JP2001010817A - Production of copper sulfate - Google Patents

Production of copper sulfate

Info

Publication number
JP2001010817A
JP2001010817A JP11177641A JP17764199A JP2001010817A JP 2001010817 A JP2001010817 A JP 2001010817A JP 11177641 A JP11177641 A JP 11177641A JP 17764199 A JP17764199 A JP 17764199A JP 2001010817 A JP2001010817 A JP 2001010817A
Authority
JP
Japan
Prior art keywords
copper
copper powder
copper sulfate
acid solution
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11177641A
Other languages
Japanese (ja)
Inventor
Koji Ando
孝治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11177641A priority Critical patent/JP2001010817A/en
Publication of JP2001010817A publication Critical patent/JP2001010817A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently produce high purity copper sulfate by immersing copper powder containing Ni as one of impurities into an acid solution to remove Ni contained in the copper powder by dissolving Ni, by dissolving copper powder as filter cake in sulfuric acid and by crystallization to obtain copper sulfate having an Ni grade not larger than a specific value. SOLUTION: Copper powder recovered by electrodeposition from an electrolyte and containing Ni as one of impurities is immersed in an acid solution to remove Ni contained in the copper powder by dissolving Ni. As the acid solution, sulfuric acid solution having a normality not smaller than equivalents to settle the Ni and having the sulfuric acid concentration of 1 wt.% is used. By washing the copper powder before and/or after the immersion into the acid solution, Ni alone can be removed. Copper powder obtained by filtering the acid solution used for the immersion is dissolved in sulfuric acid and then crystallization is carried out to obtain copper sulfate having an Ni grade of <=10 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Niを含む銅粉か
ら効率的にNiを除去し高純度の硫酸銅を製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high purity copper sulfate by efficiently removing Ni from copper powder containing Ni.

【0002】[0002]

【従来の技術】硫酸銅は、農薬やめっき液の原料として
用いられている。一般に、このような硫酸銅は、銅の電
解精製工程において、アノードから溶出する銅よりもカ
ソードで電析する銅が1%程度少ないことから、電解液
へ蓄積してくる銅イオンを除去する必要があり、この銅
イオンの除去工程において製造されている。すなわち、
電解液を濃縮・冷却することで過飽和になった銅が硫酸
銅の形で分離でき、分離した硫酸銅を乾燥することで製
品として出荷できるようになる。
2. Description of the Related Art Copper sulfate is used as a raw material for agricultural chemicals and plating solutions. In general, such copper sulfate is required to remove copper ions accumulated in the electrolytic solution in the electrolytic copper refining step, since copper deposited on the cathode is about 1% less than copper eluted from the anode. And is manufactured in the copper ion removal step. That is,
Supersaturated copper can be separated in the form of copper sulfate by concentrating and cooling the electrolyte, and the separated copper sulfate can be dried and shipped as a product.

【0003】しかし、電解液には銅イオン以外にもアノ
ードから溶出し蓄積した不純物や電解液の遊離硫酸が多
量に含まれている。上記の方法では、これらの不純物も
そのまま製品に混入してしまうこととなる。これら不純
物の多くは硫酸銅結晶表面への付着が主と考えられるこ
とから、晶析した硫酸銅を再度溶解し、これを濃縮・結
晶する工程を繰り返すことによって、不純物品位の少な
い硫酸銅を得ることが行われている。
However, in addition to copper ions, the electrolytic solution contains a large amount of impurities eluted and accumulated from the anode and free sulfuric acid of the electrolytic solution. In the above-described method, these impurities are directly mixed into the product. Since most of these impurities are considered to be mainly attached to the copper sulfate crystal surface, the crystallized copper sulfate is dissolved again, and the process of concentrating and crystallizing the same is repeated to obtain copper sulfate with a low impurity quality. That is being done.

【0004】しかし、不純物の中でもNiは、電子材料
などのめっきではもっとも嫌われる不純物であるため、
これらの用途に使用するには、例えば、Ni品位を10
ppm程度と通常の硫酸銅に比較して100分の1程度
の品位にまで下げることが必要となる。しかしながら、
Niは、その挙動が銅とほぼ同じであり、結晶表面への
付着以外に銅と共析するNi分も多いことから濃縮・結
晶によって、Ni量を減少させる方法は、効果的な方法
とはいえなかった。
However, among impurities, Ni is the most hated impurity in plating of electronic materials and the like.
For use in these applications, for example, Ni grade of 10
It is necessary to lower the grade to about ppm and about 100 times lower than that of ordinary copper sulfate. However,
Since Ni has almost the same behavior as copper and has a large amount of Ni eutectoid with copper in addition to the adhesion to the crystal surface, the method of reducing the amount of Ni by concentration and crystallization is an effective method. I couldn't say it.

【0005】また、pH調整によってNiを分離する方
法もあるが、Cuの方が先に沈殿することになり、大量
のCuの沈殿が生成するため、この方法で、Niを分離
するのはコスト面からも引き合わないという問題があ
る。
There is also a method of separating Ni by pH adjustment. However, since Cu precipitates first and a large amount of Cu precipitates, it is costly to separate Ni by this method. There is a problem that they do not agree from the aspect.

【0006】また、イオン交換樹脂・溶媒抽出などの方
法を用いても、Niと銅は殆ど同一の分離挙動を示すこ
とから、選択的・効果的に除去することはきわめて困難
である。このため、従来はNiの少ない高純度な硫酸銅
を得るためには、濃縮・結晶の工程を通常の硫酸銅より
さらに2〜3回以上も多く繰り返すことが必要であり、
製造コスト・設備稼働率・工数・製品収率等の点で著し
く不利であった。
Even when a method such as ion-exchange resin / solvent extraction is used, it is extremely difficult to selectively and effectively remove Ni and copper since they exhibit almost the same separation behavior. For this reason, conventionally, in order to obtain high-purity copper sulfate with a small amount of Ni, it is necessary to repeat the concentration and crystallization process two or more times more than usual copper sulfate,
It was extremely disadvantageous in terms of manufacturing cost, equipment operation rate, man-hours, product yield, etc.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記課題を
解決し、Ni分の少ない硫酸銅を経済的に製造する方法
を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a method for economically producing copper sulfate containing less Ni.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では、たとえば、電解液から電析させて回収
した電解銅粉を原料とし、これを酸に浸漬することによ
り、Niを選択的に溶解除去する方法を用いた。すなわ
ち、不純物としてNiを含む銅粉を原料とし、前記銅粉
を酸溶液中に浸漬することにより銅粉中に含まれるNi
を溶解除去し、濾過後に銅粉を硫酸に溶解させ、結晶さ
せることによってNiが10ppm以下である硫酸銅を
得ることを特徴とする硫酸銅の製造方法である。
In order to solve the above-mentioned problems, according to the present invention, for example, Ni is obtained by immersing an electrolytic copper powder recovered by electrodeposition from an electrolytic solution in an acid. A method of selectively dissolving and removing was used. That is, a copper powder containing Ni as an impurity is used as a raw material, and the copper powder is immersed in an acid solution to form Ni powder contained in the copper powder.
Is dissolved and removed, and after filtration, copper powder is dissolved in sulfuric acid and crystallized to obtain copper sulfate having Ni of 10 ppm or less.

【0009】この方法において、Niを溶解除去する酸
溶液としては、Niを固定できる当量以上の物量で、か
つ濃度が重量比で1%である硫酸溶液を用いることが望
ましい。また、前記酸溶液に浸漬する前、または、浸漬
した後のいずれか、もしくは、前後で水で銅粉を洗浄す
ることによりNi分を除去することによって、より効果
的に高純度の硫酸銅が得られる。
In this method, it is desirable to use, as the acid solution for dissolving and removing Ni, a sulfuric acid solution having an amount equal to or more than an amount capable of fixing Ni and having a concentration of 1% by weight. Further, either before or after immersion in the acid solution, or by removing the Ni component by washing the copper powder with water before and after, so that high-purity copper sulfate is more effectively obtained. can get.

【0010】[0010]

【発明の実施の形態】硫酸銅を製造するには、Ni品位
の少ない原料を用いれば濃縮・結晶において硫酸銅製品
へのNi混入の少ない硫酸銅が得られるはずである。し
かし、前述したように従来行なわれている電解液から直
接結晶する方法では、Niの混入を防ぐことは困難であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the production of copper sulfate, if a raw material with a low Ni grade is used, copper sulfate with a small amount of Ni mixed into a copper sulfate product in concentration and crystallization should be obtained. However, as described above, it is difficult to prevent Ni from being mixed in the conventional method of directly crystallizing from an electrolytic solution.

【0011】そこで、電気銅を原料とすることが考えら
れる。電気銅は99.99%程度の純度があるため、原
料にした場合には、Niを始めとする不純物の多くは既
に分離できている。しかし、板状に電析した通常の電気
銅の形状のままでは溶解性が劣るため、表面積を増加す
るために切断することが必要になる。このために取り扱
い設備を必要とし手間がかかることや、切断電気銅を溶
解するために多量のエアーや酸を必要とし、これらによ
るコスト上昇が無視出来ない。
Therefore, it is conceivable to use electrolytic copper as a raw material. Since electrolytic copper has a purity of about 99.99%, when used as a raw material, many impurities including Ni have already been separated. However, if the shape of the normal electrolytic copper electrodeposited in the form of a plate is inferior in solubility, cutting is necessary to increase the surface area. For this reason, handling equipment is required and labor is required, and a large amount of air and acid are required for dissolving the cut copper, so that the cost increase due to these can not be ignored.

【0012】上記の問題を解決するためには、粉状ない
し粒状に電析した銅を使用することが望ましい。このよ
うな形状であれば、溶解は少量のエアーで比較的容易に
溶解することができ、取り扱いも容易である。しかし、
一方では、粉状ないし粒状の電気銅を得るためには電解
液の銅濃度を低く維持した状態か、電流密度を高くとる
ことが必要となる。しかし、これらの電解条件ではNi
が電析する可能性もまた増加してしまうことになる。ま
た、粉状または、粒状の電析は表面積が増加することに
より巻き込みによるコンタミを増加することもまた事実
であり、そのままでは電解液から直接晶析した場合と同
じ問題となる。
In order to solve the above-mentioned problems, it is desirable to use powdered or granular electrodeposited copper. With such a shape, it can be relatively easily dissolved with a small amount of air, and handling is easy. But,
On the other hand, in order to obtain powdered or granular electrolytic copper, it is necessary to keep the copper concentration of the electrolytic solution low or to increase the current density. However, under these electrolysis conditions, Ni
Will also increase the likelihood of electrodeposition. It is also true that powdery or granular electrodeposition increases contamination due to entrainment due to an increase in surface area, and as it is, the same problem as in the case of direct crystallization from an electrolytic solution.

【0013】このため、得られた銅粉を一度酸で洗浄す
ることでNiを除去することが有効であることを見出し
た。すなわち、銅粉の表面に付着したNiを水ないしご
く薄い酸で除去し、内部に電析したNiは表面の銅を一
度溶解するほどの酸で洗浄することである。
Therefore, it has been found that it is effective to remove Ni by washing the obtained copper powder once with an acid. That is, the Ni adhered to the surface of the copper powder is removed with water or a very thin acid, and the Ni deposited inside is washed with an acid enough to dissolve the copper on the surface once.

【0014】酸洗に用いる酸濃度は高い方が良いが、濃
度が上がるほど銅粉中のCuの溶出も増加しロスも増加
する。ここで、Niを選択的に除去するには、少量の薄
い酸溶液に浸漬し、しばらく放置するだけで銅粉の表面
が溶解し、続いてNiが溶出するのと同時に、Cuが再
析出する効果を見出した。この効果を利用することによ
り、Niのみを選択的に溶出することが可能となり、不
純物としてのNiの少ない銅粉を得ることが可能とな
る。よって、高純度な硫酸銅が経済的に製造できること
になる。
The higher the acid concentration used for pickling, the better, but as the concentration increases, the elution of Cu in the copper powder increases and the loss increases. Here, in order to selectively remove Ni, the surface of the copper powder is dissolved only by immersing in a small amount of a thin acid solution and left for a while, and then Cu is reprecipitated at the same time as Ni is eluted. I found an effect. By utilizing this effect, it becomes possible to selectively elute only Ni, and it is possible to obtain a copper powder containing little Ni as an impurity. Therefore, high-purity copper sulfate can be produced economically.

【0015】[0015]

【実施例】(実施例1)Cu:95重量%、Ni:0.
3重量%の品位である電解により製造した銅粉100g
に重量費で1%の硫酸500mlを加え、常温にて攪拌
しながら4時間浸漬した。その後5Cのろ紙で濾過し
た。引き続いてこの澱物に300g/lの硫酸500m
lを混ぜ80〜90℃の温度で溶解した。ほぼ溶解した
後、溶液を5Cのろ紙で濾過し、引き続いて液量が25
0mlになるまで約2時間かけて濃縮した。所定の液量
に達した後、攪拌しながら室温まで4時間かけて冷却
し、結晶を分離した。結晶は室温で乾燥し分析した。そ
の結果、Ni4ppmの硫酸銅結晶が得られた。
(Example 1) Cu: 95% by weight, Ni: 0.
100 g of copper powder produced by electrolysis with a quality of 3% by weight
Was added with 500 ml of 1% sulfuric acid by weight and immersed for 4 hours with stirring at room temperature. Thereafter, the mixture was filtered with a 5C filter paper. Subsequently, 500 g of 300 g / l sulfuric acid was added to the precipitate.
and dissolved at a temperature of 80-90 ° C. After almost dissolution, the solution was filtered through a 5C filter paper,
It was concentrated to 0 ml over about 2 hours. After reaching a predetermined liquid volume, the mixture was cooled to room temperature with stirring over 4 hours to separate crystals. The crystals were dried at room temperature and analyzed. As a result, copper sulfate crystals of 4 ppm of Ni were obtained.

【0016】なお、浸漬時間を1時間から24時間まで
変えて比較を行ったが、洗浄液のNi濃度は4時間程度
で平衡になり、すなわち溶解が終了したと判断された。 (実施例2)実施例1と同様に電解銅粉100gを重量
比で1%の硫酸で洗浄した。ただし洗浄の前後にそれぞ
れ60℃、500mlの純水で各30分づつ洗浄し、濾
過した後に酸洗ないし溶解を行った。結晶後の分析値
は、Ni1ppmともっとも高純度な結果が得られた。
なお、酸浸漬前に洗浄した洗浄後液を分析すると、Ni
180mg/lに対してCu1mg/lと銅はロスを無
視できるほどしか溶出しないこともわかった。したがっ
て、銅粉に水溶性のNiが付着している場合には、酸洗
前の水洗で効果的に銅と分離できることになる。
The comparison was carried out by changing the immersion time from 1 hour to 24 hours, but it was determined that the Ni concentration of the cleaning liquid reached an equilibrium in about 4 hours, that is, the dissolution was completed. (Example 2) As in Example 1, 100 g of electrolytic copper powder was washed with 1% sulfuric acid at a weight ratio. However, before and after washing, each was washed with pure water (60 ° C., 500 ml) for 30 minutes each, filtered, and then pickled or dissolved. The analytical value after crystallization was Ni 1 ppm, which was the highest purity result.
The analysis of the post-wash solution washed before acid immersion showed that Ni
It was also found that 1 mg / l of Cu and 180 mg / l of copper eluted with negligible loss. Therefore, when water-soluble Ni is attached to the copper powder, it can be effectively separated from copper by washing with water before pickling.

【0017】なお、洗浄する硫酸の濃度0.5%〜20
%まで変えて行った試験では、硫酸濃度を1%より増加
しても、得られる硫酸銅のNi品位の差はなく、むしろ
洗浄液へのCuロスが増加するのみであった。このた
め、硫酸量はNiを硫酸Niとして固定できる当量以上
であれば、濃度はCuロスを抑えられる1%程度で充分
であることが確かめられた。 (比較例)実施例1と同様の銅粉100gに、300g
/lの濃度の硫酸500mlを加え、これを80〜90
℃に加熱しながら毎分100mlのエアーを吹き込みつ
つ2時間かけて溶解した。濾過後5Cのろ紙で濾過し、
濾液を引き続いて80〜90℃に保ちながら、250m
lの液量になるまで約2時間かけて濃縮した。さらに、
攪拌しながら4時間かけて室温まで冷却し、結晶を分離
した。結晶は室温で乾燥しこれを分析した。その結果、
硫酸銅のNiは33ppmと目標よりは高目の不充分な
品位となった。 (従来例)従来の高純度硫酸銅の製造法を実施した。C
u50g/l、Ni15g/lの濃度の電解液2000
mlを80℃の温度で1000mlまで濃縮して固液分
離した。このとき得られた硫酸銅のNi品位は、196
0ppmであった。この粗硫酸銅の結晶を1000ml
の水に溶解し、80℃でpH3になるように調整し、付
着した遊離硫酸を中和した。この溶液を濾過後再び80
℃で500mlまで濃縮し析出した結晶と固液分離し
た。この時点での硫酸銅のNi品位は、500ppmで
あった。
The concentration of the sulfuric acid to be washed is 0.5% to 20%.
%, The results showed that even when the sulfuric acid concentration was increased from 1%, there was no difference in the Ni grade of the obtained copper sulfate, but rather, only the Cu loss to the cleaning solution increased. For this reason, it was confirmed that if the amount of sulfuric acid is equal to or more than an amount capable of fixing Ni as Ni sulfate, a concentration of about 1% that can suppress Cu loss is sufficient. (Comparative example) 300 g to 100 g of the same copper powder as in Example 1
500 ml of sulfuric acid at a concentration of
The mixture was dissolved over 2 hours while blowing at 100 ml / min while heating to ° C. After filtration, it is filtered through a 5C filter paper,
While maintaining the filtrate at 80-90 ° C.,
The mixture was concentrated for about 2 hours until the liquid volume reached 1 l. further,
The mixture was cooled to room temperature over 4 hours while stirring, and the crystals were separated. The crystals were dried at room temperature and analyzed. as a result,
Ni of the copper sulfate was 33 ppm, which was higher than the target, which was insufficient quality. (Conventional example) A conventional method for producing high-purity copper sulfate was carried out. C
Electrolyte 2000 with a concentration of u50 g / l and Ni 15 g / l
The resulting solution was concentrated to 1000 ml at a temperature of 80 ° C. and separated into a solid and a liquid. The Ni grade of the obtained copper sulfate was 196
It was 0 ppm. 1000 ml of this crude copper sulfate crystal
And adjusted to pH 3 at 80 ° C. to neutralize the attached free sulfuric acid. After the solution was filtered, 80
The solution was concentrated at 500C to 500 ml and separated from precipitated crystals by solid-liquid separation. The Ni grade of the copper sulfate at this time was 500 ppm.

【0018】引き続いて、硫酸銅の溶解と析出を繰り返
すことで、3回目の再結晶で40ppm、4回目の再結
晶で1ppmのNi品位の硫酸銅が得られた。
Subsequently, by repeating dissolution and precipitation of copper sulfate, Ni-grade copper sulfate of 40 ppm was obtained in the third recrystallization and 1 ppm in the fourth recrystallization.

【0019】[0019]

【発明の効果】本発明により、Niの少ない高純度な硫
酸銅が製造できる。
According to the present invention, high-purity copper sulfate containing little Ni can be produced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 不純物としてNiを含む銅粉を原料と
し、前記銅粉を酸溶液中に浸漬することにより銅粉中に
含まれるNiを溶解除去し、濾過後に銅粉を硫酸に溶解
させ、結晶させることによってNi品位が10ppm以
下である硫酸銅を得ることを特徴とする硫酸銅の製造方
法。
1. A method using a copper powder containing Ni as an impurity as a raw material, dissolving and removing Ni contained in the copper powder by immersing the copper powder in an acid solution, dissolving the copper powder in sulfuric acid after filtration, A method for producing copper sulfate, characterized by obtaining copper sulfate having a Ni grade of 10 ppm or less by crystallization.
【請求項2】 酸溶液としてNiを固定できる当量以
上の物量で、かつ濃度が重量比で1%である硫酸溶液を
用いることを特徴とする請求項1記載の硫酸銅の製造方
法。
2. The method for producing copper sulfate according to claim 1, wherein a sulfuric acid solution having an amount equal to or more than an amount capable of fixing Ni and having a concentration of 1% by weight is used as the acid solution.
【請求項3】 酸溶液に浸漬する前、または、浸漬した
後のいずれか、もしくは、前後で水で銅粉を洗浄するこ
とによりNi分のみを除去することを特徴とする請求項
1または2に記載の硫酸銅の製造方法。
3. The method according to claim 1, wherein only the Ni component is removed by washing the copper powder with water before or after immersion in the acid solution or before and after immersion. 3. The method for producing copper sulfate according to item 1.
JP11177641A 1999-06-24 1999-06-24 Production of copper sulfate Pending JP2001010817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11177641A JP2001010817A (en) 1999-06-24 1999-06-24 Production of copper sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11177641A JP2001010817A (en) 1999-06-24 1999-06-24 Production of copper sulfate

Publications (1)

Publication Number Publication Date
JP2001010817A true JP2001010817A (en) 2001-01-16

Family

ID=16034553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11177641A Pending JP2001010817A (en) 1999-06-24 1999-06-24 Production of copper sulfate

Country Status (1)

Country Link
JP (1) JP2001010817A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786076A (en) * 2012-08-30 2012-11-21 廖勇志 Method for preparing high-purity copper sulfate by means of waste liquid of copper-contained circuit boards
US8759183B2 (en) 2012-01-03 2014-06-24 Samsung Electronics Co., Ltd. Methods of forming semiconductor devices using electrolyzed sulfuric acid (ESA)
KR101799500B1 (en) * 2017-06-19 2017-11-21 인천화학 주식회사 Manufacturing method of cupric sulphate from waste cupric chloride
CN115231763A (en) * 2022-07-21 2022-10-25 湖南金龙新材料有限公司 Treatment method of copper-containing circulating cooling water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759183B2 (en) 2012-01-03 2014-06-24 Samsung Electronics Co., Ltd. Methods of forming semiconductor devices using electrolyzed sulfuric acid (ESA)
CN102786076A (en) * 2012-08-30 2012-11-21 廖勇志 Method for preparing high-purity copper sulfate by means of waste liquid of copper-contained circuit boards
KR101799500B1 (en) * 2017-06-19 2017-11-21 인천화학 주식회사 Manufacturing method of cupric sulphate from waste cupric chloride
CN115231763A (en) * 2022-07-21 2022-10-25 湖南金龙新材料有限公司 Treatment method of copper-containing circulating cooling water

Similar Documents

Publication Publication Date Title
US8152864B2 (en) Method for production of high purity copper sulfate
KR102085016B1 (en) Purification of lithium carbonate by removing sulfate ion impurities
JP3943583B2 (en) High purity copper sulfate and method for producing the same
US6764669B2 (en) Method for producing fluorinated potassium tantalate crystal
JP2001010817A (en) Production of copper sulfate
CN108128796A (en) A kind of environment-friendly preparation method thereof of high purity silver nitrate
CN111874952A (en) Purification process of copper smelting byproduct ammonium perrhenate
JP5066025B2 (en) Method for producing copper sulfate
CN113957273B (en) Method for efficiently decomposing calcium sulfate by hydrochloric acid
JP7345728B2 (en) How to purify lithium carbonate
JPS6345131A (en) Production of cobalt sulfate having high purity
JP4779163B2 (en) Method for producing copper sulfate solution
JP2003535800A (en) Method for producing anhydrous sodium perchlorate
US4299810A (en) Process for separating selenium and telurium from each other
JP2001031419A (en) Purification of copper sulfate
JP3257105B2 (en) Method for producing zirconium oxychloride crystal
JP3137226B2 (en) Production method of high purity strontium chloride
JPH0375224A (en) Method for purifying aqueous solution of indium
JPS62100409A (en) Production of caustic potash having high purity
JPWO2003072503A1 (en) Method for purifying niobium compound and/or tantalum compound
JPH0375223A (en) Recovery of indium
KR20040091071A (en) Purification method for producing high purity niobium compound and/or tantalum compound
JP2002317286A (en) Method of preparing aqueous potassium hydroxide solution
JP2000203848A (en) Production of low-chlorine nickel cobalt sulfate solution
CN114380317A (en) Method for recycling hydrochloric acid by recovering calcium sulfate from pickle liquor