature, high-concentration alkali or acid.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな条件下での浸出方法では、Inの回収率が低く、ま
た、溶解槽から不純物が混入してくるため、後でInを
回収しようとすると混入成分を分離する工程が余分に必
要になってくる。一方、このような不純物の混入を回避
しようとすると槽の材質の耐酸性等を上げる必要から高
価な設備になる、さらに、作業環境上好ましくない等の
問題があった。
However, in the leaching method under such conditions, the recovery rate of In is low and impurities are mixed in from the dissolution tank. An extra step of separating contaminant components is required. On the other hand, in order to avoid such contamination, there is a problem that expensive equipment is required due to the need to increase the acid resistance of the material of the tank, and furthermore, there is a problem that the working environment is not preferable.

【0004】本発明は、上記のような従来法の問題点を
解決するため、In含有スクラップ等のインジウム含有
酸化物からInを比較的穏和な条件下で浸出し抽出し得
る方法を提供することを目的とするものである。
The present invention provides a method for leaching and extracting In under relatively mild conditions from indium-containing oxides such as In-containing scraps in order to solve the problems of the conventional methods as described above. It is intended for.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、鋭意研究の結果、本発明者は、In含有スクラップ
等のインジウム含有酸化物を所定時間メカノケミカル処
理し、In含有酸化物(In23等)の結晶構造を破壊
して浸出しやすい形態に変え、これを低濃度酸に浸出さ
せることによりInを効果的に浸出できることを見出し
た。さらに、メカノケミカル処理に際し、アルミナ(A
23)等の硬度の高いセラミック粉末を共存させるこ
とによりInの浸出効率が向上することを見出し本発明
に至った。
Means for Solving the Problems In order to achieve the above object, as a result of intensive studies, the present inventor has performed a mechanochemical treatment on an indium-containing oxide such as an In-containing scrap for a predetermined time to obtain an In-containing oxide (In 2 oxide). to destroy the crystal structure of O 3, etc.) instead of the leach easily form found that can effectively leach in by leaching it to low concentration acid. Furthermore, in the mechanochemical treatment, alumina (A
The present inventors have found that the coexistence of a ceramic powder having a high hardness, such as l 2 O 3 ), improves the leaching efficiency of In.

【0006】すなわち、本発明は、第1に、In含有酸
化物を、セラミック粉末の共存のもとに、メカノケミカ
ル処理に供し、前記In含有酸化物の結晶構造を変化さ
せた後、常温で低濃度酸に浸出させることを特徴とする
In含有酸化物からのIn浸出方法;第2に、前記メカ
ノケミカル処理が乾式粉砕処理であることを特徴とする
前記第1記載のIn含有酸化物からのIn浸出方法;第
3に、前記低濃度酸が濃度5N以下の硫酸であることを
特徴とする前記第1または第2記載のIn含有酸化物か
らのIn浸出方法;第4に、前記セラミック粉末がアル
ミナ粉末であり、前記低濃度酸が1N以下の室温の硫酸
であることを特徴とする前記第1ないし第3のいずれか
に記載のIn含有酸化物からのIn浸出方法;第5に、
前記メカノケミカル処理後のIn含有酸化物の結晶構造
の少なくとも一部が無定形化されていることを特徴とす
る前記第1から第4に記載のIn含有酸化物からのIn
浸出方法;第6に、前記In含有酸化物がスクラップで
あることを特徴とする前記第1から第5に記載のIn含
有酸化物からのIn浸出方法である。
That is, according to the present invention, firstly, an In-containing oxide is subjected to a mechanochemical treatment in the presence of a ceramic powder to change the crystal structure of the In-containing oxide, and then at room temperature. A method for leaching In from an In-containing oxide, characterized by leaching in a low-concentration acid; secondly, from the In-containing oxide according to the first aspect, wherein the mechanochemical treatment is a dry pulverization treatment. Third, the low-concentration acid is sulfuric acid having a concentration of 5 N or less, wherein the low-concentration acid is sulfuric acid having a concentration of 5 N or less; 5. The method for leaching In from an In-containing oxide according to any one of the first to third aspects, wherein the powder is alumina powder, and the low-concentration acid is sulfuric acid at room temperature of 1 N or less; ,
The crystal structure of the In-containing oxide after the mechanochemical treatment is at least partially amorphous, and the In-containing oxide according to any of the first to fourth aspects is characterized in that:
Sixth, the method for leaching In from an In-containing oxide according to any one of the first to fifth aspects, wherein the In-containing oxide is scrap.

【0007】[0007]

【発明の実施の形態】本発明者の知見によれば、ITO
スクラップ等のIn含有スクラップ等のインジウム含有
酸化物中のInは、SnをドープしたIn酸化物(例え
ば、In23と少量のIn2SnO5からなる)態の結晶
構造で含まれており、アルミナ、ジルコニア等の硬度の
高いセラミック粉末の共存下でメカノケミカル処理例え
ば遊星ミルを含むボールミル等高エネルギー型粉砕機に
よる乾式粉砕処理に供することにより、In酸化物の結
晶構造が破壊され、常温の低濃度酸例えば5N以下の硫
酸により、高率で浸出させることができる。このメカノ
ケミカル処理に際し、共存セラミック粉末はIn酸化物
の結晶構造を効果的に破壊し、無定形化を促進し、酸浸
出効果を高める作用効果を有するものであって、十分な
メカノケミカル処理を行う場合、1N以下の低濃度硫酸
によっても容易にかつ十分にInの浸出を行うことがで
きる。
DETAILED DESCRIPTION OF THE INVENTION According to the knowledge of the present inventors, ITO
In in In-containing oxides such as In-containing scraps such as scraps, In is contained in a crystalline structure of a Sn-doped In oxide (for example, composed of In 2 O 3 and a small amount of In 2 SnO 5 ). In the presence of ceramic powder having high hardness such as alumina, zirconia, etc., the crystal structure of the In oxide is destroyed by subjecting it to a dry grinding treatment with a high energy grinding machine such as a ball mill including a planetary mill, in the presence of a ceramic powder having a high hardness. Can be leached at a high rate by using a low-concentration acid such as sulfuric acid of 5N or less. At the time of this mechanochemical treatment, the coexisting ceramic powder has an effect of effectively destroying the crystal structure of the In oxide, promoting amorphousness, and enhancing the acid leaching effect. In this case, In can be easily and sufficiently leached with low-concentration sulfuric acid of 1N or less.

【0008】上記の観点から、共存セラミック粉末の粒
径は5〜500μmが好ましく、特に10〜50μmが
好ましい。また、共存セラミック粉末はインジウム含有
酸化物中にスクラップができる時点で混合されていても
よいし、スクラップに添加混合してもよい。また、乾式
粉砕は特にボールミルによるものが好ましい。またさら
に、酸浸出の際の浸出液の液温は、常温が好ましいが、
この常温は非加熱という意味であって、10〜40℃を
意味する。より好ましい液温は室温前後の20〜30℃
である。浸出に使用する酸は硫酸、硝酸、塩酸等の鉱産
が使用可能であるが、特に硫酸が好ましい。
From the above viewpoint, the particle size of the coexisting ceramic powder is preferably from 5 to 500 μm, particularly preferably from 10 to 50 μm. The coexisting ceramic powder may be mixed in the indium-containing oxide at the time when scrap can be formed, or may be added to and mixed with the scrap. In addition, the dry pulverization is preferably performed by a ball mill. Furthermore, the temperature of the leaching solution during acid leaching is preferably room temperature,
This normal temperature means non-heating, and means 10 to 40 ° C. More preferable liquid temperature is about 20 to 30 ° C. around room temperature.
It is. As the acid used for leaching, mineral products such as sulfuric acid, nitric acid, and hydrochloric acid can be used, but sulfuric acid is particularly preferable.

【0009】メカノケミカルとは、一般に固体物質に加
えた機械的エネルギー、例えば、せん断、圧縮、衝撃、
粉砕、曲げ、延伸などによって固体物質表面が物理化学
的変化をきたし、その周辺に存在する気体、液体物質に
化学的変化をもたらすか、あるいはそれらと固体物質表
面との化学的変化を直接誘起し、または促進するなどし
て化学的状態に影響を及ぼす現象として知られている。
このようにして得られたIn浸出液については、さら
に、溶媒抽出法、イオン交換法、電解法等、従来公知の
抽出手段に供することにより、容易にかつ高率でInを
回収することができる。
[0009] Mechanochemical generally refers to mechanical energy added to a solid material, such as shear, compression, impact,
The surface of a solid material undergoes physicochemical changes due to crushing, bending, stretching, etc., causing a chemical change to the gas or liquid material existing around it, or directly inducing a chemical change between them and the surface of the solid material. It is known as a phenomenon that affects the chemical state by promoting or promoting.
The In leaching solution thus obtained is further subjected to a conventionally known extraction means such as a solvent extraction method, an ion exchange method, and an electrolysis method, so that In can be easily recovered at a high rate.

【0010】[0010]

【実施例】メカノケミカル処理 アルミナ(Al23)を含むITOスクラップ試料と、
試薬によるIn23試料と、試薬によるIn23とAl
23の混合試料とについて、メカノケミカル処理効果を
調査した。試料としたITOスクラップの化学組成を表
1に示す。
EXAMPLE An ITO scrap sample containing mechanochemically treated alumina (Al 2 O 3 );
In 2 O 3 sample by reagent, In 2 O 3 and Al by reagent
The mechanochemical treatment effect was investigated for the mixed sample of 2 O 3 . Table 1 shows the chemical composition of the sample ITO scrap.

【0011】[0011]

【表1】 [Table 1]

【0012】表1に示されるように、ITOスクラップ
には、主としてIn23等の酸化物の他に、スパッタリ
ング装置のクリーニング時に使用されるサンドブラスト
粉末によるアルミナ(Al23)が含まれており、その
平均径は約15μmであった。また、試薬粉末試料とし
てIn23試料(純度:99.9%、平均径:約15μ
m)ならびにAl23試料(純度:99.9%、平均
径:約32μm)を準備し、In23単独試料と、両試
薬をITOスクラップ組成とほぼ同様の重量比(In2
3試料:Al23試料=1:9)となるように混合し
たモデル試料を準備した。
As shown in Table 1, ITO scrap contains mainly oxides such as In 2 O 3 and alumina (Al 2 O 3 ) by sandblasting powder used at the time of cleaning of a sputtering apparatus. And its average diameter was about 15 μm. In addition, an In 2 O 3 sample (purity: 99.9%, average diameter: about 15 μm) was used as a reagent powder sample.
m) and an Al 2 O 3 sample (purity: 99.9%, average diameter: about 32 μm) were prepared, and a weight ratio (In 2 O 3 ) of the In 2 O 3 alone sample and both reagents were substantially the same as the ITO scrap composition.
An O 3 sample: an Al 2 O 3 sample = 1: 9) was prepared as a mixed model sample.

【0013】図1に示すフローチャートにしたがって試
験した。図1中の(A)はITOスクラップ試料を示
し、(B)はモデル混合試料(In23+Al23)を
示し、いずれも同じ手順で試験した。ITOスクラップ
試料ならびにモデル混合試料のメカノケミカル処理には
遊星ミル(Fritch, Pulverisette-7)による乾式粉砕手
段を用いた。この遊星ミルは、水平に時計回り方向に回
転する円盤上に、2個のミルポット(ジルコニア製、容
量:50ml)が回転半径70mmの位置に配置され、
ミルポット自身も反時計方向に同一回転速度で回転でき
るようになっている。1個のミルポット内には、空気中
雰囲気下で粉体試料4gとジルコニア製ボール(直径×
個数:15mm×7)を装填し、ミル回転速度700r
pm一定で、最長120分までのメカノケミカル処理を
行った。未処理試料を含めて所定時間メカノケミカル処
理した各試料はミルポットから全量回収し、粉末X線回
折法によりその構成相並びに結晶性を評価した。
The test was performed according to the flowchart shown in FIG. 1A shows an ITO scrap sample, and FIG. 1B shows a model mixed sample (In 2 O 3 + Al 2 O 3 ), all of which were tested by the same procedure. Dry grinding using a planetary mill (Fritch, Pulverisette-7) was used for mechanochemical treatment of the ITO scrap sample and the model mixed sample. In this planetary mill, two mill pots (made of zirconia, capacity: 50 ml) are arranged at a position with a radius of rotation of 70 mm on a disk that rotates horizontally clockwise,
The mill pot itself can rotate at the same rotation speed in the counterclockwise direction. In one mill pot, 4 g of a powder sample and a zirconia ball (diameter ×
Number: 15mm x 7) and mill rotation speed 700r
The mechanochemical treatment was performed at a constant pm for a maximum of 120 minutes. All the samples, including the untreated samples, which had been subjected to the mechanochemical treatment for a predetermined time were collected from the mill pot, and their constituent phases and crystallinity were evaluated by a powder X-ray diffraction method.

【0014】ITOスクラップ試料についてのメカノケ
ミカル処理時間(粉砕時間)と得られた粒子の平均粒径
(レーザー回折・散乱式粒度分布測定装置による50%
平均粒径値D50)との関係を図2に示した。平均粒径
は、始めの15分間の処理で約1μmまで減少するが、
さらに処理時間を延長しても、粒径の減少は認められ
ず、ほぼ一定となり、試料の粒度は粉砕限界値に到達し
たものと推察される。この図からも明らかなように、処
理時間を設定し、メカノケミカル処理で粒径が1μm以
下となるようにすることが好ましい。
The mechanochemical treatment time (pulverization time) of the ITO scrap sample and the average particle size of the obtained particles (50% by a laser diffraction / scattering type particle size distribution analyzer)
The relationship with the average particle size D50) is shown in FIG. The average particle size decreases to about 1 μm in the first 15 minutes of treatment,
Even if the treatment time was further extended, no decrease in the particle size was observed, and the particle size became almost constant, and it is assumed that the particle size of the sample reached the pulverization limit value. As is apparent from this figure, it is preferable to set the processing time so that the particle size becomes 1 μm or less by the mechanochemical processing.

【0015】メカノケミカル処理時間毎の試料のX線回
折パターンを図3と図4に示した。図3はITOスクラ
ップ試料の、図4はIn23単独粉末試料のX線回折パ
ターンをそれぞれ示している。まず、図3より、処理時
間の延長と共に、ITOスクラップを構成するアルミナ
(Al23)の回折ピーク強度の変化は僅少であるが、
In23並びにIn2SnO5の回折ピーク強度は徐々に
低下し、60分処理ではほぼ消滅していることがわか
る。このことは、メカノケミカル処理によって上記のI
n酸化物の結晶が破壊され、無定形化したことを表して
いる。
FIGS. 3 and 4 show the X-ray diffraction patterns of the sample for each mechanochemical treatment time. FIG. 3 shows an X-ray diffraction pattern of the ITO scrap sample, and FIG. 4 shows an X-ray diffraction pattern of the In 2 O 3 single powder sample. First, from FIG. 3, the change in the diffraction peak intensity of alumina (Al 2 O 3 ) constituting the ITO scrap is small with the extension of the processing time.
It can be seen that the diffraction peak intensities of In 2 O 3 and In 2 SnO 5 gradually decreased, and almost disappeared by the treatment for 60 minutes. This is because of the above-mentioned I by the mechanochemical treatment.
This indicates that the n-oxide crystal was destroyed and became amorphous.

【0016】一方、図4より、In23単独粉体の場合
は、メカノケミカル処理してもIn 23の回折パターン
の顕著な変化は認められず、60分の処理後でも結晶性
を維持したままであることがわかる。上記の図3と図4
の違いは主として供試試料におけるアルミナの有無にあ
り、図3におけるIn酸化物の結晶の破壊効果は明らか
にアルミナ共存の影響と思われる。これを確認するため
に、モデル混合試料に対するメカノケミカル処理を行っ
たところ図5に示した結果を得た。すなわち、処理時間
の延長と共に、アルミナ(Al23)の回折ピーク強度
の変化は僅少であったが、In23の回折ピーク強度は
減少する傾向を示し、先に示した図3の結果と良好に一
致することが判明した。これによって、ITOスクラッ
プのメカノケミカル処理工程において、含有するアルミ
ナ粉末はIn酸化物の結晶構造を効果的に破壊し、無定
形化する重要な役割を果たしていることが確認された。
On the other hand, FIG.TwoOThreeIn case of single powder
Is In even after mechanochemical treatment. TwoOThreeDiffraction pattern
No remarkable change was observed, and the crystallinity was observed even after treatment for 60 minutes.
It can be seen that is maintained. 3 and 4 above
The difference is mainly in the presence or absence of alumina in the test sample.
3 clearly shows the effect of breaking the crystal of the In oxide in FIG.
This is probably due to the coexistence of alumina. To confirm this
First, a mechanochemical treatment was performed on the model mixed sample.
As a result, the result shown in FIG. 5 was obtained. That is, processing time
Along with the extension of alumina (AlTwoOThree) Diffraction peak intensity
Changes were small, but InTwoOThreeThe diffraction peak intensity of
It shows a tendency to decrease, and agrees well with the result of FIG.
It turned out to be perfect. With this, ITO scraper
Aluminum contained in the mechanochemical treatment process
The powder effectively destroys the crystal structure of the In oxide,
It has been confirmed that it plays an important role in shaping.

【0017】酸浸出処理 前記処理で得られたメカノケミカル処理後の粉体試料に
つき、各0.5gを採取し、種々の濃度の硫酸(50m
l)に懸濁して室温下で浸出試験を行った。この浸出試
験ではマグネチックスターラにより1時間攪拌した後、
懸濁液をろ紙(No.5C)によりろ過分離し、ろ液中
の溶存元素、特にInとSnとAlの各濃度をICPに
より分析した。
Acid leaching treatment From the mechanochemically-treated powder sample obtained in the above-mentioned treatment, 0.5 g of each sample was taken, and sulfuric acid of various concentrations (50 m
l) and leaching test was performed at room temperature. In this leaching test, after stirring for 1 hour with a magnetic stirrer,
The suspension was separated by filtration through filter paper (No. 5C), and the concentrations of dissolved elements, particularly In, Sn and Al, in the filtrate were analyzed by ICP.

【0018】ITOスクラップ試料(未処理、0分)並
びに30分、60分のメカノケミカル処理を施した試料
について、硫酸濃度を変えた浸出液に対するInの浸出
率を調査し、得られた結果を図6に示した。この図6か
ら、In浸出率はいずれの処理時間においても硫酸濃度
が約1Nまでは急激に増大するが、それ以上の高濃度領
域では僅かな上昇に留まっており、約5N以上では殆ど
変わらない状態になっているのがわかる。
For the ITO scrap sample (untreated, 0 minutes) and the sample subjected to the mechanochemical treatment for 30 minutes and 60 minutes, the leaching rate of In with respect to the leaching solution with different concentrations of sulfuric acid was investigated. 6 is shown. From FIG. 6, it can be seen that the In leaching rate rapidly increases up to a sulfuric acid concentration of about 1 N at any treatment time, but only slightly increases in a higher concentration region, and hardly changes at about 5 N or more. You can see that it is in a state.

【0019】次に、ITOスクラップ試料について、硫
酸濃度を1N一定とし、メカノケミカル処理時間(粉砕
時間)によるInとSnとAlの各浸出率の変化を調査
し、得られた結果を図7に示した。この図7において、
未処理(粉砕時間:0分)のITOスクラップからのI
n浸出率は約45%と低いが、15分処理で約80%を
越え、30分処理後では90%以上に上昇する。しかし
ながら、さらなる長時間処理ではIn浸出率の向上は認
められず、逆にわずかに低下する傾向にある。一方、S
n浸出率については未処理では約20%であるが、15
分処理で45%となり、さらに処理時間を延長すると逆
に低下する傾向にある。なお、InとSnの分離はpH
調整によって可能であって、処理上、特に問題となるこ
とはない。Alについては60分までの処理範囲におい
ても数%程度の低い浸出率となっており、硫酸へのアル
ミナ溶解は僅かであることがわかる。
Next, with respect to the ITO scrap sample, the sulfuric acid concentration was kept constant at 1 N, and the change of the leaching rates of In, Sn and Al due to the mechanochemical treatment time (pulverization time) was investigated. The obtained results are shown in FIG. Indicated. In this FIG.
I from untreated (milling time: 0 min) ITO scrap
The n leaching rate is as low as about 45%, but exceeds about 80% after 15 minutes treatment, and rises to 90% or more after 30 minutes treatment. However, the improvement of the In leaching rate is not recognized in a further long-time treatment, and conversely, it tends to slightly decrease. On the other hand, S
The leaching rate is about 20% in the untreated state,
It becomes 45% by the minute treatment, and tends to decrease when the treatment time is further extended. In addition, separation of In and Sn is carried out at pH
It is possible by adjustment and there is no particular problem in processing. Regarding Al, the leaching rate was as low as several percent even in the treatment range up to 60 minutes, and it can be seen that the dissolution of alumina into sulfuric acid was slight.

【0020】また次に、メカノケミカル処理時間(粉砕
時間)毎の、In23単独試料とモデル混合試料(In
23+90%Al23)について、1N硫酸によるIn
浸出試験を行った。得られた結果を図8に示した。図8
に示す結果において、まず、In23単独試料の場合は
メカノケミカル処理を行ってもIn浸出率は10〜15
%程度であり、大幅な浸出率向上は認められない。しか
しながら、モデル混合試料からのIn浸出率は処理時間
とともに、はじめは直線的に増加し、30分処理で80
%を越える値に達する。この結果は図7のスクラップ試
料の結果と類似していることが分かる。しかしながら、
さらなるメカノケミカル処理によりIn浸出率は低下す
る傾向にあり、ITOスクラップ試料の場合と同様の結
果となる。長時間のメカノケミカル処理でIn浸出率が
低下する理由については必ずしも明らかではないが、I
23の結晶構造が機械的処理によってα−Al23
構造に変化した可能性がある。
Next, the In 2 O 3 single sample and the model mixed sample (In
2 O 3 + 90% Al 2 O 3 )
A leaching test was performed. The results obtained are shown in FIG. FIG.
In the results shown in the above, first, in the case of the In 2 O 3 single sample, the In leaching rate was 10 to 15 even when the mechanochemical treatment was performed.
%, And no significant improvement in leaching rate is observed. However, the In leaching rate from the model mixed sample increased linearly with the treatment time at first, and increased to 80
% Is reached. It can be seen that this result is similar to the result of the scrap sample of FIG. However,
With further mechanochemical treatment, the In leaching rate tends to decrease, and the result is similar to that of the ITO scrap sample. Although the reason why the In leaching rate is reduced by a long-time mechanochemical treatment is not necessarily clear,
It is possible that the crystal structure of n 2 O 3 has been changed to the structure of α-Al 2 O 3 by mechanical treatment.

【0021】以上におけるIn含有酸化物からの硫酸に
よるIn浸出結果は、図3ないし図5で示したような物
質の結晶構造変化(無定形化)と深く関連しているもの
と推測される。すなわち、In含有酸化物の結晶構造は
アルミナ粉末が存在しない場合は処理によってさほど変
化せず、かつ、低いIn浸出率となったのに対し、IT
Oスクラップの場合は含有するアルミナによりIn23
の結晶構造の無定形化が促進され、その後の硫酸浸出で
高いIn浸出率を示すものである。また、In含有酸化
物態のInを含むIn含有スクラップが、当初アルミナ
等セラミック粉末を含んでいない場合についても、アル
ミナ等セラミック粉末を添加してメカノケミカル処理を
行うことによって同様の効果が得られるものである。
It is assumed that the result of In leaching with sulfuric acid from the In-containing oxide described above is closely related to the change in the crystal structure (amorphization) of the material as shown in FIGS. That is, the crystal structure of the In-containing oxide did not change much by the treatment when alumina powder was not present, and the In leaching rate was low.
In the case of O scrap, In 2 O 3
Amorphous crystal structure is promoted, and a high In leaching rate is exhibited in the subsequent sulfuric acid leaching. Further, even when the In-containing scrap containing In in the In-containing oxide form does not initially contain ceramic powder such as alumina, the same effect can be obtained by adding the ceramic powder such as alumina and performing the mechanochemical treatment. Things.

【0022】[0022]

【発明の効果】本発明の方法によれば、In含有スクラ
ップ等のIn含有酸化物の結晶構造を無定形化でき、該
In含有酸化物から、常温下で、5N以下の低濃度酸例
えば1N以下の室温の硫酸による浸出で、Inを80%
以上の高浸出率で効果的に浸出することが可能になると
いう効果を奏する。また、このような5N以下好ましく
は1N以下の穏和な酸処理条件下で浸出を行うことによ
り、高温・高濃度の酸やアルカリによる従来の浸出法に
比べて、溶解槽からの不純物の混入が少なくなり、溶解
槽の材質の耐酸性を特に上げる必要がなく、作業環境も
改善されるという効果を奏する。また、本発明の方法に
よれば、酸浸出において、InをAlに対して選択的に
浸出できるので、後の処理工程でのAlの分離除去が容
易になるという効果をも奏する。さらにまた、遊星ミル
を含むボールミル等による乾式粉砕手段を用いることに
より、簡便的にIn含有スクラップ等のIn含有酸化物
のメカノケミカル処理が行えるという効果を奏する。
According to the method of the present invention, the crystal structure of an In-containing oxide such as In-containing scrap can be made amorphous, and a low-concentration acid of 5N or less, such as 1N, can be obtained at room temperature from the In-containing oxide. Leaching with sulfuric acid at room temperature below
There is an effect that leaching can be effectively performed at the above high leaching rate. In addition, by performing leaching under such mild acid treatment conditions of 5 N or less, preferably 1 N or less, contamination of impurities from the dissolution tank is reduced as compared with the conventional leaching method using a high-temperature and high-concentration acid or alkali. Therefore, there is no need to particularly increase the acid resistance of the material of the melting tank, and the working environment is improved. Further, according to the method of the present invention, In can be selectively leached with respect to Al in the acid leaching, so that there is also an effect that the separation and removal of Al in a subsequent processing step becomes easy. Furthermore, by using a dry pulverizing means such as a ball mill including a planetary mill, there is an effect that mechanochemical treatment of an In-containing oxide such as an In-containing scrap can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の試験手順を示すフローチャー
トである。
FIG. 1 is a flowchart showing a test procedure according to an embodiment of the present invention.

【図2】実施例におけるITOスクラップ試料について
の粉砕時間と平均粒径との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a pulverization time and an average particle size for an ITO scrap sample in Examples.

【図3】実施例における粉砕時間の異なるITOスクラ
ップ試料のX線回折パターンを示す図である。
FIG. 3 is a diagram showing X-ray diffraction patterns of ITO scrap samples having different grinding times in Examples.

【図4】実施例における粉砕時間の異なるIn23試料
のX線回折パターンを示す図である。
FIG. 4 is a diagram showing X-ray diffraction patterns of In 2 O 3 samples having different pulverization times in Examples.

【図5】実施例における粉砕時間の異なるモデル混合試
料(90%Al23+10%In23)のX線回折パタ
ーンを示す図である。
FIG. 5 is a diagram showing X-ray diffraction patterns of model mixed samples (90% Al 2 O 3 + 10% In 2 O 3 ) having different grinding times in Examples.

【図6】実施例における粉砕時間の異なるITOスクラ
ップ試料からのIn浸出率と硫酸濃度との関係を示すグ
ラフである。
FIG. 6 is a graph showing a relationship between an In leaching rate and a sulfuric acid concentration from ITO scrap samples having different grinding times in Examples.

【図7】実施例における1N硫酸によるITOスクラッ
プ試料からのInとSnとAlの各浸出率と粉砕時間と
の関係を示すグラフである。
FIG. 7 is a graph showing a relationship between each leaching rate of In, Sn, and Al from an ITO scrap sample with 1N sulfuric acid and a pulverization time in Examples.

【図8】実施例における1N硫酸によるIn23単独試
料およびモデル混合試料からのIn浸出率と粉砕時間と
の関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the In leaching rate and the pulverization time from a single sample of In 2 O 3 and a model mixed sample with 1N sulfuric acid in Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青柳 岳史 宮城県志田郡三本木町新町2−11−17 Fターム(参考) 4K001 AA15 BA22 CA01 DB03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takeshi Aoyagi 2-11-17 Shinmachi, Sanbongi-cho, Shida-gun, Miyagi F-term (reference) 4K001 AA15 BA22 CA01 DB03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 In含有酸化物を、セラミック粉末の共
存のもとに、メカノケミカル処理に供し、前記In含有
酸化物の結晶構造を変化させた後、常温で低濃度酸に浸
出させることを特徴とするIn含有酸化物からのIn浸
出方法。
1. A method of subjecting an In-containing oxide to a mechanochemical treatment in the presence of a ceramic powder to change the crystal structure of the In-containing oxide, and then leaching the low-concentration acid at room temperature. A method for leaching In from an In-containing oxide.
【請求項2】 前記メカノケミカル処理が乾式粉砕処理
であることを特徴とする請求項1記載のIn含有酸化物
からのIn浸出方法。
2. The method for leaching In from an In-containing oxide according to claim 1, wherein the mechanochemical treatment is a dry pulverization treatment.
【請求項3】 前記低濃度酸が濃度5N以下の硫酸であ
ることを特徴とする請求項1または2記載のIn含有酸
化物からのIn浸出方法。
3. The method for leaching In from an In-containing oxide according to claim 1, wherein the low-concentration acid is sulfuric acid having a concentration of 5 N or less.
【請求項4】 前記セラミック粉末がアルミナ粉末であ
り、前記低濃度酸が1N以下の室温の硫酸であることを
特徴とする請求項1ないし3のいずれかに記載のIn含
有酸化物からのIn浸出方法。
4. The method according to claim 1, wherein said ceramic powder is alumina powder and said low-concentration acid is sulfuric acid at room temperature of 1 N or less. Leaching method.
【請求項5】 前記メカノケミカル処理後のIn含有酸
化物の結晶構造の少なくとも一部が無定形化されている
ことを特徴とする請求項1から4に記載のIn含有酸化
物からのIn浸出方法。
5. The leaching of In from the In-containing oxide according to claim 1, wherein at least a part of a crystal structure of the In-containing oxide after the mechanochemical treatment is amorphous. Method.
【請求項6】 前記In含有酸化物がスクラップである
ことを特徴とする請求項1から5に記載のIn含有酸化
物からのIn浸出方法。
6. The method for leaching In from an In-containing oxide according to claim 1, wherein the In-containing oxide is scrap.
JP18808999A 1999-07-01 1999-07-01 In leaching method from In-containing oxide Expired - Lifetime JP4169871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18808999A JP4169871B2 (en) 1999-07-01 1999-07-01 In leaching method from In-containing oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18808999A JP4169871B2 (en) 1999-07-01 1999-07-01 In leaching method from In-containing oxide

Publications (2)

Publication Number Publication Date
JP2001011549A true JP2001011549A (en) 2001-01-16
JP4169871B2 JP4169871B2 (en) 2008-10-22

Family

ID=16217521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18808999A Expired - Lifetime JP4169871B2 (en) 1999-07-01 1999-07-01 In leaching method from In-containing oxide

Country Status (1)

Country Link
JP (1) JP4169871B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150196A (en) * 2004-11-26 2006-06-15 Mitsui Mining & Smelting Co Ltd Powder concentration method for separating abrasive powder from indium oxide based scrap powder
JP2008274413A (en) * 2007-03-30 2008-11-13 Tohoku Univ Method for recovering metal
JP2010222641A (en) * 2009-03-24 2010-10-07 Tohoku Univ Method for producing rare metal
US8034319B2 (en) 2003-05-30 2011-10-11 Jfe Mineral Co., Ltd. Method for producing complex oxide of metal
CN103602815A (en) * 2013-11-06 2014-02-26 四川长虹电器股份有限公司 Method for recycling indium from waste liquid crystal displays
JP2019502828A (en) * 2016-01-21 2019-01-31 漢能新材料科技有限公司 Recovery method for copper, indium, gallium, and selenium materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034319B2 (en) 2003-05-30 2011-10-11 Jfe Mineral Co., Ltd. Method for producing complex oxide of metal
JP2006150196A (en) * 2004-11-26 2006-06-15 Mitsui Mining & Smelting Co Ltd Powder concentration method for separating abrasive powder from indium oxide based scrap powder
JP2008274413A (en) * 2007-03-30 2008-11-13 Tohoku Univ Method for recovering metal
JP2010222641A (en) * 2009-03-24 2010-10-07 Tohoku Univ Method for producing rare metal
CN103602815A (en) * 2013-11-06 2014-02-26 四川长虹电器股份有限公司 Method for recycling indium from waste liquid crystal displays
CN103602815B (en) * 2013-11-06 2015-12-09 四川长虹电器股份有限公司 The method of recovery indium from waste liquid crystal display
JP2019502828A (en) * 2016-01-21 2019-01-31 漢能新材料科技有限公司 Recovery method for copper, indium, gallium, and selenium materials

Also Published As

Publication number Publication date
JP4169871B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
EP2450312A1 (en) Recovery of tungsten from waste material by ammonium leaching
KR20060056399A (en) High purity zinc oxide powder and method for production thereof, and high purity zinc oxide target and thin film of high purity zinc oxide
TWI411581B (en) Method for recovering ruthenium from waste containing ruthenium
RU2114204C1 (en) Method of recovering cerium
WO2017037625A1 (en) A method and process of recovering metal values from waste monolithic ceramic capacitors
KR20110035295A (en) Manufacturing method of zinc oxide using waste acid containing zinc
JP2001011549A (en) METHOD FOR LEACHING In FROM In-CONTAINING OXIDE
JP5217480B2 (en) Recovery method of crude indium
JPH1171111A (en) Extraction of rare earth metallic compound
JP4715598B2 (en) Chloride leaching method of lead electrolysis slime
JP2921790B2 (en) Method for producing low oxygen titanium material and low oxygen titanium dissolving material
KR100650361B1 (en) Process for extracting indium from substances comprising of indium oxide
JP6374285B2 (en) Method for recovering tungsten compounds
CN1268580A (en) Noble metal smelting slag wet metallurgical process
JP2001040436A (en) Method for recovering and refining indium
JP2001115218A (en) Method for extraction of metal, from scrap containing lithium transition metal-containing oxide
JPH04198017A (en) Purification of scandium oxide
KR101951352B1 (en) Method for recovering silver from by-products generated in an electrode manufacturing process
JP7388633B2 (en) Method for separating calcium and silicon from blast furnace slag
WO2011140593A1 (en) Recovery of platinum group metals from platinum group metal-containing materials
JP2000153250A (en) Decomposition method of semiconductor scrap
JPH11172343A (en) Treatment of scintillator crystal waste
RU2094502C1 (en) Method of gold extraction from the mining raw
JP2002055065A (en) Identification method for compound in electrolytic slime
JP2002241863A (en) Method for removing antimony from solution for collecting and refining tantalum, niobium or the like

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term