JP2002317286A - Method of preparing aqueous potassium hydroxide solution - Google Patents

Method of preparing aqueous potassium hydroxide solution

Info

Publication number
JP2002317286A
JP2002317286A JP2001121519A JP2001121519A JP2002317286A JP 2002317286 A JP2002317286 A JP 2002317286A JP 2001121519 A JP2001121519 A JP 2001121519A JP 2001121519 A JP2001121519 A JP 2001121519A JP 2002317286 A JP2002317286 A JP 2002317286A
Authority
JP
Japan
Prior art keywords
potassium chloride
aqueous solution
sodium content
solid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001121519A
Other languages
Japanese (ja)
Other versions
JP4517530B2 (en
Inventor
Junichi Ushizaki
潤一 牛崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001121519A priority Critical patent/JP4517530B2/en
Publication of JP2002317286A publication Critical patent/JP2002317286A/en
Application granted granted Critical
Publication of JP4517530B2 publication Critical patent/JP4517530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of preparing an aqueous potassium hydroxide solution having a low sodium content for medicament, food and semiconductor field, etc. SOLUTION: A crude aqueous solution of a concentration of 22 to 28% is prepared by mixing an aqueous potassium chloride solution of a sodium content <=1,500 ppm or water with a raw material potassium chloride of a sodium content 300 to 5,000 ppm. This solution is cooled to -5 to 10 deg.C to allow the solid potassium chloride to deposit and is subjected to separation of solid from the liquid to dissolve the potassium chloride in the water and thereafter the aqueous saturated potassium chloride solution of the sodium content below 60 ppm is prepared. The aqueous potassium hydroxide solution of the sodium content below 100 ppm when converted to the aqueous potassium hydroxide solution of a concentration 48% is obtained by electrolyzing the solution by an ion exchange membrane electrolysis method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水酸化カリウム水
溶液の製造方法に関する。
[0001] The present invention relates to a method for producing an aqueous solution of potassium hydroxide.

【0002】[0002]

【従来の技術】一般に、水酸化カリウム水溶液は、塩化
カリウム水溶液の電解により製造されており、工業用水
酸化カリウム水溶液は、濃度48%のものが標準であ
る。原料として使用される塩化カリウムには、不純物と
して塩化ナトリウム等の形でナトリウムが含有されてい
る。原料塩化カリウム中のナトリウム含有量(ナトリウ
ム元素換算値。本明細書において同じ。)は300〜5
000ppmであるため、原料塩化カリウム中のナトリ
ウム除去を行わないかぎり、ナトリウム含有量が100
ppm以下の、濃度48%水酸化カリウム水溶液を得る
ことは困難である。
2. Description of the Related Art Generally, an aqueous potassium hydroxide solution is produced by electrolysis of an aqueous solution of potassium chloride, and a standard potassium hydroxide aqueous solution for industrial use has a concentration of 48%. Potassium chloride used as a raw material contains sodium in the form of sodium chloride or the like as an impurity. The sodium content in the raw material potassium chloride (converted to sodium element; the same in this specification) is 300 to 5;
Therefore, unless the sodium in the raw material potassium chloride is removed, the sodium content is 100 ppm.
It is difficult to obtain an aqueous solution of potassium hydroxide having a concentration of 48% or less at a concentration of 48 ppm or less.

【0003】電解により水酸化カリウムを製造するため
の塩化カリウム水溶液から不純物ナトリウムを除去する
方法としては、従来、塩化カリウム水溶液にアンチモン
酸を添加してナトリウムを除去する方法(特開昭61−
10025号公報参照)、塩化カリウム水溶液にリン酸
ジルコニウムを添加してナトリウムを除去する方法(特
開平9−25117号公報参照)等が知られている。
As a method for removing impurity sodium from an aqueous potassium chloride solution for producing potassium hydroxide by electrolysis, a conventional method has been to add sodium antimony to an aqueous potassium chloride solution to remove sodium (Japanese Patent Application Laid-Open No. 61-1986).
A method for removing sodium by adding zirconium phosphate to an aqueous potassium chloride solution (see Japanese Patent Application Laid-Open No. 9-25117) is known.

【0004】これらの方法は、プロセスが煩雑であり、
エネルギー消費量も多いという問題があった。特に、塩
化カリウム水溶液にアンチモン酸、リン酸ジルコニウム
等が添加されると水酸化カリウム中にこれら添加物が混
入しがちであり、その除去が困難なことから、得られた
水酸化カリウム水溶液は医薬品、食品又は半導体分野向
け等には不適であった。
[0004] In these methods, the process is complicated,
There was a problem that energy consumption was large. In particular, when antimonic acid, zirconium phosphate, etc. are added to an aqueous potassium chloride solution, these additives tend to be mixed into the potassium hydroxide, and it is difficult to remove them. It was not suitable for the food, semiconductor or other fields.

【0005】[0005]

【発明が解決しようとする課題】本発明は、原料塩化カ
リウムから効率的にナトリウムを除去し、ナトリウム含
有量の少ない水酸化カリウム水溶液を得ることを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to efficiently remove sodium from a starting potassium chloride to obtain a potassium hydroxide aqueous solution having a low sodium content.

【0006】[0006]

【課題を解決するための手段】本発明は、ナトリウム含
有量が300〜5000ppmの原料塩化カリウムに、
ナトリウム含有量が1500ppm以下の塩化カリウム
水溶液又は水を混合して濃度22〜28%の粗水溶液と
し、前記粗水溶液を温度−5〜10℃に冷却して固体塩
化カリウムを析出させ、析出した固体塩化カリウムを分
離して、水に再溶解し、ナトリウム含有量が60ppm
以下の飽和塩化カリウム水溶液とし、イオン交換膜電解
法により電解して濃度48%の水酸化カリウム水溶液に
換算したときにナトリウム含有量が100ppm以下の
水酸化カリウム水溶液を得る水酸化カリウム水溶液の製
造方法を提供する。
SUMMARY OF THE INVENTION The present invention relates to a raw material potassium chloride having a sodium content of 300 to 5000 ppm,
A potassium chloride aqueous solution or water having a sodium content of 1500 ppm or less is mixed to form a crude aqueous solution having a concentration of 22 to 28%, and the crude aqueous solution is cooled to a temperature of -5 to 10 ° C to precipitate solid potassium chloride. Separate potassium chloride and redissolve in water, sodium content 60ppm
A method for producing an aqueous solution of potassium hydroxide which obtains an aqueous solution of potassium hydroxide having a sodium content of 100 ppm or less when converted into an aqueous solution of potassium hydroxide having a concentration of 48% by converting the following saturated aqueous solution of potassium chloride into an aqueous solution of potassium hydroxide having a concentration of 48% by electrolysis using an ion exchange membrane electrolytic method I will provide a.

【0007】[0007]

【発明の実施の形態】本発明では、原料塩化カリウムと
塩化カリウム水溶液又は水とを混合し、濃度22〜28
%の粗水溶液を作製した後、温度−5〜10℃まで冷却
して固体状態の塩化カリウム(以下、固体塩化カリウム
という)を析出させる。この粗水溶液中には、原料塩化
カリウムから溶出したナトリウムイオン及び塩化カリウ
ム水溶液又は水に含まれていたナトリウムイオンが存在
する。原料塩化カリウム中のナトリウム含有量が300
〜5000ppmであり、塩化カリウム水溶液又は水の
ナトリウム含有量が1500ppm以下であるので、粗
水溶液の温度を−5〜10℃まで冷却した際、塩化カリ
ウムは飽和濃度に達し固体塩化カリウムを生成するが、
塩化ナトリウムは飽和濃度より低い濃度となる。その結
果、不純物のナトリウムはイオンとして水溶液中に残存
する。なお、本明細書では、%、ppm、ppbのいず
れも質量換算値である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a raw material potassium chloride and a potassium chloride aqueous solution or water are mixed to form a mixture having a concentration of 22 to 28.
% Of a crude aqueous solution, and cooled to a temperature of −5 to 10 ° C. to precipitate potassium chloride in a solid state (hereinafter, referred to as solid potassium chloride). This crude aqueous solution contains sodium ions eluted from the raw material potassium chloride and sodium ions contained in the aqueous potassium chloride solution or water. The sodium content in the raw material potassium chloride is 300
5,000 ppm, and the sodium content of the aqueous potassium chloride solution or water is 1500 ppm or less. Therefore, when the temperature of the crude aqueous solution is cooled to -5 to 10 ° C., potassium chloride reaches a saturation concentration and forms solid potassium chloride. ,
Sodium chloride has a concentration lower than the saturation concentration. As a result, the impurity sodium remains in the aqueous solution as ions. In addition, in this specification, all of%, ppm, and ppb are mass conversion values.

【0008】本発明では、原料塩化カリウムはナトリウ
ム含有量が300〜5000ppmのものを使用する。
ナトリウム含有量が300ppm未満の原料塩化カリウ
ムは、製造方法も難しく高価であるため好ましくない。
また、5000ppm超であると、ナトリウムが100
ppm以下の48%水酸化カリウム水溶液を製造するこ
とが困難である。原料塩化カリウム中のナトリウム含有
量は300〜1400ppmであることが特に好まし
い。
In the present invention, potassium chloride having a sodium content of 300 to 5000 ppm is used as a raw material.
Raw material potassium chloride having a sodium content of less than 300 ppm is not preferable because the production method is difficult and expensive.
If the content is more than 5000 ppm, the sodium content is 100%.
It is difficult to produce a 48% aqueous potassium hydroxide solution of less than ppm. It is particularly preferable that the sodium content in the raw material potassium chloride is 300 to 1400 ppm.

【0009】本発明では、濃度22〜28%の塩化カリ
ウム粗水溶液を作製する。濃度22%未満であると、塩
化カリウム水溶液の固体塩化カリウムを析出する温度が
低くなり、冷却等に要する電力が増大するため好ましく
ない。濃度28%超であると、固体塩化カリウムを溶解
しづらくなるため好ましくない。塩化カリウム粗水溶液
の濃度は26〜28%が特に好ましい。
In the present invention, a crude aqueous solution of potassium chloride having a concentration of 22 to 28% is prepared. If the concentration is less than 22%, the temperature for depositing solid potassium chloride in the aqueous potassium chloride solution becomes low, and the power required for cooling or the like increases, which is not preferable. If the concentration exceeds 28%, solid potassium chloride is difficult to dissolve, which is not preferable. The concentration of the crude aqueous solution of potassium chloride is particularly preferably from 26 to 28%.

【0010】本発明では、混合する塩化カリウム水溶液
又は水の温度は、0℃〜80℃が好ましい。温度が0℃
未満であると、原料塩化カリウムの溶解の進行が遅くな
るので好ましくなく、80℃超であると、液温が高くな
り、扱いにくくなるため好ましくない。温度は50〜6
0℃が特に好ましい。
In the present invention, the temperature of the aqueous potassium chloride solution or water to be mixed is preferably 0 ° C. to 80 ° C. Temperature is 0 ° C
If the temperature is lower than 80 ° C., the progress of dissolution of the raw material potassium chloride will be slow. The temperature is 50-6
0 ° C. is particularly preferred.

【0011】本発明において、冷却温度は、温度−5〜
10℃にする。冷却温度が−5℃未満であると、塩化カ
リウムだけでなく塩化ナトリウムも析出しやすくなり、
塩化カリウム中のナトリウム含有量が増え、純度が落ち
る。また、冷却のためのエネルギーが大きくコスト的に
合わない。冷却温度が10℃超であると、塩化カリウム
の溶解度が下がらず、効率よく塩化カリウムを析出させ
ることができない。冷却温度は0℃〜5℃が特に好まし
い。
[0011] In the present invention, the cooling temperature is from -5 to -5.
Bring to 10 ° C. If the cooling temperature is lower than −5 ° C., not only potassium chloride but also sodium chloride tends to precipitate,
The sodium content in potassium chloride increases and the purity decreases. In addition, the energy for cooling is large and cannot be cost-effective. If the cooling temperature is higher than 10 ° C., the solubility of potassium chloride does not decrease and potassium chloride cannot be efficiently precipitated. The cooling temperature is particularly preferably from 0 ° C to 5 ° C.

【0012】本発明において、固液分離の手段として
は、例えば、遠心分離器、水平ベルトフィルタ等の装置
を利用する方法、析出した固体塩化カリウムの比重が塩
化カリウム水溶液よりも重いことを利用して、冷却槽の
構造を、析出した固体塩化カリウムを下部より抜き出
し、塩化カリウム水溶液を上部より抜き出す構造とする
方法等が挙げられる。
In the present invention, as means for solid-liquid separation, for example, a method using a device such as a centrifugal separator, a horizontal belt filter, or the use of the fact that the specific gravity of precipitated solid potassium chloride is heavier than an aqueous solution of potassium chloride is used. Then, the cooling tank has a structure in which the precipitated solid potassium chloride is extracted from the lower portion, and an aqueous potassium chloride solution is extracted from the upper portion.

【0013】本発明では、冷析工程に供給する塩化カリ
ウム粗水溶液中のカルシウム、マグネシウム又はストロ
ンチウムの含有量は、カルシウム、マグネシウム又はス
トロンチウムのそれぞれの元素換算値(以下、同じ)で
それぞれ50ppb以下であることが好ましい。これら
の元素の含有量が前記の値を超える場合は、冷析工程に
供給する前に、塩化カリウム水溶液を陽イオン交換樹脂
に通して、カルシウムイオン、マグネシウムイオン又は
ストロンチウムイオンの2価陽イオンを除去しておくこ
とが好ましい。カルシウムイオン、マグネシウムイオン
又はストロンチウムイオンの含有量はそれぞれ20pp
b以下が特に好ましい。
In the present invention, the content of calcium, magnesium or strontium in the potassium chloride crude aqueous solution supplied to the cold precipitation step is 50 ppb or less in terms of the elemental value of calcium, magnesium or strontium (hereinafter the same). Preferably, there is. When the content of these elements exceeds the above-mentioned value, before supplying to the cold precipitation step, an aqueous potassium chloride solution is passed through a cation exchange resin to convert calcium ions, magnesium ions or divalent cations of strontium ions. It is preferable to remove them. The content of calcium ion, magnesium ion or strontium ion is 20 pp each.
b or less is particularly preferred.

【0014】陽イオン交換樹脂については、カリウムイ
オン等の一価イオンよりもカルシウムイオン、マグネシ
ウムイオン又はストロンチウムイオン等の2価陽イオン
の方が著しく選択性の高い陽イオン交換樹脂を使用する
ことが好ましい。陽イオン交換樹脂としては、例えば、
三菱化学社製の陽イオン交換樹脂CR−11等が挙げら
れる。
As for the cation exchange resin, it is possible to use a cation exchange resin in which divalent cations such as calcium ions, magnesium ions or strontium ions are significantly more selective than monovalent ions such as potassium ions. preferable. As the cation exchange resin, for example,
Cation exchange resin CR-11 manufactured by Mitsubishi Chemical Corporation and the like are included.

【0015】本発明において、冷析工程に供給する塩化
カリウム粗水溶液は、塩酸を添加することによりpH1
〜3とすることが好ましい。pH3超であると、得られ
る固体塩化カリウムの結晶が結晶水を含み、飽和塩化カ
リウム水溶液を作製するための濃度管理が難しくなるの
で好ましくなく、pH1未満であると、塩酸を大量に使
用すること、装置材質にフッ素樹脂ライニング等の高価
な材料を必要とすることから好ましくない。
In the present invention, the aqueous potassium chloride solution supplied to the cold precipitation step is adjusted to pH 1 by adding hydrochloric acid.
It is preferably from 3 to 3. If the pH is higher than 3, the obtained crystals of solid potassium chloride contain water of crystallization, and it is difficult to control the concentration for preparing a saturated aqueous solution of potassium chloride, which is not preferable. If the pH is lower than 1, a large amount of hydrochloric acid must be used. However, it is not preferable because an expensive material such as a fluororesin lining is required for the material of the apparatus.

【0016】本発明では、固体塩化カリウムは、水に溶
解してナトリウム含有量が60ppm以下の飽和塩化カ
リウム水溶液とし、イオン交換膜電解法により電解して
水酸化カリウム水溶液を製造する。塩化カリウム水溶液
のナトリウム含有量が60ppm超であると、本発明に
おける効果が得られないため好ましくない。電解槽から
直接得られる水酸化カリウム水溶液の濃度は28〜54
%が好ましい。水酸化カリウム水溶液の濃度は48〜5
0%が特に好ましい。水酸化カリウム水溶液は濃度48
%換算でナトリウム含有量が100ppm以下のものが
得られる。
In the present invention, solid potassium chloride is dissolved in water to form a saturated potassium chloride aqueous solution having a sodium content of 60 ppm or less, and electrolyzed by ion exchange membrane electrolysis to produce a potassium hydroxide aqueous solution. If the sodium content of the aqueous potassium chloride solution exceeds 60 ppm, the effects of the present invention cannot be obtained, which is not preferable. The concentration of the aqueous potassium hydroxide solution obtained directly from the electrolytic cell is 28-54.
% Is preferred. The concentration of the aqueous potassium hydroxide solution is 48 to 5
0% is particularly preferred. Potassium hydroxide solution has a concentration of 48
Those having a sodium content of 100 ppm or less in terms of% are obtained.

【0017】本発明では、冷析工程で得られた固体塩化
カリウムを水に溶解させて電解する工程までの間に、さ
らに、次の処理を行う場合は、水酸化カリウム水溶液の
ナトリウム濃度をさらに減少させることができる。以
下、この方法を本発明の第2の態様という。
In the present invention, before the step of dissolving the solid potassium chloride obtained in the cold precipitation step in water and conducting electrolysis, if the following treatment is further performed, the sodium concentration of the aqueous potassium hydroxide solution is further increased. Can be reduced. Hereinafter, this method is referred to as a second embodiment of the present invention.

【0018】前記固体塩化カリウムを、ナトリウム含有
量が60ppm以下の塩化カリウム水溶液又は水と混合
して、精製された固体塩化カリウムを含むスラリを形成
させることが好ましい。使用する塩化カリウム水溶液
は、いずれの濃度のものでも使用できる。塩化カリウム
水溶液又は水のナトリウム含有量が60ppm超である
と、本発明における効果が得られないため好ましくな
い。
Preferably, the solid potassium chloride is mixed with an aqueous potassium chloride solution or water having a sodium content of 60 ppm or less to form a slurry containing purified solid potassium chloride. The aqueous solution of potassium chloride used may be of any concentration. If the sodium content of the aqueous potassium chloride solution or water exceeds 60 ppm, the effects of the present invention cannot be obtained, which is not preferable.

【0019】得られたスラリの水相には、固体塩化カリ
ウムから溶出したナトリウムイオン及び前記塩化カリウ
ム水溶液又は水に含まれていたナトリウムイオンが存在
する。このスラリ操作により、固体塩化カリウムに含ま
れている塩化ナトリウムが水相へ溶出する。スラリの水
相において、塩化カリウムは飽和濃度に達するが、塩化
カリウム水溶液又は水のナトリウム含有量が60ppm
以下であることから、塩化ナトリウムは飽和濃度より低
い濃度になり、固体塩化カリウム中の塩化ナトリウムは
水相へ溶出し、固体塩化カリウム中のナトリウム成分が
さらに除去できる。
The aqueous phase of the obtained slurry contains sodium ions eluted from solid potassium chloride and sodium ions contained in the aqueous potassium chloride solution or water. By this slurry operation, sodium chloride contained in solid potassium chloride elutes into the aqueous phase. In the aqueous phase of the slurry, potassium chloride reaches the saturation concentration, but the sodium content of the aqueous solution of potassium chloride or water is 60 ppm.
From the following, sodium chloride becomes a concentration lower than the saturation concentration, sodium chloride in solid potassium chloride elutes into the aqueous phase, and the sodium component in solid potassium chloride can be further removed.

【0020】スラリは固体濃度10〜90%が好まし
い。固体濃度が10%未満であると、生産効率が極めて
悪いため好ましくない。固体濃度が90%超であると、
固相と液相の接触が不充分なため満足な洗浄効果が得ら
れず、好ましくない。固体濃度は、70〜90%が特に
好ましい。なお、固体濃度とは、スラリ中に存在する固
体としての濃度であり、スラリの水相に溶解している溶
質の量は含まれない。
The slurry preferably has a solid concentration of 10 to 90%. If the solid concentration is less than 10%, the production efficiency is extremely poor, which is not preferable. If the solids concentration is above 90%,
Since the contact between the solid phase and the liquid phase is insufficient, a satisfactory cleaning effect cannot be obtained, which is not preferable. The solid concentration is particularly preferably from 70 to 90%. In addition, the solid concentration is a concentration as a solid existing in the slurry, and does not include the amount of solute dissolved in the aqueous phase of the slurry.

【0021】前記スラリを固液分離することにより精製
塩化カリウムが固体として得られる(以下、精製塩化カ
リウム固体という)ことが好ましい。精製塩化カリウム
固体中のナトリウム含有量は、前記固体塩化カリウム中
のナトリウム含有量の50%以上が除去されることが好
ましい。固液分離は遠心分離器、水平ベルトフィルタ等
により行うことが好ましい。
It is preferable that purified potassium chloride is obtained as a solid by solid-liquid separation of the slurry (hereinafter referred to as purified potassium chloride solid). As for the sodium content in the purified potassium chloride solid, it is preferable that 50% or more of the sodium content in the solid potassium chloride is removed. The solid-liquid separation is preferably performed using a centrifuge, a horizontal belt filter, or the like.

【0022】本発明の第2の態様では、塩化カリウム水
溶液又は水を混合してスラリとして固液分離する際、温
度0℃〜50℃とすることにより、原料塩化カリウム中
のナトリウム含有量をさらに除去できるので好ましい。
塩化カリウム水溶液又は水は温度0℃〜30℃で混合す
ることが特に好ましい。スラリを混合する温度が30℃
超であると、母液への塩化ナトリウムの溶解度が高くな
るので好ましくなく、温度が0℃未満であると、冷却エ
ネルギーが必要となり、コスト的にも好ましくない。ス
ラリを混合する温度は0℃〜10℃が特に好ましい。
In the second embodiment of the present invention, when a potassium chloride aqueous solution or water is mixed and subjected to solid-liquid separation as a slurry, the temperature is set to 0 ° C. to 50 ° C. to further increase the sodium content in the raw material potassium chloride. It is preferable because it can be removed.
It is particularly preferable to mix the aqueous potassium chloride solution or water at a temperature of 0 ° C to 30 ° C. The temperature at which the slurry is mixed is 30 ° C
If the temperature is higher than that, the solubility of sodium chloride in the mother liquor is increased, which is not preferable. The temperature at which the slurry is mixed is particularly preferably from 0C to 10C.

【0023】本発明の第2の態様において、精製塩化カ
リウム固体は、さらに、塩化カリウム水溶液又は水と混
合してスラリとし、固液分離する操作を複数回繰り返す
ことにより、ナトリウム含有量をより低減できるのでさ
らに好ましい。
In the second embodiment of the present invention, the purified potassium chloride solid is further mixed with an aqueous solution of potassium chloride or water to form a slurry, and the operation of solid-liquid separation is repeated a plurality of times to further reduce the sodium content. It is more preferable because it is possible.

【0024】精製塩化カリウム固体を水に溶解した後、
ナトリウム含有量が45ppm以下の飽和塩化カリウム
水溶液とし、イオン交換膜電解法によって電解して水酸
化カリウム水溶液を製造することが好ましい。水酸化カ
リウム水溶液は濃度48%換算でナトリウム含有量が7
5ppm以下のものが得られることが好ましい。
After dissolving the purified potassium chloride solid in water,
It is preferable to produce an aqueous solution of potassium hydroxide by subjecting a saturated aqueous solution of potassium chloride having a sodium content of 45 ppm or less to electrolysis by an ion exchange membrane electrolysis method. The aqueous potassium hydroxide solution has a sodium content of 7 when converted to a concentration of 48%.
It is preferable to obtain those of 5 ppm or less.

【0025】本発明の第2の態様において、スラリを固
液分離した後の分離母液は、原料塩化カリウムを溶解す
る前のナトリウム含有量2000ppm以下である塩化
カリウム水溶液又は水に、さらに、原料塩化カリウム中
から溶出したナトリウムが含有されている。この分離母
液は、スラリの溶解又は一般工業用水酸化カリウム水溶
液の原料として使用することが好ましい。
In the second embodiment of the present invention, the separated mother liquor after the slurry is subjected to solid-liquid separation is mixed with a potassium chloride aqueous solution or water having a sodium content of 2000 ppm or less before dissolving the raw material potassium chloride, and further with the raw material chloride. Contains sodium eluted from potassium. This separated mother liquor is preferably used as a raw material for dissolving a slurry or an aqueous potassium hydroxide solution for general industry.

【0026】[0026]

【実施例】以下に本発明の実施例(例1、2、3)及び
比較例(例4)を示す。結果をまとめて表1に示す。各
例において、水酸化カリウム水溶液中のナトリウム含有
量は原子吸光分析法(標準添加法)により測定した。な
お、濃度C%の水酸化カリウム水溶液のナトリウム含有
量がAppmである場合、濃度48%の水酸化カリウム
水溶液に換算したナトリウム含有量Bppmは、式(B
=A×48/C)により算出した。
EXAMPLES Examples of the present invention (Examples 1, 2, and 3) and comparative examples (Example 4) are shown below. The results are summarized in Table 1. In each case, the sodium content in the aqueous potassium hydroxide solution was measured by atomic absorption spectrometry (standard addition method). When the sodium content of the aqueous solution of potassium hydroxide having a concentration of C% is Appm, the sodium content Bppm converted into the aqueous solution of potassium hydroxide having a concentration of 48% is expressed by the formula (B
= A x 48 / C).

【0027】[例1]ナトリウム含有量4260ppmの
原料塩化カリウム10kgに、ナトリウム含有量が0p
pmの水28kgを添加し、水溶液の温度を50℃まで
上げて、濃度26%の塩化カリウム粗水溶液30Lを得
た。この粗水溶液をイオン交換樹脂(商品名:陽イオン
交換樹脂CR−11、三菱化学社製、以下同じ)により
カルシウムイオン、マグネシウムイオン、ストロンチウ
ムイオン等の2価陽イオンを除去し、各イオンが20p
pb以下とした後、水溶液の温度を5℃まで冷却し、固
体塩化カリウムを析出させ、固液分離し、固体塩化カリ
ウム1100gを得た。得られた固体塩化カリウムを純
水に溶解し、濃度26%の塩化カリウム水溶液とした
後、この得られた塩化カリウム水溶液を電解(イオン交
換膜電解法、電流密度4kA/m2、電解槽温度90
℃、淡塩水濃度18%、以下同じ)し、濃度32%の水
酸化カリウム水溶液を得た。
Example 1 10 kg of a raw material potassium chloride having a sodium content of 4260 ppm was added with a sodium content of 0 p
28 kg of water at pm were added, and the temperature of the aqueous solution was raised to 50 ° C. to obtain 30 L of a 26% concentration crude aqueous potassium chloride solution. The crude aqueous solution is subjected to ion exchange resin (trade name: cation exchange resin CR-11, manufactured by Mitsubishi Chemical Corporation; the same applies hereinafter) to remove divalent cations such as calcium ions, magnesium ions, and strontium ions.
After the pressure was reduced to pb or less, the temperature of the aqueous solution was cooled to 5 ° C., and solid potassium chloride was precipitated and separated into solid and liquid to obtain 1100 g of solid potassium chloride. The obtained solid potassium chloride was dissolved in pure water to obtain a 26% aqueous potassium chloride solution, and the obtained aqueous potassium chloride solution was subjected to electrolysis (ion exchange membrane electrolysis, current density 4 kA / m 2 , electrolytic bath temperature). 90
C., fresh salt water concentration 18%, the same applies hereinafter) to obtain a potassium hydroxide aqueous solution having a concentration of 32%.

【0028】[例2]例1と同じ塩化ナトリウム粗水溶液
を、例1と同様にしてイオン交換樹脂により2価陽イオ
ンを除去した後、濃度17%塩酸を添加して、水溶液の
pHを2とした。次に、前記水溶液の温度を5℃まで冷
却し、固体塩化カリウムを析出させ、固液分離し、固体
塩化カリウムを1100g得た。得られた固体塩化カリ
ウムをナトリウム含有量が0ppmの純水に混合、撹拌
し、固体濃度80%のスラリとした後、固液分離し、精
製塩化ナトリウム固体1100gを得た。得られた精製
塩化カリウムを純水に溶解し、濃度26%の塩化カリウ
ム水溶液とした後、例1と同様にして電解し、濃度32
%の水酸化カリウム水溶液を得た。
Example 2 The same crude sodium chloride solution as in Example 1 was subjected to removal of divalent cations with an ion-exchange resin in the same manner as in Example 1, and then 17% hydrochloric acid was added to adjust the pH of the aqueous solution to 2%. And Next, the temperature of the aqueous solution was cooled to 5 ° C., and solid potassium chloride was precipitated, and separated into solid and liquid to obtain 1100 g of solid potassium chloride. The obtained solid potassium chloride was mixed with pure water having a sodium content of 0 ppm and stirred to obtain a slurry having a solid concentration of 80%, followed by solid-liquid separation to obtain 1100 g of purified sodium chloride solid. The obtained purified potassium chloride was dissolved in pure water to obtain an aqueous solution of potassium chloride having a concentration of 26%.
% Potassium hydroxide aqueous solution was obtained.

【0029】[例3]ナトリウム含有量1220ppmの
原料塩化カリウム10kgに、ナトリウム含有量0pp
mの水28kgを添加し、水溶液の温度を50℃まで上
げて、濃度26%の塩化カリウム粗水溶液30Lを得
た。この粗水溶液を、例1と同様にしてイオン交換樹脂
により2価陽イオンを除去した後、濃度17%塩酸を添
加し、水溶液のpHを2とした。次に、水溶液の温度を
5℃まで冷却し、固体塩化カリウムを析出させ、固液分
離し、固体塩化カリウム1100gを得た。得られた固
体塩化カリウムをナトリウム含有量が0ppmの純水に
混合、撹拌し、固体濃度80%のスラリとした後、固液
分離し、精製塩化ナトリウム固体930gを得た。この
得られた精製塩化カリウムを純水に溶解し、濃度26%
の塩化カリウム水溶液とした後、例1と同様にして電解
し、濃度32%の水酸化カリウム水溶液を得た。
EXAMPLE 3 10 kg of a raw material potassium chloride having a sodium content of 1220 ppm was added with a sodium content of 0 pp
Then, 28 kg of water was added, and the temperature of the aqueous solution was raised to 50 ° C. to obtain 30 L of a 26% concentration crude aqueous potassium chloride solution. After removing divalent cations from the crude aqueous solution using an ion exchange resin in the same manner as in Example 1, 17% hydrochloric acid was added to adjust the pH of the aqueous solution to 2. Next, the temperature of the aqueous solution was cooled to 5 ° C., and solid potassium chloride was precipitated and separated into solid and liquid to obtain 1100 g of solid potassium chloride. The obtained solid potassium chloride was mixed with pure water having a sodium content of 0 ppm and stirred to form a slurry having a solid concentration of 80%, followed by solid-liquid separation to obtain 930 g of purified sodium chloride solid. The obtained purified potassium chloride was dissolved in pure water, and the concentration was 26%.
, And electrolyzed in the same manner as in Example 1 to obtain a 32% aqueous solution of potassium hydroxide.

【0030】[例4(比較例)]ナトリウム含有量426
0ppmの原料塩化カリウム10kgに、ナトリウム含
有量0ppmの水28kgを添加し、水溶液の温度を5
0℃まで上げて、濃度26%の塩化カリウム粗水溶液3
0Lを得た。以下、例1と同様にして、イオン交換樹脂
により陽イオンを除去した後、電解法により濃度32%
の水酸化カリウム水溶液を得た。
Example 4 (Comparative Example) Sodium Content 426
To 10 kg of 0 ppm raw material potassium chloride, 28 kg of water having a sodium content of 0 ppm was added, and the temperature of the aqueous solution was lowered to 5 kg.
The temperature was raised to 0 ° C.,
0 L was obtained. Thereafter, in the same manner as in Example 1, after removing cations with an ion exchange resin, the concentration was 32%
Was obtained.

【0031】[例5(比較例)]ナトリウム含有量430
ppmの原料塩化カリウム10kgに、ナトリウム含有
量0ppmの水28kgを添加し、水溶液の温度を50
℃まで上げて、濃度26%の塩化カリウム粗水溶液30
Lを得た。以下、例1と同様にして、イオン交換樹脂に
より陽イオンを除去した後、電解法により濃度32%の
水酸化カリウム水溶液を得た。
Example 5 (Comparative Example) Sodium content of 430
28 kg of water having a sodium content of 0 ppm was added to 10 kg of a raw material potassium chloride at a temperature of 50 ppm.
To 30 ° C. and a 30% crude aqueous solution of potassium chloride 30%.
L was obtained. Thereafter, in the same manner as in Example 1, cations were removed with an ion exchange resin, and a 32% aqueous solution of potassium hydroxide was obtained by an electrolytic method.

【0032】[0032]

【表1】 [Table 1]

【0033】表中の単位はいずれもppmであり、記号
は下記のとおり。ただし、eの単位のみ%。 a:原料塩化カリウム中のナトリウム含有量、 b:精製塩化カリウム中のナトリウム含有量、 c:陽イオン交換樹脂による精製後の飽和塩化カリウム
水溶液中のナトリウム含有量、 d:得られた水酸化カリウム水溶液中のナトリウム含有
量、 e:得られた水酸化カリウム水溶液の濃度、 f:濃度48%に換算した場合の水酸化カリウム水溶液
中のナトリウム含有量。
The units in the table are ppm, and the symbols are as follows. However, only the unit of e is%. a: sodium content in raw potassium chloride, b: sodium content in purified potassium chloride, c: sodium content in saturated potassium chloride aqueous solution after purification by cation exchange resin, d: obtained potassium hydroxide E: concentration of the obtained aqueous potassium hydroxide solution, f: sodium content in the aqueous potassium hydroxide solution when converted to a concentration of 48%.

【0034】[0034]

【発明の効果】本発明により、ナトリウム含有量の少な
い水酸化カリウム水溶液を製造できる。また、本発明の
方法により得られる水酸化カリウム水溶液は、医薬品、
食品及び半導体分野向け等の用途にも好適に使用でき
る。
According to the present invention, a potassium hydroxide aqueous solution having a low sodium content can be produced. Further, the aqueous potassium hydroxide solution obtained by the method of the present invention is
It can also be suitably used for applications in the food and semiconductor fields.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ナトリウム含有量が300〜5000pp
mの原料塩化カリウムに、ナトリウム含有量が1500
ppm以下の塩化カリウム水溶液又は水を混合して濃度
22〜28%の粗水溶液とし、前記粗水溶液を温度−5
〜10℃に冷却して固体塩化カリウムを析出させ、析出
した固体塩化カリウムを分離して、水に再溶解し、ナト
リウム含有量が60ppm以下の飽和塩化カリウム水溶
液とし、イオン交換膜電解法により電解して濃度48%
の水酸化カリウム水溶液に換算したときにナトリウム含
有量が100ppm以下の水酸化カリウム水溶液を得る
水酸化カリウム水溶液の製造方法。
1. A sodium content of 300 to 5000 pp
m raw material potassium chloride has a sodium content of 1500
ppm or less of potassium chloride aqueous solution or water is mixed to obtain a crude aqueous solution having a concentration of 22 to 28%,
The solid potassium chloride was precipitated by cooling to -10 ° C, and the precipitated solid potassium chloride was separated and redissolved in water to obtain a saturated potassium chloride aqueous solution having a sodium content of 60 ppm or less. 48% concentration
A method for producing an aqueous potassium hydroxide solution, wherein an aqueous potassium hydroxide solution having a sodium content of 100 ppm or less when converted to an aqueous potassium hydroxide solution is obtained.
【請求項2】ナトリウム含有量が300〜5000pp
mの原料塩化カリウムに、ナトリウム含有量が1500
ppm以下の塩化カリウム水溶液又は水を混合して濃度
22〜28%の粗水溶液とし、前記粗水溶液を温度−5
〜10℃に冷却して固体塩化カリウムを析出させ、析出
した固体塩化カリウムを分離した後、前記固体塩化カリ
ウムをナトリウム含有量が60ppm以下の塩化カリウ
ム水溶液又は水と混合して固体濃度10〜90%のスラ
リとし、前記スラリを固液分離することにより、固体塩
化カリウム中のナトリウムの50%以上を分離母液中に
溶解した状態で除去した後、固体として分離された精製
塩化カリウムを水に溶解し、ナトリウム含有量が45p
pm以下の飽和塩化カリウム水溶液として、イオン交換
膜電解法により電解して、濃度48%の水酸化カリウム
水溶液に換算したときにナトリウム含有量が75ppm
以下の水酸化カリウム水溶液を得る水酸化カリウム水溶
液の製造方法。
2. A sodium content of 300 to 5000 pp.
m raw material potassium chloride has a sodium content of 1500
ppm or less of potassium chloride aqueous solution or water is mixed to obtain a crude aqueous solution having a concentration of 22 to 28%,
After cooling to −10 ° C. to precipitate solid potassium chloride and separating the precipitated solid potassium chloride, the solid potassium chloride is mixed with a potassium chloride aqueous solution or water having a sodium content of 60 ppm or less to obtain a solid concentration of 10 to 90%. % Of the slurry, and the slurry is subjected to solid-liquid separation to remove 50% or more of sodium in solid potassium chloride in a state of being dissolved in the separated mother liquor. Then, purified potassium chloride separated as a solid is dissolved in water. And the sodium content is 45p
pm or less as a saturated potassium chloride aqueous solution, and electrolyzed by an ion exchange membrane electrolysis method, and when converted to a 48% aqueous solution of potassium hydroxide, the sodium content is 75 ppm.
A method for producing an aqueous potassium hydroxide solution to obtain the following aqueous potassium hydroxide solution.
【請求項3】前記粗水溶液を陽イオン交換樹脂に接触さ
せて、カルシウムイオン、マグネシウムイオン又はスト
ロンチウムイオンを取り除いた後で、冷却する請求項1
又は2に記載の水酸化カリウム水溶液の製造方法。
3. The method according to claim 1, wherein the crude aqueous solution is brought into contact with a cation exchange resin to remove calcium ions, magnesium ions or strontium ions and then cooled.
Or the method for producing a potassium hydroxide aqueous solution according to 2 above.
【請求項4】前記粗水溶液を陽イオン交換樹脂に接触さ
せた後、塩酸を添加してpH1〜3に調整し、冷却する
請求項3に記載の水酸化カリウム水溶液の製造方法。
4. The method for producing a potassium hydroxide aqueous solution according to claim 3, wherein the crude aqueous solution is brought into contact with a cation exchange resin, then adjusted to pH 1 to 3 by adding hydrochloric acid, and cooled.
JP2001121519A 2001-04-19 2001-04-19 Method for producing aqueous potassium hydroxide solution Expired - Lifetime JP4517530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001121519A JP4517530B2 (en) 2001-04-19 2001-04-19 Method for producing aqueous potassium hydroxide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121519A JP4517530B2 (en) 2001-04-19 2001-04-19 Method for producing aqueous potassium hydroxide solution

Publications (2)

Publication Number Publication Date
JP2002317286A true JP2002317286A (en) 2002-10-31
JP4517530B2 JP4517530B2 (en) 2010-08-04

Family

ID=18971376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121519A Expired - Lifetime JP4517530B2 (en) 2001-04-19 2001-04-19 Method for producing aqueous potassium hydroxide solution

Country Status (1)

Country Link
JP (1) JP4517530B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176384A (en) * 2004-12-24 2006-07-06 Sasakura Engineering Co Ltd Method and apparatus for separating mixed salt
US7892298B2 (en) 2005-08-11 2011-02-22 Toagosei Co., Ltd. Method for producing high purity caustic potash
KR102478870B1 (en) * 2021-08-06 2022-12-16 리튬 아크 홀딩 비.브이. Production of lithium hydroxide and lithium carbonate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556014A (en) * 1978-10-16 1980-04-24 Sanuki Enso Kk Production of potassium chloride
JPS5565372A (en) * 1978-11-10 1980-05-16 Asahi Glass Co Ltd Electrolyzing method of aqueous potassium chloride solution
JPS5967379A (en) * 1982-10-07 1984-04-17 Nippon Soda Co Ltd Electrolytic method of aqueous potassium chloride solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556014A (en) * 1978-10-16 1980-04-24 Sanuki Enso Kk Production of potassium chloride
JPS5565372A (en) * 1978-11-10 1980-05-16 Asahi Glass Co Ltd Electrolyzing method of aqueous potassium chloride solution
JPS5967379A (en) * 1982-10-07 1984-04-17 Nippon Soda Co Ltd Electrolytic method of aqueous potassium chloride solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176384A (en) * 2004-12-24 2006-07-06 Sasakura Engineering Co Ltd Method and apparatus for separating mixed salt
US7892298B2 (en) 2005-08-11 2011-02-22 Toagosei Co., Ltd. Method for producing high purity caustic potash
KR102478870B1 (en) * 2021-08-06 2022-12-16 리튬 아크 홀딩 비.브이. Production of lithium hydroxide and lithium carbonate

Also Published As

Publication number Publication date
JP4517530B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP7113467B2 (en) A system for producing battery-grade and high-purity-grade lithium hydroxide and carbonate from a highly impure lithium source
US20230087180A1 (en) Preparation of lithium carbonate from lithium chloride containing brines
KR102085016B1 (en) Purification of lithium carbonate by removing sulfate ion impurities
US4747917A (en) Scale-free process for purifying concentrated alkali metal halide brines containing sulfate ions as an impurity
JP2021172537A (en) Method for producing lithium hydroxide
CN108529562A (en) A kind of chloric acid mother liquid of sodium embrane method freezing denitrating technique
JPH033747B2 (en)
TWI225900B (en) Process for producing sodium persulfate
CN113443639B (en) Preparation process of electronic grade potassium hydroxide
CN103122411B (en) Cyclic and comprehensive utilization method of sodium-free mangano-manganic oxide production mother solution
JPH01123087A (en) Production of alkali hydroxide and chlorine by electrolysis of alkali chloride aqueous solution in diaphragm cell
KR20120070841A (en) Method for preparing high purity lithium carbonate from brines
JP4517530B2 (en) Method for producing aqueous potassium hydroxide solution
CN109534369B (en) Membrane integrated lithium chloride preparation equipment and method thereof
JP2685755B2 (en) Gold refining equipment
JPS58151303A (en) Manufacture of calcium hypochlorite
AU2020401568B2 (en) Process and method for refining lithium carbonate starting from an impure lithium chloride solution
CN115924939A (en) Production of Lithium Hydroxide and Lithium Carbonate
CN113860597B (en) High-salinity wastewater recycling method and system
JP7385976B1 (en) Method for recovering lithium from aqueous liquids containing lithium salts
JPH0361605B2 (en)
JP2002220688A (en) Method for manufacturing aqueous potassium hydroxide solution
JP3754953B2 (en) Salt making method and salt making apparatus
CN116283552B (en) Refining method of oxalic acid
RU2795224C1 (en) Process and method for lithium carbonate purification based on a lithium chloride solution with impurities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4517530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term