JP2001003124A - Manufacture of iron-copper composite powder - Google Patents

Manufacture of iron-copper composite powder

Info

Publication number
JP2001003124A
JP2001003124A JP11176210A JP17621099A JP2001003124A JP 2001003124 A JP2001003124 A JP 2001003124A JP 11176210 A JP11176210 A JP 11176210A JP 17621099 A JP17621099 A JP 17621099A JP 2001003124 A JP2001003124 A JP 2001003124A
Authority
JP
Japan
Prior art keywords
copper
powder
oxide
content
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11176210A
Other languages
Japanese (ja)
Other versions
JP3094018B1 (en
Inventor
Tadashi Koyama
忠司 小山
Yoshiro Niimi
義朗 新見
Osamu Iwazu
修 岩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP11176210A priority Critical patent/JP3094018B1/en
Application granted granted Critical
Publication of JP3094018B1 publication Critical patent/JP3094018B1/en
Publication of JP2001003124A publication Critical patent/JP2001003124A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an inexpensive Fe-Cu composite powder in which the amount of free copper powder is reduced and the increase in the hardness of a coating copper layer is suppressed. SOLUTION: The process of manufacturing the Fe-Cu composite powder, having <=100 HV hardness of a coating copper layer and <=10% free copper content (the proportion of free copper content to the total copper content), comprises the steps of: mixing a copper powder of >=2000 cm2/g specific surface area and a copper oxide which is composed of copper oxide (CuO) powder or cuprous oxide (Cu2O) powder or a powder mixture thereof and has <=10 μm average particle size with an iron powder in such a way that the mixing ratio between the copper powder and the copper oxide becomes (20 to 80):(80 to 20) (by mass ratio) expressed in terms of copper and further copper content becomes 10 to mass%; heat-treating the resultant mixture in a reducing atmosphere at 700 to 1000 deg.C; pulverizing the mixture; and carrying out screening.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄粉の表面に銅を
均一に拡散付着させたFe−Cu複合粉末の製造方法に
関するもので、主としてFe−Cu系粉末冶金製品の原
料粉として好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing Fe-Cu composite powder in which copper is uniformly diffused and adhered to the surface of iron powder, and is suitable mainly as a raw material powder for Fe-Cu powder metallurgy products. is there.

【0002】[0002]

【従来の技術】近年、Fe−Cu系粉末冶金製品、中で
も特にFe−Cu系焼結軸受における銅の偏析防止ある
いは摺動抵抗の低減を目的として、鉄粉の表面に銅を均
一に付着させたFe−Cu系複合粉末の需要が増大しつ
つある。このような形態のFe−Cu複合粉末の製造方
法は従来、湿式法と乾式法の2つが知られている。
2. Description of the Related Art In recent years, in order to prevent segregation of copper or to reduce sliding resistance in Fe-Cu powder metallurgy products, especially in Fe-Cu sintered bearings, copper is uniformly adhered to the surface of iron powder. Demand for Fe-Cu based composite powders is increasing. Conventionally, two methods for producing the Fe-Cu composite powder having such a form are known: a wet method and a dry method.

【0003】特公昭51−29486号に示された湿式
法は、銅イオンを含む溶液中に鉄粉を浸漬し、鉄粉の表
面に電気化学的に銅を析出させる方法で、この方法では
鉄粉の表面を銅で比較的均一に被覆することができる
が、生成したFe−Cu複合粉末の洗浄、乾燥処理を充
分行なわないと得られた粉末が酸化する欠点があり、こ
れを完全に行なうためには製造コストが高くなる。さら
に最近では、廃液処理等の環境対策などにより、さらに
製造コストが高くなる。このため、湿式法によるFe−
Cu複合粉末はあまり実用化されていなかった。一方、
乾式法は鉄粉と銅微粉とを混合し、還元雰囲気中で熱処
理して鉄粉に銅微粉を拡散付着させる方法が古くから知
られいるが、固相拡散によって鉄粉の表面に銅微粉を均
一に付着させることは難しく、特に熱処理ケーキの解砕
および粉砕工程で多量の遊離銅粉が生成するという問題
があった。
The wet method disclosed in Japanese Patent Publication No. 51-29486 is a method in which iron powder is immersed in a solution containing copper ions, and copper is electrochemically deposited on the surface of the iron powder. Although the surface of the powder can be relatively uniformly coated with copper, there is a disadvantage that the obtained powder is oxidized if the produced Fe—Cu composite powder is not sufficiently washed and dried, and this is completely performed. Therefore, the manufacturing cost is increased. More recently, manufacturing costs have been further increased due to environmental measures such as waste liquid treatment. For this reason, Fe-
Cu composite powder has not been practically used. on the other hand,
The dry method has long been known in which iron powder and copper fine powder are mixed and heat-treated in a reducing atmosphere to diffuse and adhere copper fine powder to iron powder.However, solid-phase diffusion deposits copper fine powder on the surface of iron powder. It is difficult to make it adhere uniformly, and in particular, there is a problem that a large amount of free copper powder is generated in the crushing and pulverizing steps of the heat-treated cake.

【0004】これを解決する方法として特公昭59−1
764号、特開平8−92604号に示された鉄粉に酸
化銅の微粉を混合し、これを還元雰囲気中で熱処理する
方法が提案されている。この方法によって遊離銅粉の生
成の問題はほぼ解決されたが、この方法の場合、熱処理
中に酸化銅が還元雰囲気によって還元される前に鉄と酸
化銅との間で酸化還元反応が起こり、銅中に多量の鉄が
溶け込むため、銅部の硬さが上昇する問題点がある。こ
のような粉末を用いて例えば焼結軸受を作製した場合、
軸受と軸との間のなじみ性が悪くなり、摺動抵抗が増大
する。また、一般の焼結機械部品を作製する場合には圧
粉成形時の圧縮性の低下を招く。
As a method for solving this problem, Japanese Patent Publication No. Sho 59-1
No. 764 and JP-A-8-92604 propose a method of mixing fine powder of copper oxide with iron powder and heat-treating the mixture in a reducing atmosphere. Although this method almost solved the problem of the generation of free copper powder, in this method, a redox reaction between iron and copper oxide occurred before copper oxide was reduced by a reducing atmosphere during heat treatment, Since a large amount of iron dissolves in copper, there is a problem that the hardness of the copper part increases. For example, when a sintered bearing is manufactured using such a powder,
The conformability between the bearing and the shaft becomes poor, and the sliding resistance increases. In addition, when producing a general sintered machine part, the compressibility at the time of compacting is reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明は、遊離銅粉が
少なく、被覆銅層の硬さの上昇を抑えた安価なFe−C
u複合粉末を提供すること、およびその製造方法を提供
することである。
DISCLOSURE OF THE INVENTION The present invention provides an inexpensive Fe--C having a small amount of free copper powder and suppressing an increase in hardness of a coated copper layer.
The purpose of the present invention is to provide a u-composite powder and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、鉄粉に銅粉と
銅酸化物とを混合し、還元雰囲気中700〜1000℃
で熱処理することにより、得られる被覆銅層の硬さがH
V100以下で、遊離銅含有率(全銅含有量に対する遊
離銅量の比率)が10%以下のFe−Cu複合粉末、お
よび鉄粉に銅含有率で10〜70mass%となるよう
に銅粉と銅酸化物の混合粉を混合し、還元雰囲気中で7
00〜1000℃で熱処理した後、粉砕し、篩別するF
e−Cu複合粉末の製造方法である。
According to the present invention, iron powder is mixed with copper powder and copper oxide, and the mixture is mixed in a reducing atmosphere at 700 to 1000 ° C.
The hardness of the obtained coated copper layer is H
V100 or less, the free copper content (the ratio of the free copper content to the total copper content) is 10% or less, Fe-Cu composite powder, and copper powder so that the iron content becomes 10 to 70 mass% in copper content. The mixed powder of copper oxide is mixed,
After heat treatment at 00 to 1000 ° C., pulverized and sieved F
This is a method for producing an e-Cu composite powder.

【0007】本発明者等は各種Fe−Cu複合粉末を用
いて軸受他の焼結部品を作成し検討した結果、被覆銅層
の硬さがHV100以下で、遊離銅含有率(全銅含有量
に対する遊離銅量の比率)が10%以下であれば、軸と
軸受との間のなじみ性が良くなることで、摺動抵抗が少
なくなり、また圧縮成形時の圧縮性も良好であり、銅の
偏析も発生しないことを確認した。
The inventors of the present invention have prepared and examined sintered parts such as bearings using various Fe-Cu composite powders. As a result, the hardness of the coated copper layer was HV100 or less, and the free copper content (total copper content) If the ratio of the amount of free copper to the shaft is 10% or less, the conformability between the shaft and the bearing is improved, the sliding resistance is reduced, and the compressibility during compression molding is also good. It was confirmed that no segregation occurred.

【0008】十分に焼鈍された純銅の硬さをマイクロビ
ッカース硬さ計で測定すると、HV(0.5gf)40〜
60程度であるのに対し、従来の鉄粉と酸化銅粉を混合
する方法で作製したFe−Cu複合粉末の被覆銅層のマ
イクロビッカース硬さはHV(0.5gf)130〜14
0程度に達する。このように、硬い被覆銅層を有する複
合粉末は、変形抵抗が上昇し、圧縮性の低下、あるいは
軸受に焼成した場合には軸受と軸とのなじみ性の低下を
引き起こす。
When the hardness of pure annealed copper is measured by a micro Vickers hardness tester, HV (0.5 gf) 40 to
On the other hand, the micro-Vickers hardness of the coated copper layer of the Fe—Cu composite powder produced by the conventional method of mixing iron powder and copper oxide powder is HV (0.5 gf) 130 to 14
It reaches about 0. As described above, the composite powder having the hard coated copper layer increases the deformation resistance and causes a decrease in the compressibility or, when baked on the bearing, causes a decrease in the conformability between the bearing and the shaft.

【0009】また、遊離銅含有率が10%を超えるとF
e−Cu複合粉末の一部に銅層が欠落した部分が発生す
るか、もしくはその一部に多量の銅層が付着しているこ
とが考えられ、いずれの場合も軸受等の焼結部品を作製
した場合、なじみ性や摺動抵抗のみでなく、強度もばら
つくことになり、好ましくない。本発明では、このよう
な銅層の固溶強化の原因となる鉄と銅酸化物との間の酸
化還元反応を抑制するために酸化銅粉の一部を銅粉に置
き換えることで、遊離銅含有率(全銅含有量に対する遊
離銅量の比率)を10%以下に抑えつつ、同時に被覆銅
層の硬さをHV(0.5gf)100以下に抑えること
に成功したものである。
When the free copper content exceeds 10%, F
It is considered that a part where the copper layer is missing occurs in a part of the e-Cu composite powder, or a large amount of the copper layer adheres to a part thereof. When it is manufactured, not only conformability and sliding resistance but also strength varies, which is not preferable. In the present invention, in order to suppress the oxidation-reduction reaction between iron and copper oxide, which cause such solid solution strengthening of the copper layer, a part of the copper oxide powder is replaced with copper powder, so that free copper is removed. The present inventors succeeded in suppressing the content (the ratio of the amount of free copper to the total copper content) to 10% or less and at the same time suppressing the hardness of the coated copper layer to HV (0.5 gf) 100 or less.

【0010】本発明の製造方法では、銅粉の混合比率が
銅換算で20mass%までの間で銅部の硬さは急激に
低下し、その後、銅粉の混合比率の増大とともに徐々に
低下する。一方、銅粉の混合比率の増加とともに遊離銅
粉の生成比率が増加するが増加の度合いは銅粉の混合比
率が銅換算で80mass%以下では比較的穏やかであ
るのに対し、80mass%を超えるあたりから急激に
増大する。したがって、銅粉と銅酸化物の混合比率は、
銅換算で20〜80:80〜20(mass比)の範囲
が適当である。
In the production method of the present invention, the hardness of the copper part rapidly decreases when the mixing ratio of the copper powder is up to 20 mass% in terms of copper, and then gradually decreases as the mixing ratio of the copper powder increases. . On the other hand, the production ratio of free copper powder increases with an increase in the mixing ratio of copper powder, but the degree of increase is relatively gentle when the mixing ratio of copper powder is 80 mass% or less in terms of copper, but exceeds 80 mass%. It increases rapidly from around. Therefore, the mixing ratio of copper powder and copper oxide is
A range of 20 to 80:80 to 20 (mass ratio) in terms of copper is appropriate.

【0011】熱処理は、還元雰囲気中、700〜100
0℃で行なう。熱処理温度が700℃以下では粉末中の
残留酸素量が増え、また遊離銅粉の生成比率が増大す
る。一方、1000℃を超えると粉末の焼結が進行して
熱処理ケーキの粉砕に多大のエネルギーを要するように
なると同時に、銅中への鉄の溶解度も増加するため粉末
表面の銅部の硬さが増大する。
The heat treatment is performed in a reducing atmosphere at 700 to 100
Perform at 0 ° C. When the heat treatment temperature is 700 ° C. or lower, the amount of residual oxygen in the powder increases, and the generation rate of free copper powder increases. On the other hand, when the temperature exceeds 1000 ° C., the sintering of the powder proceeds, and a large amount of energy is required for pulverizing the heat-treated cake. At the same time, the solubility of iron in copper increases, so that the hardness of the copper portion on the surface of the powder decreases. Increase.

【0012】銅含有率は、10〜70mass%が適当
で、70mass%以上では遊離銅粉が増大する。一
方、10mass%以下では鉄粉の表面を完全に被覆す
ることができないので好ましくない。
The copper content is suitably from 10 to 70 mass%, and if it is 70 mass% or more, the amount of free copper powder increases. On the other hand, if it is less than 10 mass%, it is not preferable because the surface of the iron powder cannot be completely covered.

【0013】また、本発明の製造方法で用いる銅酸化物
に混入する銅粉の粒度は細かい方が好適である。少なく
とも比表面積(BET法)が2000cm2/g以上の微細
な銅粉を用いることが好ましい。2000cm2/g以下
であると遊離銅粉の生成比率が増大する。
The finer the particle size of the copper powder mixed in the copper oxide used in the production method of the present invention, the better. It is preferable to use fine copper powder having a specific surface area (BET method) of at least 2000 cm 2 / g. If it is less than 2000 cm 2 / g, the production ratio of free copper powder increases.

【0014】同じく、遊離銅粉を低減させるために本発
明の製造方法で用いる銅酸化物は、酸化銅(CuO)粉末
又は亜酸化銅(Cu2O)粉末、あるいはそれらの混合粉
のいずれでもよい。但し、それらの平均粒径は10μm
以下であることが好ましい。平均粒径が、10μmを超
えると鉄粉との酸化還元反応がスームズに進行せず、遊
離銅粉の生成比率が増大する。
Similarly, copper oxide used in the production method of the present invention to reduce free copper powder may be copper oxide (CuO) powder, cuprous oxide (Cu 2 O) powder, or a mixed powder thereof. Good. However, their average particle size is 10 μm
The following is preferred. If the average particle size exceeds 10 μm, the oxidation-reduction reaction with iron powder does not proceed smoothly, and the production ratio of free copper powder increases.

【0015】[0015]

【発明の実施の形態】次に、本発明の実施例について以
下に記載する。
Next, embodiments of the present invention will be described below.

【実施例】(実施例1)粒度−150μmの粉末冶金用
還元鉄粉に銅含有量が50mass%になるように平均
粒径3μmの酸化銅(CuO)粉末又は亜酸化銅(Cu
2O)粉末と比表面積2700cm2/gの電解銅粉を銅換
算mass比で所定の比率(80:20,50:50,2
0:80)で混合し、水素気流中800℃で30min
熱処理した。続いて、得られた熱処理ケーキをカッター
ミルで粉砕し、さらに高速ハンマーミルで粉砕、篩別に
より−180μmの粒度のFe−Cu複合粉を作製し
た。得られた粉末の銅部のマイクロビッカース硬さ、お
よび自作の磁選機により、遊離銅含有率を測定した結果
を表1に示す。
(Example 1) Copper oxide (CuO) powder or copper suboxide (Cu) having an average particle size of 3 μm in a reduced iron powder for powder metallurgy having a particle size of −150 μm so that the copper content is 50 mass%.
2 O) powder and electrolytic copper powder having a specific surface area of 2700 cm 2 / g in a predetermined ratio (80:20, 50: 50,2)
0:80) and 30 minutes at 800 ° C. in a hydrogen stream.
Heat treated. Subsequently, the obtained heat-treated cake was pulverized by a cutter mill, further pulverized by a high-speed hammer mill, and sieved to produce an Fe-Cu composite powder having a particle size of -180 µm. Table 1 shows the results of measuring the micro Vickers hardness of the copper part of the obtained powder and the free copper content by a self-made magnetic separator.

【0016】(実施例2)粒度−150μmの粉末冶金
用還元鉄粉に銅含有量が50mass%になるように平
均粒径3μmの酸化銅(CuO)粉末又は亜酸化銅(Cu2
O)粉末と比表面積2700cm2/gの電解銅粉を銅換
算mass比で50:50の比率で混合し、水素気流中
で所定の温度(700℃,900℃,1000℃)で30
min熱処理した。続いて、得られた熱処理ケーキを実
施例1と同じ方法で粉砕、篩別し、−180μmの粒度
のFe−Cu複合粉を作製した。得られた粉末の銅部の
マイクロビッカース硬さ、ならびに遊離銅含有率を測定
した結果を表1に示す。
Example 2 Copper oxide (CuO) powder or cuprous oxide (Cu 2 ) having an average particle size of 3 μm was added to a reduced iron powder for powder metallurgy having a particle size of −150 μm so that the copper content was 50 mass%.
O) Powder and electrolytic copper powder having a specific surface area of 2700 cm 2 / g are mixed at a mass ratio of 50:50 in terms of copper, and mixed at a predetermined temperature (700 ° C., 900 ° C., 1000 ° C.) in a hydrogen stream.
min heat treatment. Subsequently, the obtained heat-treated cake was pulverized and sieved in the same manner as in Example 1 to produce an Fe-Cu composite powder having a particle size of -180 µm. Table 1 shows the results of measuring the micro Vickers hardness of the copper part of the obtained powder and the free copper content.

【0017】(実施例3)粒度−150μmの粉末冶金
用還元鉄粉に所定銅含有量(20,70)となるように平
均粒径3μmの酸化銅(CuO)粉末又は亜酸化銅(Cu2
O)粉末と比表面積2700cm2/gの電解銅粉を銅換
算mass比で50:50の比率で混合し、水素気流中
800℃で30min熱処理した。続いて、得られた熱
処理ケーキを実施例1と同じ方法で粉砕、篩別し、−1
80μm粒度のFe−Cu複合粉を作製した。得られた
粉末の銅部のマイクロビッカース硬さ、ならびに遊離銅
含有率を測定した結果を表1に示す。
Example 3 Copper oxide (CuO) powder or cuprous oxide (Cu 2 ) having an average particle size of 3 μm was added to a reduced iron powder for powder metallurgy having a particle size of −150 μm so as to have a predetermined copper content (20, 70).
O) Powder and electrolytic copper powder having a specific surface area of 2700 cm 2 / g were mixed at a mass ratio of 50:50 in terms of copper, and heat-treated at 800 ° C. for 30 minutes in a hydrogen stream. Subsequently, the obtained heat-treated cake was pulverized and sieved in the same manner as in Example 1 to obtain -1.
An Fe-Cu composite powder having a particle size of 80 µm was prepared. Table 1 shows the results of measuring the micro Vickers hardness of the copper part of the obtained powder and the free copper content.

【0018】[0018]

【比較例】(比較例1)粒度−150μmの粉末冶金用
還元鉄粉に銅含有量が50mass%になるように平均
粒径3μmの亜酸化銅粉(Cu2O)を混合し、水素気流
中800℃で30min熱処理した。続いて、得られた
熱処理ケーキを実施例1と同じ方法で粉砕、篩別し、−
180μmの粒度のFe−Cu複合粉を作製した。得ら
れた粉末の銅部のマイクロビッカース硬さ、ならびに遊
離銅含有率を測定した結果を表1に示す。
Comparative Example 1 (Comparative Example 1) Reduced iron powder for powder metallurgy having a particle size of -150 μm was mixed with cuprous oxide powder (Cu 2 O) having an average particle size of 3 μm so that the copper content was 50 mass%, and a hydrogen stream was applied. Heat treatment was performed at 800 ° C. for 30 minutes. Subsequently, the obtained heat-treated cake was pulverized and sieved in the same manner as in Example 1;
An Fe—Cu composite powder having a particle size of 180 μm was prepared. Table 1 shows the results of measuring the micro Vickers hardness of the copper part of the obtained powder and the free copper content.

【0019】(比較例2)粒度−150μmの粉末冶金
用還元鉄粉と比表面積2700cm2/gの電解銅粉を銅
換算mass比で50:50に混合し、水素気流中80
0℃で30min熱処理した。続いて、得られた熱処理
ケーキを実施例1と同じ方法で粉砕、篩別し、−180
μmの粒度のFe−Cu複合粉を作製した。得られた粉
末の銅部のマイクロビッカース硬さ、ならびに遊離銅含
有率を測定した結果を表1に示す。
Comparative Example 2 Reduced iron powder for powder metallurgy having a particle size of -150 μm and electrolytic copper powder having a specific surface area of 2700 cm 2 / g were mixed at a mass ratio of copper in a ratio of 50:50, and mixed in a hydrogen stream at a flow rate of 80:50.
Heat treatment was performed at 0 ° C. for 30 minutes. Subsequently, the obtained heat-treated cake was pulverized and sieved in the same manner as in Example 1 to obtain -180.
An Fe-Cu composite powder having a particle size of μm was produced. Table 1 shows the results of measuring the micro Vickers hardness of the copper part of the obtained powder and the free copper content.

【0020】(比較例3)粒度−150μmの粉末冶金
用還元鉄粉に銅含有量が50mass%となるように平
均粒径3μmの亜酸化銅粉(Cu2O)と比表面積270
0cm2/gの電解銅粉を銅換算mass比で50:50
の比率で混合し、水素気流中600℃で30min熱処
理した。続いて、得られた熱処理ケーキを実施例1と同
じ方法で粉砕、篩別し、−180μm粒度のFe−Cu
複合粉を作製した。得られた粉末の銅部のマイクロビッ
カース硬さ、ならびに遊離銅含有率を測定した結果を表
1に示す。
Comparative Example 3 Cuprous oxide powder (Cu 2 O) having an average particle size of 3 μm and a specific surface area of 270 such that the copper content of the reduced iron powder for powder metallurgy having a particle size of −150 μm was 50 mass%.
0 cm 2 / g of electrolytic copper powder is converted to a copper equivalent mass ratio of 50:50.
And heat-treated in a hydrogen stream at 600 ° C. for 30 minutes. Subsequently, the obtained heat-treated cake was pulverized and sieved in the same manner as in Example 1 to obtain Fe-Cu having a particle size of -180 μm.
A composite powder was prepared. Table 1 shows the results of measuring the micro Vickers hardness of the copper part of the obtained powder and the free copper content.

【0021】(比較例4)粒度−150μmの粉末冶金
用還元鉄粉に銅含有量が50mass%となるように平
均粒径3μmの亜酸化銅粉(Cu2O)と比表面積270
0cm2/gの電解銅粉を銅換算mass比で50:50
の比率で混合し、水素気流中1050℃で30min熱
処理した。続いて、得られた熱処理ケーキを実施例1と
同じ方法で粉砕、篩別し、−180μm粒度のFe−C
u複合粉を作製した。得られた粉末の銅部のマイクロビ
ッカース硬さ、ならびに遊離銅含有率を測定した結果を
表1に示す。
Comparative Example 4 Cuprous oxide powder (Cu 2 O) having an average particle size of 3 μm and a specific surface area of 270 such that the reduced iron powder for powder metallurgy having a particle size of −150 μm had a copper content of 50 mass%.
0 cm 2 / g of electrolytic copper powder is converted to a copper equivalent mass ratio of 50:50.
And heat-treated in a hydrogen stream at 1050 ° C. for 30 minutes. Subsequently, the obtained heat-treated cake was pulverized and sieved in the same manner as in Example 1 to obtain Fe-C having a particle size of -180 μm.
u composite powder was produced. Table 1 shows the results of measuring the micro Vickers hardness of the copper part of the obtained powder and the free copper content.

【0022】(比較例5)粒度−150μmの粉末冶金
用還元鉄粉に銅含有量が50mass%となるように平
均粒径3μmの亜酸化銅粉(Cu2O)と比表面積150
0cm2/gの電解銅粉を銅換算mass比で50:50
の比率で混合し、水素気流中800℃で30min熱処
理した。続いて、得られた熱処理ケーキを実施例1と同
じ方法で粉砕、篩別し、−180μm粒度のFe−Cu
複合粉を作製した。得られた粉末の銅部のマイクロビッ
カース硬さ、ならびに遊離銅含有率を測定した結果を表
1に示す。
Comparative Example 5 A reduced iron powder for powder metallurgy having a particle size of -150 μm was mixed with cuprous oxide powder (Cu 2 O) having an average particle size of 3 μm and a specific surface area of 150 so that the copper content was 50 mass%.
0 cm 2 / g of electrolytic copper powder is converted to a copper equivalent mass ratio of 50:50.
And heat-treated in a hydrogen stream at 800 ° C. for 30 minutes. Subsequently, the obtained heat-treated cake was pulverized and sieved in the same manner as in Example 1 to obtain Fe-Cu having a particle size of -180 μm.
A composite powder was prepared. Table 1 shows the results of measuring the micro Vickers hardness of the copper part of the obtained powder and the free copper content.

【0023】(比較例6)粒度−150μmの粉末冶金
用還元鉄粉に銅含有量が50mass%となるように平
均粒径18μmの亜酸化銅粉(Cu2O)と比表面積27
00cm2/gの電解銅粉を銅換算mass比で50:5
0の比率で混合し、水素気流中800℃で30min熱
処理した。続いて、得られた熱処理ケーキを実施例1と
同じ方法で粉砕、篩別し、−180μm粒度のFe−C
u複合粉を作製した。得られた粉末の銅部のマイクロビ
ッカース硬さ、ならびに遊離銅含有率を測定した結果を
表1に示す。
(Comparative Example 6) Cuprous oxide powder (Cu 2 O) having an average particle diameter of 18 μm and a specific surface area of 27 so that the reduced iron powder for powder metallurgy having a particle diameter of −150 μm has a copper content of 50 mass%.
00 cm 2 / g of electrolytic copper powder was converted to a copper equivalent mass ratio of 50: 5.
The mixture was mixed at a ratio of 0 and heat-treated at 800 ° C. for 30 minutes in a hydrogen stream. Subsequently, the obtained heat-treated cake was pulverized and sieved in the same manner as in Example 1 to obtain Fe-C having a particle size of -180 μm.
u composite powder was produced. Table 1 shows the results of measuring the micro Vickers hardness of the copper part of the obtained powder and the free copper content.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示した通り、本発明の製造条件で得
られたFe−Cu複合粉は、各比較例で得られるFe−
Cu複合粉に比べ、銅部の硬さ、遊離銅含有率の両方と
もに良好な範囲の数値を示している。これに対し、各比
較例ではそのいずれかが悪い数値を示している。
As shown in Table 1, the Fe-Cu composite powder obtained under the production conditions of the present invention was obtained from the Fe-Cu composite powder obtained in each comparative example.
Compared to the Cu composite powder, both the hardness of the copper part and the free copper content show numerical values in favorable ranges. On the other hand, in each of the comparative examples, one of them shows a bad numerical value.

【0026】[0026]

【発明の効果】上記、表1より明らかなように、本発明
のFe−Cu複合粉は、遊離銅粉の生成を極力抑えら
れ、同時に銅部の硬さも低いレベルに抑えられているの
で、焼結軸受を作成した場合のなじみが良く、また成形
時の圧縮性も良好である。また、本発明の製造方法は乾
式法によるため非常に安価に提供することができ、産業
上、有用な発明である。さらに本発明のFe−Cu複合
粉を使用することによって、高性能の焼結機械部品、あ
るいは焼結軸受を低コストで製造することができる。
As is clear from Table 1 above, the Fe-Cu composite powder of the present invention minimizes the production of free copper powder and at the same time suppresses the hardness of the copper portion to a low level. Good compatibility when a sintered bearing is made, and good compressibility during molding. In addition, the production method of the present invention can be provided at very low cost because of the dry method, and is an industrially useful invention. Further, by using the Fe-Cu composite powder of the present invention, a high-performance sintered machine component or a sintered bearing can be manufactured at low cost.

【手続補正書】[Procedure amendment]

【提出日】平成12年4月20日(2000.4.2
0)
[Submission date] April 20, 2000 (200.4.2
0)

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】本発明は、遊離銅粉が少なく、被覆銅層の
硬さの上昇を抑えた安価なFe−Cu複合粉末を提供す
ため、その製造方法を提供することである。
[0005] The present invention has less free copper powder, in order to provide an inexpensive Fe-Cu composite powder with a reduced increase in the hardness of the coated copper layer is to provide a manufacturing method thereof.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】本発明は、比表面積が2
000cm2 /g以上の銅粉と、酸化銅(Cuo)粉末
又は亜酸化銅(Cu2 O)粉末もしくはこれらの混合粉
末で且つそれらの平均粒径が10μm以下の銅酸化物と
を、銅粉と銅酸化物の混合比率が銅換算で20〜80:
80〜20(mass比)の範囲となるように、また銅
含有率で10〜70mass%となるように鉄粉に混合
し、これらの混合物を還元雰囲気中で、700〜100
0℃で熱処理した後、粉砕し、篩別することを特徴とす
る、被覆銅層の硬さがHV100以下で、遊離銅含有率
(全銅含有量に対する遊離銅量の比率)が10%以下の
Fe−Cu複合粉末の製造方法である。
According to the present invention, the specific surface area is 2
000 cm 2 / g or more copper powder and copper oxide (Cuo) powder
Or cuprous oxide (Cu 2 O) powder or a mixed powder thereof
Powder and a copper oxide having an average particle size of 10 μm or less.
And the mixture ratio of copper powder and copper oxide is 20 to 80 in terms of copper:
80 to 20 (mass ratio)
Mix with iron powder so that the content is 10-70 mass%
Then, these mixtures are mixed in a reducing atmosphere at 700 to 100
After heat treatment at 0 ° C, it is crushed and sieved.
The free copper content is less than 100 HV in hardness of the coated copper layer.
(Ratio of free copper amount to total copper content) is 10% or less
This is a method for producing an Fe—Cu composite powder.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄粉に銅粉と銅酸化物とを混合し、還元
雰囲気中700〜1000℃で熱処理することにより、
得られる被覆銅層の硬さがHV 100以下で、遊離銅
含有率(全銅含有量に対する遊離銅量の比率)が10%
以下のFe−Cu複合粉末。
An iron powder mixed with a copper powder and a copper oxide and heat-treated at 700 to 1000 ° C. in a reducing atmosphere,
When the hardness of the obtained coated copper layer is HV 100 or less, the free copper content (the ratio of the free copper amount to the total copper content) is 10%.
The following Fe-Cu composite powder.
【請求項2】 鉄粉に銅含有率で10〜70mass%
となるように銅粉と銅酸化物とを混合し、還元雰囲気中
で700〜1000℃で熱処理した後、粉砕し、篩別す
るFe−Cu複合粉末の製造方法。
2. The iron powder has a copper content of 10 to 70 mass%.
A method for producing an Fe—Cu composite powder in which a copper powder and a copper oxide are mixed, heat-treated at 700 to 1000 ° C. in a reducing atmosphere, pulverized and sieved.
【請求項3】 銅粉と銅酸化物の混合比率が銅換算で2
0〜80:80〜20(mass比)の範囲にあること
を特徴とする請求項2に記載のFe−Cu複合粉末の製
造方法。
3. The mixing ratio of copper powder and copper oxide is 2 in terms of copper.
The method for producing a Fe-Cu composite powder according to claim 2, wherein the ratio is in the range of 0 to 80:80 to 20 (mass ratio).
【請求項4】 銅粉の比表面積が2000cm2/g以上
であることを特徴とする請求項2または請求項3に記載
のFe−Cu複合粉末の製造方法。
4. The method for producing an Fe—Cu composite powder according to claim 2 , wherein the specific surface area of the copper powder is 2000 cm 2 / g or more.
【請求項5】 銅酸化物が酸化銅(CuO)粉末又は亜酸
化銅(Cu2O)粉末もしくはこれらの混合粉末で、且つ
それらの平均粒径が10μm以下であることを特徴とす
る請求項2または請求項3に記載のFe−Cu複合粉末
の製造方法。
5. The copper oxide is copper oxide (CuO) powder, cuprous oxide (Cu 2 O) powder or a mixed powder thereof, and their average particle size is 10 μm or less. The method for producing an Fe—Cu composite powder according to claim 2 or 3.
JP11176210A 1999-06-23 1999-06-23 Method for producing Fe-Cu composite powder Expired - Fee Related JP3094018B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11176210A JP3094018B1 (en) 1999-06-23 1999-06-23 Method for producing Fe-Cu composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11176210A JP3094018B1 (en) 1999-06-23 1999-06-23 Method for producing Fe-Cu composite powder

Publications (2)

Publication Number Publication Date
JP3094018B1 JP3094018B1 (en) 2000-10-03
JP2001003124A true JP2001003124A (en) 2001-01-09

Family

ID=16009559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11176210A Expired - Fee Related JP3094018B1 (en) 1999-06-23 1999-06-23 Method for producing Fe-Cu composite powder

Country Status (1)

Country Link
JP (1) JP3094018B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794449A (en) * 2012-03-21 2012-11-28 朱湖泽 Method for producing copper coated iron powder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794457A (en) * 2012-03-21 2012-11-28 朱湖泽 Method for producing bronze coated iron powder
CN105063484B (en) * 2015-08-28 2017-10-31 宝山钢铁股份有限公司 500MPa grades of high-elongation hot-dip aluminizing zincs of yield strength and color coated steel sheet and its manufacture method
CN105088073B (en) * 2015-08-28 2017-10-31 宝山钢铁股份有限公司 600MPa grades of high-elongation hot-dip aluminizing zincs of yield strength and color coated steel sheet and its manufacture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794449A (en) * 2012-03-21 2012-11-28 朱湖泽 Method for producing copper coated iron powder

Also Published As

Publication number Publication date
JP3094018B1 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
WO2008059855A1 (en) Iron/copper composite powder for powder metallurgy and process for producing the same
CN110369730B (en) Copper-coated iron powder and preparation method thereof
CN108326289A (en) A kind of method of modifying and Nano metal powder modification diamond of diamond
JPS6366362B2 (en)
JP3094018B1 (en) Method for producing Fe-Cu composite powder
CN114592138B (en) Nano alumina particle reinforced copper-based composite material and preparation method thereof
CN114192788B (en) Alumina dispersion strengthening copper-tin alloy powder and preparation method thereof
Talijan et al. Processing and properties of silver-metal oxide electrical contact materials
JPH0470380B2 (en)
JP2748667B2 (en) Ni alloy powder and method for producing the same
JP3316029B2 (en) Brush for rotating electric machine
JPS6148573B2 (en)
JPS6250445A (en) Fe-base sintered material for sliding member
JP2003531961A (en) Method of sintering carbon steel parts using hydrocolloid binder as carbon source
JPH0751721B2 (en) Low alloy iron powder for sintering
JP2544017B2 (en) Method for producing copper powder for powder metallurgy
JP3796321B2 (en) Method for producing sintered material using tin-coated copper powder
JP2735936B2 (en) Dispersion-strengthened Ni alloy powder excellent in sinterability and method for producing the same
JP2004018940A (en) Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member
JPH07188809A (en) Silver-tin oxide contact material and its production
JPS5938301A (en) Manufacture of sintered ag-w contact
JPH0517801A (en) Production of diffusion type low-alloy steel powder having excellent compressibility
JPH0959727A (en) Production of sintered contact material of silver oxide series
JPS6354770B2 (en)
JPS6156283B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees