JPH0375223A - Recovery of indium - Google Patents

Recovery of indium

Info

Publication number
JPH0375223A
JPH0375223A JP1206654A JP20665489A JPH0375223A JP H0375223 A JPH0375223 A JP H0375223A JP 1206654 A JP1206654 A JP 1206654A JP 20665489 A JP20665489 A JP 20665489A JP H0375223 A JPH0375223 A JP H0375223A
Authority
JP
Japan
Prior art keywords
oxalate
aqueous solution
acid
added
oxalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1206654A
Other languages
Japanese (ja)
Inventor
Ryoji Yoshimura
吉村 了治
Nobuhiro Ogawa
小川 展弘
Takashi Mori
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP1206654A priority Critical patent/JPH0375223A/en
Publication of JPH0375223A publication Critical patent/JPH0375223A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To enable ready recovery using a simple apparatus by adding oxalic acid and/or an oxalate to an In-containing aqueous solution while adjusting pH. CONSTITUTION:To (A) an aqueous solution obtained from a by-product, etc., in zinc smelting process and containing In in an amount of >=70% based on the total molar number of metallic ions, (B) oxalic acid and/or an oxalate (e.g. ammonium salt) is added in an amount of 0.5-2.5 time equivalent based on In in (A) component after or while adjusting pH to 0-2 by addition of an acid such as HCl or an alkali such as ammonia thereto and the resultant mixture is reacted at 10-60 deg.C to obtain a product (C). The (C) component is then separated by the centrifugal separation, etc., and the separated In oxalate is washed by pure water, etc., and subsequently burned, thus recovering In.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、インジウム(in)を含む水溶液から有価物
であるInを回収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for recovering In, a valuable material, from an aqueous solution containing indium (in).

[従来の技術] 1nを主成分として含む水溶液としては、例えば、亜鉛
製錬工程の副産物として得られる製錬中間物のIn溶液
、錫をドープした酸化In(以下ITOと記載する)ス
パッタリングターゲットのスクラップを酸に溶解したも
の等が挙げられる。
[Prior Art] Examples of aqueous solutions containing 1N as a main component include In solutions as smelting intermediates obtained as by-products of zinc smelting processes, and tin-doped In oxide (hereinafter referred to as ITO) sputtering targets. Examples include scrap dissolved in acid.

現在、Inは、InP、 InAs等の金属間化合物や
ITO等の透明導電性薄膜として利用されており、今後
、益々1nの需要は伸長するものと期待されている。
Currently, In is used in intermetallic compounds such as InP and InAs, and transparent conductive thin films such as ITO, and the demand for In is expected to increase further in the future.

[従来の技術及び発明が解決しようとする課題]1nは
、亜鉛製錬工程等の副産物として製造されており、その
方法は、種々の化学的精製と電解析出を利用する方法、
イオン交換法、溶媒抽出法等である。これらの方法はい
ずれも大型な装置を必要とし、運転操作も複雑で、原料
組成の変化に対応することが容易でない。
[Prior art and problems to be solved by the invention] 1n is produced as a by-product of the zinc smelting process, etc., and its methods include methods using various chemical refining and electrolytic deposition,
These include ion exchange method, solvent extraction method, etc. All of these methods require large-scale equipment, are complicated to operate, and are difficult to adapt to changes in raw material composition.

また、ITO等の電子材料は製造工程での歩留りが悪く
、使用するInの大部分がスクラップとなるため、これ
らのスクラップから有価物であるInの回収が期待され
ているが、未だ満足する経済的な方法は確立されていな
い。
In addition, electronic materials such as ITO have poor yields during the manufacturing process, and most of the In used becomes scrap.Therefore, recovery of valuable In from these scraps is expected, but there is still no satisfactory economic efficiency. There is no established method.

[発明の目的] 本発明は、従来技術のもつ前記課題を解決すべく為され
たものであって、Inを含む水溶液からInを簡便な装
置で容易に回収する方法を提供することを事を目的とす
る。
[Object of the Invention] The present invention has been made to solve the above-mentioned problems of the prior art, and its object is to provide a method for easily recovering In from an aqueous solution containing In using a simple device. purpose.

[課題を解決するための手段] 本発明者らは、Inを含む水溶液からInを有機酸塩と
して回収する方法を鋭意検討した結果、多種類のIn有
機酸塩の中で蓚酸塩が最も難溶性であるとの知見を基に
して、Inを含む水溶液のpHを調整して、添加する蓚
酸及び/又は蓚酸塩の量を調整する事により、1nの蓚
酸塩が選択的に生成する事を見出し本発明を完成した。
[Means for Solving the Problems] As a result of intensive study on a method for recovering In as an organic acid salt from an aqueous solution containing In, the present inventors found that oxalate is the most difficult among various types of In organic acid salts. Based on the knowledge that In is soluble, by adjusting the pH of the aqueous solution containing In and adjusting the amount of oxalic acid and/or oxalate to be added, it is possible to selectively generate 1N oxalate. Heading The invention has been completed.

即ち、本発明は、Inを含む水溶液のpHをO〜2に調
整し、又は調整しつつこの水溶液に蓚酸及び/又は蓚酸
塩を添加し、又は、Inを含む水溶液に蓚酸及び/又は
蓚酸塩を添加しこの水溶液のpHを0〜2に調整し水溶
液中のInを蓚酸塩として分離する事を特徴とするIn
の回収方法に関するものである。以下、本発明をさらに
詳細に説明する。
That is, the present invention adjusts the pH of an aqueous solution containing In to O~2, or adds oxalic acid and/or oxalate to the aqueous solution while adjusting it, or adds oxalic acid and/or oxalate to an aqueous solution containing In. is added to adjust the pH of this aqueous solution to 0 to 2, and In is separated from the aqueous solution as oxalate.
This relates to the collection method. The present invention will be explained in more detail below.

本発明で言うInを含む水溶液とは、例えば、亜鉛製錬
工程の副産物として得られる製錬中間物のIn溶液、I
TOスクラップの酸溶解液などである。
In the present invention, the In-containing aqueous solution is, for example, an In solution of a smelting intermediate obtained as a by-product of a zinc smelting process, an I
This includes an acid solution of TO scrap.

ここで用いる水溶液中のInの含有量には特に制限はな
いが、該水溶液中の金属イオンの総モル数の70%以上
がInである時、本発明の効果が顕著に現われる。
Although there is no particular restriction on the content of In in the aqueous solution used here, the effects of the present invention are noticeable when 70% or more of the total number of moles of metal ions in the aqueous solution is In.

Inを含む水溶液中の1n含有量がIn以外の金属イオ
ンに比べて多ければ多いほど、本発明により得られるi
nの純度、回収率も向上し、本発明では99.99%(
以下4Nと記載する)以上の高純度Inを回収する事が
できる。
The higher the 1n content in the aqueous solution containing In compared to metal ions other than In, the more i can be obtained by the present invention.
The purity and recovery rate of n are also improved, and in the present invention, it is 99.99% (
It is possible to recover In with a purity higher than 4N (hereinafter referred to as 4N).

次にITOスクラップを用いた例について詳述する。Next, an example using ITO scrap will be described in detail.

ITOスクラップの酸溶解液には錫が含まれているが、
この錫を酸溶解液の前処理により分離し、Inの含有率
の大きい酸溶液として、これを本発明の方法で処理すれ
ば、高回収率で高純度の1n成分を得る。この際の錫の
分離方法としては、錫をハロゲノ錫酸塩として沈殿分離
する方法等が挙げられる。即ち、錫を含む水溶液から、
強酸性下及びハロゲンイオンの存在下、ハロゲノ錫酸塩
を生成させ、錫を選択的に分離する方法である。
The acid solution of ITO scrap contains tin,
If this tin is separated by pretreatment of an acid solution and treated as an acid solution with a high In content by the method of the present invention, a highly purified 1n component can be obtained with a high recovery rate. Examples of the method for separating tin at this time include a method in which tin is precipitated and separated as a halogenostannate. That is, from an aqueous solution containing tin,
This is a method for selectively separating tin by producing halogenostannate under strong acidity and in the presence of halogen ions.

・このような溶液から、ハロゲノ錫酸塩を生成させる場
合、錫を含む溶液を強酸性とする事が必要である。この
強酸性水溶液の酸の濃度はプロトン濃度で0.5mo、
L/i以上が好ましく、更に3 mo1/1以上が特に
好ましい。プロトン濃度が低い場合は、ハロゲンイオン
必要量、ハロゲノ錫酸塩の対イオンとなる陽イオンの必
要量が増大し、不経済であるばかりか、錫化合物の沈殿
生成量も減少する。更に、プロトン濃度が低過ぎると溶
液中の各種金属イオンが水酸化物として生成すると同時
にInも水酸化物となるため、錫の選択的分離が困難と
なり、同時に生成物の分離性も悪くなる。上記プロトン
濃度を調整する際に用いる酸の種類は特に限定しないが
、塩酸、硝酸、硫酸等の強酸が好ましく、特に、フッ酸
、塩酸、臭素酸等のハロゲンを含む酸を使用した場合、
酸の濃度とハロゲンイオン濃度を同時に調整できるため
好ましい。
- When producing halogenostannate from such a solution, it is necessary to make the tin-containing solution strongly acidic. The acid concentration of this strongly acidic aqueous solution is 0.5 mo in proton concentration,
L/i or more is preferable, and 3 mo1/1 or more is particularly preferable. When the proton concentration is low, the required amount of halide ions and the required amount of cations serving as counterions of the halide stannate are increased, which is not only uneconomical, but also reduces the amount of precipitated tin compounds. Furthermore, if the proton concentration is too low, various metal ions in the solution will be produced as hydroxides, and at the same time In will also become hydroxides, making it difficult to selectively separate tin, and at the same time, the separability of the product will deteriorate. The type of acid used to adjust the proton concentration is not particularly limited, but strong acids such as hydrochloric acid, nitric acid, and sulfuric acid are preferred. Particularly when using acids containing halogens such as hydrofluoric acid, hydrochloric acid, and bromic acid,
This is preferable because the acid concentration and the halogen ion concentration can be adjusted at the same time.

又、ハロゲノ錫酸塩を沈殿生成させる際、Inと錫を含
む水溶液中にハロゲンイオンの存在が必要である。In
と錫を含む強酸性水溶液のハロゲンイオン濃度は、ハロ
ゲンイオンの種類にもよるが錫の含有量に対して50倍
モル以上が好ましく、特に、80倍モル以上が好ましい
。ハロゲンイオンの調整方法としてはハロゲンイオンを
含む酸、例えば塩酸等を添加して調整してもよいが、塩
化ナトリウム、塩化アンモニウム等のハロゲンイオンを
含む塩を添加して調整してもよい。
Further, when precipitating a halogenostannate, the presence of halogen ions is required in the aqueous solution containing In and tin. In
The halogen ion concentration of the strongly acidic aqueous solution containing tin is preferably at least 50 times the molar content of tin, particularly preferably at least 80 times the molar content, although it depends on the type of halogen ions. Halogen ions may be adjusted by adding an acid containing halogen ions, such as hydrochloric acid, or by adding a salt containing halogen ions such as sodium chloride or ammonium chloride.

このようにInと錫を含む水溶液は、ハロゲンイオンが
存在し、強酸性下であることが必須条件であるため、必
然的に錫を含む溶液が塩酸水溶液、臭化水素酸水溶液等
のハロゲンイオンを含む強酸性溶液である場合が最も経
済的でかつ操作を簡略化でき好ましいが、錫を含む硫酸
水溶液等のハロゲンイオンを含まない強酸性水溶液に、
塩化アンモニウム等のハロゲンイオン源を添加する事に
よっても該必須条件を達成でき、又、ハロゲンイオンと
錫を含む水溶液に硫酸を添加する事によっても達成でき
る。
In this way, an aqueous solution containing In and tin must contain halogen ions and be under strong acidity, so it is inevitable that a solution containing tin will contain halogen ions such as an aqueous solution of hydrochloric acid or an aqueous solution of hydrobromic acid. It is preferable to use a strongly acidic solution that does not contain halogen ions, such as a sulfuric acid aqueous solution that contains tin, as it is most economical and can simplify the operation.
This essential condition can also be achieved by adding a halogen ion source such as ammonium chloride, or by adding sulfuric acid to an aqueous solution containing halogen ions and tin.

また、ここで言う錫は、Sn”、Sn’+いずれでもよ
い。このどちらのイオンに対しても、錫の除去効果は顕
著である。また、処理する水溶液の錫の濃度は、0.5
sIIoJ! / 1以上であることが好ましく、錫の
濃度が低い場合、錫の分離効果が小さくなる。
Further, the tin referred to here may be either Sn'' or Sn'+.The tin removal effect is remarkable for both of these ions.Also, the tin concentration of the aqueous solution to be treated is 0.5
sIIoJ! / is preferably 1 or more, and when the tin concentration is low, the tin separation effect becomes small.

このような強酸及びハロゲンイオンが共存するInと錫
を含む水溶液に、ハロゲノ錫酸イオンの対イオンを供給
し、ハロゲノ錫酸塩を生成させる。ノ\ロゲノ錫酸塩の
対イオンとなる陽イオンの添加量は、ハロゲンイオン濃
度と酸濃度にもよるが、錫に対してハロゲノ錫酸塩の対
イオンが等モル以上になるように添加する事が好ましい
。この対イオンの添加量が少ない場合、ノ\ロゲノ錫酸
塩の沈殿生成効率が悪くなり、必要以上に多過ぎると不
経済である。陽イオンの添加方法としては水溶液中で電
解質として作用するものであれば良く、無機質物でも有
機質物でも良い。無機質物としては、アンモニア水、水
酸化ナトリウム、水酸化カリウム、水酸化カルシウム、
水酸化マグネシウム等の塩基、及びこれらの塩酸塩、硝
酸塩、硫酸塩等が挙げられる。有機質物としては、メチ
ルアミン、ジメチルアミン、エチルアミン、ピリジン等
の塩基及びこれらの塩酸塩等が挙げられる。ノ\ロゲノ
錫酸塩はアンモニウム塩及び/又はアミン類の塩として
生成させる事が好ましく、この時、溶液中へのナトリウ
ムイオン、カルシウムイオン等の無機金属イオンの混入
が避けられ、本発明の効果も著しい。しかし経済性を考
えるとアンモニウム塩として生成させる事が特に好まし
い。水酸化ナトリウムのような塩基を添加する場合は、
溶液中のプロトン濃度が減少するため、プロトン濃度が
低過ぎる事のないように注意する必要がある。電解質の
添加方法としては粉状、スラリー状、水溶液等の状態で
添加する方法があるが、液量の増加が予想される場合は
、粉状のものを用いる方法が良く、錫の分離効果も大き
くなる。
A counter ion of a halogenostannate ion is supplied to an aqueous solution containing In and tin in which a strong acid and a halide ion coexist to generate a halogenostannate. The amount of cations to be added that serve as counter ions to halogen stannate depends on the halogen ion concentration and acid concentration, but it should be added so that the counter ions of halogen stannate are at least equimolar to tin. Things are good. If the amount of this counter ion added is small, the efficiency of precipitation of norogenostannate will be poor, and if it is more than necessary, it will be uneconomical. The cation may be added by any method as long as it acts as an electrolyte in an aqueous solution, and may be an inorganic or organic material. Inorganic substances include aqueous ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide,
Examples include bases such as magnesium hydroxide, and hydrochlorides, nitrates, and sulfates thereof. Examples of organic substances include bases such as methylamine, dimethylamine, ethylamine, and pyridine, and their hydrochlorides. It is preferable to generate the nologenostannate as an ammonium salt and/or a salt of amines. At this time, inorganic metal ions such as sodium ions and calcium ions are prevented from being mixed into the solution, and the effects of the present invention are improved. is also remarkable. However, considering economic efficiency, it is particularly preferable to produce it as an ammonium salt. When adding a base such as sodium hydroxide,
Since the proton concentration in the solution decreases, care must be taken not to make the proton concentration too low. There are ways to add electrolyte in the form of powder, slurry, aqueous solution, etc., but if an increase in the amount of liquid is expected, it is better to use powder, which also has the effect of separating tin. growing.

このようにして、錫を選択的に生成させるが、生成させ
る際の温度は特に制限はなく、5〜60℃が好ましい。
In this way, tin is selectively produced, but the temperature at which it is produced is not particularly limited, and is preferably 5 to 60°C.

この温度が高過ぎると生成物の溶解度が大きくなり生成
量が低下する。
If this temperature is too high, the solubility of the product will increase and the amount produced will decrease.

次に、得られたハロゲノ錫酸塩の生成物を含むスラリー
からハロゲノ錫酸塩を分離する。この分離には通常の装
置、例えば、遠心分離器、ベルトフィルター ドラムフ
ィルター等を用いる事ができる。
The halogenostannate is then separated from the resulting slurry containing the halogenostannate product. For this separation, conventional equipment such as centrifugal separators, belt filters, drum filters, etc. can be used.

得られた生成物は、錫イオンにハロゲンイオンが配位し
た陰イオン錯体が、添加した電解質のアンモニウムイオ
ン、ナトリウムイオン等を対イオンとして生成したハロ
ゲノ錫酸塩である。例えば、クロル錫酸アンモニウム、
ブロム錫酸アンモニウム、クロル錫酸ナトリウム等であ
る。又、生成物を分離して得られた濾液は、Inイオン
に対して錫イオンの量が少なく、本発明でこのような溶
液を用いると、Inの蓚酸塩としての回収率及び純度が
向上する。
The obtained product is a halogenostannate in which an anion complex in which a halogen ion is coordinated with a tin ion is produced using the added electrolyte such as ammonium ion, sodium ion, etc. as a counter ion. For example, ammonium chlorostannate,
These include ammonium bromostannate and sodium chlorostannate. In addition, the filtrate obtained by separating the product has a smaller amount of tin ions than In ions, and when such a solution is used in the present invention, the recovery rate and purity of In as oxalate are improved. .

このようにして得たInを主成分とする水溶液に酸又は
アルカリを添加しpH調整を行なう。pH調整の最適範
囲は、Inの濃度、温度、添加する蓚酸及び/又は蓚酸
塩の量によるが、pHO〜2以下の範囲に調整する事が
好ましい。しかしこのpHが必要以上に低すぎるとIn
蓚酸塩の溶解度が大きくなりIn成分の回収率が低下す
る。又pnが高過ぎると得られたIn蓚酸塩の中に!n
以外の金属が多量に混入し、精製効果が小さくなる。p
H調節の際に添加する酸の種類は特に限定はなく、塩酸
、硫酸、硝酸等の鉱酸が挙げられる。又、添加するアル
カリの種類にも制限はないが、アルカリ金属の水酸化物
、アルカリ土類金属の水酸化物、アンモニア等が挙げら
れる。この際アンモニアを用いる場合、Inを主成分と
する水溶液中にナトリウムイオンやカリウムイオン等の
金属イオンが混入しないため、高純度のInを回収する
場合は特に好ましい。酸又はアルカリの添加方法は、水
溶液、スラリー、粉状、ガス状等いずれの状態で添加し
てもよいが、スラリー、粉状、ガス状で用いることが液
量の増加がなく、Inの回収率及び生産性を向上させ好
ましい。
An acid or alkali is added to the thus obtained aqueous solution containing In as a main component to adjust the pH. The optimum range for pH adjustment depends on the concentration of In, temperature, and the amount of oxalic acid and/or oxalate to be added, but it is preferably adjusted to a range of pH 2 or less. However, if this pH is too low than necessary, In
The solubility of oxalate increases and the recovery rate of the In component decreases. Also, in the In oxalate obtained when pn is too high! n
A large amount of other metals are mixed in, reducing the purification effect. p
The type of acid added during H adjustment is not particularly limited, and examples thereof include mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid. Furthermore, there are no restrictions on the type of alkali to be added, but examples include alkali metal hydroxides, alkaline earth metal hydroxides, ammonia, and the like. In this case, when ammonia is used, metal ions such as sodium ions and potassium ions are not mixed into the aqueous solution containing In as a main component, so it is particularly preferable when recovering high-purity In. The acid or alkali may be added in any form such as an aqueous solution, slurry, powder, or gas, but it is preferable to use the acid or alkali in the form of a slurry, powder, or gas because there is no increase in liquid volume and the recovery of In is effective. It is preferable because it improves rate and productivity.

本発明ではinを含む水溶液から蓚酸塩としてInを生
成させるため添加する蓚酸及び/又は蓚酸塩は、蓚酸塩
としてはアルカリ金属の塩、アルカリ土類金属の塩、ア
ンモニウム塩等が挙げられ、金属イオンを含まない塩が
高純度のInを回収するためには好ましく、アンモニウ
ム塩が特に好ましい。
In the present invention, the oxalic acid and/or oxalate added to generate In as oxalate from an aqueous solution containing In include alkali metal salts, alkaline earth metal salts, ammonium salts, etc. as oxalate; Ion-free salts are preferred for recovering highly pure In, and ammonium salts are particularly preferred.

蓚酸及び/又は蓚酸塩は水溶液、粉状、スラリーいずれ
の状態でも添加する事ができ、蓚酸及び/又は蓚酸塩の
溶解度の大きい、アルコール溶液として添加してもよい
。蓚酸及び/又は蓚酸塩の添加量は、溶液の温度、90
% In濃度、In以外の金属イオンの濃度等によって
適宜異なるが、Inに対して0.5〜2.5倍等量が好
ましい。この量が前記範囲より少ないとInの回収率が
低下し、又、多いとIn以外の金属イオンが共に生成す
る。
Oxalic acid and/or oxalate can be added in the form of an aqueous solution, powder, or slurry, and may also be added as an alcoholic solution in which oxalic acid and/or oxalate has a high solubility. The amount of oxalic acid and/or oxalate added depends on the temperature of the solution, 90%
% Although it varies appropriately depending on the In concentration, the concentration of metal ions other than In, etc., it is preferably 0.5 to 2.5 times equivalent to In. If this amount is less than the above range, the recovery rate of In will decrease, and if it is more, metal ions other than In will be generated together.

例えば、4N程度のinとして回収する際、溶液中のi
nの含有量が多い時は蓚酸の添加量を多くし、pHを1
〜2の範囲としてinの蓚酸塩を生成させる。
For example, when recovering as in of about 4N, i
When the content of n is high, increase the amount of oxalic acid added and adjust the pH to 1.
oxalate in the range of ~2.

逆に溶液中のInの含有量が他の金属に比べて少ない場
合は、蓚酸量を少なくし、pHを0〜1の範囲にしてI
nを蓚酸塩として生成させる。
Conversely, if the In content in the solution is low compared to other metals, reduce the amount of oxalic acid and adjust the pH to a range of 0 to 1.
n is produced as oxalate.

Inを含む水溶液の酸又はアルカリの添加と蓚酸及び/
又は蓚酸塩の添加の順序は特に限定はしないが、最も簡
単の方法は、1nを含む水溶液のpHを0〜2の範囲に
調整し蓚酸及び/又は蓚酸塩を添加する方法である。こ
の場合は、蓚酸及び/又は蓚酸塩の添加速度が遅いほど
In以外の金属イオンの共生成を抑制する事ができ、よ
り高純度なInの蓚酸塩を得る事ができる。Inを含む
水溶液が強酸性の場合は、初めにpHを調整しても良い
が、初めに蓚酸及び/又は蓚酸塩を添加し、その後アル
カリでpHを0〜2に調整しても良い。この場合もアル
カリの添加速度が遅いほど、即ち、徐々にpHを上昇さ
せる事により高純度の10の蓚酸塩が得られる。又、I
nを主成分とする水溶液にアルカリを添加し水溶液中の
金属イオンを水酸化物のゲル状の生成物スラリーとし、
このスラリーに蓚酸及び/又は蓚酸塩を添加しその後酸
を添加してpHを0〜2の範囲に調整しInの蓚酸塩を
生成させる事もできる。この場合、非常に微細でかつ高
純度なinの蓚酸塩が得られる。このようにしてInの
蓚酸塩を生成するが、その反応温度は特に限定されず1
0〜60℃が好ましい。
Addition of acid or alkali to aqueous solution containing In and oxalic acid and/or
Alternatively, the order of addition of oxalate is not particularly limited, but the simplest method is to adjust the pH of an aqueous solution containing 1N to a range of 0 to 2, and then add oxalic acid and/or oxalate. In this case, the slower the addition rate of oxalic acid and/or oxalate, the more the co-generation of metal ions other than In can be suppressed, and the more pure In oxalate can be obtained. When the aqueous solution containing In is strongly acidic, the pH may be adjusted first, but oxalic acid and/or oxalate may be added first, and then the pH may be adjusted to 0 to 2 with an alkali. In this case as well, the slower the alkali addition rate, that is, the more the pH is gradually raised, the higher the purity of the oxalate of 10 can be obtained. Also, I
Adding an alkali to an aqueous solution containing n as a main component and converting the metal ions in the aqueous solution into a gel-like product slurry of hydroxide,
It is also possible to generate In oxalate by adding oxalic acid and/or oxalate to this slurry, and then adding an acid to adjust the pH to a range of 0 to 2. In this case, very fine and highly purified in oxalate is obtained. In this way, In oxalate is produced, but the reaction temperature is not particularly limited and is 1
0 to 60°C is preferred.

次に、得られたInの蓚酸塩を含むスラリーからInの
蓚酸塩を分離回収する。この際の分離には、通常の装置
、例えば、遠心分離器、ベルトフィルター、ドラムフィ
ルター等を用いる事ができる。
Next, In oxalate is separated and recovered from the obtained slurry containing In oxalate. For separation at this time, conventional equipment such as a centrifugal separator, belt filter, drum filter, etc. can be used.

Inの蓚酸塩の濾過性は極めて良く、短時間で容易に固
液分離できる。
In oxalate has extremely good filterability and can be easily separated into solid and liquid in a short time.

得られたInの蓚酸塩は、純水、希酸の水溶液又は希蓚
酸水溶液などで洗浄しInの蓚酸塩に付着したIn以外
の金属塩を除去することが好ましい。
The obtained In oxalate is preferably washed with pure water, a dilute acid aqueous solution, a dilute oxalic acid aqueous solution, or the like to remove metal salts other than In adhering to the In oxalate.

このようにして得られた1nの蓚酸塩は焼成するなどし
てInの酸化物として利用できる。
The 1N oxalate thus obtained can be used as an In oxide by sintering or the like.

[発明の効果] 従来、イオン交換塔、電解槽、溶媒抽出槽等の大型装置
を使用してInの精製を行なっていたが、本発明は、簡
便な装置及び操作で4〃以上のInを回収する事ができ
、また、1n以外の金属イオンの存在量に比較的影響さ
れないため、Inを含むスクラップからのIn回収方法
に良好に適応できる。
[Effect of the invention] Conventionally, large-sized equipment such as ion exchange towers, electrolytic cells, and solvent extraction tanks were used to purify In, but the present invention purifies In with a concentration of 4 or more using simple equipment and operations. In addition, since it is relatively unaffected by the amount of metal ions other than In, it can be well applied to a method for recovering In from scrap containing In.

[実施例] 以下に本発明の実施例及び比較例を示すが、本発明はこ
れらに限定されるものでない。
[Example] Examples and comparative examples of the present invention are shown below, but the present invention is not limited thereto.

実施例1 撹拌機を備えた11のセパラブルフラスコに36%塩酸
水溶液IJとITOターゲットスクラップ2゜Ogと塩
安107g入れ、80℃、3時間で撹拌し、ターゲット
を溶解した。得られた溶解液を濾過し、残留物を取除き
組成を分析した結果、 塩酸濃度:  8.5 moJ / IIn    :
  1.14  〃 Sn    :  10.i n+mo 1 / JC
a    :  1.1  // re    :  1.9  ” Zr    :  1.1  l/ Zn    :  2.2  〃 Na    :3〃 であった。このターゲット溶解液100mjを撹拌機を
備えた500−のセパラブルフラスコにとり、更に、H
2C204・H2O30gを318mJ!の純水に溶解
した蓚酸溶液を加えた。次にこの溶液を撹拌しながら、
28%アンモニア水を添加し溶液のpHを1.1に調節
してInの蓚酸塩を得その後2時間撹拌を続けた。この
時の温度は25℃であった。次に、No、 5Gの濾紙
で吸引濾過し062%の蓚酸水溶液で洗浄し1nの蓚酸
塩を得た。濾過性は非常に良く濾液中のIJLから10
回収率は91%であった。得られたケーキを乾燥した後
、700℃で3時間焼成して酸化Inを得た。得られた
酸化Inを塩酸に再溶解し、誘導結合プラズマ発光分光
分析装置(以下1cPと記載)により、In以外の金属
元素を分析したところ酸化Inに対して10ppm以下
であった。ただしNaは原子吸光分析装置にて測定した
Example 1 A 36% aqueous hydrochloric acid solution IJ, 2°Og of ITO target scrap, and 107g of ammonium chloride were placed in an 11 separable flask equipped with a stirrer, and the mixture was stirred at 80°C for 3 hours to dissolve the target. The obtained solution was filtered to remove the residue and the composition was analyzed. Hydrochloric acid concentration: 8.5 moJ / IIn:
1.14 Sn: 10. in+mo1/JC
a: 1.1 // re: 1.9 ” Zr: 1.1 l/ Zn: 2.2 Na: 3. 100 mj of this target solution was heated in a 500-meter separator equipped with a stirrer. Transfer to a flask and add H
2C204・H2O30g is 318mJ! An oxalic acid solution dissolved in pure water was added. Next, while stirring this solution,
28% aqueous ammonia was added to adjust the pH of the solution to 1.1 to obtain In oxalate, and stirring was continued for 2 hours. The temperature at this time was 25°C. Next, it was suction filtered through No. 5G filter paper and washed with a 62% oxalic acid aqueous solution to obtain 1N oxalate. The filterability is very good and the IJL in the filtrate is 10
The recovery rate was 91%. After drying the obtained cake, it was baked at 700° C. for 3 hours to obtain In oxide. The obtained In oxide was redissolved in hydrochloric acid, and metal elements other than In were analyzed using an inductively coupled plasma emission spectrometer (hereinafter referred to as 1 cP), and the concentration was 10 ppm or less relative to In oxide. However, Na was measured using an atomic absorption spectrometer.

比較例1 実施例1のターゲット溶解液の100mAを撹拌機を備
えた1000 m 1のセパラブルフラスコにとり、更
に、H2C204” H2060gを[132ffij
!の純水に溶解した蓚酸溶液を加えた。次にこの溶液を
撹拌しながら、28%アンモニア水を添加し、溶液のp
Hを1.1に調節してInの蓚酸塩を生成させた。その
後2時間撹拌を続けた。この時の温度は25℃であった
。次に、No、5Gの濾紙で吸引濾過し0.2%の蓚酸
水溶液で洗浄しInの蓚酸塩を得た。濾過性は非常に良
く、濾液中のInff1からIn回収率は99%であっ
た。得られたケーキを実施例1と同様にして酸化Inと
し、塩酸に再溶解しIn以外の金属元素を分析したとこ
ろ酸化Inに対してSn:85LOppm、 Ca:3
00ppm SFe:500ppm 、 Zr:700
ppm 、 Zn:990ppm 。
Comparative Example 1 100 mA of the target solution of Example 1 was placed in a 1000 m 1 separable flask equipped with a stirrer, and 2060 g of H2C204'' H was added to [132ffij
! An oxalic acid solution dissolved in pure water was added. Next, while stirring this solution, 28% ammonia water was added, and the pH of the solution was
In oxalate was produced by adjusting H to 1.1. Stirring was then continued for 2 hours. The temperature at this time was 25°C. Next, the mixture was suction filtered using No. 5G filter paper and washed with a 0.2% oxalic acid aqueous solution to obtain In oxalate. The filterability was very good, and the recovery rate of In from Inff1 in the filtrate was 99%. The obtained cake was made into In oxide in the same manner as in Example 1, redissolved in hydrochloric acid, and analyzed for metal elements other than In. Sn: 85 LO ppm and Ca: 3 relative to In oxide.
00ppm SFe: 500ppm, Zr: 700
ppm, Zn: 990 ppm.

Na:2QOppm含まれており、添加した蓚酸量が多
いため、収率は上がったがその他の不純物が多く共沈し
た。
Since it contained 2QOppm of Na and the amount of oxalic acid added was large, the yield increased, but many other impurities were co-precipitated.

比較例2 実施例1のターゲット溶解液の100−を撹拌機を備え
た500−のセパラブルフラスコにとり、更に、H2C
204・H2030gを316−の純水に溶解した蓚酸
溶液を加えた。次にこの溶液を撹拌しながら、28%ア
ンモニア水を添加し、溶液のphを0以下に調節してI
nの蓚酸塩を生成させた。その後2時間撹拌を続けた。
Comparative Example 2 A 100-liter of the target solution of Example 1 was placed in a 500-liter separable flask equipped with a stirrer, and further added with H2C.
An oxalic acid solution in which 2030 g of 204.H was dissolved in 316-pure water was added. Next, while stirring this solution, 28% ammonia water was added, the pH of the solution was adjusted to 0 or less, and I
n oxalate was produced. Stirring was then continued for 2 hours.

この時の温度は25℃であった。次に、No、5Cの濾
紙で吸引濾過し0.2%の蓚酸水溶液で洗浄しInの蓚
酸塩を得た。濾過性は非常に良いがpHが低過ぎたため
In回収率は26%であった。
The temperature at this time was 25°C. Next, the mixture was suction filtered using No. 5C filter paper and washed with a 0.2% oxalic acid aqueous solution to obtain In oxalate. Although the filterability was very good, the pH was too low, so the In recovery rate was 26%.

比較例3 このターゲット溶解液の100−を撹拌機を備えた50
0IIl、gのセパラブルフラスコにとり、更に、H2
C20a ・H2O30gを316−の純水に溶解した
蓚酸溶液を加えた。次にこの溶液を撹拌しながら、28
%アンモニア水を添加し、溶液のpHを3.1に調節し
てInの蓚酸塩を生成させ、2時間撹拌を続けた。この
時の温度は25℃であった。次に、No、5Cの濾紙で
吸引濾過し0.2%の蓚酸水溶液で洗浄しInの蓚酸塩
を得た。濾過性は非常に良く濾液中の1n量からIn回
収率は99%であった。得られたケーキを実施例1と同
様にして酸化Inを得て塩酸に再溶解しIn以外の金属
元素を分析したところ酸化Inに対してSn:9100
1)pIII、 Ca:290+)I3In 、 P(
3:510p1)m 、Zr:890ppn+ SZn
:11000pp、 Na:250ppm含まれており
、pHが高過ぎたため収率は向上したが、他の不純物が
多く共沈した。
Comparative Example 3 This target solution was heated to
0IIl, g into a separable flask, and further add H2
An oxalic acid solution in which 30 g of C20a.H2O was dissolved in 316-pure water was added. Next, while stirring this solution, 28
% aqueous ammonia was added and the pH of the solution was adjusted to 3.1 to form In oxalate, and stirring was continued for 2 hours. The temperature at this time was 25°C. Next, the mixture was suction filtered using No. 5C filter paper and washed with a 0.2% oxalic acid aqueous solution to obtain In oxalate. The filterability was very good, and the In recovery rate was 99% based on the 1N amount in the filtrate. The resulting cake was treated in the same manner as in Example 1 to obtain In oxide, which was redissolved in hydrochloric acid and analyzed for metal elements other than In. Sn: 9100 relative to In oxide.
1) pIII, Ca:290+) I3In, P(
3:510p1)m, Zr:890ppn+SZn
Since the pH was too high, the yield was improved, but many other impurities were co-precipitated.

Claims (1)

【特許請求の範囲】[Claims] インジウムを含む水溶液のpHを0〜2に調整し、又は
調整しつつこの水溶液に蓚酸及び/又は蓚酸塩を添加し
、又は、インジウムを含む水溶液に蓚酸及び/又は蓚酸
塩を添加しこの水溶液のpHを0〜2に調整し水溶液中
のインジウムを蓚酸塩として分離する事を特徴とするイ
ンジウムの回収方法。
Adjusting the pH of the aqueous solution containing indium to 0 to 2, or adding oxalic acid and/or oxalate to the aqueous solution while adjusting it, or adding oxalic acid and/or oxalate to the aqueous solution containing indium, and adjusting the pH of the aqueous solution. A method for recovering indium, which comprises adjusting the pH to 0 to 2 and separating indium in an aqueous solution as oxalate.
JP1206654A 1989-08-11 1989-08-11 Recovery of indium Pending JPH0375223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206654A JPH0375223A (en) 1989-08-11 1989-08-11 Recovery of indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206654A JPH0375223A (en) 1989-08-11 1989-08-11 Recovery of indium

Publications (1)

Publication Number Publication Date
JPH0375223A true JPH0375223A (en) 1991-03-29

Family

ID=16526931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206654A Pending JPH0375223A (en) 1989-08-11 1989-08-11 Recovery of indium

Country Status (1)

Country Link
JP (1) JPH0375223A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543031A (en) * 1994-08-19 1996-08-06 Nippon Mining & Metals Co., Ltd. Method for recovering indium by electrowinning and apparatus therefor
WO2005095659A1 (en) * 2004-03-31 2005-10-13 Mitsui Mining & Smelting Co., Ltd. Method for producing indium-containing metal
JP2005314786A (en) * 2004-03-31 2005-11-10 Mitsui Mining & Smelting Co Ltd Method for collecting indium
CN110055422A (en) * 2019-05-21 2019-07-26 华南理工大学 A kind of method of indium in recycling waste liquid crystal displays

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543031A (en) * 1994-08-19 1996-08-06 Nippon Mining & Metals Co., Ltd. Method for recovering indium by electrowinning and apparatus therefor
WO2005095659A1 (en) * 2004-03-31 2005-10-13 Mitsui Mining & Smelting Co., Ltd. Method for producing indium-containing metal
JP2005314786A (en) * 2004-03-31 2005-11-10 Mitsui Mining & Smelting Co Ltd Method for collecting indium
KR100821608B1 (en) * 2004-03-31 2008-04-15 미쓰이 긴조꾸 고교 가부시키가이샤 Method for producing indium-containing metal
CN110055422A (en) * 2019-05-21 2019-07-26 华南理工大学 A kind of method of indium in recycling waste liquid crystal displays

Similar Documents

Publication Publication Date Title
CN107827089B (en) Method for separating and recovering tellurium dioxide in cuprous telluride compound waste
WO2018072499A1 (en) Method for recovering basic copper chloride from copper-containing waste liquid in sulfuric acid system
KR100821608B1 (en) Method for producing indium-containing metal
JP5032400B2 (en) Nickel oxide
JP5589854B2 (en) How to recover bismuth
JP2010138490A (en) Method of recovering zinc
JPH0375223A (en) Recovery of indium
JP7090877B2 (en) How to recover valuable metals
JP2889890B2 (en) Production method of indium oxide
CN111099652B (en) Method for separating silver and copper in silver electrolysis waste liquid
JP4275939B2 (en) Method for recovering tantalum compound and / or niobium compound
CN113354048B (en) Heavy metal precipitator, application and preparation method thereof, and waste acid wastewater treatment method
JP5447824B2 (en) A method for purifying a rhodium nitrite complex ion solution and a method for producing an ammonium salt thereof.
CN112239221B (en) Method for extracting rubidium chloride from rubidium-containing high-salinity brine
JP7347083B2 (en) Manufacturing method of high purity scandium oxide
JP2007039798A (en) Method for recovering indium, and its use
JP5119524B2 (en) Indium recovery method
JPH0375224A (en) Method for purifying aqueous solution of indium
JP4351912B2 (en) Method for purifying niobium compound and / or tantalum compound
JPH03223429A (en) Method for recovering silver from silver-containing nitric acid solution
JPS63496A (en) Method for purifying gallium electrolytic solution
CN111020241A (en) Method for extracting scandium oxide from zirconium oxychloride mother liquor
JP2001040436A (en) Method for recovering and refining indium
JP4322008B2 (en) Method for recovering tantalum compound and / or niobium compound
JP3137226B2 (en) Production method of high purity strontium chloride