JPS6156283B2 - - Google Patents

Info

Publication number
JPS6156283B2
JPS6156283B2 JP56084456A JP8445681A JPS6156283B2 JP S6156283 B2 JPS6156283 B2 JP S6156283B2 JP 56084456 A JP56084456 A JP 56084456A JP 8445681 A JP8445681 A JP 8445681A JP S6156283 B2 JPS6156283 B2 JP S6156283B2
Authority
JP
Japan
Prior art keywords
iron powder
powder
less
mesh
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56084456A
Other languages
Japanese (ja)
Other versions
JPS57200501A (en
Inventor
Yukio Makiishi
Toshiharu Ito
Kazuya Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP56084456A priority Critical patent/JPS57200501A/en
Publication of JPS57200501A publication Critical patent/JPS57200501A/en
Publication of JPS6156283B2 publication Critical patent/JPS6156283B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0235Starting from compounds, e.g. oxides

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高強度粉末冶金製品用高圧縮性を有
する鉄粉とその製造方法に関するものであり、特
に本発明は、未仕上還元アトマイズ鉄粉に還元鉄
粉微粉を混合することによりアトマイズ鉄粉の圧
縮性を損なわずに焼結性を高め、焼結引張強さの
優れる鉄粉とその製造方法に関するものである。 アトマイズ鉄粉は還元鉄粉と異なり鉄粉粒子内
に空孔がない鉄粉である上に、比較的高純度であ
るため優れた圧縮性を有する。反面アトマイズ鉄
粉の粒子形状は還元鉄粉にくらべ比較的平滑であ
るため、比表面積も小さい。その結果、アトマイ
ズ鉄粉は還元鉄粉より圧縮性に優れるが、焼結性
に劣り、焼結後の強度が低い。 ところで従来アトマイズ鉄粉の焼結強度を向上
させるため、種々の試みがなされている。 例えば特公昭54−32404によれば未仕上還元の
アトマイズ鉄粉と還元鉄粉とを混合後、仕上還
元、解砕を行ない、両鉄粉の優れる特性を生かす
方法を提案されているが、このように80メツシユ
以下の比率が90wt%以上の粉末同士の単純な混
合により製造された鉄粉は、アトマイズ鉄粉と還
元鉄粉との混合比に応じた特性を示すのみで、ア
トマイズ鉄粉の優れた特性である圧縮性は犠牲に
されざるを得ず、アトマイズ鉄粉の焼結強度はわ
ずかしか改善されない。 一般に鉄粉の微粉量が多くなると比表面積が大
きくなり、焼結性が良くなり、焼結強度は向上す
るが、アトマイズ鉄粉製品に微粉を加えた場合、
圧縮性、成形性、圧粉体強度などが劣化し粉末冶
金用として使用することはむずかしい。 本発明は、高強度粉末冶金製品用高圧縮性を有
する鉄粉とその製造方法を提供することを目的と
し、特許請求の範囲記載の鉄粉とその製造方法を
提供することによつて前記目的を達成することが
できる。 次に本発明を詳細に説明する。 本発明の鉄粉は、未仕上還元水アトマイズ鉄粉
(以下水アトマイズ鉄粉を単にアトマイズ鉄粉と
称す)に250メツシユ以下の微粉還元鉄粉を仕上
還元前に所定割合配合した後仕上還元を施してな
る鉄粉であつて、仕上還元後圧縮性が損なわれ
ず、焼結性が向上し、焼結引張強さの優れるとい
う特性があり、かつ前記微粉還元鉄粉の配合割合
が比較的少量であるため圧縮性の低下、成形性の
劣化がないという特性を有する鉄粉である。すな
わち本発明の鉄粉は、アトマイズ鉄粉に還元鉄粉
微粉を5〜30wt%の範囲内と比較的少量仕上還
元前に添加混合した後仕上還元してなる鉄粉であ
る。 本発明において使用される仕上還元アトマイズ
鉄粉は、その成分組成としては特に規定されない
公知の未仕上還元アトマイズ鉄粉であり、その粒
度は100メツシユ以下が90wt%以上で、かつ325
メツシユ以下が30wt%以下であり、特に325メツ
シユ以下が10〜25wt%範囲内のものの場合良い
結果を得ることができる。反面粒度100メツシユ
以下が90wt%未満になると、すなわち粗粒が多
くなると粉末冶金用としては適用できず、またか
かる粒度の未仕上還元アトマイズ粉に還元鉄粉微
粉を添加しても強度の向上は困難である。一方ア
トマイズ鉄粉325メツシユ以下が30wt%を越える
と還元鉄粉微粉の添加により微粉量はさらに増加
するためかかる混合物を本発明の製造方法により
規定されている最高の仕上還元温度で処理しても
依然として325メツシユ以下の粒度の微粉が多く
残留しており、金型を用いて成形する時パンチと
ダイの間隙にこの微粉状鉄粉が入り込み、いわゆ
るかじりが生じて金型寿命が低下する。 ところで未仕上還元のアトマイズ鉄粉と混合す
べき微粉は、成形性、焼結性を考慮すると還元鉄
粉が良い。還元鉄粉の組成は粉末冶金の分野でい
う純鉄粉の組成と同様のものであつてよく、原料
である鉄酸化物の違いにより生じた組成の差異は
問題とならない。すなわち還元鉄粉はミルスケー
ル、鉱石などを出発原料としたものを使用するこ
とができ、特に還元粉の組成は規定する必要はな
い。混合する還元鉄粉の粒度は250メツシユ以下
であり、325メツシユ以下の比率が80wt%以上の
ものであればよい。325メツシユが80wt%未満だ
と微粉量の不足により、本発明の特徴である微粉
混合による焼結強度向上の効果が小さく好ましく
ない。 次に未仕上還元アトマイズ鉄粉に混合すべき還
元鉄粉微粉の混合比率について述べる。本発明に
おいて還元鉄粉微粉の混合量が30wt%を超える
と圧縮性の低下、成形性の急激な劣化がおこり、
粉末冶金用鉄粉として使用がむずかしくなる。ま
た、これ以上還元粉微粉の添加量を増加しても引
張強さの著しい向上はみられないばかりか硬さの
低下がおこり好ましくない。また混合量5%以下
では引張強さ、硬さなどの向上はみられるがわず
かであり、本発明の効果が不十分である。したが
つて微粉混合量は必要とする引張強さ、成形性な
どに合わせ5〜30wt%の中で適宜決定すべきで
ある。 未仕上還元アトマイズ鉄粉と還元粉微粉との混
合方法は特に定める必要はなく、公知のV型また
はコーン型混合機を用いることができ、その混合
時間は15〜60分の時間範囲が望ましい。 次にこの混合物を仕上還元する雰囲気は還元性
ガス、望ましくはH2ガスまたはアンモニア分解
ガスが適し、そのガスのCO+CO2含有量は使用
前のガスで2%以下が望ましい。また使用雰囲気
の露点は混合粉の炭素によつて定まるものである
ため、炭素量に対応させて0〜15℃の範囲内で適
宜選択して行うことができる。なお、露点が0℃
未満の場合には仕上還元後の鉄粉のC残留量が高
くなり、鉄粉の圧縮性が劣化し、また露点が15℃
を超える場合には酸素量の低減が困難であるばか
りでなくアトマイズ鉄粉と還元鉄粉微粉の焼結が
不十分となるので、露点は0〜15℃の範囲内にす
る必要がある。還元温度は850〜1050℃の温度範
囲内にする必要があり、望ましくは900〜1000℃
の範囲内がより好適である。850℃未満では混合
した鉄粉が仕上還元時にアトマイズ鉄粉と焼結す
ることなくそのまま残留し、成形性の劣化を招き
粉末冶金用鉄粉として好ましくない。一方1050℃
を超えると得られた鉄粉ケーキの解砕が困難にな
り、しかも解砕歩留りが著しく低下する。仕上還
元時間は脱酸、脱炭を十分に行なうため20〜150
分間、望ましくは30〜90分間が好適である。 以上により焼結性の優れる高密度鉄粉の仕上還
元ケーキが得られるが解砕は公知の方法によつて
行なうことができる。 例えばハンマー方式の粉砕機を用いることがで
き、この他の粉砕機でも解砕工程で100メツシユ
以下を約80wt%以上とすることのできるもので
あればよい。 次に本発明を実施例について比較例と比較して
具体的に説明する。
The present invention relates to iron powder with high compressibility for use in high-strength powder metallurgy products and a method for producing the same.In particular, the present invention relates to atomized iron powder by mixing reduced iron powder fine powder with unfinished reduced atomized iron powder. The present invention relates to an iron powder that improves sinterability without impairing compressibility and has excellent sintered tensile strength, and a method for producing the same. Unlike reduced iron powder, atomized iron powder has no pores in the iron powder particles, and has relatively high purity, so it has excellent compressibility. On the other hand, since the particle shape of atomized iron powder is relatively smooth compared to reduced iron powder, its specific surface area is also small. As a result, atomized iron powder has better compressibility than reduced iron powder, but has poorer sinterability and lower strength after sintering. By the way, various attempts have been made to improve the sintering strength of atomized iron powder. For example, according to Japanese Patent Publication No. 54-32404, a method is proposed in which unfinished reduced atomized iron powder and reduced iron powder are mixed and then subjected to finish reduction and crushing to take advantage of the excellent properties of both iron powders. Iron powder produced by simply mixing powders with a mesh ratio of 80 mesh or less and 90 wt% or more only exhibits characteristics depending on the mixing ratio of atomized iron powder and reduced iron powder. Compressibility, which is an excellent property, has to be sacrificed, and the sintering strength of atomized iron powder is only slightly improved. Generally, as the amount of fine iron powder increases, the specific surface area increases, sinterability improves, and sintering strength improves, but when fine powder is added to atomized iron powder products,
Compressibility, moldability, green compact strength, etc. deteriorate, making it difficult to use for powder metallurgy. An object of the present invention is to provide an iron powder having high compressibility for use in high-strength powder metallurgy products and a method for producing the same, and by providing the iron powder and the method for producing the same as described in the claims. can be achieved. Next, the present invention will be explained in detail. The iron powder of the present invention is produced by adding a predetermined proportion of fine reduced iron powder of 250 mesh or less to unfinished reduced water atomized iron powder (hereinafter water atomized iron powder is simply referred to as atomized iron powder) before finishing reduction. The iron powder obtained by the above treatment has the characteristics that the compressibility is not impaired after finishing reduction, the sinterability is improved, and the sintered tensile strength is excellent, and the blending ratio of the fine reduced iron powder is relatively small. Therefore, it is an iron powder that has the characteristic that there is no decrease in compressibility or deterioration in formability. That is, the iron powder of the present invention is an iron powder obtained by adding and mixing a relatively small amount of reduced iron powder fine powder in the range of 5 to 30 wt% to atomized iron powder before finishing reduction, and then finishing reduction. The finished reduced atomized iron powder used in the present invention is a known unfinished reduced atomized iron powder whose composition is not particularly specified, and its particle size is 90 wt% or more of 100 mesh or less, and 325
Good results can be obtained when the amount of mesh is 30wt% or less, and especially when the content of 325 mesh or less is within the range of 10 to 25wt%. On the other hand, if the particle size is less than 100 mesh and it becomes less than 90wt%, that is, if the coarse particles increase, it cannot be used for powder metallurgy, and even if reduced iron powder fine powder is added to unfinished reduced atomized powder with such a particle size, the strength will not be improved. Have difficulty. On the other hand, if the amount of atomized iron powder 325 mesh or less exceeds 30wt%, the amount of fine powder will further increase due to the addition of fine reduced iron powder, so even if such a mixture is processed at the highest finishing reduction temperature specified by the manufacturing method of the present invention. There still remains a large amount of fine powder with a particle size of 325 mesh or less, and when molding is performed using a mold, this fine iron powder enters the gap between the punch and die, causing so-called galling and shortening the life of the mold. By the way, the fine powder to be mixed with the unfinished reduced atomized iron powder is preferably reduced iron powder in consideration of formability and sinterability. The composition of the reduced iron powder may be the same as that of pure iron powder in the field of powder metallurgy, and differences in composition caused by differences in the iron oxides used as raw materials do not pose a problem. That is, the reduced iron powder can be made from mill scale, ore, etc. as a starting material, and the composition of the reduced powder does not need to be particularly specified. It is sufficient that the particle size of the reduced iron powder to be mixed is 250 mesh or less, and the ratio of 325 mesh or less is 80 wt% or more. If the 325 mesh is less than 80 wt%, the effect of improving sintering strength by mixing fine powder, which is a feature of the present invention, is small due to insufficient amount of fine powder, which is not preferable. Next, the mixing ratio of fine reduced iron powder to be mixed with unfinished reduced atomized iron powder will be described. In the present invention, if the mixed amount of reduced iron powder exceeds 30 wt%, compressibility decreases and formability rapidly deteriorates.
It becomes difficult to use as iron powder for powder metallurgy. Further, even if the amount of the reduced fine powder added is increased beyond this level, not only is no significant improvement in tensile strength observed, but also a decrease in hardness occurs, which is not preferable. Furthermore, if the mixing amount is less than 5%, improvements in tensile strength, hardness, etc. are seen, but only slightly, and the effects of the present invention are insufficient. Therefore, the amount of fine powder mixed should be appropriately determined within the range of 5 to 30 wt% depending on the required tensile strength, moldability, etc. There is no need to specify a method for mixing the unfinished reduced atomized iron powder and the reduced fine powder, and a known V-type or cone-type mixer can be used, and the mixing time is preferably in the range of 15 to 60 minutes. Next, the atmosphere for final reduction of this mixture is a reducing gas, preferably H 2 gas or ammonia decomposition gas, and the CO+CO 2 content of the gas before use is preferably 2% or less. Further, since the dew point of the atmosphere used is determined by the carbon of the mixed powder, it can be appropriately selected within the range of 0 to 15°C depending on the amount of carbon. In addition, the dew point is 0℃
If the temperature is less than 15°C, the amount of carbon remaining in the iron powder after finishing reduction will be high, the compressibility of the iron powder will be deteriorated, and the dew point will be 15°C.
If the dew point exceeds 0 to 15°C, it is not only difficult to reduce the amount of oxygen, but also sintering of the atomized iron powder and reduced iron powder becomes insufficient. The reduction temperature should be within the temperature range of 850-1050℃, preferably 900-1000℃
It is more preferable to fall within the range of . If the temperature is lower than 850°C, the mixed iron powder will remain as it is without being sintered with the atomized iron powder during final reduction, resulting in deterioration of formability and is not preferred as iron powder for powder metallurgy. Meanwhile 1050℃
If it exceeds this, it will become difficult to crush the resulting iron powder cake, and the crushing yield will drop significantly. The final reduction time is 20 to 150 to ensure sufficient deoxidation and decarburization.
minutes, preferably 30 to 90 minutes. A finished reduced cake of high-density iron powder with excellent sinterability can be obtained by the above process, but crushing can be performed by a known method. For example, a hammer-type crusher can be used, and other crushers may also be used as long as they can reduce 100 mesh or less to about 80 wt% or more in the crushing process. Next, the present invention will be specifically explained by comparing examples with comparative examples.

【表】【table】

【表】 第1表に示す組成の未仕上還元のアトマイズ鉄
粉と還元鉄粉微粉を第2表に示した混合割合にて
V型混合機で20分間の混合を行なつた。これらの
混合後の鉄粉の粉体特性を第3表に示す。これら
の混合後の鉄粉を露点10℃のアンモニア分解ガス
中で950℃、45分間の仕上還元を行なつた。仕上
還元を行なうと鉄粉は相互に焼結しケーキ状とな
る。これをハンマー型の粉砕機を用いて解砕を行
ない得られた鉄粉について粉体特性を測定した結
果を第4表に示す。第3表と第4表の粒度分布を
比較すると325メツシユ以下の割合が仕上還元後
で減少している。これは仕上還元中に微粉が相互
にあるいは粗粉と焼結し減少したためである。
[Table] Unfinished reduced atomized iron powder and fine reduced iron powder having the composition shown in Table 1 were mixed for 20 minutes in a V-type mixer at the mixing ratio shown in Table 2. Table 3 shows the powder properties of the iron powder after these mixtures. The mixed iron powder was subjected to final reduction at 950°C for 45 minutes in ammonia decomposition gas with a dew point of 10°C. When finishing reduction is performed, the iron powder sinteres with each other and becomes cake-like. Table 4 shows the results of measuring the powder properties of the iron powder obtained by crushing it using a hammer-type crusher. Comparing the particle size distributions in Tables 3 and 4, the proportion of particles of 325 mesh or less decreases after finishing reduction. This is because the fine powder was sintered with each other or with the coarse powder and reduced during the final reduction.

【表】【table】

【表】【table】

【表】 次に本発明の鉄粉の圧粉体および焼結体特性に
ついて調べるため、Fe単味、またはFe−2Cu−
0.8Cの組成になるように銅粉および黒鉛粉を加
え潤滑材としてステアリン酸亜鉛を1wt%加え、
V型混合機で15分間の混合後各種形状の圧粉体を
成形し、圧粉体および焼結体特性を測定した。 圧粉体特性として圧粉密度、ラトラー値、圧粉
体抗折力について測定し以下の結果が得られた。 圧粉密度は第1図に示すように実施例1、2で
微粉添加しないアトマイズ鉄粉の比較例1と同等
の圧粉密度を示している。しかし比較例4、5で
示したように微粉混合量が30wt%を超えると圧
粉密度が低下する傾向がみられる。したがつて微
粉混合量を30%以下とすれば微粉混合によつて圧
縮性が低下することはないことが判つた。 ラトラー値の測定結果を第2図に示す。アトマ
イズ鉄粉にアトマイズ鉄粉微粉を混合した場合
(比較例2、3、4)混合量の増加とともにラト
ラー値は急激に悪化する。しかし還元鉄粉微粉を
混合したもののラトラー値は混合量30wt%以下
であれば1.0%以下であり、微粉混合しない比較
例1とほぼ同等である。したがつて還元鉄粉微粉
の30wt%以下の混合であれば、成形性の劣化は
問題とならないことが判つた。 圧粉体抗折力の測定結果を第3図に示す。アト
マイズ鉄粉微粉を混合した場合(比較例2、3、
4)、圧粉体抗折力は微粉混合によつて比較例1
より減少している。しかし本発明のものの圧粉体
抗折力は比較例1より若干優れている。したがつ
て還元鉄粉微粉であれば微粉混合による圧粉体抗
折力の劣化はないと言うことができる。 以上の圧粉密度、ラトラー値、圧粉体抗折力の
測定結果より本発明の鉄粉の圧粉体特性は、圧縮
性、成形性、圧粉体強度ともに微粉を混合しない
アトマイズ鉄粉と同程度の特性であり、本発明の
製法によれば微粉混合による圧粉体特性の劣化は
ないと言うことができる。 次に圧粉体をアンモニア分解ガス雰囲気中で
600℃、30分間の脱ろう後1120℃、30分間焼結し
た。この焼結体について焼結密度、引張強さなど
について測定を行なつた。これらの結果について
以下に述べる。 焼結密度は第4図に示したように本発明で、微
粉混合しないアトマイズ鉄粉にくらべまつたくそ
ん色なく、30%以下の微粉混合であれば焼結密度
の低下はないと言うことができる。 次に焼結体の引張強さの測定結果を第5図に示
す。アトマイズ鉄粉微粉を混合した比較例2、
3、4で微粉量の増加により引張強さの増大がみ
られるがわずかである。しかし還元粉微粉を混合
した本発明のものでは引張強さが比較例にくらべ
5Kg/mm2程度向上している。これは還元鉄粉微粉
混合により焼結性が向上したためと考えられる。
またFe単味の焼結体の伸びの測定結果を第6図
に示すが、伸びは微粉量が増加すると大きくなつ
ている。したがつて本発明によれば微粉混合によ
る焼結性向上によつて引張強さ、伸びともに改善
できると言える。 焼結体硬さの測定結果を第7図に示す。硬さは
微粉混合量30wt%で最大値を持ち、最大値は還
元鉄粉微粉を混合した本発明で比較例1に比べH
RBで15程度大きい。アトマイズ鉄粉に還元鉄粉
微粉を混合した本発明の鉄粉の焼結体特性は微粉
混合しない比較例1およびアトマイズ鉄粉微粉を
混合した比較例2、3、4にくらべ焼結性の大幅
な向上によつて、いずれの特性も向上した。特に
引張強さを5Kg/mm2、硬さをHRBで15程度向上で
き効果は大きい。 以上本発明の鉄粉は還元鉄微粉が仕上還元前に
アトマイズ鉄粉に比較的少量添加されていること
により、圧粉体特性の劣化なしに焼結性の良好な
鉄粉である。
[Table] Next, in order to investigate the characteristics of the green compact and sintered compact of the iron powder of the present invention, single Fe or Fe−2Cu−
Copper powder and graphite powder were added to give a composition of 0.8C, and 1wt% of zinc stearate was added as a lubricant.
After mixing for 15 minutes using a V-type mixer, green compacts of various shapes were formed, and the properties of the green compacts and sintered bodies were measured. The properties of the green compact, such as green density, Rattler value, and transverse rupture strength of the green compact, were measured and the following results were obtained. As shown in FIG. 1, the green powder density of Examples 1 and 2 is equivalent to that of Comparative Example 1 of atomized iron powder without the addition of fine powder. However, as shown in Comparative Examples 4 and 5, when the amount of fine powder mixed exceeds 30 wt%, the green density tends to decrease. Therefore, it was found that if the amount of fine powder mixed is 30% or less, the compressibility does not decrease due to the mixing of fine powder. The measurement results of Rattler values are shown in Figure 2. When atomized iron powder is mixed with atomized iron powder (Comparative Examples 2, 3, and 4), the Rattler value rapidly deteriorates as the amount of the mixture increases. However, the rattler value of the mixed reduced iron fine powder is 1.0% or less if the mixed amount is 30 wt% or less, and is almost the same as Comparative Example 1 in which the fine powder is not mixed. Therefore, it was found that deterioration of formability would not be a problem if the reduced iron powder was mixed at 30 wt% or less. Figure 3 shows the measurement results of the transverse rupture strength of the compact. When atomized iron powder is mixed (Comparative Examples 2, 3,
4) The transverse rupture strength of the green compact was determined by mixing fine powder in Comparative Example 1.
It is decreasing more. However, the transverse rupture strength of the green compact of the present invention is slightly superior to that of Comparative Example 1. Therefore, it can be said that there is no deterioration in the transverse rupture strength of the green compact due to the mixing of fine reduced iron powder. From the above measurement results of green powder density, Rattler value, and green compact transverse rupture strength, the compact properties of the iron powder of the present invention are superior to atomized iron powder without mixing fine powder in terms of compressibility, formability, and green compact strength. The properties are about the same, and it can be said that according to the production method of the present invention, there is no deterioration in the green compact properties due to the mixing of fine powder. Next, the green compact is placed in an ammonia decomposition gas atmosphere.
After dewaxing at 600°C for 30 minutes, it was sintered at 1120°C for 30 minutes. The sintered density, tensile strength, etc. of this sintered body were measured. These results are discussed below. As shown in Figure 4, in the present invention, the sintered density is not as bright as the atomized iron powder that is not mixed with fine powder, and it can be said that if 30% or less of fine powder is mixed, there is no decrease in sintered density. can. Next, the results of measuring the tensile strength of the sintered body are shown in FIG. Comparative example 2 in which atomized iron powder was mixed,
In samples 3 and 4, an increase in tensile strength was observed due to an increase in the amount of fine powder, but the increase was slight. However, the tensile strength of the product of the present invention containing reduced fine powder is improved by about 5 kg/mm 2 compared to the comparative example. This is considered to be because the sinterability was improved by mixing the fine reduced iron powder.
Figure 6 shows the measurement results of the elongation of a sintered body containing only Fe, and the elongation increases as the amount of fine powder increases. Therefore, it can be said that according to the present invention, both tensile strength and elongation can be improved by improving sinterability by mixing fine powder. Figure 7 shows the measurement results of the hardness of the sintered body. The hardness has a maximum value when the fine powder mixture amount is 30 wt%, and the maximum value is H compared to Comparative Example 1 in the present invention in which reduced iron powder is mixed.
R B is about 15 larger. The characteristics of the sintered body of the iron powder of the present invention, which is a mixture of atomized iron powder and fine reduced iron powder, are significantly higher than those of Comparative Example 1 in which the fine powder is not mixed, and Comparative Examples 2, 3, and 4 in which fine atomized iron powder is mixed. All properties have been improved through significant improvements. In particular, the tensile strength can be improved by 5 kg/mm 2 and the hardness can be improved by about 15 in H R B, which is a great effect. As described above, the iron powder of the present invention has a relatively small amount of reduced iron powder added to the atomized iron powder before final reduction, so that the iron powder has good sinterability without deterioration of green compact properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアトマイズ鉄粉に混合される還元鉄粉
微粉の混合量と圧粉密度との関係を示す図、第2
図はアトマイズ鉄粉に混合される還元鉄粉微粉の
混合量と圧粉密度との関係を示す図、第2図はア
トマイズ鉄粉に混合される還元鉄粉微粉混合量と
ラトラー値との関係を示す図、第3図はアトマイ
ズ鉄粉に混合される還元鉄粉微粉混合量と圧粉体
抗折力との関係を示す図、第4図はアトマイズ鉄
粉に混合される還元鉄粉微粉混合量と焼結密度と
の関係を示す図、第5図はアトマイズ鉄粉に混合
される還元鉄粉微粉混合量と引張強さとの関係を
示す図、第6図はアトマイズ鉄粉に混合される還
元鉄粉微粉混合量と伸びとの関係を示す図、第7
図はアトマイズ鉄粉に混合される還元鉄粉微粉混
合量と硬さとの関係を示す図である。
Figure 1 is a diagram showing the relationship between the amount of reduced iron powder mixed into atomized iron powder and the green density.
The figure shows the relationship between the mixed amount of reduced iron powder fine powder mixed in atomized iron powder and the green powder density. Figure 2 shows the relationship between the mixed reduced iron powder fine powder mixed amount in atomized iron powder and the Rattler value. Figure 3 is a diagram showing the relationship between the amount of reduced iron powder mixed into atomized iron powder and the transverse rupture strength of the green compact, and Figure 4 is a diagram showing the relationship between reduced iron powder and fine powder mixed into atomized iron powder. Figure 5 is a diagram showing the relationship between the mixing amount and sintered density. Figure 5 is a diagram showing the relationship between the amount of reduced iron powder mixed in the atomized iron powder and the tensile strength. Figure 6 is the relationship between the amount of reduced iron powder mixed in the atomized iron powder and the tensile strength. Figure 7 shows the relationship between the mixed amount of reduced iron powder and elongation.
The figure is a diagram showing the relationship between the amount of reduced iron powder mixed in the atomized iron powder and the hardness.

Claims (1)

【特許請求の範囲】 1 未仕上還元水アトマイズ鉄粉と仕上還元を施
した還元鉄粉とよりなる混合物が常法により仕上
還元後解砕され100メツシユ以下の粒度比率が
80wt%以上よりなる粉末冶金製品用鉄粉におい
て、前記混合物は100メツシユ以下の粒度比率が
90wt%以上で、かつ325メツシユ以下の粒度比率
が30wt%以下からなる未仕上還元水アトマイズ
鉄粉70〜95wt%と、残部325メツシユ以下の粒度
比率が80wt%以上からなる仕上還元を施した還
元鉄粉とからなることを特徴とする高強度粉末冶
金製品用高圧縮性を有する鉄粉。 2 100メツシユ以下の粒度比率が90wt%以上
で、かつ325メツシユ以下の粒度比率が30wt%以
下からなる未仕上還元水アトマイズ鉄粉70〜
95wt%と、残部325メツシユ以下の粒度比率が
80wt%以上の仕上還元を施した還元鉄粉とより
なる混合物を露点0〜15℃の還元性雰囲気で850
〜1050℃の温度範囲内で常法により仕上還元した
後得られた仕上還元ケーキを常法により解砕して
100メツシユ以下の粉の比率が80wt%以上よりな
る高強度粉末冶金製品用高圧縮性を有する鉄粉の
製造方法。
[Scope of Claims] 1. A mixture consisting of unfinished reduced water atomized iron powder and reduced iron powder subjected to finishing reduction is crushed by a conventional method after finishing reduction to have a particle size ratio of 100 mesh or less.
In iron powder for powder metallurgy products consisting of 80 wt% or more, the mixture has a particle size ratio of 100 mesh or less.
Unfinished reduced water atomized iron powder consisting of 90wt% or more and a particle size ratio of 325 mesh or less is 30wt% or less, and the remainder is finished reduction consisting of 80wt% or more of a particle size ratio of 325 mesh or less. An iron powder with high compressibility for use in high-strength powder metallurgy products, characterized by comprising iron powder. 2 Unfinished reduced water atomized iron powder 70~ consisting of a particle size ratio of 100 mesh or less of 90wt% or more and a particle size ratio of 325 mesh or less of 30wt% or less
The particle size ratio is 95wt% and the remainder is 325 mesh or less.
A mixture consisting of reduced iron powder that has been subjected to finish reduction of 80wt% or more is heated to 850% in a reducing atmosphere with a dew point of 0 to 15℃.
After finishing reduction by a conventional method within a temperature range of ~1050℃, the resulting finished reduction cake was crushed by a conventional method.
A method for producing iron powder having high compressibility for use in high-strength powder metallurgy products, in which the proportion of powder of 100 mesh or less is 80 wt% or more.
JP56084456A 1981-06-03 1981-06-03 Iron powder having high compressibility for high strength powder metallurgy product and preparation thereof Granted JPS57200501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56084456A JPS57200501A (en) 1981-06-03 1981-06-03 Iron powder having high compressibility for high strength powder metallurgy product and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56084456A JPS57200501A (en) 1981-06-03 1981-06-03 Iron powder having high compressibility for high strength powder metallurgy product and preparation thereof

Publications (2)

Publication Number Publication Date
JPS57200501A JPS57200501A (en) 1982-12-08
JPS6156283B2 true JPS6156283B2 (en) 1986-12-02

Family

ID=13831119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56084456A Granted JPS57200501A (en) 1981-06-03 1981-06-03 Iron powder having high compressibility for high strength powder metallurgy product and preparation thereof

Country Status (1)

Country Link
JP (1) JPS57200501A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752749B2 (en) * 2006-12-15 2011-08-17 Jfeスチール株式会社 Method for producing iron powder for powder metallurgy
JPWO2015004880A1 (en) * 2013-07-09 2017-03-02 Jfeスチール株式会社 Iron powder for bearings and method for producing iron powder for bearings

Also Published As

Publication number Publication date
JPS57200501A (en) 1982-12-08

Similar Documents

Publication Publication Date Title
TWI714649B (en) Iron based powders for powder injection molding
EP0625392A1 (en) Water atomised iron powder and method
US3899319A (en) Powder mixture for the production of alloy steel with a low content of oxide inclusions
JP3273789B2 (en) Iron powder and mixed powder for powder metallurgy and method for producing iron powder
JPH08921B2 (en) Pure iron powder for powder metallurgy with excellent compressibility and magnetic properties
US3419383A (en) Producing pulverulent iron for powder metallurgy by multistage reduction
WO2019111834A1 (en) Partial diffusion alloyed steel powder
JPS6156283B2 (en)
WO2019111833A1 (en) Steel alloy powder
JPS61231102A (en) Powder based on iron containing ni and mo for producing highstrength sintered body
JPH1096001A (en) Production of partially diffused alloyed steel powder
JPH0734183A (en) Composite dust core material and its production
EP0157750B1 (en) Material for the powder metallurgical manufacture of soft magnetic components
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
JPH08319505A (en) Production of iron powder excellent in compactibility and compressibility
JPH0688153A (en) Production of sintered titanium alloy
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JPH0827536A (en) Production of sintered compact of stainless steel
JPH07188714A (en) Iron-based powder excellent in compactibility
JP3392228B2 (en) Alloy steel powder for powder metallurgy
JPH0892708A (en) Mixed iron powder for powder metallurgy and production of sintered steel excellent in cuttability
JPH05147917A (en) Production of fine tungsten-based carbide powder
JP3938944B2 (en) Method for producing water atomized iron powder for powder metallurgy
JPH0140081B2 (en)
JPS59197544A (en) Preparation of sintered high speed steel