JPH1171111A - Extraction of rare earth metallic compound - Google Patents

Extraction of rare earth metallic compound

Info

Publication number
JPH1171111A
JPH1171111A JP24334697A JP24334697A JPH1171111A JP H1171111 A JPH1171111 A JP H1171111A JP 24334697 A JP24334697 A JP 24334697A JP 24334697 A JP24334697 A JP 24334697A JP H1171111 A JPH1171111 A JP H1171111A
Authority
JP
Japan
Prior art keywords
rare earth
earth metal
acid
earth metallic
metallic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24334697A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Saito
文良 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOGYO KUMIAI SENDAI SEISOU KO
KYOGYO KUMIAI SENDAI SEISOU KOUSHIYA
Original Assignee
KYOGYO KUMIAI SENDAI SEISOU KO
KYOGYO KUMIAI SENDAI SEISOU KOUSHIYA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOGYO KUMIAI SENDAI SEISOU KO, KYOGYO KUMIAI SENDAI SEISOU KOUSHIYA filed Critical KYOGYO KUMIAI SENDAI SEISOU KO
Priority to JP24334697A priority Critical patent/JPH1171111A/en
Publication of JPH1171111A publication Critical patent/JPH1171111A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To extract a rare earth metallic element from a fluorescent material or the like containing the rare earth metallic element under mild conditions. SOLUTION: A substance containing a rare earth metallic element is mechanochemically treated for a prescribed time to change the crystal structure thereof. The resultant substance is then leached with an acid at a low concentration to extract the rare earth metallic compound. At this time, the rare earth metal is Y, Sc and a lanthanoid-based element and the mechanochemical treatment is preferably carried out by a high-energy type pulverizer. The acid at the low concentration is preferably hydrochloric acid or sulfuric acid at <=1 N concentration. Since the rare earth metallic compound can be extracted from a waste fluorescent tube containing the rare earth metallic element under mild conditions, the working environment can be made safe. Especially, the waste fluorescent tube can be ranked as a future promising municipal resource for the rare earth metallic element to enable the recycling use of a scare resource.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃棄される蛍光管や
ブラウン管等の希土類金属化合物を含有する物からから
希土類金属化合物を抽出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting a rare earth metal compound from a substance containing a rare earth metal compound such as a fluorescent tube or a cathode ray tube which is discarded.

【0002】[0002]

【従来の技術】原子番号57のLa(ランタン)から原
子番号71のLu(ルテチウム)までの15元素と、化
学的性質が類似したSc(スカンジウム)とY(イット
リウム)の2元素を加えた17元素を総称する希土類金
属元素は、蛍光材や触媒、光学ガラス、セラミックス、
磁石等の機能性材料に広く利用されており、いわゆる先
端産業分野を支える重要な元素群の一つになっている。
これらの元素は、通常、モナザイトやバストネサイト、
ゼノタイムなどの鉱石から高温度、高濃度酸による抽出
操作により精製されている。
2. Description of the Related Art Fifteen elements from La (lanthanum) having an atomic number of 57 to Lu (lutetium) having an atomic number of 71 and two elements of Sc (scandium) and Y (yttrium) having similar chemical properties are added. Rare earth metal elements, which are collectively called elements, are fluorescent materials, catalysts, optical glasses, ceramics,
It is widely used in functional materials such as magnets, and is one of the important elements that support the so-called advanced industrial field.
These elements are usually found in monazite, bastnaesite,
It is refined from ore such as Xenotime by extraction with high temperature and high concentration acid.

【0003】これら希土類金属元素含有鉱石の産地は世
界中でも主に中国、北米、ロシアなどに限定さており、
しかも産出量が少ないので、希土類金属元素の入手をこ
れのみに依存していたのでは早晩枯渇してしまうおそれ
がある。
[0003] The production areas of these rare earth metal-containing ores are limited mainly to China, North America, Russia, etc., all over the world.
Moreover, since the amount of production is small, there is a risk that the rare earth metal element will be depleted immediately if it is solely used to obtain the rare earth metal element.

【0004】そこで、希土類金属元素が三波長高演色蛍
光管用蛍光材として広く利用され、年々これを用いた蛍
光管の需要が増大するにともない、使用済みとなって廃
棄される蛍光管の量が増加の一途をたどっていることに
着目し、廃棄される蛍光管から希土類金属元素を分離回
収し、再利用することが考えられている。これまでの回
収技術は高温度、高濃度酸による処理法であるので、作
業環境上問題があり、より温和な条件下での回収法の確
立が望まれている。
[0004] Therefore, rare earth metal elements are widely used as fluorescent materials for three-wavelength high color rendering fluorescent tubes, and as the demand for fluorescent tubes using them increases year by year, the amount of used and discarded fluorescent tubes is reduced. Focusing on the ever-increasing increase, it has been considered to separate and recover rare earth metal elements from the discarded fluorescent tubes and reuse them. Since the conventional recovery technique is a treatment method using a high-temperature, high-concentration acid, there is a problem in the working environment, and it is desired to establish a recovery method under milder conditions.

【0005】本発明者らは最近、メカノケミカル反応に
より固相での交換反応をおこない、バストネサイトから
希土類金属元素を非加熱で弱酸性溶液により抽出する方
法を提案した。しかしながら、バストネサイトは炭酸塩
であり、蛍光材は酸化物であるので、蛍光材から希土類
金属元素を回収するのにこれをそのまま適用することは
困難である。
The present inventors have recently proposed a method in which a solid phase exchange reaction is carried out by a mechanochemical reaction to extract a rare earth metal element from bastnaesite without heating using a weakly acidic solution. However, since bastnaesite is a carbonate and the fluorescent material is an oxide, it is difficult to apply it as it is to recover a rare earth metal element from the fluorescent material.

【0006】[0006]

【発明が解決しようとする課題】本発明は希土類金属元
素を含有する蛍光材などから、希土類金属元素を温和な
条件下で抽出する方法を提供せんとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for extracting a rare earth metal element from a fluorescent material containing the rare earth metal element under mild conditions.

【0007】メカノケミカルとは、一般に固体物質に加
えた機械的ネネルギ−、たとえば、せん断、圧縮、衝
撃、粉砕、曲げ延伸などによって、固体表面が物理化学
的変化をきたし、その周囲に存在する気体、液体物質に
化学的変化をもたらすか、あるいはそれらと固体表面と
の化学的変化を直接誘起し、または促進するなどして、
化学的状態に影響をおよぼす現象として知られている。
[0007] Mechanochemicals are generally defined as mechanical energy added to a solid substance, for example, shear, compression, impact, crushing, bending or stretching, etc., causing the physicochemical change of the solid surface and the gas existing around it. , Causing chemical changes in liquid substances, or directly inducing or promoting chemical changes between them and the solid surface,
It is known as a phenomenon that affects the chemical state.

【0008】[0008]

【課題を解決するための手段】ここにおいて本発明者
は、希土類金属元素含有物を所定時間メカノケミカル処
理し、結晶構造を破壊して漬出しやすい形態に変え、こ
れを低濃度酸に浸出させることにより希土類金属化合物
を効果的に抽出できることを見出した。そして、希土類
金属がY、Scおよびランタノイド系元素であり、メカ
ノケミカル処理が高エネルギ−型粉砕機によりおこなわ
れ、低濃度酸が1N以下の塩酸または硫酸であると好適
であることを見出すにいたった。これにより、廃棄蛍光
管の蛍光材成分、あるいは廃棄されるブラウン管など電
子部品に含まれる希土類金属化合物を、メカノケミカル
処理して、低濃度酸で抽出できるにいたった。
Here, the inventor of the present invention mechanochemically treats a rare earth metal element-containing substance for a predetermined period of time to break the crystal structure into a form easy to be immersed, and to leach it into a low-concentration acid. As a result, it has been found that the rare earth metal compound can be effectively extracted. Then, it has been found that the rare earth metal is Y, Sc and a lanthanoid element, the mechanochemical treatment is performed by a high energy type pulverizer, and the low concentration acid is preferably 1N or less hydrochloric acid or sulfuric acid. Was. As a result, the fluorescent material component of the waste fluorescent tube or the rare earth metal compound contained in the electronic component such as the discarded cathode ray tube can be extracted with a low-concentration acid by mechanochemical treatment.

【0009】[0009]

【発明の実施の形態】本発明者は廃棄蛍光管を将来の有
望な希土類金属元素の都市資源と位置付け、廃棄蛍光管
の含有蛍光材を乾式メカノケミカル処理し、結晶構造を
変化させてから、従来にない温和な酸処理によって、希
土類金属化合物を高収率で抽出することができるにいた
った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has positioned waste fluorescent lamps as a promising urban resource for rare earth metal elements in the future, and has performed dry mechanochemical treatment on the fluorescent material contained in the waste fluorescent tubes to change the crystal structure. It has been possible to extract rare earth metal compounds in high yield by unprecedented mild acid treatment.

【0010】[0010]

【実施例】以下、実施例により本発明を具体的に説明す
る。 〔蛍光材〕廃棄される三波長高演色蛍光管に含まれる蛍
光材(以下、蛍光材と略記する)は、下記4種類の複合
酸化物の混合物であることが知られている。 青色蛍光体・・・BaMgAl1017:Eu2+ 緑色蛍光体・・・LaPO4 :Ce3+、Tb3+ 緑色蛍光体・・・CeMgAl1119:Tb3+ 赤色蛍光体・・・Y2 3 :Eu3+ 混合物の化学分析結果から、混合物を酸化物からなると
仮定して、その組成比を表示すると第1表のようにな
る。
The present invention will be described below in detail with reference to examples. [Fluorescent Material] It is known that a fluorescent material (hereinafter abbreviated as a fluorescent material) contained in a discarded three-wavelength high color rendering fluorescent tube is a mixture of the following four types of composite oxides. Blue phosphor ··· BaMgAl 10 O 17: Eu 2+ Green phosphor ··· LaPO 4: Ce 3+, Tb 3+ green phosphor ··· CeMgAl 11 O 19: Tb 3+ red phosphor.. From the results of chemical analysis of the Y 2 O 3 : Eu 3+ mixture, assuming that the mixture is composed of an oxide, the composition ratio is shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】第1表には示していないが、希土類金属元
素以外のSrOやBaO、MgO、Al2 3 などの酸
化物と仮定される元素化合物は不純物とみなされる。そ
の一部の元素は乾式メカノケミカル処理後の酸浸出でも
検出され、注目元素に加えた。なお、未処理蛍光材の粒
度分布を第2図中に示す。
Although not shown in Table 1, elemental compounds which are assumed to be oxides such as SrO, BaO, MgO and Al 2 O 3 other than rare earth metal elements are regarded as impurities. Some of the elements were also detected in acid leaching after dry mechanochemical treatment and were added to the elements of interest. The particle size distribution of the untreated fluorescent material is shown in FIG.

【0013】廃棄蛍光管から蛍光材のみを機械的に取出
すことは煩雑であり、大量処理する場合には実用的でな
い。廃棄蛍光管から希土類金属化合物を取出す際は、予
め金具と管内の水銀成分を除き、全体を粗砕してから乾
式メカノケミカル処理にかける。シリカ成分が多いと乾
式メカノケミカル処理効果が上がることが判明している
が、ここでは、別途得られた蛍光材相当の試料を対象物
として、これより希土類金属化合物を取出すことを試み
た。
It is complicated to mechanically take out only the fluorescent material from the waste fluorescent tube, and it is not practical for mass processing. When removing the rare earth metal compound from the waste fluorescent tube, the whole is coarsely crushed except for the mercury component in the metal fittings and the tube, and then subjected to dry mechanochemical treatment. It has been found that the dry mechanochemical treatment effect increases when the silica content is large, but here, an attempt was made to extract a rare earth metal compound from a separately obtained sample corresponding to a fluorescent material.

【0014】〔乾式メカノケミカル処理〕蛍光材の乾式
メカノケミカル処理(以下、メカノケミカル処理とい
う)における高エネルギ−型粉砕機として、遊星ミル
(Fritsch社製、Pulverissete−
7)を用いた。この遊星ミルは内容量50cm3 からな
る2個のジルコニア製ポットを回転方向が時計回りで、
回転半径70mmの回転円盤に取付けたもので、ポット
自身も回転方向が反時計回りで、回転円盤と同じ速度で
回転できるようになっている。ポットには直径14mm
のジルコニア製ボ−ル7個と蛍光材粉末5gを装填し、
回転速度700rpmで、蛍光材粉末についてメカノケ
ミカル処理をおこなった。粉砕は回分法でおこない、所
定時間処理して得られた産物は全量回収した。最長処理
時間は2時間であり、とくに、ポット内の過度の発熱を
避けるため、15分運転後は30分停止して自然冷却す
る操作をくりかえした。各粉砕処理時間後の産物は、粒
度分布測定、X線回析(XRD)解析、熱分析等をおこ
なって、メカノケミカル処理による粉体特性の変化を評
価した。
[Dry Mechanochemical Treatment] As a high-energy type pulverizer for dry mechanochemical treatment of fluorescent material (hereinafter referred to as mechanochemical treatment), a planetary mill (Pulverisset, manufactured by Fritsch) is used.
7) was used. In this planetary mill, two zirconia pots having a content of 50 cm 3 are rotated clockwise,
The pot is mounted on a rotating disk having a rotating radius of 70 mm. The rotating direction of the pot itself is also counterclockwise, and the pot can rotate at the same speed as the rotating disk. 14mm diameter in the pot
Of zirconia balls and 5 g of phosphor powder,
Mechanochemical treatment was performed on the phosphor powder at a rotation speed of 700 rpm. The pulverization was carried out by a batch method, and all the products obtained by treating for a predetermined time were recovered. The longest processing time was 2 hours. In particular, in order to avoid excessive heat generation in the pot, the operation of stopping for 30 minutes after the 15-minute operation and repeating the natural cooling operation was repeated. The product after each pulverization treatment time was subjected to particle size distribution measurement, X-ray diffraction (XRD) analysis, thermal analysis, and the like to evaluate changes in powder characteristics due to mechanochemical treatment.

【0015】第1図に乾式メカノケミカル処理産物のX
RDパタ−ンを示す。これにより、処理時間の増大とと
もに構成成分の特徴的な回折ピ−ク強度が徐々に低下し
ていることがわかる。たとえば、YOX(Y2 3 )の
ピ−ク強度は粉砕初期で急激に低下しているが、2時間
処理でも完全には消滅していない。また、BAT(Ba
MgAl1017:Eu2+)については、顕著な変化は認
められない。これに対して、LAP(LaPO4 :Ce
3+、Tb3+)、MAT(CeMgAl1119:Tb3+
のピ−クはいずれも低いが、処理時間とともに小さくな
り、非結晶化が進行しているものと予想される。このよ
うに、メカノケミカル処理により希土類金属元素複合酸
化物の結晶構造は一部維持しながらもかなり歪んだ状態
になることがわかる。
FIG. 1 shows X of the dry mechanochemically treated product.
RD pattern is shown. This indicates that the characteristic diffraction peak intensity of the component gradually decreases as the processing time increases. For example, the peak strength of YOX (Y 2 O 3 ) sharply decreases at the beginning of pulverization, but does not completely disappear even after 2 hours of treatment. Also, BAT (Ba
MgAl 10 O 17 : Eu 2+ ) shows no significant change. On the other hand, LAP (LaPO 4 : Ce)
3+ , Tb 3+ ), MAT (CeMgAl 11 O 19 : Tb 3+ )
Although the peaks are low in each case, the peaks decrease with the processing time, and it is expected that non-crystallization has progressed. Thus, it can be seen that the mechanochemical treatment causes the rare earth metal element composite oxide to be in a considerably distorted state while partially maintaining the crystal structure.

【0016】第2図には未処理蛍光材と2時間処理産物
の粒度分布を示す。これにより、処理時間の増大ととも
に、産物中、粒度分布の中位の径は細粒側へ移行する
が、同時に分布の幅が大となり、その粗粒部分は未処理
蛍光材の最大径よりも粗粒側にひろがっていることがわ
かる。このことは、処理によって機械的活性が大とな
り、粉体の一部が凝集したためであると思われる。
FIG. 2 shows the particle size distribution of the untreated fluorescent material and the product treated for 2 hours. As a result, as the processing time increases, the median diameter of the particle size distribution in the product shifts to the fine grain side, but at the same time the width of the distribution increases, and the coarse grain portion becomes larger than the maximum diameter of the untreated fluorescent material. It can be seen that it spreads to the coarse grain side. This is considered to be because the mechanical activity was increased by the treatment, and a part of the powder was aggregated.

【0017】〔酸処理〕メカノケミカル処理して得られ
た産物から希土類金属化合物を抽出するにあたり、従来
よりも極端に低濃度の酸として、1Nの塩酸を用いた。
ここで、塩酸にかえ硫酸を使用することもできる。酸液
25mlにメカノケミカル処理粉末0.5gを投入し、
室温下で1時間攪拌後、ろ過して固液を分離し、ろ液中
の含有元素をICPで分析するとともに、固体残査はX
RD解析によって構成成分を同定し、評価した。なお、
メカノケミカル処理していない蛍光材粉末についても同
様に酸浸出をおこない、同様な分析をおこなった。
[Acid Treatment] In extracting a rare earth metal compound from a product obtained by mechanochemical treatment, 1N hydrochloric acid was used as an acid having an extremely lower concentration than before.
Here, sulfuric acid may be used instead of hydrochloric acid. 0.5 g of mechanochemically treated powder is added to 25 ml of the acid solution,
After stirring at room temperature for 1 hour, the mixture was filtered to separate a solid and a liquid, and the elements contained in the filtrate were analyzed by ICP.
The components were identified and evaluated by RD analysis. In addition,
Acid leaching was similarly performed on the fluorescent material powder not subjected to the mechanochemical treatment, and the same analysis was performed.

【0018】第3図には1N塩酸により抽出され、塩化
物として溶解している各希土類金属元素の収率とメカノ
ケミカル処理時間との関係を示す。これによれば、メカ
ノケミカル未処理の場合Y、Euが約20%抽出される
が、その他の希土類金属元素は殆ど抽出されない。これ
に対して、メカノケミカル処理時間が3分では、Y、E
uの収率が急激に増加し、それぞれ80%、70%に達
する。さらに処理時間が長くなり30分では、収率がY
で98%、Euで85%以上になる。これがその他の希
土類金属元素の場合、処理時間が3分で約20%、30
分でも60%以下である。さらに、処理時間を延長する
と収率は次第に増大し、Y、Euの場合に近付くが、2
時間でもようやく80〜90%の範囲である。これは、
蛍光材粉末をメカノケミカル処理することによって、そ
の結晶構造が歪み、かつ、微粒化したことと深く関連す
る。とくにY、Euの収率が高いのは、メカノケミカル
処理によってYOXが溶解しやすくなることによるもの
であり、また、EuがYより収率が僅かに低いのは、溶
解しにくいBATにEu2+が含まれるからと推察され
る。なお、ここには示さないが、硫酸処理の場合も同様
の傾向があった。
FIG. 3 shows the relationship between the yield of each rare earth metal element extracted with 1N hydrochloric acid and dissolved as chloride and the mechanochemical treatment time. According to this, about 20% of Y and Eu are extracted in the case of no mechanochemical treatment, but other rare earth metal elements are hardly extracted. On the other hand, if the mechanochemical processing time is 3 minutes, Y, E
The yield of u increases sharply, reaching 80% and 70% respectively. Further, the processing time becomes longer, and in 30 minutes, the yield is Y.
98% in Eu and 85% or more in Eu. When this is another rare earth metal element, the treatment time is about 20% in 3 minutes, and 30%.
Even less than 60%. Further, when the treatment time is extended, the yield gradually increases and approaches the case of Y and Eu,
The time is finally in the range of 80-90%. this is,
The mechanochemical treatment of the phosphor powder is closely related to the fact that the crystal structure is distorted and atomized. Especially Y, the Eu yield is high is due to the fact that easily dissolved YOX by mechanochemical processing, also, Eu that is slightly lower yields than Y is Eu 2 to less soluble BAT It is presumed that + is included. Although not shown here, there was a similar tendency in the case of sulfuric acid treatment.

【0019】第4図には、AlとMgの2元素に注目
し、それらの塩酸浸出における収率とメカノケミカル処
理時間との関係を示す。それによれば、メカノケミカル
処理60分でも収率はAlで約30%、Mgでは20%
未満と低く、メカノケミカル処理をおこなっても、これ
ら2元素はさほど酸には溶解しないことがわかる。
FIG. 4 focuses on two elements, Al and Mg, and shows the relationship between the yield in leaching with hydrochloric acid and the mechanochemical treatment time. According to the results, the yield is about 30% for Al and 20% for Mg even after 60 minutes of mechanochemical treatment.
It can be seen that these two elements do not dissolve so much in the acid even when the mechanochemical treatment is performed.

【0020】第5図には、メカノケミカル処理を2時間
おこなったものの酸浸出後の残渣のXRDパタ−ンをB
AT単品のXRDパタ−ンとともに示す。それによれ
ば、残査のXRDパタ−ンの各ピ−ク位置は未処理のB
ATのそれらと同一であり、したがって、残査にはBA
Tの結晶系がかなり残存していることがわかる。このこ
とは、BATに含まれるAl、Mg等の各酸化物もある
程度残査中にとどまっていることを示唆し、第4図の結
果とよく対応する。
FIG. 5 shows the XRD pattern of the residue after acid leaching after the mechanochemical treatment for 2 hours.
This is shown together with the XRD pattern of AT alone. According to this, each peak position of the XRD pattern of the residue is represented by an unprocessed B
Are identical to those of AT, so the residue
It can be seen that a considerable amount of the T crystal system remains. This suggests that the oxides such as Al and Mg contained in the BAT also remain in the residue to some extent, which corresponds well to the results in FIG.

【0021】塩酸に浸出した希土類金属化合物が塩化物
として溶解しているところから希土類金属元素を析出さ
せるには、溶液のpHを制御することによって、水酸化
物として取出す。さらに各成分を分離するには、析出段
階で他の硫酸イオンや硝酸イオン等との反応における選
択性を利用し、逐次析出をおこない、使用目的の形態に
合わせて分離・回収する。析出物を焼成すれば酸化物を
得ることができる。
In order to precipitate the rare earth metal element from the place where the rare earth metal compound leached in hydrochloric acid is dissolved as chloride, the rare earth metal element is extracted as hydroxide by controlling the pH of the solution. Further, in order to separate each component, the separation is carried out successively by utilizing the selectivity in the reaction with other sulfate ions or nitrate ions in the precipitation stage, and separated / recovered according to the intended use form. By firing the precipitate, an oxide can be obtained.

【0022】[0022]

【発明の効果】本発明により、希土類金属元素を含む廃
蛍光管から、これを温和な条件下で抽出できるので、作
業環境を安全にすることができる。とくに、廃棄蛍光管
を将来の有望な希土類金属元素都市資源と位置付けるこ
とができ、希少資源の循環使用を可能にする。
According to the present invention, a waste fluorescent tube containing a rare earth metal element can be extracted under a mild condition, so that the working environment can be made safe. In particular, waste fluorescent tubes can be positioned as promising rare earth metal element city resources in the future, enabling the recycling of rare resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 メカノケミカル処理時間による蛍光材粉末の
XRDパタ−ンである。
FIG. 1 is an XRD pattern of a phosphor powder according to a mechanochemical treatment time.

【図2】 メカノケミカル未処理および120分処理蛍
光材の粒度分布である。
FIG. 2 is a particle size distribution of a mechanochemical untreated phosphor and a phosphor treated for 120 minutes.

【図3】 メカノケミカル処理時間と酸抽出された希土
類金属元素の収率との関係を示すものである。
FIG. 3 shows the relationship between the mechanochemical treatment time and the yield of acid-extracted rare earth metal elements.

【図4】 メカノケミカル処理時間と酸抽出されたA
l、Mgの収率との関係を示すものである。
FIG. 4. Mechanochemical treatment time and acid extracted A
1 shows the relationship with the yield of Mg.

【図5】 メカノケミカル120分処理後における酸抽
出残渣のXRDパタ−ンと比較のために示す未処理BA
T単品のXRDパタ−ンである。
FIG. 5: XRD pattern of acid extraction residue after mechanochemical treatment for 120 minutes and untreated BA shown for comparison
This is the XRD pattern of T alone.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年11月12日[Submission date] November 12, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は廃棄される蛍光管や
ブラウン管等の希土類金属化合物を含有する物から希土
類金属化合物を抽出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting a rare earth metal compound from a material containing a rare earth metal compound, such as a fluorescent tube or a cathode ray tube, which is discarded.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】メカノケミカルとは、一般に固体物質に加
えた機械的エネルギー、たとえば、せん断、圧縮、衝
撃、粉砕、曲げ延伸などによって、固体表面が物理化学
的変化をきたし、その周囲に存在する気体、液体物質に
化学的変化をもたらすか、あるいはそれらと固体表面と
の化学的変化を直接誘起し、または促進するなどして、
化学的状態に影響をおよぼす現象として知られている。
[0007] Mechanochemicals are generally defined as physicochemical changes in the surface of a solid caused by mechanical energy applied to a solid material, for example, shear, compression, impact, crushing, bending and stretching, and the gas existing around the solid. Cause chemical changes in liquid substances, or directly induce or promote chemical changes between them and the solid surface,
It is known as a phenomenon that affects the chemical state.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】〔酸処理〕メカノケミカル処理して得られ
た産物から希土類金属化合物を抽出するにあたり、従来
よりも極端に低濃度の酸として、1Nの塩酸を用いた。
ここで、塩酸にかえ硫酸を使用することもできる。酸液
25mlにメカノケミカル処理粉末0.5gを投入し、
室温下で1時間攪拌後、ろ過して固液を分離し、ろ液中
の含有元素をICPで分析するとともに、固体残渣はX
RD解析によって構成成分を同定し、評価した。なお、
メカノケミカル処理していない蛍光材粉末についても同
様に酸浸出をおこない、同様な分析をおこなった。
[Acid Treatment] In extracting a rare earth metal compound from a product obtained by mechanochemical treatment, 1N hydrochloric acid was used as an acid having an extremely lower concentration than before.
Here, sulfuric acid may be used instead of hydrochloric acid. 0.5 g of mechanochemically treated powder is added to 25 ml of the acid solution,
After stirring at room temperature for 1 hour, the mixture was filtered to separate a solid and a liquid, and the elements contained in the filtrate were analyzed by ICP.
The components were identified and evaluated by RD analysis. In addition,
Acid leaching was similarly performed on the fluorescent material powder not subjected to the mechanochemical treatment, and the same analysis was performed.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】第5図には、メカノケミカル処理を2時間
おこなったものの酸浸出後の残渣のXRDパターンをB
AT単品のXRDパターンとともに示す。それによれ
ば、残渣のXRDパターンの各ピーク位置は未処理のB
ATのそれらと同一であり、したがって、残渣にはBA
Tの結晶系がかなり残存していることがわかる。このこ
とは、BATに含まれるAl、Mg等の各酸化物もある
程度残渣中にとどまっていることを示唆し、第4図の結
果とよく対応する。
FIG. 5 shows the XRD pattern of the residue after acid leaching after mechanochemical treatment for 2 hours.
It is shown together with the XRD pattern of the AT alone. According to this, each peak position in the XRD pattern of the residue is untreated B
Identical to those of AT and therefore the residue contains BA
It can be seen that a considerable amount of the T crystal system remains. This suggests that the oxides such as Al and Mg contained in the BAT also remain in the residue to some extent, which corresponds well to the results in FIG.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 希土類金属元素含有物を所定時間メカノ
ケミカル処理し、結晶構造を変化させたのち、低濃度酸
に浸出させることを特徴とする希土類金属化合物の抽出
方法。
1. A method for extracting a rare earth metal compound, comprising subjecting a rare earth metal element-containing substance to a mechanochemical treatment for a predetermined time to change its crystal structure and then leaching it in a low-concentration acid.
【請求項2】 希土類金属元素がY、Scおよびランタ
ノイド系元素である請求項1記載の希土類金属化合物の
抽出方法。
2. The method for extracting a rare earth metal compound according to claim 1, wherein the rare earth metal element is a Y, Sc or lanthanoid element.
【請求項3】 メカノケミカル処理が高エネルギ−型粉
砕機によりおこなわれる請求項1又は2記載の希土類金
属化合物の抽出方法。
3. The method for extracting a rare earth metal compound according to claim 1, wherein the mechanochemical treatment is performed by a high energy type pulverizer.
【請求項4】 低濃度酸が1N以下の塩酸または硫酸で
ある請求項1、2又は3記載の希土類金属化合物の抽出
方法。
4. The method for extracting a rare earth metal compound according to claim 1, wherein the low-concentration acid is hydrochloric acid or sulfuric acid of 1N or less.
JP24334697A 1997-08-25 1997-08-25 Extraction of rare earth metallic compound Pending JPH1171111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24334697A JPH1171111A (en) 1997-08-25 1997-08-25 Extraction of rare earth metallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24334697A JPH1171111A (en) 1997-08-25 1997-08-25 Extraction of rare earth metallic compound

Publications (1)

Publication Number Publication Date
JPH1171111A true JPH1171111A (en) 1999-03-16

Family

ID=17102471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24334697A Pending JPH1171111A (en) 1997-08-25 1997-08-25 Extraction of rare earth metallic compound

Country Status (1)

Country Link
JP (1) JPH1171111A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412397B1 (en) * 2001-11-05 2003-12-24 한국화학연구원 La and Eu separation method of useless three wave fluorescent lamp
EP1215260A3 (en) * 2000-12-18 2004-03-03 Osram Sylvania Inc. Recovery of electroluminescent phosphor from encapsulated material
WO2007141177A1 (en) 2006-06-02 2007-12-13 Osram Gesellschaft mit beschränkter Haftung Method for recovery of rare earths from fluorescent lamps
JP2010042346A (en) * 2008-08-12 2010-02-25 Jfe Mineral Co Ltd Pretreatment method for recovering rare earth element from disposed fluorescent lamp and method of recovering rare earth element using solid matter obtained by the pretreatment method
US8034319B2 (en) 2003-05-30 2011-10-11 Jfe Mineral Co., Ltd. Method for producing complex oxide of metal
WO2012016511A1 (en) * 2010-08-03 2012-02-09 江西稀有金属钨业控股集团有限公司 Process for in-situ leaching by liquid injection
WO2014066668A1 (en) * 2012-10-24 2014-05-01 Rare Earth Salts Separation And Refining, Llc Method for rare earth and actinide element recovery, extraction and separations from natural and recycled resources
DE102014101766A1 (en) 2014-02-12 2015-08-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the recovery and optionally separation of lanthanides in the form of their chlorides or oxides from mineral wastes and residues
DE102020100243A1 (en) 2020-01-08 2021-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Process for reconditioning glass-plastic-metal composite materials

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215260A3 (en) * 2000-12-18 2004-03-03 Osram Sylvania Inc. Recovery of electroluminescent phosphor from encapsulated material
KR100412397B1 (en) * 2001-11-05 2003-12-24 한국화학연구원 La and Eu separation method of useless three wave fluorescent lamp
US8034319B2 (en) 2003-05-30 2011-10-11 Jfe Mineral Co., Ltd. Method for producing complex oxide of metal
US8628734B2 (en) 2006-06-02 2014-01-14 Osram Gesellschaft Mit Beschraenkter Haftung Method for recovery of rare earths from fluorescent lamps
WO2007141177A1 (en) 2006-06-02 2007-12-13 Osram Gesellschaft mit beschränkter Haftung Method for recovery of rare earths from fluorescent lamps
JP2009538949A (en) * 2006-06-02 2009-11-12 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Recovery method of rare earth from fluorescent lamp
US7976798B2 (en) 2006-06-02 2011-07-12 Osram Gesellschaft Mit Beschraenkter Haftung Method for recovery of rare earths from fluorescent lamps
EP2363873A1 (en) 2006-06-02 2011-09-07 Osram Gesellschaft mit Beschränkter Haftung Method for recovering rare earths from illuminant lamps
CN102496545A (en) * 2006-06-02 2012-06-13 欧司朗股份有限公司 Method for recovery of rare earths from fluorescent lamps
JP2010042346A (en) * 2008-08-12 2010-02-25 Jfe Mineral Co Ltd Pretreatment method for recovering rare earth element from disposed fluorescent lamp and method of recovering rare earth element using solid matter obtained by the pretreatment method
WO2012016511A1 (en) * 2010-08-03 2012-02-09 江西稀有金属钨业控股集团有限公司 Process for in-situ leaching by liquid injection
KR101407349B1 (en) * 2010-08-03 2014-06-13 지앙시 레어 어스 앤드 레어 메탈스 텅스텐 그룹 홀딩 컴퍼니 리미티드 A liquid injection process for in-situ leaching and extracting ion-adsorption type rare earth
WO2014066668A1 (en) * 2012-10-24 2014-05-01 Rare Earth Salts Separation And Refining, Llc Method for rare earth and actinide element recovery, extraction and separations from natural and recycled resources
DE102014101766A1 (en) 2014-02-12 2015-08-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the recovery and optionally separation of lanthanides in the form of their chlorides or oxides from mineral wastes and residues
EP2910654A1 (en) 2014-02-12 2015-08-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for recovering and optionally separating lanthanides in the form of their chlorides or oxides from mineral waste and residual materials
DE102020100243A1 (en) 2020-01-08 2021-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Process for reconditioning glass-plastic-metal composite materials
DE102020100243B4 (en) 2020-01-08 2023-06-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Process for processing glass-plastic-metal composite materials

Similar Documents

Publication Publication Date Title
JP5424873B2 (en) Recovery method of rare earth from fluorescent lamp
Van Loy et al. Recycling of rare earths from lamp phosphor waste: Enhanced dissolution of LaPO4: Ce3+, Tb3+ by mechanical activation
JP5598631B2 (en) Recovery method of rare earth elements
CA2878486C (en) Process for recovering rare earth oxides from phosphors, fluorescent lamps and light bulbs, cathode ray tubes and other industrial wastes
Liu et al. Multiscale recycling rare earth elements from real waste trichromatic phosphors containing glass
EP3715482A1 (en) Method and system for separation of rare earth elements from secondary sources
WO2011106167A1 (en) Rare earth recovery from fluorescent material and associated method
Tanvar et al. Extraction of rare earth oxides from discarded compact fluorescent lamps
CA3008040C (en) Rare earth ore processing methods by acid mixing, sulphating and decomposing
JPS60161330A (en) Recovery of rare earth metal oxide having high purity from waste rare earth metal phosphor
JPH1171111A (en) Extraction of rare earth metallic compound
JP3497089B2 (en) Method for selective separation of rare metal components from waste fluorescent material
Shukla et al. Rapid microwave processing of discarded tubular lights for extraction of rare earth values
KR102475153B1 (en) Recovering Method of Rare Earth Element from Waste Phosphor Powder Using Acid Leaching
JP4997600B2 (en) Method for recovering rare earth elements from phosphors
Tar et al. Study on processing of rare earth oxide from monazite, mongmit myitsone region
EP1639144B1 (en) Method for recovering at least one metallic element like cesium from ore
WO1992018249A1 (en) The recovery of a valuable species from an ore
Shukla et al. Comparison of processing routes for recovery of rare earth elements from discarded fluorescent lamp phosphors
Shukla et al. Processing End-of-Life Tube Lights for Recovery of Rare Earth Oxides
Shukla et al. Investigation of different processing routes for rare earth extraction from discarded tubular lights
Innocenzi Treatment of spent fluorescent lamps, cathode-ray tubes, and spent catalysts by hydrometallurgical procedures
JP4169871B2 (en) In leaching method from In-containing oxide
Shukla et al. Evaluation of alkali processing for the recycling of rare earth values from spent fluorescent lamps
CN107922997B (en) Process useful for separating light rare earth elements from heavy rare earth elements