JP2001004857A - Optical circuit and its manufacture - Google Patents

Optical circuit and its manufacture

Info

Publication number
JP2001004857A
JP2001004857A JP2000156059A JP2000156059A JP2001004857A JP 2001004857 A JP2001004857 A JP 2001004857A JP 2000156059 A JP2000156059 A JP 2000156059A JP 2000156059 A JP2000156059 A JP 2000156059A JP 2001004857 A JP2001004857 A JP 2001004857A
Authority
JP
Japan
Prior art keywords
optical
waveguide
optical circuit
diffusion
patterning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000156059A
Other languages
Japanese (ja)
Inventor
Yukinobu Nakabayashi
幸信 中林
Toru Hosoi
亨 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000156059A priority Critical patent/JP2001004857A/en
Publication of JP2001004857A publication Critical patent/JP2001004857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain the reduction in the bending loss of a Ti diffusion optical waveguide, the polarization independent operation, and the reduction in connection loss with an optical fiber by repeating the forming and patterning step of a titanium (Ti) film and the diffusing step of Ti twice or more in this order. SOLUTION: In the manufacture of a bend optical waveguide, a waveguide pattern including the bend optical waveguide is formed by liftoff method. The thickness of the resulting Ti thin film 2 is set to, for example, 20-80 nm (A). An LiNbO3 substrate 1 subjected to Ti-patterning is thermally diffused, for example, at 1,000 deg.C for 12 h to form a first step of waveguide (B). Further, a waveguide pattern including the bend optical waveguide is formed thereon in the same manner as the first step by liftoff method (C), and thermal diffusion is performed at 1,000 deg.C for 12h (D). The thickness of the Ti thin film 2 in the second step is set to, for example, 100 nm. This bend optical waveguide has a radius of curvature of 30 mm or more and a bending loss of 0.1 dB/mm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニオブ酸リチウム
を基板に用いた拡散型光回路とその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a diffusion type optical circuit using lithium niobate as a substrate and a method of manufacturing the same.

【0002】[0002]

【従来の技術】ニオブ酸リチウムLiNbO3(「LN」もい
う)はその優れた電気光学効果を用いて、光変調器、光
スイッチ等多くの光デバイスに応用されている誘電体光
学結晶材料である。この結晶材料では、一般的にチタン
(Ti)を熱拡散して3次元光導波路を作製し、光の光回
路への導入、偏向、取り出しその他の機能をもつ光回路
を形成する。
2. Description of the Related Art Lithium niobate LiNbO 3 (also referred to as “LN”) is a dielectric optical crystal material applied to many optical devices such as optical modulators and optical switches by using its excellent electro-optic effect. is there. In this crystal material, generally, titanium (Ti) is thermally diffused to form a three-dimensional optical waveguide, and an optical circuit having functions of introducing, deflecting, extracting, and extracting light to the optical circuit is formed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このTi
拡散型LiNbO3光導波路においては、熱拡散時の温度、雰
囲気等のパラメータによって決定される一定の熱拡散係
数により、3次元光導波路の屈折率分布のアスペクト比
(導波路幅と深さの比)が一義的に決定されるために、
光回路の導波路特性を最良に調整することが困難であっ
た。以下に詳しく説明する。
However, this Ti
In the diffusion type LiNbO 3 optical waveguide, the aspect ratio of the refractive index distribution of the three-dimensional optical waveguide (the ratio of the waveguide width to the depth) is determined by a constant thermal diffusion coefficient determined by parameters such as temperature and atmosphere during thermal diffusion. ) Is uniquely determined,
It has been difficult to optimally adjust the waveguide characteristics of the optical circuit. This will be described in detail below.

【0004】光デバイスには曲がり導波路部分が存在す
るために、低損失の光デバイスを実現するにはこれらの
曲がり損失を低減することが重要である。
Since an optical device has a bent waveguide portion, it is important to reduce these bending losses to realize a low-loss optical device.

【0005】また、曲がり損失を低減した場合、より小
さな曲率半径で導波路のとり回しが可能になるために、
光素子の小型化に有効である。
When the bending loss is reduced, the waveguide can be routed with a smaller radius of curvature.
This is effective for downsizing an optical element.

【0006】ところが、特にX-CutやY-CutのLiNbO3を用
いた光導波路では、導波路の深さ方向の拡散速度に比し
て基板面方向への拡散速度が大きいために、拡散後の屈
折率プロファイルが非常に扁平なものになりやすい。そ
のため、導波光の横方向モードフィールド径が大きくな
り、低損失の曲がり導波路の実現が難しかった。
However, in particular, in an optical waveguide using LiNbO 3 of X-Cut or Y-Cut, the diffusion speed in the direction of the substrate surface is larger than the diffusion speed in the depth direction of the waveguide. Tends to have a very flat refractive index profile. For this reason, the transverse mode field diameter of the guided light becomes large, and it is difficult to realize a low-loss bent waveguide.

【0007】また、X-CutやY-CutのLiNbO3を用いて、Z
方向に光を伝搬する光素子においてはTE、TM両偏光状態
の感じる基板屈折率が同等になるために偏光無依存素子
の実現が期待されるが、拡散後の屈折率プロファイルが
非常に扁平な場合には、TE、TM両偏光の伝搬定数が異な
る。このために、偏光無依存素子の実現は困難であっ
た。
Further, by using LiNbO3 of X-Cut or Y-Cut, Z
In an optical element that propagates light in the direction, it is expected to realize a polarization-independent element because the substrate refractive index felt in both TE and TM polarization states is equal, but the refractive index profile after diffusion is very flat In this case, the propagation constants of the TE and TM polarized lights are different. For this reason, it has been difficult to realize a polarization independent element.

【0008】さらに、Ti拡散型LiNbO3光導波路の場合、
他の光回路、特に光ファイバとの光結合において結合損
失が大きくなる。
Further, in the case of a Ti diffusion type LiNbO 3 optical waveguide,
Coupling loss increases in other optical circuits, particularly in optical coupling with optical fibers.

【0009】特に、LN光デバイスにおいては光ファイ
バとの結合損失は1dBかそれ以上といわれており、低損
失光素子の実現のためには屈折率プロファイルの制御が
必要である。
In particular, in an LN optical device, the coupling loss with an optical fiber is said to be 1 dB or more, and it is necessary to control the refractive index profile to realize a low-loss optical element.

【0010】従って、本発明は、上記問題点を解消し、
Ti拡散光導波路の曲がり損失低減化、偏光無依存動作、
及び光ファイバとの結合損失低減をする光素子を実現す
るために、より設計自由度の高い拡散型光回路とその製
造方法を提供することを目的とする。
Accordingly, the present invention has solved the above-mentioned problems,
Reduction of bending loss of Ti diffused optical waveguide, polarization independent operation,
It is another object of the present invention to provide a diffusion type optical circuit having a higher degree of freedom in design and a method of manufacturing the same in order to realize an optical element that reduces coupling loss with an optical fiber.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、(a)チタン(Ti)の製膜及びパタンニン
グの工程と、(b)該Tiの熱拡散工程と、をこの順に2回
以上繰り返すことを特徴とするTi拡散型ニオブ酸リチウ
ム光回路の製造方法を提供する。
In order to achieve the above object, the present invention comprises (a) a step of forming and patterning titanium (Ti) and (b) a step of thermally diffusing the Ti. Provided is a method for manufacturing a Ti diffusion type lithium niobate optical circuit, which is repeated twice or more in order.

【0012】また、本発明においては、チタン(Ti)製
膜及びパタンニングと該Tiの熱拡散と、を2回以上繰り
返してなり、曲がり損失を低減させたことを特徴とす
る。
Further, the present invention is characterized in that the bending loss is reduced by repeating the film formation and patterning of titanium (Ti) and the thermal diffusion of the Ti two or more times.

【0013】そして、本発明の光回路においては、チタ
ン(Ti)製膜及びパタンニングと、該Tiの熱拡散と、を
2回以上繰り返し、偏光間における完全結合長を概ね一
致させたことを特徴とする。
In the optical circuit according to the present invention, the film formation and patterning of titanium (Ti) and the thermal diffusion of the Ti are repeated two or more times so that the complete coupling lengths between the polarized lights are made substantially equal. Features.

【0014】さらに、本発明の光回路においては、チタ
ン(Ti)拡散型ニオブ酸リチウム光回路において、Ti製
膜及びパタンニングと、該Tiの熱拡散を2回以上繰り返
してなり、他の光素子との結合損失を調整してなること
を特徴とする。
Further, in the optical circuit of the present invention, in the titanium (Ti) diffusion type lithium niobate optical circuit, the film formation and patterning of the Ti and the thermal diffusion of the Ti are repeated twice or more, and the other light It is characterized in that the coupling loss with the element is adjusted.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を図面を参照
して以下に詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0016】従来、Ti拡散型3次元光導波路は、LiNbO3
基板上にTi層を蒸着又はスパッタリング法等で成膜し、
導波路の形状に応じてTiをパタンニングした後に、概ね
1000℃から1050℃の範囲で該パタンニングされたTiを熱
拡散することで形成される。
Conventionally, a Ti diffusion type three-dimensional optical waveguide has been made of LiNbO 3
Form a Ti layer on the substrate by evaporation or sputtering, etc.
After patterning Ti according to the shape of the waveguide,
It is formed by thermally diffusing the patterned Ti in the range of 1000 ° C. to 1050 ° C.

【0017】X-Cut Z軸伝搬のLiNbO3基板を用いた場
合、拡散導波路の屈折率は基板屈折率2.2202に対して概
ね0.005程度大きくなり、その形状はガウシアン分布(G
auss分布)で近似される形状となる。
When an X-Cut Z-axis propagating LiNbO 3 substrate is used, the refractive index of the diffused waveguide is about 0.005 larger than the substrate refractive index of 2.2202, and the shape is Gaussian distribution (G
auss distribution).

【0018】ニオブ酸リチウム光回路の従来の製造方法
により製造された光回路の表面屈折率分布と、本発明の
第1の実施の形態により製造された光回路の表面屈折率
分布を図1に示す。
FIG. 1 shows the surface refractive index distribution of an optical circuit manufactured by a conventional method of manufacturing a lithium niobate optical circuit and the surface refractive index distribution of an optical circuit manufactured by the first embodiment of the present invention. Show.

【0019】いずれも、X-Cut LiNbO3ウエハ上にZ軸方
向に光回路を形成したものであり、従来例はTiを成膜、
パタンニング後に、1000℃において24H(時間)拡散を
行った。
In each case, an optical circuit is formed on the X-Cut LiNbO 3 wafer in the Z-axis direction.
After patterning, 24H (time) diffusion was performed at 1000 ° C.

【0020】また、本発明の実施形態に係る光回路はTi
成膜、パタンニング後に、1000℃において12H拡散を行
い、さらに形成された光回路上に同様なTi成膜、パタン
ニングを行い、1000℃において12H拡散を行った。
Further, the optical circuit according to the embodiment of the present invention is a Ti circuit.
After film formation and patterning, 12H diffusion was performed at 1000 ° C., and similar Ti film formation and patterning were performed on the formed optical circuit, and 12H diffusion was performed at 1000 ° C.

【0021】従来例、及び本発明の実施形態とも全拡散
時間は24Hと同様であり、成膜したTiの全膜厚も同様で
ある。
In the conventional example and the embodiment of the present invention, the total diffusion time is the same as that of 24H, and the total thickness of the formed Ti is also the same.

【0022】図1に示す測定結果からも明らかなよう
に、本発明の実施形態によれば、従来の光回路の製造方
法に比べて、より大きな表面屈折率変化が得られ、その
分布も半値幅の小さなものが得られる。
As is clear from the measurement results shown in FIG. 1, according to the embodiment of the present invention, a larger change in the surface refractive index can be obtained and the distribution thereof can be reduced by half compared to the conventional method of manufacturing an optical circuit. A product with a small price range can be obtained.

【0023】このため、本発明の実施形態によれば、曲
がり導波路損失の小さな光回路の形成が容易になる。
Therefore, according to the embodiment of the present invention, it is easy to form an optical circuit having a small bending waveguide loss.

【0024】次に、本発明の第2の実施の形態として、
低損失な曲がり光導波路について詳細に説明する。図2
には、本実施形態に係る曲がり光導波路の製造を工程順
に模式的に示した断面図である。図2を参照して、本実
施形態に係る曲がり光導波路の製造方法を説明する。
Next, as a second embodiment of the present invention,
The low-loss bent optical waveguide will be described in detail. FIG.
3A to 3C are cross-sectional views schematically showing the manufacture of the bent optical waveguide according to the embodiment in the order of steps. With reference to FIG. 2, a method for manufacturing the bent optical waveguide according to the present embodiment will be described.

【0025】まず、曲がり光導波路を含む導波路パタン
をリフトオフ法によって作製した。この時成膜したTi薄
膜2の膜厚は20nmから80nmとした(図2(A)参照)。
First, a waveguide pattern including a bent optical waveguide was manufactured by a lift-off method. The thickness of the Ti thin film 2 formed at this time was from 20 nm to 80 nm (see FIG. 2A).

【0026】TiパタンニングされたLiNbO3基板1を1000
℃で12H熱拡散して、一段目の導波路を作製した(図2
(B)参照)。
The LiNbO3 substrate 1 with the Ti pattern
2H was thermally diffused at 12 ° C. to produce a first-stage waveguide (FIG. 2).
(B)).

【0027】さらに、この上に一段目と同様に曲がり光
導波路を含む導波路パタンをリフトオフ法によって作製
し(図2(C)参照)、1000℃で12H熱拡散した(図2
(D)参照)。2段目においてTi薄膜2の膜厚は100nm
に設定した。
Further, a waveguide pattern including a bent optical waveguide is formed thereon by a lift-off method in the same manner as in the first stage (see FIG. 2C), and thermally diffused at 1000 ° C. for 12 H (FIG. 2).
(D)). In the second stage, the thickness of the Ti thin film 2 is 100 nm.
Set to.

【0028】参考例として、従来の導波路作製方法によ
る曲がり光導波路は、曲がり光導波路を含む導波路パタ
ンを作製し、TiパタンニングされたLiNbO3基板を1000℃
で12H熱拡散することで作製した。Ti膜厚は100nmとし
た。
As a reference example, a bent optical waveguide according to a conventional waveguide manufacturing method is prepared by forming a waveguide pattern including a bent optical waveguide, and subjecting a Ti-patterned LiNbO 3 substrate to 1000 ° C.
And 12H thermal diffusion. The Ti film thickness was 100 nm.

【0029】これらの成膜パラメータは、所望する光回
路特性に対して最適化しうるものである。
These film forming parameters can be optimized for desired optical circuit characteristics.

【0030】図3は、このように作製された曲がり導波
路の損失を曲がり導波路の曲率半径に対してプロットし
たものである。測定は1.31μmのLD(laser diode)を
入射光に用いて行った。
FIG. 3 is a graph in which the loss of the bent waveguide thus manufactured is plotted against the radius of curvature of the bent waveguide. The measurement was performed using a 1.31 μm LD (laser diode) as incident light.

【0031】図3に示すように、従来の製造方法(1階
拡散法)では曲率半径が50mmより小さい場合に曲がり損
失が0.1dB/mmを超える。
As shown in FIG. 3, in the conventional manufacturing method (first-order diffusion method), the bending loss exceeds 0.1 dB / mm when the radius of curvature is smaller than 50 mm.

【0032】これに対して、本発明の実施形態(「2階
拡散法」という)によって作製した曲がり導波路につい
ては、曲率半径が30mm以上で曲がり損失が0.1dB/mm以
下の良好な導波路であった。
On the other hand, with respect to the bent waveguide manufactured according to the embodiment of the present invention (referred to as “second-order diffusion method”), a good waveguide having a radius of curvature of 30 mm or more and a bending loss of 0.1 dB / mm or less is used. Met.

【0033】一般的に、光素子においてはより曲率半径
を小さくした曲がり導波路を用いることで素子全長を短
くできることから、本発明の実施形態に係る曲がり導波
路においては低損失で小型の光素子を提供できる。
In general, since the entire length of the optical device can be shortened by using a bent waveguide having a smaller radius of curvature, the bent waveguide according to the embodiment of the present invention has a small loss and a small optical device. Can be provided.

【0034】次に、本発明の第3の実施の形態として偏
光無依存光回路について詳細に説明する。
Next, a polarization independent optical circuit will be described in detail as a third embodiment of the present invention.

【0035】光素子においては、近接して設置した複数
の光導波路間での相互作用によって、光のパワー移行を
行ったり、所望の分岐比に分岐することが行われる(方
向性結合器)。分岐比率は、導波路パラメータや光導波
路間の距離、相互作用長によって制御される。
In an optical element, light power is shifted or the light is branched into a desired branching ratio by a mutual action between a plurality of optical waveguides installed in close proximity (directional coupler). The branching ratio is controlled by waveguide parameters, the distance between optical waveguides, and the interaction length.

【0036】この時、分岐比率が偏光間によって異なる
場合には、光素子への入射偏光によって分岐比率が異な
ることになり、光素子としての応用が困難である。この
ため、入射偏光間で分岐比率が概ね等しい方向性結合器
が期待される。
At this time, if the branching ratio is different depending on the polarized light, the branching ratio is different depending on the polarized light incident on the optical element, and it is difficult to apply the optical element. For this reason, a directional coupler having substantially the same branching ratio between incident polarized light is expected.

【0037】本実施形態に係る偏光無依存光回路は、Ti
製膜及びパタンニングと、その熱拡散を2回以上繰り返
すことによって、偏光間における完全結合長を概ね一致
させ得るようにしたものである。
The polarization-independent optical circuit according to the present embodiment is composed of Ti
By repeating film formation and patterning and thermal diffusion twice or more, the complete coupling length between the polarized lights can be made to substantially match.

【0038】図4に、本発明の実施形態に係る方向性結
合器の概略構成を示す。
FIG. 4 shows a schematic configuration of a directional coupler according to an embodiment of the present invention.

【0039】図4を参照して、入射ポートから入射した
光は方向性結合器の結合長や導波路間ギャップに依存す
る、所定の分岐比率でクロスポート(Cross Port)とバ
ーポート(Bar Port)とに分岐する。
Referring to FIG. 4, the light incident from the incident port is cross port and bar port at a predetermined branching ratio depending on the coupling length of the directional coupler and the gap between the waveguides. ) And branch to.

【0040】方向性結合器型光スイッチでは、この分岐
比率を印加電圧0Vで100%クロスポート(Cross Por
t)に分岐するように設定する。また、3dBカプラでは
各ポートへの分岐比率を50%に設定する。
In the directional coupler type optical switch, this branching ratio is adjusted to 100% crossport (Cross Por
Set to branch to t). In a 3 dB coupler, the branch ratio to each port is set to 50%.

【0041】図5は、本発明の実施形態に係る方向性結
合器(図4参照)による各ポートへの分岐比率を方向性
結合器の結合長に対してプロットしたものである。ま
た、図6には参考として、従来の光回路作製法による方
向性結合器の分岐比率を示した。
FIG. 5 is a graph in which the branch ratio to each port by the directional coupler (see FIG. 4) according to the embodiment of the present invention is plotted with respect to the coupling length of the directional coupler. FIG. 6 shows, for reference, the branching ratio of the directional coupler according to the conventional optical circuit manufacturing method.

【0042】本実施形態における光回路の作製プロセス
は、前記第1の実施形態として説明した曲がり導波路の
作製プロセスと同様である。
The manufacturing process of the optical circuit in this embodiment is the same as the manufacturing process of the bent waveguide described in the first embodiment.

【0043】図6を参照して、従来の光回路作製法によ
る方向性結合器ではTE、TM両偏光間で結合長が大きく異
なった。
Referring to FIG. 6, in the directional coupler based on the conventional optical circuit fabrication method, the coupling lengths differ greatly between the TE and TM polarized lights.

【0044】これに対して、本発明の実施形態に係る方
向性結合器では、図5に示すように、TE、TM両偏光間で
の完全結合長は5%以内で一致し、偏光無依存動作をす
ることがわかる。
On the other hand, in the directional coupler according to the embodiment of the present invention, as shown in FIG. 5, the perfect coupling length between the TE and TM polarized lights coincides with each other within 5%, and is independent of the polarization. You can see that it works.

【0045】次に、本発明の第4の実施の形態として、
他の光素子との結合が改善されるように調整されたこと
を特徴とする光回路について詳細に説明する。
Next, as a fourth embodiment of the present invention,
An optical circuit characterized by being adjusted so as to improve coupling with another optical element will be described in detail.

【0046】多くの光回路はその両端に他の光回路たと
えば光ファイバやLD、PD(photo diode)等の光素
子を結合する形態で使用される。従って、光回路の挿入
損失を低減するためには他の光回路との結合損失を低減
することが重要になり、そのためには入出射端での導波
モードの広がり(モードフィールド径)を他の光素子と
一致させることが有効である。
Many optical circuits are used in a form in which other optical circuits such as optical fibers, optical elements such as LDs and PDs (photo diodes) are coupled to both ends. Therefore, in order to reduce the insertion loss of an optical circuit, it is important to reduce the coupling loss with another optical circuit. To that end, the spread of the waveguide mode (mode field diameter) at the input / output end must be reduced. It is effective to match with the optical element.

【0047】従来の方法で作製した光回路の出射端での
モードフィールド径は直径16μmであり、光通信用シン
グルモードファイバのモードフィールド径10μmと大き
く異なるために、結合損失はほぼ2dBであった。
The mode field diameter at the emitting end of the optical circuit manufactured by the conventional method was 16 μm, which was significantly different from the mode field diameter of the optical communication single mode fiber of 10 μm, so that the coupling loss was approximately 2 dB. .

【0048】これに対して、本発明の実施形態による光
回路の出射端でのモードフィールド径は直径13μmであ
り、シングルモード光ファイバのモードフィールド径10
μmにより近づけることができた。この場合において、
シングルモード光ファイバとの結合損失は概ね1dBと良
好な結果を得た。
On the other hand, the mode field diameter at the output end of the optical circuit according to the embodiment of the present invention is 13 μm, and the mode field diameter of the single mode optical fiber is 10 μm.
It could be closer to μm. In this case,
The coupling loss with the single mode optical fiber was about 1 dB, which was a good result.

【0049】以上では、X-Cut Z軸伝搬素子についての
実施形態を説明した。しかしながら、本発明は、熱拡散
によって基板上に高屈折率領域を作成する光回路に対し
て、一般的に適用できるものである。
The embodiment of the X-Cut Z-axis propagation element has been described above. However, the present invention is generally applicable to optical circuits that create a high refractive index region on a substrate by thermal diffusion.

【0050】具体的には、上記発明の実施形態として説
明したものと異なる結晶方位に作成したLiNbO3光回路
や、ニオブタンタレート基板にTi拡散によって作成する
光回路に対しても適用しうるものである。
More specifically, the present invention can be applied to a LiNbO3 optical circuit formed in a crystal orientation different from that described in the embodiment of the present invention and an optical circuit formed by diffusing Ti into a niobium tantalate substrate. is there.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
低損失、偏光無依存な光デバイスを実現することが可能
とされ、光通信、光クロスコネクト等に好適に応用され
るものであり、本発明の実用的価値は極めて高い。
As described above, according to the present invention,
It is possible to realize a low-loss, polarization-independent optical device, which is suitably applied to optical communication, optical cross-connect, and the like, and the practical value of the present invention is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態により作製された光回路
の表面屈折率分布を従来例と対比して示した図である。
FIG. 1 is a diagram showing a surface refractive index distribution of an optical circuit manufactured according to an embodiment of the present invention in comparison with a conventional example.

【図2】 本発明の一実施形態に係る光回路の製造方法
を工程順に模式的に示した図である。
FIG. 2 is a diagram schematically showing a method of manufacturing an optical circuit according to an embodiment of the present invention in the order of steps.

【図3】 本発明の第2の実施形態に係る回路の曲がり
損失を従来例と対比して示した図である。
FIG. 3 is a diagram showing a bending loss of a circuit according to a second embodiment of the present invention in comparison with a conventional example.

【図4】 本発明の第3の実施形態に係る方向性結合器
の概略構成を示す斜視図である。
FIG. 4 is a perspective view illustrating a schematic configuration of a directional coupler according to a third embodiment of the present invention.

【図5】 本発明の第3の実施形態に係る方向性結合器
の結合長と光パワ移行率の関係を示した図である。
FIG. 5 is a diagram illustrating a relationship between a coupling length of a directional coupler and an optical power transfer rate according to a third embodiment of the present invention.

【図6】 従来の方法による方向性結合器の結合長と光
パワ移行率の関係を示した図である。
FIG. 6 is a diagram showing a relationship between a coupling length of a directional coupler and an optical power transfer rate according to a conventional method.

【符号の説明】[Explanation of symbols]

1 LiNbO3基板 2 Ti薄膜 3 Ti拡散層1 LiNbO 3 substrate 2 Ti thin film 3 Ti diffusion layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (a)チタン(Ti)の製膜及びパタンニン
グの工程と、(b)該Tiの熱拡散工程と、をこの順に2回
以上繰り返すことを特徴とするTi拡散型ニオブ酸リチウ
ム光回路の製造方法。
1. Ti diffusion type niobate characterized by repeating (a) a step of forming and patterning titanium (Ti) and (b) a step of thermally diffusing the Ti twice or more in this order. A method for manufacturing a lithium optical circuit.
【請求項2】 チタン(Ti)製膜及びパタンニングと該
Tiの熱拡散と、を2回以上繰り返してなり、曲がり損失
を低減させたことを特徴とするTi拡散型ニオブ酸リチウ
ム曲がり光導波路。
2. A titanium (Ti) film forming and patterning method,
A Ti diffusion type lithium niobate bent optical waveguide characterized by reducing bending loss by repeating thermal diffusion of Ti twice or more.
【請求項3】 チタン(Ti)製膜及びパタンニングと、
該Tiの熱拡散と、を2回以上繰り返し、偏光間における
完全結合長を概ね一致させたことを特徴とするTi拡散型
ニオブ酸リチウム偏光無依存型光回路。
3. A titanium (Ti) film and patterning,
The Ti-diffusion type lithium niobate polarization-independent optical circuit, wherein the thermal diffusion of Ti is repeated two or more times so that the perfect bond lengths between the polarized lights are substantially equalized.
【請求項4】 チタン(Ti)拡散型ニオブ酸リチウム光
回路において、Ti製膜及びパタンニングと、該Tiの熱拡
散を2回以上繰り返してなり、他の光素子との結合損失
を調整してなることを特徴とする光回路。
4. In a titanium (Ti) diffusion type lithium niobate optical circuit, Ti film formation and patterning and thermal diffusion of the Ti are repeated at least twice to adjust the coupling loss with other optical elements. An optical circuit, comprising:
JP2000156059A 2000-01-01 2000-05-26 Optical circuit and its manufacture Pending JP2001004857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000156059A JP2001004857A (en) 2000-01-01 2000-05-26 Optical circuit and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000156059A JP2001004857A (en) 2000-01-01 2000-05-26 Optical circuit and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07212655A Division JP3125638B2 (en) 1995-07-28 1995-07-28 Optical circuit and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001004857A true JP2001004857A (en) 2001-01-12

Family

ID=18660900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000156059A Pending JP2001004857A (en) 2000-01-01 2000-05-26 Optical circuit and its manufacture

Country Status (1)

Country Link
JP (1) JP2001004857A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536089A (en) * 2014-12-09 2015-04-22 天津大学 Periodically poled Ti-diffusion near-stoichiometry lithium niobate slab waveguide and preparation method
CN114046740A (en) * 2021-11-26 2022-02-15 北京工业大学 System for measuring diameter of optical waveguide mode field

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536089A (en) * 2014-12-09 2015-04-22 天津大学 Periodically poled Ti-diffusion near-stoichiometry lithium niobate slab waveguide and preparation method
CN114046740A (en) * 2021-11-26 2022-02-15 北京工业大学 System for measuring diameter of optical waveguide mode field
CN114046740B (en) * 2021-11-26 2022-11-29 北京工业大学 System for measuring diameter of optical waveguide mode field

Similar Documents

Publication Publication Date Title
US7590312B2 (en) Interferometer optical switch and variable optical attenuator
EP0304709A2 (en) Waveguide type optical device
JP2007072433A (en) Optical integrated device and optical control device
US6876782B2 (en) Integrated type optical waveguide device
JP2000137196A (en) Optical luminance modulator as well as switch and rotatable attenuator using the same
US20020159684A1 (en) Novel optical waveguide switch using cascaded mach-zehnder interferometers
JP2007212787A (en) Optical control element, optical switching unit, and optical modulator
KR19990052202A (en) Electro-optic polymer optical waveguide device structure to reduce driving voltage and loss
JP3023878B2 (en) Waveguide type optical branching device
JP3125638B2 (en) Optical circuit and its manufacturing method
JPH05313109A (en) Waveguide type polarization controller
JP2001004857A (en) Optical circuit and its manufacture
JP5467414B2 (en) Optical functional waveguide
JPH08334639A (en) Mach-zehnder optical circuit
JPH1068833A (en) Optical waveguide and its production as well as output circuit
US5050947A (en) Optical waveguide control device employing directional coupler on substrate
US6650819B1 (en) Methods for forming separately optimized waveguide structures in optical materials
JP2006276323A (en) Optical switch
JP3664933B2 (en) Optical waveguide type optical switch
JPH10123341A (en) Optical waveguide and its production
Hauffe et al. Digital optical circuit switches and switching matrices in polymers
RU2781367C1 (en) Hybrid integrated optical device
JP6260631B2 (en) Optical waveguide device
KR100400756B1 (en) Tunable optic power splitter and manufacturing method for using same
JP2000171652A (en) Optical waveguide type optical branching/multiplexing circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030708