JP2010222641A - Method for producing rare metal - Google Patents

Method for producing rare metal Download PDF

Info

Publication number
JP2010222641A
JP2010222641A JP2009071251A JP2009071251A JP2010222641A JP 2010222641 A JP2010222641 A JP 2010222641A JP 2009071251 A JP2009071251 A JP 2009071251A JP 2009071251 A JP2009071251 A JP 2009071251A JP 2010222641 A JP2010222641 A JP 2010222641A
Authority
JP
Japan
Prior art keywords
rare metal
powder
indium
silicon
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009071251A
Other languages
Japanese (ja)
Other versions
JP5393213B2 (en
Inventor
Junya Kano
純也 加納
Fumiyoshi Saito
文良 齋藤
Shigemitsu Morii
重光 森居
Kazuo Matsuda
和男 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Daitoku KK
Original Assignee
Tohoku University NUC
Daitoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Daitoku KK filed Critical Tohoku University NUC
Priority to JP2009071251A priority Critical patent/JP5393213B2/en
Publication of JP2010222641A publication Critical patent/JP2010222641A/en
Application granted granted Critical
Publication of JP5393213B2 publication Critical patent/JP5393213B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practicable method with which rare metal can efficiently be produced by utilizing a mechanochemical reaction. <P>SOLUTION: Rare metal oxide powder is mechanochemically reacted with silicon powder to obtain the rare metal and silicon oxide. As the rare metal oxide, the oxides of indium, tin and antimony, etc., can be used. The reaction of the rare metal oxide powder and the silicon powder can be applied while mechanically stirring-treating and this reaction can be applied under the atmosphere to be useful to recover the rare metal from the wasted liquid-crystal panel, etc. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、稀少金属酸化物を用いた稀少金属の製造方法に関するものであり、特に、廃液晶パネル等の基盤に使用されている透明電極に含まれるような稀少金属をメカノケミカル的に効率よく回収するのに有効な方法に関するものである。 The present invention relates to a method for producing a rare metal using a rare metal oxide, and in particular, mechanochemically efficiently a rare metal contained in a transparent electrode used for a substrate such as a waste liquid crystal panel. It relates to an effective method for recovery.

例えば液晶パネルやプラズマディスプレイパネルの製造工程に於いて廃棄される廃液晶パネル、または、これらパネルを応用した製品、情報表示装置や映像表示装置等は、解体して廃棄処分されるが、その透明電極には、貴重な稀少金属が含まれている。 For example, waste liquid crystal panels that are discarded in the manufacturing process of liquid crystal panels and plasma display panels, or products, information display devices, video display devices, etc. to which these panels are applied are dismantled and disposed of. The electrode contains valuable rare metals.

そこで、廃液晶パネル等を再利用できるように処理する方法が種々検討されている。特許文献1には、廃液晶パネルのガラス板を矩形状に切断し、このガラス板を液晶パネルから取り外し、液晶を露出させ、ガラス基板に付着している液晶を、掻き取って回収し、そこに含まれる稀少金属などの回収を可能とすることが開示される。しかし、ここには、稀少金属の回収法は具体的に開示されておらず、また、一定形状に切断されたガラス板から液晶を掻き取るという工程は、手数の掛るものであった。 Therefore, various methods for treating the waste liquid crystal panel so as to be reused have been studied. In Patent Document 1, a glass plate of a waste liquid crystal panel is cut into a rectangular shape, the glass plate is removed from the liquid crystal panel, the liquid crystal is exposed, and the liquid crystal attached to the glass substrate is scraped and collected. It is disclosed that it is possible to recover rare metals and the like contained in However, the method for recovering the rare metal is not specifically disclosed here, and the process of scraping the liquid crystal from the glass plate cut into a fixed shape is troublesome.

別途、金属インジウムを回収する方法として、特許文献2には、酸化インジウム錫(I.T.O)ターゲット屑などを粉砕し、この粉体を塩酸、硫酸または硝酸等の酸で溶解し、その後、溶解液のpHをアルカリで中和し、その濾液を熟成させた後、硫化水素ガスを吹き込み、金属イオンを硫化物として析出除去した後、得られた液を電解元液として、インジウムメタルを電解採取するという方法が開示されている。この方法は、強酸や硫化水素という扱い難い薬品を使用する必要があり、また処理工程も複雑であり実用化し難いものであった。 Separately, as a method for recovering metallic indium, Patent Document 2 discloses that indium tin oxide (ITO) target scraps are pulverized, and this powder is dissolved with an acid such as hydrochloric acid, sulfuric acid or nitric acid, and then After neutralizing the pH of the solution with an alkali and aging the filtrate, hydrogen sulfide gas was blown in to precipitate and remove metal ions as sulfides. A method of electrowinning is disclosed. This method requires the use of difficult-to-handle chemicals such as strong acids and hydrogen sulfide, and the process is complicated and difficult to put into practical use.

また、特許文献3にも、インジウムと錫を含有する物質から金属インジウムを回収する方法が開示されるが、ここでも、インジウムと錫の合金を塩酸、硫酸または塩酸と硫酸の混酸に加熱溶解するものであり、扱い難いものであった。 Also, Patent Document 3 discloses a method for recovering metal indium from a substance containing indium and tin. Here too, an alloy of indium and tin is heated and dissolved in hydrochloric acid, sulfuric acid, or a mixed acid of hydrochloric acid and sulfuric acid. It was a thing and difficult to handle.

そこで、強酸を使用しない方法として、非特許文献1に、I.T.Oから粉砕によるメカノケミカル反応を利用して稀少金属のインジウムを回収する方法を開発したという記事があるが、この方法は、室温で実施でき、しかも強酸を使用しないため、扱い易いものであるが、稀少金属であるリチウムを含む窒化リチウムを使用するため、安全性及び経済的に問題があった。
特許第3589937号公報 特開2006−206990号公報 特開2007−9274号公報 平成19年7月26日付「河北新報」
Therefore, as a method not using strong acid, there is an article in Non-Patent Document 1 that has developed a method for recovering rare metal indium by utilizing a mechanochemical reaction by pulverization from ITO. Since it can be carried out at room temperature and does not use a strong acid, it is easy to handle. However, since lithium nitride containing lithium, which is a rare metal, is used, there is a problem in safety and economy.
Japanese Patent No. 3589937 JP 2006-206990 A JP 2007-9274 A "Hebei Shinpo" dated July 26, 2007

本発明は、非特許文献1に開示されるようなメカノケミカル反応を利用し、稀少金属を効率よく、製造又は回収することができる実用化可能な方法を提供することを課題とする。 An object of the present invention is to provide a method that can be put into practical use by utilizing a mechanochemical reaction as disclosed in Non-Patent Document 1 and capable of efficiently producing or recovering a rare metal.

本発明者等は、特定の雰囲気下で、稀少金属酸化物粉末を珪素粉末と反応させて、稀少金属と珪素粉末を得ることができることを見出し、特願2008−206867号として特許出願したが、その後、稀少金属酸化物粉末と珪素粉末のメカノケミカル反応を、酸素を含む雰囲気下でも、有効に実施できることを見出し、本発明を完成した。 The present inventors have found that a rare metal oxide powder can be reacted with a silicon powder under a specific atmosphere to obtain a rare metal and a silicon powder, and a patent application was filed as Japanese Patent Application No. 2008-206867. Thereafter, it was found that the mechanochemical reaction between the rare metal oxide powder and the silicon powder can be carried out effectively even in an atmosphere containing oxygen, and the present invention has been completed.

本発明は、稀少金属酸化物粉末を、珪素粉末と攪拌しながらメカノケミカル反応させて、稀少金属と酸化珪素を得るものであり、稀少金属酸化物としては、インジウム、錫又はアンチモンの酸化物が使用できるものであるが、本発明におけるメカノケミカル反応は、酸素を含む雰囲気下で実施されても、酸素を含まない雰囲気(窒素、アンモニア、炭酸ガスなどの雰囲気)下で実施されてもよいが、空気雰囲気下で実施するのが経済的である。 In the present invention, a rare metal oxide powder is mechanochemically reacted with silicon powder while stirring to obtain a rare metal and silicon oxide. Examples of the rare metal oxide include oxides of indium, tin, and antimony. Although it can be used, the mechanochemical reaction in the present invention may be carried out in an atmosphere containing oxygen or in an atmosphere containing no oxygen (an atmosphere of nitrogen, ammonia, carbon dioxide, etc.). It is economical to carry out in an air atmosphere.

なお、稀少金属酸化物粉末と珪素粉末の反応は、ボールミル等で攪拌処理しながら実施するものであるが、この反応は、大気圧(約1気圧、約0.1MPa)で実施されても、加圧又は減圧下で実施されてもよい。ただし、減圧下で実施する場合は、0.01MPa以下であってもよいが、通常、0.01MPa〜0.1MPa程度の減圧であるのが好ましい。 The reaction between the rare metal oxide powder and the silicon powder is carried out while stirring with a ball mill or the like, but this reaction may be carried out at atmospheric pressure (about 1 atm, about 0.1 MPa) You may implement under pressure or pressure reduction. However, when carried out under reduced pressure, it may be 0.01 MPa or less, but it is usually preferred that the reduced pressure is about 0.01 MPa to 0.1 MPa.

稀少金属酸化物は、廃液晶パネルの基盤などのカレット状粉砕物を、塩酸に溶解し、塩化物として沈殿させ、これを、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、炭酸ナトリウムからなる群から選ばれる塩類を含むアルカリ水溶液で中和し、得られた希少金属水酸化物又は炭酸化物を、乾燥・焼成して得ることができ、本発明は、廃液晶パネルからの稀少金属の回収に非常に有用なものとなる。 A rare metal oxide is a group consisting of sodium hydroxide, potassium hydroxide, ammonium hydroxide, and sodium carbonate, in which cullet-like pulverized material such as the base of a waste liquid crystal panel is dissolved in hydrochloric acid and precipitated as chloride. The rare metal hydroxide or carbonate obtained by neutralizing with an alkaline aqueous solution containing a salt selected from the above can be obtained by drying and firing, and the present invention is useful for recovering rare metals from waste liquid crystal panels. It will be very useful.

すなわち、廃液晶パネル等(例えば、廃液晶パネル、廃プラズマディスプレイパネル及び廃太陽電池等)の基盤に使用されている透明電極に含まれる稀少金属を回収するものとして、切断、破砕された前記基盤上に形成された透明電極膜を、塩酸及び硝酸混合溶液に溶解した後、アルカリ溶液にて中和して透明電極膜の成分である金属を、塩化物、水酸化物、炭酸塩として回収し、稀少金属化合物の析出後、焼成することによって金属酸化物として回収し、得られた金属酸化物と珪素を共に大気圧下で攪拌処理し、稀少金属酸化物を稀少金属として析出させることができるのである。 That is, the substrate that has been cut and crushed to recover rare metals contained in transparent electrodes used in the substrate of waste liquid crystal panels (for example, waste liquid crystal panels, waste plasma display panels, and waste solar cells). The transparent electrode film formed above is dissolved in a hydrochloric acid and nitric acid mixed solution and then neutralized with an alkaline solution to recover the metal that is a component of the transparent electrode film as chloride, hydroxide, and carbonate. After the rare metal compound is precipitated, it is recovered as a metal oxide by firing, and the obtained metal oxide and silicon can be stirred together under atmospheric pressure to deposit the rare metal oxide as a rare metal. It is.

この方法では、廃液晶パネル等(廃液晶パネル、廃プラズマディスプレイパネル及び廃太陽電池等)を、パネル切断工程、切断された廃パネルの粉砕工程(カレット状に粉砕)、必要に応じて粉砕されたパネルから有機物を除去する工程、粉砕されたカレット状の基盤から基盤上に形成されている薄膜材料を化学薬品で溶解処理する工程を備えるものであり、基板上に形成された薄膜材料を純度良く、また効率的に回収できる。 In this method, waste liquid crystal panels, etc. (waste liquid crystal panels, waste plasma display panels, waste solar cells, etc.) are crushed as necessary. The process includes removing organic substances from the panel, and dissolving the thin film material formed on the substrate from the pulverized cullet-like substrate with chemicals, and purifying the thin film material formed on the substrate. Good and efficient recovery.

なお、本発明では、空気雰囲気下における攪拌処理により、稀少金属を析出させた後、その処理槽に水を加えて水洗処理した後に、稀少金属を回収するのが好ましい。 In the present invention, it is preferable to collect the rare metal after depositing the rare metal by an agitation treatment in an air atmosphere and then adding water to the treatment tank and performing a water washing treatment.

本発明の方法では、稀少金属酸化物を用いて、熱及び特段の化学薬品を使用することなく直接的に稀少金属(インジウム等)を経済的に且つ高純度で製造することができる。かかる本発明の方法は、稀少金属を含む廃棄物から稀少金属を回収するのにも有効であり、例えば、廃液晶パネルの処理方法に適用すると、基板材料(ガラス)は金属薄膜が付着していないものとなり、珪石代替材料として再利用することができる。
従って、本発明を利用することで、殆んど廃棄物を出さないリサイクルが可能となり、理想的な廃パネルの処理方法等の提供が可能となる。
なお、本発明で使用する珪素(Si)は、半導体製造工程で不良となった廃シリコンウエハやシリコンインゴット製造工程での廃製品を利用できるため、本発明の方法は、非常に環境に優しい効率のよい方法と言える。
In the method of the present invention, a rare metal (such as indium) can be directly produced economically and with high purity by using a rare metal oxide without using heat and special chemicals. Such a method of the present invention is also effective for recovering rare metals from wastes containing rare metals. For example, when applied to a method for treating waste liquid crystal panels, the substrate material (glass) has a metal thin film attached thereto. It can be reused as a substitute material for silica.
Therefore, by utilizing the present invention, it is possible to recycle almost no waste, and it is possible to provide an ideal waste panel processing method and the like.
In addition, since the silicon (Si) used in the present invention can be used as a waste silicon wafer which has become defective in the semiconductor manufacturing process or a waste product in the silicon ingot manufacturing process, the method of the present invention is very environmentally friendly Can be said to be a good method.

図1は、本発明の方法の一例を示すフローチャートである。FIG. 1 is a flowchart showing an example of the method of the present invention. 図2は、本発明の実施例における粉末のX線回折(XRD)図であり、(A)はIn2O3 + Siのメカノケミカル反応処理前の測定結果、(B)はメカノケミカル反応処理後の測定結果を示す。FIG. 2 is an X-ray diffraction (XRD) diagram of the powder in the example of the present invention, (A) is a measurement result before In 2 O 3 + Si mechanochemical reaction treatment, and (B) is a mechanochemical reaction treatment. The measurement result after is shown.

本発明の一形態について図1に基づいて説明すれば以下の通りである。
<S1>前処理工程
廃液晶パネル等(例えば液晶パネルの製造工場において廃棄される廃液晶パネル、液晶表示装置の組立工場にて廃棄され分解処理して排出される廃液晶パネル、及び市場にて廃棄された製品を解体処理して排出される廃液晶パネル等)について、基盤材料以外のプラスチック部材や金属部材、有機フィルム等を除外する。
<S2>パネル切断工程
上記前処理された基盤を切断する。
<S3>粉砕工程
切断された基盤をカレット状に粉砕する。
<S4>酸による薄膜溶解と中和、焼成
塩酸及び硝酸混液でガラス基板上に形成されている薄膜を除去し、基板上に形成されていた透明電極に含まれる稀少金属を前記混液中に溶解した後、アルカリ溶液にて中和し、得られた希少金属水酸化物や炭酸化物を焼成して、稀少金属酸化物とする。
<S5>メカノケミカル反応
上記希少金属酸化物を含むカレット状の基盤材料を、反応槽中、空気雰囲気下で、珪素(純度99.9%)と反応させる。この反応は、1気圧(0.10MPa)で攪拌しながら実施されるのがよい。この反応で、稀少金属酸化物は稀少金属(例えばインジウム)として、また珪素は酸化珪素として析出する。
<S6>洗浄・分離
上記反応生成物を50℃の10%KOH水溶液に入れ、2時間攪拌しながら処理することにより、酸化珪素を溶解処理する。この処理によって、インジウム(固体)と酸化珪素のKOH水溶液(KSiO)にして、固液分離し、生成したインジウムを回収する。
<S7>検査
生成したインジウムの純度検査を実施する。
One embodiment of the present invention will be described with reference to FIG.
<S1> Pre-treatment process waste liquid crystal panel etc. (for example, waste liquid crystal panel discarded in a liquid crystal panel manufacturing factory, waste liquid crystal panel discarded in a liquid crystal display assembly factory, disassembled and discharged, and in the market For waste liquid crystal panels etc. that are discharged after dismantling the discarded products), exclude plastic members, metal members, organic films, etc. other than the base materials.
<S2> Panel cutting step The substrate that has been pretreated is cut.
<S3> Grinding step The cut substrate is pulverized into a cullet shape.
<S4> Dissolving and neutralizing the thin film with acid, removing the thin film formed on the glass substrate with a mixture of calcined hydrochloric acid and nitric acid, and dissolving the rare metal contained in the transparent electrode formed on the substrate into the mixed liquid After that, it is neutralized with an alkali solution, and the obtained rare metal hydroxide or carbonate is fired to obtain a rare metal oxide.
<S5> Mechanochemical reaction The cullet-like base material containing the rare metal oxide is reacted with silicon (purity 99.9%) in an air atmosphere in a reaction vessel. This reaction is preferably carried out with stirring at 1 atm (0.10 MPa). By this reaction, the rare metal oxide is deposited as a rare metal (for example, indium), and silicon is deposited as silicon oxide.
<S6> Cleaning / Separation The above reaction product is placed in a 10% KOH aqueous solution at 50 ° C. and treated with stirring for 2 hours to dissolve silicon oxide. By this treatment, indium (solid) and a silicon oxide KOH aqueous solution (K 2 SiO 3 ) are separated into solid and liquid, and the produced indium is recovered.
<S7> Inspection A purity inspection of the generated indium is performed.

液晶パネルの製造工程において廃棄される廃液晶パネルから、先ず基盤材料以外のプラスチック材料、金属部材、有機フィルム等を除外し、その後基盤を切断し、切断した基盤をカレット状に粉砕し、このカレット状の基盤材料(透明電極材料が付着している)を、塩酸を主体とした酸に溶解し、塩化物として沈澱させ、これにアルカリ水溶液(NaOH、NH4OH、Na2CO3)を注入して中和させて、水酸化物或は炭酸化物として安定化させる。
なお、この際、(化学反応式1〜4)に示す化学反応が発生していると考えられる。

(化学反応式1)In2O3 + 6HCl――> 2InCl3 +3H2O
(化学反応式2)InCl3 +3NaOH――>In(OH)3 +3NaCl
(化学反応式3)InCl3 +3NH4OH――>In(OH)3 +3NH4Cl
(化学反応式4)InCl3 +3Na2CO3――>In2(CO)3 +6NaCl

得られた沈澱物、水酸化インジウムIn(OH)3及び炭酸インジウムIn2(CO)3は、乾燥・焼成(600℃〜700℃で2時間)することにより、酸化インジウム(In2O3)として安定な形態で保管する。
First, plastic materials other than the base material, metal members, organic films, etc. are excluded from the waste liquid crystal panel discarded in the manufacturing process of the liquid crystal panel, then the base is cut, and the cut base is crushed into a cullet shape. The base material (with transparent electrode material attached) is dissolved in an acid mainly composed of hydrochloric acid and precipitated as a chloride, and an alkaline aqueous solution (NaOH, NH 4 OH, Na 2 CO 3 ) is injected into it. To neutralize and stabilize as hydroxide or carbonate.
At this time, it is considered that the chemical reaction shown in (chemical reaction formulas 1 to 4) occurs.

(Chemical reaction formula 1) In 2 O 3 + 6HCl-> 2InCl 3 + 3H 2 O
(Chemical reaction formula 2) InCl 3 + 3NaOH-> In (OH) 3 + 3NaCl
(Chemical reaction formula 3) InCl 3 + 3NH 4 OH-> In (OH) 3 + 3NH 4 Cl
(Chemical reaction formula 4) InCl 3 + 3Na 2 CO 3- > In 2 (CO) 3 + 6NaCl

The obtained precipitates, indium hydroxide In (OH) 3 and indium carbonate In 2 (CO) 3 are dried and fired (at 600 ° C. to 700 ° C. for 2 hours) to produce indium oxide (In 2 O 3 ). Store in a stable form.

本発明で、稀少金属を回収する方法は、先ず、空気雰囲気下で密封容器内に、所定の金属を含む金属酸化物から成る化合物の粉末と、珪素(Si)の粉末と、粉砕用ボールとを封入する。封入した後、密封容器を所定時間、所定の速度で回転させて化合物の粉末と珪素の粉末とを混合して粉砕する。これにより所定の金属を含有する混合粉末を生成することが出来る。この生成された混合粉末をKOH水溶液を用いて酸化珪素を溶解処理することにより、インジウム(固体)と酸化珪素のKOH水溶液を、固液分離し、生成した所定の金属インジウムを回収することができる。 In the present invention, a method for recovering a rare metal includes firstly, in a sealed container under an air atmosphere, a compound powder made of a metal oxide containing a predetermined metal, a silicon (Si) powder, a grinding ball, Enclose. After the sealing, the sealed container is rotated at a predetermined speed for a predetermined time to mix and pulverize the compound powder and the silicon powder. Thereby, a mixed powder containing a predetermined metal can be generated. The generated mixed powder is dissolved in silicon oxide using a KOH aqueous solution, so that the indium (solid) and the KOH aqueous solution of silicon oxide are separated into solid and liquid, and the generated predetermined metal indium can be recovered. .

この様に、本発明の実施の形態の金属回収方法は、空気雰囲気下での粉砕操作という簡便な方法で且つ高品質の金属を効率良く回収することが出来る。所定の金属を粉末として
回収出来る為、取扱が容易である。又、原料に機械的エネルギーを与えて化学反応を促進するメカノケミカル反応を利用したものであり、反応が密封系で、反応に際して特段加熱する必要が無い。この様に非加熱であるため温度制御や安全装備等が不要であり、装置を小型化することができ、工業的な実施が容易である。
As described above, the metal recovery method according to the embodiment of the present invention can recover a high-quality metal efficiently by a simple method called a pulverization operation in an air atmosphere. Since a predetermined metal can be recovered as a powder, handling is easy. In addition, it uses a mechanochemical reaction that promotes a chemical reaction by applying mechanical energy to the raw material, and the reaction is a sealed system and does not require any special heating during the reaction. Since it is not heated in this way, temperature control, safety equipment, etc. are unnecessary, the apparatus can be miniaturized, and industrial implementation is easy.

本発明の実施の形態の金属回収方法を利用して、空気雰囲気下で、酸化インジウムからインジウムを回収する試験を行った。ジルコニア製の密封型ミルポットにジルコニア製粉砕用ボール24個と、酸化インジウム粉末2gと、珪素粉末0.61gとを充填し、ステンレススチール製のオーバーポットにより完全に密封した。次いで、粉砕装置により、密封容器を700rpmで、3時間回転させボール衝突を誘起させた。こうして生成された粉末をX線回折(XRD)で分析したところ、図2に示すように、インジウムを含んでいることが確認された(メカノケミカル反応処理後の(B)のチャートではIn2O3 及び Siの回折像は確認できず、金属Inの回折像のみが観察された)。 Using the metal recovery method according to the embodiment of the present invention, a test for recovering indium from indium oxide was performed in an air atmosphere. A sealed zirconia mill pot was filled with 24 zirconia balls for pulverization, 2 g of indium oxide powder, and 0.61 g of silicon powder, and completely sealed with a stainless steel overpot. Next, a ball collision was induced by rotating the sealed container at 700 rpm for 3 hours with a pulverizer. When the powder thus produced was analyzed by X-ray diffraction (XRD), it was confirmed that it contained indium as shown in FIG. 2 (In 2 O in the chart of (B) after the mechanochemical reaction treatment). 3 and Si diffraction images could not be confirmed, only metal In diffraction images were observed).

このインジウム含有粉末と純水とを、粉砕用ボールと共に密封容器に充填し、粉砕装置により、300rpmで10分間回転させて水洗処理を行った。こうして生成された粉末は微細なインジウム粉末と酸化珪素粉末であるので、所定の金属のみを分離回収した。この際(化学反応式5)に示す化学反応が発生していると考えられる。

(化学反応式5) 2InO +3Si → 4In + 3SiO2

上式のメカノケミカル反応では、化学反応の前後でのギブスの自由エネルギーの変化が、−906 KJ/molと負になる化学反応になっている。
The indium-containing powder and pure water were filled in a sealed container together with a grinding ball, and washed with water by rotating at 300 rpm for 10 minutes with a grinding device. Since the powder thus produced is a fine indium powder and a silicon oxide powder, only a predetermined metal was separated and recovered. At this time, it is considered that the chemical reaction shown in (chemical reaction formula 5) occurs.

(Chemical reaction formula 5) 2In 2 O 3 + 3Si → 4In + 3SiO 2

In the above mechanochemical reaction, the change in Gibbs free energy before and after the chemical reaction is a negative chemical reaction of -906 KJ / mol.

このように、化学反応の前後でのギブスの自由エネルギーの変化が負になる金属であれば、本発明の実施の形態の金属の回収方法により金属を回収することが出来る。その事例として次の化学反応式6及び7を掲げる。

(化学反応式6) 2SnO2 +2Si → 2SiO2 +2Sn; ΔG°f=−674KJ/mol
(化学反応式7) 2Sb2O3 +3Si → 3SiO2 + 4Sb ΔG°f=−2,823KJ/mol
As described above, if the change in Gibbs free energy before and after the chemical reaction is negative, the metal can be recovered by the metal recovery method of the embodiment of the present invention. The following chemical reaction formulas 6 and 7 are listed as examples.

(Chemical reaction formula 6) 2SnO 2 + 2Si → 2SiO 2 + 2Sn; ΔG ° f = −674KJ / mol
(Chemical reaction formula 7) 2Sb 2 O 3 + 3Si → 3SiO 2 + 4Sb ΔG ° f = -2,823KJ / mol

なお、透明導電膜(Indium Tin oxide)はInO:SnO2=9:1で構成されるが、これからインジウムを回収する方法としては、塩酸溶液に溶解し、インジウムと錫が混じった回収液に水酸化ナトリウムを添加して、pH2でSn(OH)2を沈殿させ、更に水酸化ナトリウムを添加してpH4〜5程度にて、In(OH)3を沈殿させ、これらを分離焼成して、In(OH)3をIn2O3とし、これを実施例1と同様の方法で、空気雰囲気下で珪素粉末と反応させ、インジウムを回収するという方法が適用できる。 In addition, the transparent conductive film (Indium Tin oxide) is composed of In 2 O 3 : SnO 2 = 9: 1. However, as a method of recovering indium from this, it is possible to recover indium and tin mixed with hydrochloric acid solution. Sodium hydroxide is added to the solution to precipitate Sn (OH) 2 at pH 2, and sodium hydroxide is further added to precipitate In (OH) 3 at pH 4-5, which are separated and fired. Thus, In (OH) 3 is changed to In 2 O 3 and this is reacted with silicon powder in an air atmosphere in the same manner as in Example 1 to recover indium.

Claims (6)

稀少金属酸化物粉末を、珪素粉末と攪拌しながらメカノケミカル反応させて、稀少金属と酸化珪素を得るものであり、前記稀少金属がインジウム、錫又はアンチモンであることを特徴とする稀少金属の製造方法。 A rare metal oxide powder is obtained by causing a mechanochemical reaction while stirring with a silicon powder to obtain a rare metal and silicon oxide, wherein the rare metal is indium, tin or antimony. Method. 前記メカノケミカル反応を、酸素を含む雰囲気で実施する請求項1記載の製造方法。 The manufacturing method of Claim 1 which implements the said mechanochemical reaction in the atmosphere containing oxygen. 前記雰囲気が、空気である請求項2記載の製造方法。 The manufacturing method according to claim 2, wherein the atmosphere is air. 前記メカノケミカル反応を大気圧下で実施する請求項1〜3いずれか1項の製造方法。 The manufacturing method of any one of Claims 1-3 which implements the said mechanochemical reaction under atmospheric pressure. 上記反応生成物をKOH水溶液で処理し、酸化珪素をKOH水溶液として、稀少金属と酸化珪素を固液分離する請求項1〜4いずれか1項の製造方法。 The process according to any one of claims 1 to 4, wherein the reaction product is treated with a KOH aqueous solution, and the rare metal and silicon oxide are solid-liquid separated using silicon oxide as the KOH aqueous solution. 前記稀少金属酸化物が、廃液晶パネル、廃プラズマディスプレイパネル及び廃太陽電池の基盤のカレット状粉砕物を、塩酸に溶解し、前記稀少金属を塩化物として沈殿させ、これを、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、炭酸ナトリウムからなる群から選ばれる塩類を含むアルカリ水溶液で中和し、得られた希少金属水酸化物又は炭酸化物を、乾燥・焼成して得られたものである請求項1〜5いずれか1項の製造方法。 The rare metal oxide dissolves the cullet-like pulverized material of the base of the waste liquid crystal panel, the waste plasma display panel and the waste solar cell in hydrochloric acid, and precipitates the rare metal as a chloride. Neutralized with an alkaline aqueous solution containing a salt selected from the group consisting of potassium hydroxide, ammonium hydroxide and sodium carbonate, and obtained by drying and firing the obtained rare metal hydroxide or carbonate. The manufacturing method of any one of Claims 1-5.
JP2009071251A 2009-03-24 2009-03-24 Rare metal production method Expired - Fee Related JP5393213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071251A JP5393213B2 (en) 2009-03-24 2009-03-24 Rare metal production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071251A JP5393213B2 (en) 2009-03-24 2009-03-24 Rare metal production method

Publications (2)

Publication Number Publication Date
JP2010222641A true JP2010222641A (en) 2010-10-07
JP5393213B2 JP5393213B2 (en) 2014-01-22

Family

ID=43040147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071251A Expired - Fee Related JP5393213B2 (en) 2009-03-24 2009-03-24 Rare metal production method

Country Status (1)

Country Link
JP (1) JP5393213B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224926A (en) * 2011-04-21 2012-11-15 Tohoku Univ Method for producing rare metal
KR101289987B1 (en) 2011-06-29 2013-07-26 엘지디스플레이 주식회사 Method for recovering valuable metal in lcd waste glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011549A (en) * 1999-07-01 2001-01-16 Dowa Mining Co Ltd METHOD FOR LEACHING In FROM In-CONTAINING OXIDE
JP2008274413A (en) * 2007-03-30 2008-11-13 Tohoku Univ Method for recovering metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011549A (en) * 1999-07-01 2001-01-16 Dowa Mining Co Ltd METHOD FOR LEACHING In FROM In-CONTAINING OXIDE
JP2008274413A (en) * 2007-03-30 2008-11-13 Tohoku Univ Method for recovering metal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7013002677; P. Patel, S. Roy, I.L.-Seok Kim, P.N. Kumta: 'Synthesis and characterization of tin and antimony based composites derived by mechanochemical in si' Materials Science and Engineering B 111 (2004), 2004, pp237-241 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224926A (en) * 2011-04-21 2012-11-15 Tohoku Univ Method for producing rare metal
KR101289987B1 (en) 2011-06-29 2013-07-26 엘지디스플레이 주식회사 Method for recovering valuable metal in lcd waste glass

Also Published As

Publication number Publication date
JP5393213B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5354486B2 (en) Metal recovery method
EP1994191A2 (en) Method of extracting lithium
JP6986997B2 (en) Lithium carbonate manufacturing method and lithium carbonate
JP5913639B2 (en) Method for producing indium oxide-tin oxide powder, method for producing ITO target, and method for producing indium hydroxide-metastannic acid mixture
Schmidt et al. Organic solvent free PbI2 recycling from perovskite solar cells using hot water
US20150233004A1 (en) Method of selective recovery of valuable metals from mixed metal oxides
US20120237419A1 (en) Method for producing lithium carbonate
TW202134182A (en) Process for the purification of lithium salts
KR102165275B1 (en) Method for recovering lithium compound from waste solution of lithium secondary battery raw material manufacturing process and Apparatus for recovering lithium compound
JP5393213B2 (en) Rare metal production method
JP6026332B2 (en) Method for recovering In-Ga-Zn oxide from IGZO-based sintered body
KR101213604B1 (en) Method for recycling indium from indium, gallium and zinc containing scrap
Lee et al. Recovery of Li from lithium aluminum silicate (LAS) glass-ceramics after heat treatment at 1000° C and Ca salt-assisted water leaching in two stages before and after calcination at 600° C
CN112678851B (en) Preparation method of low-cost battery-grade lithium carbonate
JP4295810B1 (en) Rare metal recovery method
JP5453068B2 (en) Rare metal production method
JP2009191309A (en) Method for collecting crude indium
WO2018072547A1 (en) Method of recovering indium from liquid crystal-containing indium concentrate
JP5715474B2 (en) Rare metal production method
KR101054840B1 (en) Method for preparing tin oxide powder recycled indium tin oxide waste scrap
JP2009091599A (en) Method for recovering rare metals contained in transparent electrode
TWI518041B (en) A method of recycling sodium hexafluoroaluminate from hydrofluoric acid waste liquid
Li et al. Separation of Cs+ from Rb+ and Cs+ co-existing solution by Cs3Bi2I9 precipitation to produce CsI
Li et al. Removal of tin and extraction of indium from acid-dissolved solution of waste indium-tin targets
Zheng et al. Hydrothermal and wet-chemical synthesis of pure LiTaO3 powders by using commercial tantalum hydroxide as starting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees