JPWO2015004880A1 - Iron powder for bearings and method for producing iron powder for bearings - Google Patents

Iron powder for bearings and method for producing iron powder for bearings Download PDF

Info

Publication number
JPWO2015004880A1
JPWO2015004880A1 JP2014556296A JP2014556296A JPWO2015004880A1 JP WO2015004880 A1 JPWO2015004880 A1 JP WO2015004880A1 JP 2014556296 A JP2014556296 A JP 2014556296A JP 2014556296 A JP2014556296 A JP 2014556296A JP WO2015004880 A1 JPWO2015004880 A1 JP WO2015004880A1
Authority
JP
Japan
Prior art keywords
iron
powder
mass
bearings
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014556296A
Other languages
Japanese (ja)
Inventor
智 町田
智 町田
中村 尚道
尚道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2015004880A1 publication Critical patent/JPWO2015004880A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/10Porosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap

Abstract

本発明に従い、原料酸化鉄粉の添加量を原料鉄粉に対して5〜30mass%とし、該原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50)を1.5μm以下とし、さらに、軸受用鉄粉の見掛密度を1.80Mg/m3以上2.50Mg/m3以下であって、鉄酸化度Iが6mass%以下の範囲とすることによって、含浸軸受を作製した際に、軸部の磨耗と軸受の変形を招来する要因元素の、SiとCaとを低減しつつ、多孔質な含浸軸受用の鉄粉を得ることができる。According to the present invention, the addition amount of the raw iron oxide powder is 5-30 mass% with respect to the raw iron powder, the 50% average particle diameter (D50) measured by the laser diffraction method of the raw iron oxide powder is 1.5 μm or less, Furthermore, when the apparent density of the iron powder for bearings is 1.80 Mg / m3 or more and 2.50 Mg / m3 or less and the iron oxidation degree I is in the range of 6 mass% or less, the shaft portion is produced when the impregnated bearing is manufactured. It is possible to obtain porous iron powder for impregnated bearings while reducing Si and Ca, which are element elements that cause wear and deformation of the bearing.

Description

本発明は、軸受用鉄粉およびこの軸受用鉄粉を得るための製造方法に関するものであって、特に含浸軸受の製造に供する軸受用鉄粉に関するものである。   The present invention relates to a bearing iron powder and a manufacturing method for obtaining the bearing iron powder, and more particularly to a bearing iron powder used for manufacturing an impregnated bearing.

焼結含浸軸受は、適当な含浸率を保持することが重要であって、含浸率が低いと、適切な潤滑性、耐用性を得ることができない。ところが、この適当な含浸率を保持するためには、焼結体における孔隙率を高めることが必要であるところ、あまりに孔隙率が高いと焼結体の機械的強度が劣ることになる。   It is important to maintain an appropriate impregnation rate in the sintered impregnated bearing. If the impregnation rate is low, appropriate lubricity and durability cannot be obtained. However, in order to maintain this appropriate impregnation rate, it is necessary to increase the porosity in the sintered body. However, if the porosity is too high, the mechanical strength of the sintered body is inferior.

この問題を解決するために、例えば、特許文献1には、銅粉に錫粉や、潤滑剤としての金属石けんを添加混合し、さらに該混合粉を圧粉成形、焼結するに当って、原料銅粉として、粒度325メッシュ以下の微粉を30〜60%含有したものを採用し、しかも金属石けんの添加量を3〜7%のような範囲とする技術の開示が有る。   In order to solve this problem, for example, in Patent Document 1, tin powder and metal soap as a lubricant are added to and mixed with copper powder, and further, the powder mixture is compacted and sintered. As a raw material copper powder, there is a disclosure of a technique in which a powder containing 30 to 60% of fine powder having a particle size of 325 mesh or less is employed and the addition amount of metal soap is in a range of 3 to 7%.

また、近年では、軸受用鉄粉として、アトマイズ鉄粉に比べると比表面積が大きく空孔が多い還元鉄粉が用いられている。還元鉄粉は、海綿鉄を仕上げ還元して得られるものであって、粒子形状が不規則形状で多孔質であり、成形性や焼結性に優れるため、粉末冶金用原料として、広く使用されている。   In recent years, reduced iron powder having a larger specific surface area and more voids is used as bearing iron powder than atomized iron powder. Reduced iron powder is obtained by finishing and reducing sponge iron, and is widely used as a raw material for powder metallurgy because its particle shape is irregular and porous, and has excellent moldability and sinterability. ing.

特公昭57−45801号公報Japanese Patent Publication No.57-45801

しかしながら、特許文献1に記載の技術は、原料銅粉として325メッシュ以下の微粉を30〜60%のように大量に必要とし、しかも金属石けんを3%以上のように大量に使用して圧粉成形するものであるから、ラトラ値で代表される圧粉体強度等の低下による生産性の低下を避け得ないという問題が有った。   However, the technology described in Patent Document 1 requires a large amount of fine powder of 325 mesh or less as raw material copper powder, such as 30-60%, and also uses metal soap in large quantities, such as 3% or more, and is compacted. Since molding is performed, there has been a problem in that a decrease in productivity due to a decrease in green compact strength typified by the Latra value cannot be avoided.

さらに、特許文献1に記載の技術は、銅粉と錫粉を主材とし、しかも上記のようにそれらの微粉が相当量必要であると共に金属石けんなどを通常よりも多量に用いることが必要であるから、原材料的にも相当のコストアップとならざるを得ない。また、製造操作上においても、金型への充填性や熱間混練の必要性が増大し、混練後冷却してからの特別な解砕を必要とするなど、製造操作上における困難性の増加や、その他の不利を伴うことにならざるを得ない。   Furthermore, the technique described in Patent Document 1 uses copper powder and tin powder as main materials, and requires a considerable amount of those fine powders as described above, and it is necessary to use a larger amount of metal soap than usual. Because of this, there is no choice but to increase the cost of raw materials. Also, in manufacturing operations, the moldability and the need for hot kneading are increased, and special crushing after cooling after kneading is required, increasing the difficulty in manufacturing operations. And other disadvantages.

他方、ミルスケールを粗還元して得られる鉄粉を、さらに仕上還元して得られる還元鉄粉は、一般に純度が高いものの、見掛け密度が2.40〜2.80Mg/m3 と比較的高く、成形性が低いという問題がある。
また、鉄鉱石を粗還元して得られる鉄粉を、さらに仕上還元して得られる還元鉄粉は、見掛け密度が1.70〜2.50Mg/m3 と低く、含浸軸受用鉄粉として一般に使用されているものの、圧縮性が悪いという問題がある。さらに、鉄鉱石は、酸化鉄の純度が低く、SiO2、CaO 等の脈石成分が含有され、このSiO2、CaO等が介在物として還元鉄粉中に残存して、軸受の性能低下を招く、すなわち、含浸軸受を作製した際に、軸部の磨耗と軸受の変形を招来するという懸念がある。
On the other hand, reduced iron powder obtained by further reducing the iron powder obtained by rough reduction of the mill scale is generally high in purity, but the apparent density is relatively high at 2.40 to 2.80 Mg / m 3, and formability There is a problem that is low.
In addition, iron powder obtained by rough reduction of iron ore, and reduced iron powder obtained by finish reduction, has an apparent density as low as 1.70 to 2.50 Mg / m 3 and is generally used as iron powder for impregnated bearings. However, there is a problem that the compressibility is bad. Furthermore, iron ore, the purity of the iron oxide is low, gangue components such as SiO 2, CaO is contained, the SiO 2, CaO or the like remaining in the reduced iron powder in a inclusions, the performance degradation of the bearing In other words, there is a concern that when an impregnated bearing is manufactured, wear of the shaft portion and deformation of the bearing are caused.

本発明は、上記した現状に鑑み開発されたもので、含浸軸受を作製した際に、軸部の磨耗と軸受の変形を招来する要因元素の、SiとCaとを低減し、かつ多孔質となる含浸軸受用の鉄粉をその有利な製造方法と共に提供することを目的とする。   The present invention has been developed in view of the above-described situation, and when impregnated bearings are produced, Si and Ca, which are factors that cause wear of the shaft portion and deformation of the bearings, are reduced, and are porous. It is an object of the present invention to provide an iron powder for an impregnated bearing together with its advantageous production method.

本発明の要旨構成は次のとおりである。
1.アトマイズ方式により製造した生粉と、原料酸化鉄粉とを混合して原料鉄粉としたのち、仕上還元、二次粉砕、二次分級を行って得られる軸受用鉄粉において、
上記原料酸化鉄粉の添加量が上記原料鉄粉に対して5〜30mass%の範囲であって、かつ該原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50)が1.5μm以下であり、
上記軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下で、かつ下記計算式(1)より算出した鉄酸化度Iが6mass%以下であって、さらに上記軸受用鉄粉中のCa含有量が0.06mass%以下で、かつSi含有量が0.04mass%以下である軸受用鉄粉。

鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
The gist of the present invention is as follows.
1. In the iron powder for bearings obtained by mixing the raw powder produced by the atomization method and the raw iron oxide powder to make the raw iron powder, then finishing reduction, secondary pulverization, secondary classification,
The amount of the raw iron oxide powder added is in the range of 5 to 30 mass% with respect to the raw iron powder, and the 50% average particle diameter (D50) measured by the laser diffraction method of the raw iron oxide powder is 1.5 μm. And
The apparent density of the iron powder for the bearing is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated by the following formula (1) is 6 mass% or less, and further for the bearing. Iron powder for bearings in which the Ca content in the iron powder is 0.06 mass% or less and the Si content is 0.04 mass% or less.
Iron Degree of oxidation I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: Oxygen mass when all iron in the iron powder for bearings becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

2.前記原料酸化鉄粉の50%平均粒子径(D50)が0.6〜1.2μmの範囲である前記1に記載の軸受用鉄粉。 2. 2. The bearing iron powder according to 1 above, wherein the raw iron oxide powder has a 50% average particle diameter (D50) in the range of 0.6 to 1.2 μm.

3.前記原料酸化鉄粉の下記計算式(2)より算出した鉄酸化度IIが84mass%以上である前記1または2に記載の軸受用鉄粉。

鉄酸化度II(mass%)=C/D×100・・・(2)
但し、C:酸化鉄粉中酸素質量
D:酸化鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
3. The iron powder for bearings according to 1 or 2, wherein the iron oxide degree II calculated from the following calculation formula (2) of the raw iron oxide powder is 84 mass% or more.
Iron Degree of Oxidation II (mass%) = C / D x 100 (2)
However, C: oxygen mass in iron oxide powder
D: Oxygen mass when all iron in iron oxide powder becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

4.前記軸受用鉄粉中のCa含有量が0.02mass%以下である前記1〜3の何れかに記載の軸受用鉄粉。 4). The iron powder for bearings in any one of said 1-3 whose Ca content in the said iron powder for bearings is 0.02 mass% or less.

5.前記軸受用鉄粉中のSi含有量が0.03mass%以下である前記1〜4の何れかに記載の軸受用鉄粉。 5). The iron powder for bearings in any one of said 1-4 whose Si content in the said iron powder for bearings is 0.03 mass% or less.

6.前記1〜5の何れかに記載の軸受用鉄粉の製造方法であって、
アトマイズ方式により製造した生粉を一次分級後、レーザー回折方式で測定した50%平均粒子径(D50)が1.5μm以下の原料酸化鉄粉を、該生粉との混合割合で、5〜30mass%の範囲として混合し、ついで仕上還元後、二次粉砕、二次分級により鉄粉の見掛密度を1.80Mg/m3以上2.50Mg/m3以下とし、かつ下記計算式(1)より算出した鉄酸化度Iを6mass%以下とし、さらに上記軸受用鉄粉中のCa含有量を0.06mass%以下で、かつSi含有量を0.04mass%以下の範囲に調整する軸受用鉄粉の製造方法。

鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
6). It is a manufacturing method of the iron powder for bearings in any one of said 1-5,
After primary classification of raw powder produced by atomization method, raw iron oxide powder with 50% average particle diameter (D50) measured by laser diffraction method of 1.5 μm or less is 5-30 mass% in mixing ratio with the raw powder. After the final reduction, the apparent density of the iron powder was set to 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less by secondary pulverization and secondary classification, and calculated from the following formula (1). A method for producing iron powder for bearings, wherein the iron oxidation degree I is set to 6 mass% or less, the Ca content in the bearing iron powder is adjusted to 0.06 mass% or less, and the Si content is adjusted to 0.04 mass% or less.
Iron Degree of oxidation I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: Oxygen mass when all iron in the iron powder for bearings becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

7.前記レーザー回折方式で測定した50%平均粒子径(D50)を0.6〜1.2μmの範囲とする前記6に記載の軸受用鉄粉の製造方法。 7). 6. The method for producing iron powder for bearings according to 6, wherein the 50% average particle diameter (D50) measured by the laser diffraction method is in the range of 0.6 to 1.2 μm.

8.前記原料酸化鉄粉の下記計算式(2)より算出した鉄酸化度IIを84mass%以上とする前記6または7に記載の軸受用鉄粉の製造方法。

鉄酸化度II(mass%)=C/D×100・・・(2)
但し、C:酸化鉄粉中酸素質量
D:酸化鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
8). 8. The method for producing bearing iron powder according to 6 or 7, wherein the iron oxidation degree II calculated from the following formula (2) of the raw iron oxide powder is 84 mass% or more.
Iron Degree of Oxidation II (mass%) = C / D x 100 (2)
However, C: oxygen mass in iron oxide powder
D: Oxygen mass when all iron in iron oxide powder becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

9.前記軸受用鉄粉中のCa含有量を0.02mass%以下とする前記6〜8の何れかに記載の軸受用鉄粉の製造方法。 9. The manufacturing method of the iron powder for bearings in any one of said 6-8 which makes Ca content in the said iron powder for bearings 0.02 mass% or less.

10.前記軸受用鉄粉中のSi含有量を0.03mass%以下とする前記6〜9の何れかに記載の軸受用鉄粉の製造方法。 10. The manufacturing method of the iron powder for bearings in any one of said 6-9 which makes Si content in the said iron powder for bearings 0.03 mass% or less.

本発明によれば、軸部の磨耗と軸受の変形を招来せずに、かつ多孔質な含油軸受を製造することができる。   According to the present invention, a porous oil-impregnated bearing can be produced without causing shaft wear and bearing deformation.

通常の軸受用鉄粉の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the normal iron powder for bearings. 本発明における軸受用鉄粉の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the iron powder for bearings in this invention.

以下、本発明を具体的に説明する。
本発明は、アトマイズ方式により製造した生粉(以下、単に生粉といった場合はアトマイズ方式により製造した生粉を意味する)と、原料酸化鉄粉とを混合して原料鉄粉としたのち、ベルト式等の加熱炉を用いた水素雰囲気下での還元、二次粉砕、二次分級を行って得られる軸受用鉄粉(以下、単に鉄粉といった場合は軸受用鉄粉を意味する)である。
なお、本発明における生粉とは、転炉より排出された溶鋼を高圧水で噴霧した後、脱水および乾燥、さらに一次粉砕および一次分級、を経たもので、仕上還元に供される前の状態の粉であって、必要に応じて磁選を経ているものである。また、軸受用鉄粉とは、回転軸の保持に用いられる軸受の製造に用いられる鉄粉であって、その特徴として、粒子中に外部とつながる気孔を持っているので、軸受を製造した際に潤滑油を含浸させることができる。さらに、原料酸化鉄粉は、通常、ウスタイト(FeO)、マグネタイト(Fe3O4)、ヘマタイト(Fe2O3)のいずれかの形態で存在する粉末である。また、それらの鉄酸化度は、ウスタイトが66.7mass%、マグネタイトが88.9mass%、ヘマタイトが100mass%である。
Hereinafter, the present invention will be specifically described.
In the present invention, raw powder produced by the atomization method (hereinafter simply referred to as raw powder produced by the atomization method when raw powder is used) and raw iron oxide powder are mixed to obtain raw iron powder, and then the belt. Iron powder for bearings obtained by reduction, secondary pulverization, and secondary classification in a hydrogen atmosphere using a heating furnace such as a formula (hereinafter simply referred to as iron powder for bearings) .
The raw powder in the present invention is a state before spraying molten steel discharged from the converter with high-pressure water, followed by dehydration and drying, further primary pulverization and primary classification, and before being subjected to finish reduction. This powder is magnetically selected as necessary. In addition, bearing iron powder is iron powder used in the manufacture of bearings used to hold rotating shafts. As a feature of the powder, it has pores connected to the outside in the particles. Can be impregnated with lubricating oil. Furthermore, the raw iron oxide powder is usually a powder that exists in any form of wustite (FeO), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ). Moreover, the iron oxidation degree is 66.7 mass% for wustite, 88.9 mass% for magnetite, and 100 mass% for hematite.

そして、本発明では、以下の諸条件を満足することが肝要である。
原料酸化鉄粉の添加量:5〜30mass%
本発明では、軸受用鉄粉の見掛密度を調整するために、原料酸化鉄粉の添加量は、原料鉄粉に対して(生粉との混合割合で)5〜30mass%とする。原料鉄粉に対して5mass%に満たないと、得られた軸受用鉄粉の見掛密度が大きくなって後述する問題が生じる。一方、30mass%を超えると、Ca等の不純物が過剰になりすぎ、この鉄粉を用いて含油軸受を作製した際、回転軸部の磨耗や軸受の変形を招来してしまうからである。
In the present invention, it is important to satisfy the following conditions.
Addition amount of raw iron oxide powder: 5-30 mass%
In this invention, in order to adjust the apparent density of the iron powder for bearings, the addition amount of raw material iron oxide powder shall be 5-30 mass% (in a mixing ratio with raw powder) with respect to raw material iron powder. If it is less than 5 mass% with respect to the raw iron powder, the apparent density of the obtained iron powder for bearings is increased, resulting in problems described later. On the other hand, when it exceeds 30 mass%, impurities such as Ca become excessive, and when an oil-impregnated bearing is produced using this iron powder, the rotating shaft portion is worn and the bearing is deformed.

原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50):1.5μm以下
原料酸化鉄粉の平均粒子径は、体積基準で、レーザー回折方式で測定した50%平均粒子径(D50)で1.5μm以下とする。1.5μmを超えると、仕上還元工程での還元効率が低下するからである。好ましくは、50%平均粒子径(D50):0.6〜1.2μmの範囲である。
50% average particle size (D50) measured by laser diffraction method of raw iron oxide powder: 1.5μm or less The average particle size of raw iron oxide powder is 50% average particle size (D50) measured by laser diffraction method on a volume basis. ) To 1.5 μm or less. This is because if it exceeds 1.5 μm, the reduction efficiency in the finish reduction process is lowered. Preferably, it is in the range of 50% average particle diameter (D50): 0.6 to 1.2 μm.

本発明で用いるレーザー回折方式は、公知公用のレーザー回折方式に従えばよいが、測定方式は乾式とし、圧縮空気圧は0.01MPa、透過率は90〜98%とすることが好適である。   The laser diffraction method used in the present invention may follow a publicly known and publicly known laser diffraction method, but the measurement method is preferably a dry method, the compression air pressure is 0.01 MPa, and the transmittance is 90 to 98%.

軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下
見掛密度が1.80Mg/m3に満たないと、圧粉体に成形する際に圧粉体内の密度が不均一となって、焼結材とした時に部分的に強度の低い部分ができて、破壊の起点となるために、焼結材の強度が不足してしまう。一方、見掛密度が2.50 Mg/m3を超えると、気孔が少なくなるため、油が含浸しにくくなり、軸受け用材料としての特性を満足しないからである。
The apparent density of the iron powder for bearings is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less. If the apparent density is less than 1.80 Mg / m 3 , the density in the green compact will not be sufficient when molding into a green compact. When the sintered material is made uniform, a portion having a low strength is partially formed and becomes a starting point of destruction, so that the strength of the sintered material is insufficient. On the other hand, when the apparent density exceeds 2.50 Mg / m 3 , the pores are reduced, so that the oil is difficult to be impregnated and the characteristics as a bearing material are not satisfied.

以上、原料酸化鉄粉の添加量:5〜30mass%、原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50):1.5μm以下、軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下を満足することが本発明では特に肝要であり、さらに以下の計算式(1)より算出した鉄酸化度Iが6mass%以下であって、上記軸受用鉄粉中のCa含有量が0.06mass%以下、かつSi含有量が0.04mass%以下を同時に満足することが本発明の特徴であってこれを第1実施形態とする。また、原料酸化鉄粉の添加量と軸受用鉄粉の見掛密度等は第1実施形態と同じであって、原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50)が好ましい範囲、すなわち0.6〜1.2μmの範囲の場合は、第2実施形態とする。
鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
Above, the amount of raw iron oxide powder added: 5-30 mass%, 50% average particle diameter (D50) measured by laser diffraction method of raw iron oxide powder: 1.5 μm or less, the apparent density of bearing iron powder is 1.80 Mg It is particularly important in the present invention to satisfy the following conditions: 1 / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated by the following calculation formula (1) is 6 mass% or less, It is a feature of the present invention that the Ca content in the powder satisfies 0.06 mass% or less and the Si content simultaneously satisfies 0.04 mass% or less, and this is the first embodiment. The amount of raw iron oxide powder added and the apparent density of bearing iron powder are the same as in the first embodiment, and the 50% average particle diameter (D50) measured by the laser diffraction method of the raw iron oxide powder is In a preferable range, that is, in the range of 0.6 to 1.2 μm, the second embodiment is adopted.
Iron oxidation degree I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: Oxygen mass when all iron in the iron powder for bearings becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

原料酸化鉄粉の鉄酸化度IIが84mass%以上
以下に示す計算式(2)より算出した原料酸化鉄粉の鉄酸化度IIが、84mass%以上であることが好ましい(第3実施形態)。というのは、原料酸化鉄粉の鉄酸化度IIが84mass%に満たないと、軸受用鉄粉の見掛密度が効果的に低下しないからである。
なお、0mass%が金属鉄、100mass%がヘマタイトに対応する。
鉄酸化度II(mass%)=C/D×100・・・(2)
但し、C:酸化鉄粉中酸素質量
D:酸化鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
The iron oxidation degree II of the raw iron oxide powder is 84 mass% or more. The iron oxidation degree II of the raw iron oxide powder calculated from the calculation formula (2) shown below is preferably 84 mass% or more (third embodiment). This is because if the iron oxidation degree II of the raw iron oxide powder is less than 84 mass%, the apparent density of the bearing iron powder is not effectively reduced.
Note that 0 mass% corresponds to metallic iron, and 100 mass% corresponds to hematite.
Iron oxidation degree II (mass%) = C / D x 100 (2)
However, C: oxygen mass in iron oxide powder
D: Oxygen mass when all iron in iron oxide powder becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

さらに、軸受用鉄粉の鉄酸化度Iは、6mass%以下である必要があり、5.3mass%以下が好ましい。
というのは、軸受用鉄粉の鉄酸化度Iが6mass%を超えると、酸化鉄、特にマグネタイトによる軸の傷の発生が顕在化するため、軸受け用材料として充分な機能を果たせないからである。なお、軸受用鉄粉の鉄酸化度Iの下限値は特に限定されず、0mass%でもよい。
Furthermore, the iron oxidation degree I of the iron powder for bearing needs to be 6 mass% or less, and preferably 5.3 mass% or less.
This is because if the iron oxidation degree I of the iron powder for bearings exceeds 6 mass%, the occurrence of shaft scratches due to iron oxide, particularly magnetite, becomes obvious, so that a sufficient function as a bearing material cannot be achieved. . In addition, the lower limit of the iron oxidation degree I of the iron powder for bearings is not particularly limited, and may be 0 mass%.

軸受用鉄粉中のCa含有量が0.06mass%以下、好ましくは0.02mass%以下
軸受を作製する際、Ca系介在物が存在すると、圧粉体を焼結した後、以下の反応が起こりやすく、起った際には、焼結体が膨張し、焼結体が変形し、最悪の場合、内部から破壊される。これら変形を防止するためには、軸受用鉄粉中のCa含有量を0.06mass%以下、さらには0.02mass%以下とすることが好ましい(第4実施形態)。また、Ca含有量の下限値に特に制限はなく、0mass%でも良い。
なお、軸受製造時の歩留を考慮した場合、Ca含有量の上限は0.06mass%である。さらに、良好な歩留で製造できるCa含有量の上限は0.03mass%である。
Ca content in iron powder for bearings is 0.06 mass% or less, preferably 0.02 mass% or less When Ca bearing inclusions are present when producing bearings, the following reactions are likely to occur after sintering the green compact When this happens, the sintered body expands and the sintered body is deformed. In the worst case, the sintered body is destroyed from the inside. In order to prevent these deformations, the Ca content in the iron powder for bearings is preferably 0.06 mass% or less, and more preferably 0.02 mass% or less (fourth embodiment). Moreover, there is no restriction | limiting in particular in the lower limit of Ca content, 0 mass% may be sufficient.
In addition, when the yield at the time of bearing manufacture is considered, the upper limit of Ca content is 0.06 mass%. Furthermore, the upper limit of the Ca content that can be produced with a good yield is 0.03 mass%.

なお、軸受は、1%以下の膨張による変形で有っても成品としては用をなさない。従って、軸受製造時の膨張率は、軸受の大きさによって適宜選定されれば良いが、例えば、外径:2mm、内径:0.8mm、高さ:1.2mmの軸受を製造した際には、外径の変動が0.2%未満であることが要求される。   Note that the bearing is not useful as a product even if it is deformed by expansion of 1% or less. Therefore, the expansion coefficient at the time of manufacturing the bearing may be appropriately selected depending on the size of the bearing. For example, when a bearing having an outer diameter: 2 mm, an inner diameter: 0.8 mm, and a height: 1.2 mm is manufactured, The variation in diameter is required to be less than 0.2%.

軸受用鉄粉中のSi含有量が0.04mass%以下、好ましくは0.03mass%以下
表1に、鉄粉中の介在物とその硬度を示す。軸は一般に鋼が用いられるが、軸受用鉄粉に含まれるSiO2は、鋼に対して、モース硬度は同等であるものの、ビッカース硬度が高いため、SiO2粒子の存在が軸の傷の発生要因となる。
The Si content in the iron powder for bearings is 0.04 mass% or less, preferably 0.03 mass% or less. Table 1 shows inclusions in iron powder and their hardness. Steel is generally used for the shaft, but SiO 2 contained in the iron powder for bearings has the same Mohs hardness as steel, but has high Vickers hardness, so the presence of SiO 2 particles causes shaft scratches. It becomes a factor.

Figure 2015004880
Figure 2015004880

表1に示したように、軸受用鉄粉にSi系介在物が存在すると、軸受中のSiO2粒子が当該軸受で受けている回転軸に傷を付けてしまう。この問題を避けるためには、軸受用鉄粉中のSi含有量を0.04mass%以下、さらに0.03mass%以下とすることが好ましい(第5実施形態)。また、Si含有量の下限値に特に制限はなく、0mass%でも良い。As shown in Table 1, when Si-based inclusions are present in the bearing iron powder, the SiO 2 particles in the bearing damage the rotating shaft received by the bearing. In order to avoid this problem, the Si content in the iron powder for bearings is preferably 0.04 mass% or less, and more preferably 0.03 mass% or less (fifth embodiment). Moreover, there is no restriction | limiting in particular in the lower limit of Si content, 0 mass% may be sufficient.

次に、軸受用鉄粉の製造方法について図1および2に示す製造フローを用いて説明する。
従来の軸受用鉄粉の製造方法は、図1に示したように、生粉、または、ミルスケール、鉄鉱石およびコークス、石炭を混合して粗還元した鉄粉を、一次粉砕、一次分級し、磁選した後、仕上還元し、さらに、二次粉砕、二次分級して鉄粉としていた。
これに対して、本発明の軸受用鉄粉の製造方法は、図2に示したように、一次分級後で、かつ仕上還元前に、生粉と、原料酸化鉄粉とを混合するところに特徴がある。
Next, the manufacturing method of the iron powder for bearings is demonstrated using the manufacturing flow shown in FIG.
As shown in FIG. 1, the conventional method for producing iron powder for bearings is as follows. Raw powder, or iron powder obtained by mixing and coarsely reducing mill scale, iron ore and coke, and coal is first ground and primary classified. Then, after magnetic selection, it was subjected to finish reduction, and then secondary pulverization and secondary classification to obtain iron powder.
On the other hand, as shown in FIG. 2, the method for producing bearing iron powder according to the present invention mixes raw powder and raw iron oxide powder after primary classification and before finishing reduction. There are features.

そして、その際に用いる原料酸化鉄粉は、上記したように、
(1) 原料酸化鉄粉の添加量(生粉との混合割合):5〜30mass%
(2) 原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50):1.5μm以下
の性状を満足する必要があり(第1実施形態)、
(3) 原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50):0.6〜1.2μm(第2実施形態)
(4) 前掲計算式(2)より算出した鉄酸化度IIを用いて、原料酸化鉄粉の鉄酸化度IIが84mass%以上(第3実施形態)
となることがそれぞれ好ましい性状である。
And the raw material iron oxide powder used in that case is as described above.
(1) Addition amount of raw iron oxide powder (mixing ratio with raw powder): 5-30 mass%
(2) 50% average particle diameter (D50) measured by laser diffraction method of raw iron oxide powder: It is necessary to satisfy the properties of 1.5 μm or less (first embodiment),
(3) 50% average particle diameter (D50) measured by laser diffraction method of raw iron oxide powder: 0.6 to 1.2 μm (second embodiment)
(4) Using the iron oxidation degree II calculated from the above formula (2), the iron oxidation degree II of the raw iron oxide powder is 84 mass% or more (third embodiment).
Each of these is a preferable property.

また、成果物たる軸受用鉄粉は、
(5) 軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下で、かつ前掲計算式(1)より算出した鉄酸化度Iが6mass%以下であって、さらに上記軸受用鉄粉中のCa含有量が0.06mass%以下で、かつSi含有量が0.04mass%以下
の性状を満足する必要があり(第1実施形態)、本発明では、二次分級により最終的に調整される、さらに、
(6) 軸受用鉄粉中のCa含有量が0.02mass%以下(第4実施形態)
(7) 軸受用鉄粉中のSi含有量が0.03mass%以下(第5実施形態)
がそれぞれ好ましい性状である。
The resulting iron powder for bearings is
(5) The apparent density of the iron powder for bearings is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated by the above formula (1) is 6 mass% or less, and further It is necessary to satisfy the properties that the Ca content in the iron powder for bearings is 0.06 mass% or less and the Si content is 0.04 mass% or less (first embodiment). In the present invention, the final classification is performed by secondary classification. Further adjusted to
(6) Ca content in iron powder for bearings is 0.02 mass% or less (fourth embodiment)
(7) Si content in iron powder for bearings is 0.03 mass% or less (fifth embodiment)
Are preferable properties.

ここで、本発明の仕上還元時には、軸受用鉄粉の製造方法の常法に従い、コークス等カーボン成分を適量加えることができる。その際、コークスの性状に特に限定はなく、従来公知のものを用いることができる。また、その他上述していない軸受用鉄粉の製造方法は、軸受用鉄粉の製造方法の常法に従うことができる。   Here, at the time of finish reduction according to the present invention, an appropriate amount of carbon components such as coke can be added in accordance with a conventional method for producing iron powder for bearings. At that time, the properties of the coke are not particularly limited, and conventionally known ones can be used. Moreover, the manufacturing method of the iron powder for bearings which is not mentioned above can follow the conventional method of the manufacturing method of the iron powder for bearings.

アトマイズ生粉としては、溶鋼を水アトマイズ後、乾燥、篩い分けしたものを用いた。また、粗還元粉としては、ミルスケール、および鉄鉱石をコークスなどの炭材で加熱還元したものを用いた。
表2に、アトマイズ生粉および粗還元粉の化学成分や物理性状を示す。
原料酸化鉄粉(以下、単に酸化鉄粉という)としては、JFEケミカル(株)製のJC−DCを用いた。化学成分や鉄酸化度II、物理性状は表2に示す。平均粒径(D50)は、酸化鉄粉1が1.45μm、酸化鉄粉2が0.82μm、酸化鉄粉3が1.02μmであった。また、鉄酸化度IIは、酸化鉄粉1が95.8mass%、酸化鉄粉2が94.9mass%、酸化鉄粉3が82.7mass%であった。
黒鉛粉としては、平均粒径(D50)が4.6μmのものを用いた。
混合は、ダブルコーン型混合機を用い、回転数を10〜15rpmとして、アトマイズ生粉と酸化鉄粉と黒鉛粉の混合粉を作製した。次いで、上記混合粉に対し熱処理を行ったが、熱処理(還元処理)条件は、純水素ガス雰囲気中、温度:950℃、保持時間:65分とした。
上記の還元処理後、混合粉をハンマーミルで粉砕し、212μmの篩で分級した。かくして得られた鉄粉を、見掛密度、化学成分、鉄酸化度Iで評価した。
実験条件および、作製した鉄粉の評価結果を表3に示す。
As the atomized raw powder, molten steel was dried and sieved after water atomization. Further, as the coarsely reduced powder, mill scale and iron ore obtained by heat reduction with a carbonaceous material such as coke were used.
Table 2 shows chemical components and physical properties of the atomized raw powder and the coarsely reduced powder.
JC-DC manufactured by JFE Chemical Co., Ltd. was used as the raw iron oxide powder (hereinafter simply referred to as iron oxide powder). Table 2 shows chemical components, iron oxidation degree II, and physical properties. The average particle size (D50) of iron oxide powder 1 was 1.45 μm, iron oxide powder 2 was 0.82 μm, and iron oxide powder 3 was 1.02 μm. Moreover, the iron oxide powder 1 was 95.8 mass%, the iron oxide powder 2 was 94.9 mass%, and the iron oxide powder 3 was 82.7 mass%.
As the graphite powder, one having an average particle diameter (D50) of 4.6 μm was used.
For mixing, a mixed powder of atomized raw powder, iron oxide powder and graphite powder was prepared using a double cone type mixer at a rotation speed of 10 to 15 rpm. Next, the mixed powder was subjected to heat treatment, and the heat treatment (reduction treatment) conditions were set to a temperature of 950 ° C. and a holding time of 65 minutes in a pure hydrogen gas atmosphere.
After the above reduction treatment, the mixed powder was pulverized with a hammer mill and classified with a 212 μm sieve. The iron powder thus obtained was evaluated based on apparent density, chemical composition, and iron oxidation degree I.
Table 3 shows the experimental conditions and the evaluation results of the produced iron powder.

Figure 2015004880
Figure 2015004880

Figure 2015004880
Figure 2015004880

ここで、本発明では、焼結材の強度を確保し、かつ充分な油の含浸を可能とするために、軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下の範囲になる必要がある。
また、鉄粉の鉄酸化度Iは、6mass%以下、好ましくは5.3mass%以下である。
さらに、軸受製造時の膨張率は、外径:2mm、内径:0.8mm、高さ:1.2mmの軸受を製造した際の外径変動で0.20%未満となることが必須である。
Here, in the present invention, the apparent density of the iron powder for bearings is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less in order to ensure the strength of the sintered material and enable sufficient oil impregnation. It needs to be in the range.
Moreover, the iron oxidation degree I of iron powder is 6 mass% or less, preferably 5.3 mass% or less.
Furthermore, it is essential that the expansion rate during the manufacture of the bearing is less than 0.20% due to the variation in the outer diameter when a bearing having an outer diameter of 2 mm, an inner diameter of 0.8 mm, and a height of 1.2 mm is manufactured.

発明例1は、アトマイズ生粉を原料とし、酸化鉄粉としてレーザー回折方式で測定したD50が1.45μmである酸化鉄粉1を用い、生粉との混合割合で(原料鉄粉に対して)酸化鉄粉1の配合量を20mass%とした第1実施形態を満たす条件で製造した鉄粉である。このとき、見掛密度は2.43 Mg/m3、鉄粉の鉄酸化度Iは5.2mass%であった。軸受を製造した際の外径変動は、0.18%と良好であった。Invention Example 1 uses atomized raw powder as a raw material, and uses iron oxide powder 1 having a D50 of 1.45 μm measured by a laser diffraction method as iron oxide powder, in a mixing ratio with raw powder (relative to raw iron powder). It is the iron powder manufactured on the conditions which satisfy | fill 1st Embodiment which made the compounding quantity of the iron oxide powder 1 20 mass%. At this time, the apparent density was 2.43 Mg / m 3 , and the iron oxidation degree I of the iron powder was 5.2 mass%. The outer diameter fluctuation at the time of manufacturing the bearing was as good as 0.18%.

一方、比較例1は、アトマイズ生粉を原料とし、酸化鉄粉を含まず本発明を満たさない条件で製造した鉄粉である。このとき見掛密度は2.85Mg/m3となって本発明の見掛密度の上限値:2.50Mg/m3を上回るため、本発明の必要条件を満たさないことが分かる。この場合、軸受を製造した際の外径変動は、0.18%と良好であったものの、気孔量が低くなって油の含浸量が25%も低下し、含油軸受を製造した際には、軸受け機能において劣っていた。On the other hand, the comparative example 1 is the iron powder manufactured on the conditions which do not satisfy | fill this invention by using atomized raw powder as a raw material and not including an iron oxide powder. At this time apparent density Apparent density upper limit of the present invention becomes 2.85 mg / m 3: for greater than 2.50 mg / m 3, it is seen that does not satisfy the requirements of the present invention. In this case, the outer diameter fluctuation at the time of manufacturing the bearing was as good as 0.18%, but when the oil-impregnated bearing was manufactured, the bearing volume decreased when the pore volume decreased and the oil impregnation amount decreased by 25%. It was inferior in function.

また、比較例2は、粗還元粉を全原料とし、第1実施形態を満たさない条件で製造した鉄粉である。このとき、見掛密度は2.42Mg/m3となっており、2.50Mg/m3以下ではあるものの、比較例2の鉄粉を調整、成形、焼成して軸受を製造すると、軸受の膨張率が、発明例1は0.18%であったのに対し、比較例2は0.28%となってしまった。これは、鉄粉中に含まれるCaが、軸受製造後に大気中の水分や炭酸ガスと化学反応(CaO+H2O→Ca(OH)2、あるいは、CaO+CO2→CaCO3)し、膨張したためである。Moreover, the comparative example 2 is the iron powder manufactured on the conditions which do not satisfy | fill 1st Embodiment by making rough reduced powder into all the raw materials. At this time, the apparent density is 2.42 Mg / m 3 , which is less than 2.50 Mg / m 3 , but when the bearing is manufactured by adjusting, forming and firing the iron powder of Comparative Example 2, the expansion coefficient of the bearing However, Invention Example 1 was 0.18%, while Comparative Example 2 was 0.28%. This is because Ca contained in iron powder chemically reacts with moisture and carbon dioxide in the atmosphere after manufacturing the bearing (CaO + H 2 O → Ca (OH) 2 or CaO + CO 2 → CaCO 3 ). It is because it expanded.

発明例2は、アトマイズ生粉を原料とし、酸化鉄粉としてレーザー回折方式で測定したD50が0.82μmである酸化鉄粉2を用い、生粉との混合割合で酸化鉄粉2の配合量を20mass%とした第2実施形態を満たす条件で製造した鉄粉である。このとき、見掛密度は2.45Mg/m3、鉄粉の鉄酸化度Iは4.4mass%であり、本発明のより好ましい条件を満たす鉄粉である。Invention Example 2 uses atomized raw powder as a raw material, and uses iron oxide powder 2 having a D50 of 0.82 μm measured by a laser diffraction method as iron oxide powder, and the blending amount of iron oxide powder 2 at a mixing ratio with raw powder. It is the iron powder manufactured on the conditions which satisfy | fill 2nd Embodiment made into 20 mass%. At this time, the apparent density is 2.45 Mg / m 3 and the iron oxidation degree I of the iron powder is 4.4 mass%, which is an iron powder that satisfies the more preferable conditions of the present invention.

なお、上記した発明例1は、酸化鉄粉の鉄酸化度IIが95.8mass%であり、第3実施形態を同時に満たす条件で製造した鉄粉である。このとき、鉄粉の鉄酸化度Iは5.2mass%であった。   In addition, above-mentioned invention example 1 is the iron powder manufactured on the conditions which the iron oxidation degree II of iron oxide powder is 95.8 mass%, and satisfy | fills 3rd Embodiment simultaneously. At this time, the iron oxidation degree I of the iron powder was 5.2 mass%.

一方、比較例3は酸化鉄粉の鉄酸化度IIが82.7mass%である酸化鉄粉3であり、第3実施形態を満たさない条件で製造した鉄粉である。このとき、鉄粉の鉄酸化度Iは9.1mass%となり、第1実施形態を満たさない鉄粉であった。この場合、鉄粉の鉄酸化度Iが6.0mass%の時に対して、不良品の割合が5%増加した。   On the other hand, the comparative example 3 is the iron oxide powder 3 whose iron oxidation degree II of iron oxide powder is 82.7 mass%, and is the iron powder manufactured on the conditions which do not satisfy 3rd Embodiment. At this time, the iron oxidation degree I of the iron powder was 9.1 mass%, and the iron powder did not satisfy the first embodiment. In this case, the proportion of defective products increased by 5% compared to when the iron oxidation degree I of the iron powder was 6.0 mass%.

発明例3は、Ca含有量が発明例1より低位な0.015mass%であって、第4実施形態を満たす鉄粉である。このとき、発明例3の鉄粉を、調整、成形、焼成して軸受を製造した際の外径変動は0.11%であり、発明例1よりさらに低く良好な性状を示している。   Invention Example 3 is an iron powder that has a Ca content of 0.015 mass% lower than that of Invention Example 1 and satisfies the fourth embodiment. At this time, when the bearing was manufactured by adjusting, shaping, and firing the iron powder of Invention Example 3, the outer diameter fluctuation was 0.11%, which is lower than that of Invention Example 1 and shows good properties.

発明例4は、Si含有量が発明例1よりも低位な0.022mass%であって、第5実施形態を満たす鉄粉である。このとき、発明例4の鉄粉を、調整、成形、焼成して軸受を製造した際の外径変動は0.16%であり、発明例1よりさらに低く良好な性状を示している。   Invention Example 4 is an iron powder having a Si content of 0.022 mass% lower than that of Invention Example 1 and satisfying the fifth embodiment. At this time, when the bearing was manufactured by adjusting, molding, and firing the iron powder of Invention Example 4, the outer diameter fluctuation was 0.16%, which is lower than that of Invention Example 1 and shows good properties.

発明例5は、酸化鉄粉として酸化鉄粉3を用い、生粉との混合割合で酸化鉄粉3の配合量を15mass%とした第2実施形態を満たす条件で製造した鉄粉である。さらに、Ca含有量が発明例1より低位な0.020mass%であって、第4実施形態を満たす鉄粉である。このとき、発明例5の鉄粉を、調整、成形、焼成して軸受を製造した際の外径変動は0.15%であり、発明例1よりさらに低く良好な性状を示している。   Invention Example 5 is an iron powder produced using the iron oxide powder 3 as the iron oxide powder and satisfying the second embodiment in which the blending amount of the iron oxide powder 3 is 15 mass% in a mixing ratio with the raw powder. Furthermore, the Ca content is 0.020 mass% lower than that of Invention Example 1, and the iron powder satisfies the fourth embodiment. At this time, when the bearing was manufactured by adjusting, shaping, and firing the iron powder of Invention Example 5, the outer diameter fluctuation was 0.15%, which is lower than that of Invention Example 1 and shows good properties.

発明例6は、酸化鉄粉として酸化鉄粉1を用い、生粉との混合割合で酸化鉄粉1の配合量を30mass%とした第1実施形態を満たす条件で製造した鉄粉である。このとき、見掛密度は1.83 Mg/m3、鉄粉の鉄酸化度Iは5.1mass%であった。また、軸受を製造した際の外径変動は、0.18%と良好であった。Invention Example 6 is iron powder manufactured using the iron oxide powder 1 as the iron oxide powder and satisfying the first embodiment in which the blending amount of the iron oxide powder 1 is 30 mass% in a mixing ratio with the raw powder. At this time, the apparent density was 1.83 Mg / m 3 , and the iron oxidation degree I of the iron powder was 5.1 mass%. Further, the outer diameter fluctuation at the time of manufacturing the bearing was as good as 0.18%.

発明例7は、酸化鉄粉として酸化鉄粉1を用い、生粉との混合割合で酸化鉄粉1の配合量を25mass%とした第1実施形態を満たす条件で製造した鉄粉である。このとき、見掛密度は2.20Mg/m3、鉄粉の鉄酸化度Iは5.1mass%であった。また、軸受を製造した際の外径変動は、0.17%と良好であった。Invention Example 7 is an iron powder manufactured using the iron oxide powder 1 as the iron oxide powder and satisfying the first embodiment in which the blending amount of the iron oxide powder 1 is 25 mass% in a mixing ratio with the raw powder. At this time, the apparent density was 2.20 Mg / m 3 , and the iron oxidation degree I of the iron powder was 5.1 mass%. Further, the outer diameter fluctuation when the bearing was manufactured was as good as 0.17%.

他方、比較例4はアトマイズ生粉を原料とし、酸化鉄粉として酸化鉄粉1を用い、生粉との混合割合で酸化鉄粉1の配合量を35mass%としているため第1実施形態を満たさない条件で製造した鉄粉である。このとき、見掛密度は1.74Mg/m3で1.80Mg/m3を下回り、本発明の必要条件を満たさない鉄粉であることが分かる。この場合、軸受を製造した際の外径変動が、0.20%となってしまった。On the other hand, Comparative Example 4 uses the atomized raw powder as a raw material, uses iron oxide powder 1 as the iron oxide powder, and satisfies the first embodiment because the blending amount of the iron oxide powder 1 is 35 mass% in the mixing ratio with the raw powder. It is an iron powder manufactured under no conditions. In this case, the apparent density is below 1.80 mg / m 3 at 1.74 mg / m 3, it is understood that the iron powder which does not satisfy the requirements of the present invention. In this case, the outer diameter fluctuation when the bearing was manufactured was 0.20%.

本発明は、軸受用鉄粉およびこの軸受用鉄粉を得るための製造方法並びに軸受に関するものであって、特に含浸軸受の製造に供する軸受用鉄粉に関するものである。 The present invention relates to a manufacturing method and a bearing for obtaining an iron powder and the iron powder bearing bearings, to an iron powder bearing in particular provide for the production of impregnated bearing.

10.前記軸受用鉄粉中のSi含有量を0.03mass%以下とする前記6〜9の何れかに記載の軸受用鉄粉の製造方法。
11.前記1〜5の何れかに記載の軸受用鉄粉を原料とする軸受。
10. The manufacturing method of the iron powder for bearings in any one of said 6-9 which makes Si content in the said iron powder for bearings 0.03 mass% or less.
11. The bearing which uses the iron powder for bearings in any one of said 1-5 as a raw material.

本発明は、軸受用鉄粉およびこの軸受用鉄粉を得るための製造方法に関するものであって、特に含浸軸受の製造に供する軸受用鉄粉に関するものである。 The present invention, which relates to the production of how to obtain the iron powder and an iron powder for this bearing bearing, it relates to an iron powder bearing in particular provide for the production of impregnated bearing.

本発明の要旨構成は次のとおりである。
1.アトマイズ方式により製造した生粉と、原料酸化鉄粉とを混合して原料鉄粉としたのち、仕上還元、二次粉砕、二次分級を行って得られる軸受用鉄粉において、
上記原料酸化鉄粉の添加量が上記原料鉄粉に対して5〜30mass%の範囲であって、かつ該原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50)が1.5μm以下であり、
上記軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下で、かつ下記計算式(1)より算出した鉄酸化度Iが6mass%以下であって、さらに上記軸受用鉄粉中のCa含有量が0.03mass%以下で、かつSi含有量が0.04mass%以下である軸受用鉄粉。

鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
The gist of the present invention is as follows.
1. In the iron powder for bearings obtained by mixing the raw powder produced by the atomization method and the raw iron oxide powder to make the raw iron powder, then finishing reduction, secondary pulverization, secondary classification,
The amount of the raw iron oxide powder added is in the range of 5 to 30 mass% with respect to the raw iron powder, and the 50% average particle diameter (D50) measured by the laser diffraction method of the raw iron oxide powder is 1.5 μm. And
The apparent density of the iron powder for the bearing is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated by the following formula (1) is 6 mass% or less, and further for the bearing. Iron powder for bearings in which the Ca content in the iron powder is 0.03 mass% or less and the Si content is 0.04 mass% or less.
Iron Degree of oxidation I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: Oxygen mass when all iron in the iron powder for bearings becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

6.前記1〜5の何れかに記載の軸受用鉄粉の製造方法であって、
アトマイズ方式により製造した生粉を一次分級後、レーザー回折方式で測定した50%平均粒子径(D50)が1.5μm以下の原料酸化鉄粉を、該生粉との混合割合で、5〜30mass%の範囲として混合し、ついで仕上還元後、二次粉砕、二次分級により鉄粉の見掛密度を1.80Mg/m3以上2.50Mg/m3以下とし、かつ下記計算式(1)より算出した鉄酸化度Iを6mass%以下とし、さらに上記軸受用鉄粉中のCa含有量を0.03mass%以下で、かつSi含有量を0.04mass%以下の範囲に調整する軸受用鉄粉の製造方法。

鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
6). It is a manufacturing method of the iron powder for bearings in any one of said 1-5,
After primary classification of raw powder produced by atomization method, raw iron oxide powder with 50% average particle diameter (D50) measured by laser diffraction method of 1.5 μm or less is 5-30 mass% in mixing ratio with the raw powder. After the final reduction, the apparent density of the iron powder was set to 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less by secondary pulverization and secondary classification, and calculated from the following formula (1). A method for producing iron powder for bearings, wherein the iron oxidation degree I is set to 6 mass% or less, and the Ca content in the bearing iron powder is adjusted to 0.03 mass% or less and the Si content is adjusted to a range of 0.04 mass% or less.
Iron Degree of oxidation I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: Oxygen mass when all iron in the iron powder for bearings becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

10.前記軸受用鉄粉中のSi含有量を0.03mass%以下とする前記6〜9の何れかに記載の軸受用鉄粉の製造方法 10. The manufacturing method of the iron powder for bearings in any one of said 6-9 which makes Si content in the said iron powder for bearings 0.03 mass% or less .

以上、原料酸化鉄粉の添加量:5〜30mass%、原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50):1.5μm以下、軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下を満足することが本発明では特に肝要であり、さらに以下の計算式(1)より算出した鉄酸化度Iが6mass%以下であって、上記軸受用鉄粉中のCa含有量が0.03mass%以下、かつSi含有量が0.04mass%以下を同時に満足することが本発明の特徴であってこれを第1実施形態とする。また、原料酸化鉄粉の添加量と軸受用鉄粉の見掛密度等は第1実施形態と同じであって、原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50)が好ましい範囲、すなわち0.6〜1.2μmの範囲の場合は、第2実施形態とする。
鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
Above, the amount of raw iron oxide powder added: 5-30 mass%, 50% average particle diameter (D50) measured by laser diffraction method of raw iron oxide powder: 1.5 μm or less, the apparent density of bearing iron powder is 1.80 Mg It is particularly important in the present invention to satisfy the following conditions: 1 / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated by the following calculation formula (1) is 6 mass% or less, It is a feature of the present invention that the Ca content in the powder satisfies 0.03 mass% or less and the Si content is 0.04 mass% or less, and this is the first embodiment. The amount of raw iron oxide powder added and the apparent density of bearing iron powder are the same as in the first embodiment, and the 50% average particle diameter (D50) measured by the laser diffraction method of the raw iron oxide powder is In a preferable range, that is, in the range of 0.6 to 1.2 μm, the second embodiment is adopted.
Iron oxidation degree I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: Oxygen mass when all iron in the iron powder for bearings becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

軸受用鉄粉中のCa含有量が0.03mass%以下、好ましくは0.02mass%以下
軸受を作製する際、Ca系介在物が存在すると、圧粉体を焼結した後、以下の反応が起こりやすく、起った際には、焼結体が膨張し、焼結体が変形し、最悪の場合、内部から破壊される。これら変形を防止するためには、軸受用鉄粉中のCa含有量を0.03mass%以下、さらには0.02mass%以下とすることが好ましい(第4実施形態)。また、Ca含有量の下限値に特に制限はなく、0mass%でも良い
Ca content in the iron powder for bearings is 0.03 mass% or less, preferably 0.02 mass% or less When Ca bearing inclusions are present in the production of bearings, the following reactions are likely to occur after sintering the green compact When this happens, the sintered body expands and the sintered body is deformed. In the worst case, the sintered body is destroyed from the inside. In order to prevent these deformations, the Ca content in the iron powder for bearings is preferably 0.03 mass% or less, more preferably 0.02 mass% or less (fourth embodiment). Moreover, there is no restriction | limiting in particular in the lower limit of Ca content, 0 mass% may be sufficient .

また、成果物たる軸受用鉄粉は、
(5) 軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下で、かつ前掲計算式(1)より算出した鉄酸化度Iが6mass%以下であって、さらに上記軸受用鉄粉中のCa含有量が0.03mass%以下で、かつSi含有量が0.04mass%以下
の性状を満足する必要があり(第1実施形態)、本発明では、二次分級により最終的に調整される、さらに、
(6) 軸受用鉄粉中のCa含有量が0.02mass%以下(第4実施形態)
(7) 軸受用鉄粉中のSi含有量が0.03mass%以下(第5実施形態)
がそれぞれ好ましい性状である。
The resulting iron powder for bearings is
(5) The apparent density of the iron powder for bearings is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated by the above formula (1) is 6 mass% or less, and further It is necessary to satisfy the properties that the Ca content in the iron powder for bearing is 0.03 mass% or less and the Si content is 0.04 mass% or less (first embodiment). Further adjusted to
(6) Ca content in iron powder for bearings is 0.02 mass% or less (fourth embodiment)
(7) Si content in iron powder for bearings is 0.03 mass% or less (fifth embodiment)
Are preferable properties.

本発明の要旨構成は次のとおりである。
1.アトマイズ方式により製造した生粉と、原料酸化鉄粉とを混合して原料鉄粉としたのち、仕上還元、二次粉砕、二次分級を行って得られる軸受用鉄粉において、
上記原料酸化鉄粉の添加量が上記原料鉄粉に対して5〜30mass%の範囲であって、かつ該原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50)が1.5μm以下であり、
上記軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下で、かつ下記計算式(1)より算出した鉄酸化度Iが2.36mass%以下であって、さらに上記軸受用鉄粉中のCa含有量が0.03mass%以下で、かつSi含有量が0.04mass%以下である軸受用鉄粉。

鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
The gist of the present invention is as follows.
1. In the iron powder for bearings obtained by mixing the raw powder produced by the atomization method and the raw iron oxide powder to make the raw iron powder, then finishing reduction, secondary pulverization, secondary classification,
The amount of the raw iron oxide powder added is in the range of 5 to 30 mass% with respect to the raw iron powder, and the 50% average particle diameter (D50) measured by the laser diffraction method of the raw iron oxide powder is 1.5 μm. And
The apparent density of the iron powder for bearings is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated by the following formula (1) is 2.36 mass% or less. Iron powder for bearings having a Ca content of 0.03 mass% or less and an Si content of 0.04 mass% or less.
Iron Degree of oxidation I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: Oxygen mass when all iron in the iron powder for bearings becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

.前記軸受用鉄粉中のCa含有量が0.02mass%以下である前記1または2に記載の軸受用鉄粉。 3 . 3. The bearing iron powder according to 1 or 2 , wherein a Ca content in the bearing iron powder is 0.02 mass% or less.

.前記軸受用鉄粉中のSi含有量が0.03mass%以下である前記1〜の何れかに記載の軸受用鉄粉。 4 . The iron powder for bearings according to any one of the above items 1 to 3 , wherein the Si content in the iron powder for bearings is 0.03 mass% or less.

.前記1〜の何れか1項に記載の軸受用鉄粉の製造方法であって、
アトマイズ方式により製造した生粉を一次分級後、レーザー回折方式で測定した50%平均粒子径(D50)が1.5μm以下の原料酸化鉄粉を、該生粉との混合割合で、5〜30mass%の範囲として混合し、ついで仕上還元後、二次粉砕、二次分級により鉄粉の見掛密度を1.80Mg/m3以上2.50Mg/m3以下とし、かつ下記計算式(1)より算出した鉄酸化度Iを2.36mass%以下とし、さらに上記軸受用鉄粉中のCa含有量を0.03mass%以下で、かつSi含有量を0.04mass%以下の範囲に調整する軸受用鉄粉の製造方法。

鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
5 . It is a manufacturing method of iron powder for bearings given in any 1 paragraph of the above-mentioned 1-4 ,
After primary classification of raw powder produced by atomization method, raw iron oxide powder with 50% average particle diameter (D50) measured by laser diffraction method of 1.5 μm or less is 5-30 mass% in mixing ratio with the raw powder. After the final reduction, the apparent density of the iron powder was set to 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less by secondary pulverization and secondary classification, and calculated from the following formula (1). A method for producing iron powder for bearings in which the iron oxidation degree I is set to 2.36 mass% or less, and the Ca content in the bearing iron powder is adjusted to 0.03 mass% or less and the Si content is adjusted to 0.04 mass% or less. .
Iron Degree of oxidation I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: Oxygen mass when all iron in the iron powder for bearings becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

.前記レーザー回折方式で測定した50%平均粒子径(D50)を0.6〜1.2μmの範囲とする前記に記載の軸受用鉄粉の製造方法。 6 . 6. The method for producing iron powder for a bearing according to 5 , wherein the 50% average particle diameter (D50) measured by the laser diffraction method is in the range of 0.6 to 1.2 μm.

.前記軸受用鉄粉中のCa含有量を0.02mass%以下とする前記5または6に記載の軸受用鉄粉の製造方法。 7 . The manufacturing method of the iron powder for bearings of said 5 or 6 which makes Ca content in the said iron powder for bearings 0.02 mass% or less.

.前記軸受用鉄粉中のSi含有量を0.03mass%以下とする請求項の何れか1項に記載の軸受用鉄粉の製造方法。 8 . Method of manufacturing a bearing iron powder according to any one of claims 5-7 for the Si content of the iron powder in a said bearing less 0.03 mass%.

以上、原料酸化鉄粉の添加量:5〜30mass%、原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50):1.5μm以下、軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下を満足することが本発明では特に肝要であり、さらに以下の計算式(1)より算出した鉄酸化度Iが2.36mass%以下であって、上記軸受用鉄粉中のCa含有量が0.03mass%以下、かつSi含有量が0.04mass%以下を同時に満足することが本発明の特徴であってこれを第1実施形態とする。また、原料酸化鉄粉の添加量と軸受用鉄粉の見掛密度等は第1実施形態と同じであって、原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50)が好ましい範囲、すなわち0.6〜1.2μmの範囲の場合は、第2実施形態とする。
鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
Above, the amount of raw iron oxide powder added: 5-30 mass%, 50% average particle diameter (D50) measured by laser diffraction method of raw iron oxide powder: 1.5 μm or less, the apparent density of bearing iron powder is 1.80 Mg In the present invention, it is particularly important that the present invention satisfies the following conditions: 1 / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated by the following calculation formula (1) is 2.36 mass% or less, The feature of the present invention is that the Ca content in the iron powder satisfies 0.03 mass% or less and the Si content is 0.04 mass% or less at the same time. This is the first embodiment. The amount of raw iron oxide powder added and the apparent density of bearing iron powder are the same as in the first embodiment, and the 50% average particle diameter (D50) measured by the laser diffraction method of the raw iron oxide powder is In a preferable range, that is, in the range of 0.6 to 1.2 μm, the second embodiment is adopted.
Iron oxidation degree I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: Oxygen mass when all iron in the iron powder for bearings becomes Fe 2 O 3
[= [Fe mass / (55.85 × 2)] × (16 × 3)]

さらに、軸受用鉄粉の鉄酸化度Iは、2.36mass%以下である必要があ
というのは、軸受用鉄粉の鉄酸化度Iが2.36mass%を超えると、酸化鉄、特にマグネタイトによる軸の傷の発生が顕在化するため、軸受け用材料として充分な機能を果たせないからである。なお、軸受用鉄粉の鉄酸化度Iの下限値は特に限定されず、0mass%でもよい。
Furthermore, the iron oxidation degree I of iron powder for bearings, Ru should be 2.36 mass% or less.
This is because if the iron oxidation degree I of the iron powder for bearings exceeds 2.36 mass%, the occurrence of shaft scratches due to iron oxide, especially magnetite, becomes obvious, so that it cannot perform a sufficient function as a bearing material. is there. In addition, the lower limit of the iron oxidation degree I of the iron powder for bearings is not particularly limited, and may be 0 mass%.

また、成果物たる軸受用鉄粉は、
(5) 軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下で、かつ前掲計算式(1)より算出した鉄酸化度Iが2.36mass%以下であって、さらに上記軸受用鉄粉中のCa含有量が0.03mass%以下で、かつSi含有量が0.04mass%以下
の性状を満足する必要があり(第1実施形態)、本発明では、二次分級により最終的に調整される、さらに、
(6) 軸受用鉄粉中のCa含有量が0.02mass%以下(第4実施形態)
(7) 軸受用鉄粉中のSi含有量が0.03mass%以下(第5実施形態)
がそれぞれ好ましい性状である。
The resulting iron powder for bearings is
(5) The apparent density of the iron powder for bearings is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated from the above formula (1) is 2.36 mass% or less, and It is necessary to satisfy the properties that the Ca content in the bearing iron powder is 0.03 mass% or less and the Si content is 0.04 mass% or less (first embodiment). Adjusted further,
(6) Ca content in iron powder for bearings is 0.02 mass% or less (fourth embodiment)
(7) Si content in iron powder for bearings is 0.03 mass% or less (fifth embodiment)
Are preferable properties.

アトマイズ生粉としては、溶鋼を水アトマイズ後、乾燥、篩い分けしたものを用いた。また、粗還元粉としては、ミルスケール、および鉄鉱石をコークスなどの炭材で加熱還元したものを用いた。
表2に、アトマイズ生粉および粗還元粉の化学成分や物理性状を示す。
原料酸化鉄粉(以下、単に酸化鉄粉という)としては、JFEケミカル(株)製のJC−DCを用いた。化学成分や鉄酸化度II、物理性状は表2に示す。平均粒径(D50)は、酸化鉄粉1が1.45μm、酸化鉄粉2が0.82μm、酸化鉄粉3が1.02μmであった。また、鉄酸化度IIは、酸化鉄粉1が80.5mass%、酸化鉄粉2が80.5mass%、酸化鉄粉3が63.7mass%であった。
黒鉛粉としては、平均粒径(D50)が4.6μmのものを用いた。
混合は、ダブルコーン型混合機を用い、回転数を10〜15rpmとして、アトマイズ生粉と酸化鉄粉と黒鉛粉の混合粉を作製した。次いで、上記混合粉に対し熱処理を行ったが、熱処理(還元処理)条件は、純水素ガス雰囲気中、温度:950℃、保持時間:65分とした。
上記の還元処理後、混合粉をハンマーミルで粉砕し、212μmの篩で分級した。かくして得られた鉄粉を、見掛密度、化学成分、鉄酸化度Iで評価した。
実験条件および、作製した鉄粉の評価結果を表3に示す。
As the atomized raw powder, molten steel was dried and sieved after water atomization. Further, as the coarsely reduced powder, mill scale and iron ore obtained by heat reduction with a carbonaceous material such as coke were used.
Table 2 shows chemical components and physical properties of the atomized raw powder and the coarsely reduced powder.
JC-DC manufactured by JFE Chemical Co., Ltd. was used as the raw iron oxide powder (hereinafter simply referred to as iron oxide powder). Table 2 shows chemical components, iron oxidation degree II, and physical properties. The average particle size (D50) of iron oxide powder 1 was 1.45 μm, iron oxide powder 2 was 0.82 μm, and iron oxide powder 3 was 1.02 μm. Also, the iron oxidation degree II, the iron oxide powder 1 80.5 mass%, iron oxide powder 2 is 80.5 mass%, iron oxide powder 3 was 63.7 mass%.
As the graphite powder, one having an average particle diameter (D50) of 4.6 μm was used.
For mixing, a mixed powder of atomized raw powder, iron oxide powder and graphite powder was prepared using a double cone type mixer at a rotation speed of 10 to 15 rpm. Next, the mixed powder was subjected to heat treatment, and the heat treatment (reduction treatment) conditions were set to a temperature of 950 ° C. and a holding time of 65 minutes in a pure hydrogen gas atmosphere.
After the above reduction treatment, the mixed powder was pulverized with a hammer mill and classified with a 212 μm sieve. The iron powder thus obtained was evaluated based on apparent density, chemical composition, and iron oxidation degree I.
Table 3 shows the experimental conditions and the evaluation results of the produced iron powder.

Figure 2015004880
Figure 2015004880

Figure 2015004880
Figure 2015004880

ここで、本発明では、焼結材の強度を確保し、かつ充分な油の含浸を可能とするために、軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下の範囲になる必要がある。
また、鉄粉の鉄酸化度Iは、2.36mass%以下である。
さらに、軸受製造時の膨張率は、外径:2mm、内径:0.8mm、高さ:1.2mmの軸受を製造した際の外径変動で0.20%未満となることが必須である。
Here, in the present invention, the apparent density of the iron powder for bearings is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less in order to ensure the strength of the sintered material and enable sufficient oil impregnation. It needs to be in the range.
The iron oxidation degree I of iron powder is 2.36 mass% or less.
Furthermore, it is essential that the expansion rate during the manufacture of the bearing is less than 0.20% due to the variation in the outer diameter when a bearing having an outer diameter of 2 mm, an inner diameter of 0.8 mm, and a height of 1.2 mm is manufactured.

発明例1は、アトマイズ生粉を原料とし、酸化鉄粉としてレーザー回折方式で測定したD50が1.45μmである酸化鉄粉1を用い、生粉との混合割合で(原料鉄粉に対して)酸化鉄粉1の配合量を20mass%とした第1実施形態を満たす条件で製造した鉄粉である。このとき、見掛密度は2.43 Mg/m3、鉄粉の鉄酸化度Iは2.36mass%であった。軸受を製造した際の外径変動は、0.18%と良好であった。 Invention Example 1 uses atomized raw powder as a raw material, and uses iron oxide powder 1 having a D50 of 1.45 μm measured by a laser diffraction method as iron oxide powder, in a mixing ratio with raw powder (relative to raw iron powder). It is the iron powder manufactured on the conditions which satisfy | fill 1st Embodiment which made the compounding quantity of the iron oxide powder 1 20 mass%. At this time, the apparent density was 2.43 Mg / m 3 , and the iron oxidation degree I of the iron powder was 2.36 mass%. The outer diameter fluctuation at the time of manufacturing the bearing was as good as 0.18%.

発明例2は、アトマイズ生粉を原料とし、酸化鉄粉としてレーザー回折方式で測定したD50が0.82μmである酸化鉄粉2を用い、生粉との混合割合で酸化鉄粉2の配合量を20mass%とした第2実施形態を満たす条件で製造した鉄粉である。このとき、見掛密度は2.45Mg/m3、鉄粉の鉄酸化度Iは1.88mass%であり、本発明のより好ましい条件を満たす鉄粉である。 Invention Example 2 uses atomized raw powder as a raw material, and uses iron oxide powder 2 having a D50 of 0.82 μm measured by a laser diffraction method as iron oxide powder, and the blending amount of iron oxide powder 2 at a mixing ratio with raw powder. It is the iron powder manufactured on the conditions which satisfy | fill 2nd Embodiment made into 20 mass%. At this time, the apparent density is 2.45 Mg / m 3 and the iron oxidation degree I of the iron powder is 1.88 mass%, which is an iron powder that satisfies the more preferable conditions of the present invention.

一方、比較例3は酸化鉄粉の鉄酸化度IIが63.7mass%である酸化鉄粉3であり、第3実施形態を満たさない条件で製造した鉄粉である。このとき、鉄粉の鉄酸化度Iは2.60mass%となり、第1実施形態を満たさない鉄粉であった。この場合、鉄粉の鉄酸化度Iが2.36mass%の時に対して、不良品の割合が5%増加した。 On the other hand, the comparative example 3 is the iron oxide powder 3 whose iron oxidation degree II of iron oxide powder is 63.7 mass%, and is the iron powder manufactured on the conditions which do not satisfy 3rd Embodiment. At this time, the iron oxidation degree I of the iron powder was 2.60 mass%, and the iron powder did not satisfy the first embodiment. In this case, the proportion of defective products increased by 5% compared to when the iron oxidation degree I of iron powder was 2.36 mass%.

発明例5は、酸化鉄粉として酸化鉄粉3を用い、生粉との混合割合で酸化鉄粉3の配合量を15mass%とした第2実施形態を満たす条件で製造した鉄粉である。さらに、Ca含有量が発明例1より低位な0.0055mass%であって、第4実施形態を満たす鉄粉である。このとき、発明例5の鉄粉を、調整、成形、焼成して軸受を製造した際の外径変動は0.15%であり、発明例1よりさらに低く良好な性状を示している。 Invention Example 5 is an iron powder produced using the iron oxide powder 3 as the iron oxide powder and satisfying the second embodiment in which the blending amount of the iron oxide powder 3 is 15 mass% in a mixing ratio with the raw powder. Furthermore, the Ca content is 0.0055 mass% lower than that of Invention Example 1, and the iron powder satisfies the fourth embodiment. At this time, when the bearing was manufactured by adjusting, shaping, and firing the iron powder of Invention Example 5, the outer diameter fluctuation was 0.15%, which is lower than that of Invention Example 1 and shows good properties.

発明例6は、酸化鉄粉として酸化鉄粉1を用い、生粉との混合割合で酸化鉄粉1の配合量を30mass%とした第1実施形態を満たす条件で製造した鉄粉である。このとき、見掛密度は1.83 Mg/m3、鉄粉の鉄酸化度Iは2.12mass%であった。また、軸受を製造した際の外径変動は、0.18%と良好であった。 Invention Example 6 is iron powder manufactured using the iron oxide powder 1 as the iron oxide powder and satisfying the first embodiment in which the blending amount of the iron oxide powder 1 is 30 mass% in a mixing ratio with the raw powder. At this time, the apparent density was 1.83 Mg / m 3 , and the iron oxidation degree I of the iron powder was 2.12 mass%. Further, the outer diameter fluctuation at the time of manufacturing the bearing was as good as 0.18%.

発明例7は、酸化鉄粉として酸化鉄粉1を用い、生粉との混合割合で酸化鉄粉1の配合量を25mass%とした第1実施形態を満たす条件で製造した鉄粉である。このとき、見掛密度は2.20Mg/m3、鉄粉の鉄酸化度Iは2.12mass%であった。また、軸受を製造した際の外径変動は、0.17%と良好であった。 Invention Example 7 is an iron powder manufactured using the iron oxide powder 1 as the iron oxide powder and satisfying the first embodiment in which the blending amount of the iron oxide powder 1 is 25 mass% in a mixing ratio with the raw powder. At this time, the apparent density was 2.20 Mg / m 3 and the iron oxidation degree I of the iron powder was 2.12 mass%. Further, the outer diameter fluctuation when the bearing was manufactured was as good as 0.17%.

Claims (10)

アトマイズ方式により製造した生粉と、原料酸化鉄粉とを混合して原料鉄粉としたのち、仕上還元、二次粉砕、二次分級を行って得られる軸受用鉄粉において、
上記原料酸化鉄粉の添加量が上記原料鉄粉に対して5〜30mass%の範囲であって、かつ該原料酸化鉄粉のレーザー回折方式で測定した50%平均粒子径(D50)が1.5μm以下であり、
上記軸受用鉄粉の見掛密度が1.80Mg/m3以上2.50Mg/m3以下で、かつ下記計算式(1)より算出した鉄酸化度Iが6mass%以下であって、さらに上記軸受用鉄粉中のCa含有量が0.06mass%以下で、かつSi含有量が0.04mass%以下である軸受用鉄粉。

鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの
酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
In the iron powder for bearings obtained by mixing the raw powder produced by the atomization method and the raw iron oxide powder to make the raw iron powder, then finishing reduction, secondary pulverization, secondary classification,
The amount of the raw iron oxide powder added is in the range of 5 to 30 mass% with respect to the raw iron powder, and the 50% average particle diameter (D50) measured by the laser diffraction method of the raw iron oxide powder is 1.5 μm. And
The apparent density of the iron powder for the bearing is 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less, and the iron oxidation degree I calculated by the following formula (1) is 6 mass% or less, and further for the bearing. Iron powder for bearings in which the Ca content in the iron powder is 0.06 mass% or less and the Si content is 0.04 mass% or less.
Iron Degree of oxidation I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: When all the iron in the iron powder for bearings becomes Fe 2 O 3
Oxygen mass
[= [Fe mass / (55.85 × 2)] × (16 × 3)]
前記原料酸化鉄粉の50%平均粒子径(D50)が0.6〜1.2μmの範囲である請求項1に記載の軸受用鉄粉。   The bearing iron powder according to claim 1, wherein the raw iron oxide powder has a 50% average particle diameter (D50) in the range of 0.6 to 1.2 µm. 前記原料酸化鉄粉の下記計算式(2)より算出した鉄酸化度IIが84mass%以上である請求項1または2に記載の軸受用鉄粉。

鉄酸化度II(mass%)=C/D×100・・・(2)
但し、C:酸化鉄粉中酸素質量
D:酸化鉄粉中の鉄分が全てFe2O3となったときの
酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
The iron powder for bearings according to claim 1 or 2 whose iron oxidation degree II computed from the following formula (2) of the above-mentioned raw iron oxide powder is 84 mass% or more.
Iron Degree of Oxidation II (mass%) = C / D x 100 (2)
However, C: oxygen mass in iron oxide powder
D: When all the iron in the iron oxide powder becomes Fe 2 O 3
Oxygen mass
[= [Fe mass / (55.85 × 2)] × (16 × 3)]
前記軸受用鉄粉中のCa含有量が0.02mass%以下である請求項1〜3の何れか1項に記載の軸受用鉄粉。   The iron content for bearings according to any one of claims 1 to 3, wherein a Ca content in the iron powder for bearings is 0.02 mass% or less. 前記軸受用鉄粉中のSi含有量が0.03mass%以下である請求項1〜4の何れか1項に記載の軸受用鉄粉。   The iron content for bearings according to any one of claims 1 to 4, wherein the Si content in the iron powder for bearings is 0.03 mass% or less. 請求項1〜5の何れか1項に記載の軸受用鉄粉の製造方法であって、
アトマイズ方式により製造した生粉を一次分級後、レーザー回折方式で測定した50%平均粒子径(D50)が1.5μm以下の原料酸化鉄粉を、該生粉との混合割合で、5〜30mass%の範囲として混合し、ついで仕上還元後、二次粉砕、二次分級により鉄粉の見掛密度を1.80Mg/m3以上2.50Mg/m3以下とし、かつ下記計算式(1)より算出した鉄酸化度Iを6mass%以下とし、さらに上記軸受用鉄粉中のCa含有量を0.06mass%以下で、かつSi含有量を0.04mass%以下の範囲に調整する軸受用鉄粉の製造方法。

鉄酸化度I(mass%)=A/B×100・・・(1)
但し、A:軸受用鉄粉中酸素質量
B:軸受用鉄粉中の鉄分が全てFe2O3となったときの
酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
It is a manufacturing method of iron powder for bearings given in any 1 paragraph of Claims 1-5,
After primary classification of raw powder produced by atomization method, raw iron oxide powder with 50% average particle diameter (D50) measured by laser diffraction method of 1.5 μm or less is 5-30 mass% in mixing ratio with the raw powder. After the final reduction, the apparent density of the iron powder was set to 1.80 Mg / m 3 or more and 2.50 Mg / m 3 or less by secondary pulverization and secondary classification, and calculated from the following formula (1). A method for producing iron powder for bearings, wherein the iron oxidation degree I is set to 6 mass% or less, the Ca content in the bearing iron powder is adjusted to 0.06 mass% or less, and the Si content is adjusted to 0.04 mass% or less.
Iron Degree of oxidation I (mass%) = A / B x 100 (1)
However, A: Oxygen mass in iron powder for bearings
B: When all the iron in the iron powder for bearings becomes Fe 2 O 3
Oxygen mass
[= [Fe mass / (55.85 × 2)] × (16 × 3)]
前記レーザー回折方式で測定した50%平均粒子径(D50)を0.6〜1.2μmの範囲とする請求項6に記載の軸受用鉄粉の製造方法。   The manufacturing method of the iron powder for bearings of Claim 6 which makes 50% average particle diameter (D50) measured by the said laser diffraction system into the range of 0.6-1.2 micrometers. 前記原料酸化鉄粉の下記計算式(2)より算出した鉄酸化度IIを84mass%以上とする請求項6または7に記載の軸受用鉄粉の製造方法。

鉄酸化度II(mass%)=C/D×100・・・(2)
但し、C:酸化鉄粉中酸素質量
D:酸化鉄粉中の鉄分が全てFe2O3となったときの
酸素質量
[=〔Fe質量/(55.85×2)〕×(16×3)]
The manufacturing method of the iron powder for bearings of Claim 6 or 7 which makes the iron oxidation degree II computed from the following formula (2) of the said raw material iron oxide powder 84 mass% or more.
Iron Degree of Oxidation II (mass%) = C / D x 100 (2)
However, C: oxygen mass in iron oxide powder
D: When all the iron in the iron oxide powder becomes Fe 2 O 3
Oxygen mass
[= [Fe mass / (55.85 × 2)] × (16 × 3)]
前記軸受用鉄粉中のCa含有量を0.02mass%以下とする請求項6〜8の何れか1項に記載の軸受用鉄粉の製造方法。   The manufacturing method of the iron powder for bearings in any one of Claims 6-8 which makes Ca content in the said iron powder for bearings 0.02 mass% or less. 前記軸受用鉄粉中のSi含有量を0.03mass%以下とする請求項6〜9の何れか1項に記載の軸受用鉄粉の製造方法。   The manufacturing method of the iron powder for bearings in any one of Claims 6-9 which makes Si content in the said iron powder for bearings 0.03 mass% or less.
JP2014556296A 2013-07-09 2014-07-01 Iron powder for bearings and method for producing iron powder for bearings Pending JPWO2015004880A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013143310 2013-07-09
JP2013143310 2013-07-09
PCT/JP2014/003512 WO2015004880A1 (en) 2013-07-09 2014-07-01 Iron powder for bearing and method for producing iron powder for bearing

Publications (1)

Publication Number Publication Date
JPWO2015004880A1 true JPWO2015004880A1 (en) 2017-03-02

Family

ID=52279586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014556296A Pending JPWO2015004880A1 (en) 2013-07-09 2014-07-01 Iron powder for bearings and method for producing iron powder for bearings

Country Status (2)

Country Link
JP (1) JPWO2015004880A1 (en)
WO (1) WO2015004880A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049107A (en) * 1973-09-01 1975-05-01
JPS57200501A (en) * 1981-06-03 1982-12-08 Kawasaki Steel Corp Iron powder having high compressibility for high strength powder metallurgy product and preparation thereof
JPH0726304A (en) * 1993-07-08 1995-01-27 Dowa Iron Powder Co Ltd Production of metal powder injection-molding iron powder
JPH07310101A (en) * 1994-05-12 1995-11-28 Powder Tec Kk Reduced iron powder for sintered oilless bearing and its production
JPH08319505A (en) * 1995-05-24 1996-12-03 Kobe Steel Ltd Production of iron powder excellent in compactibility and compressibility
JP2002173704A (en) * 2000-12-01 2002-06-21 Nikko Materials Co Ltd Composite metal powder for powder metallurgy, sintered body obtained by sintering the powder and bearing consisting of the sintered body
JP2002241821A (en) * 2001-02-14 2002-08-28 Kawasaki Steel Corp Method for manufacturing sponge iron and method for manufacturing reduced iron powder
JP2004162170A (en) * 2002-09-25 2004-06-10 Jfe Steel Kk Atomized iron powder for powder metallurgy and its producing method
JP2008150648A (en) * 2006-12-15 2008-07-03 Jfe Steel Kk Iron powder for powder metallurgy
JP2013079438A (en) * 2011-09-22 2013-05-02 Ntn Corp Sintered bearing and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049107A (en) * 1973-09-01 1975-05-01
JPS57200501A (en) * 1981-06-03 1982-12-08 Kawasaki Steel Corp Iron powder having high compressibility for high strength powder metallurgy product and preparation thereof
JPH0726304A (en) * 1993-07-08 1995-01-27 Dowa Iron Powder Co Ltd Production of metal powder injection-molding iron powder
JPH07310101A (en) * 1994-05-12 1995-11-28 Powder Tec Kk Reduced iron powder for sintered oilless bearing and its production
JPH08319505A (en) * 1995-05-24 1996-12-03 Kobe Steel Ltd Production of iron powder excellent in compactibility and compressibility
JP2002173704A (en) * 2000-12-01 2002-06-21 Nikko Materials Co Ltd Composite metal powder for powder metallurgy, sintered body obtained by sintering the powder and bearing consisting of the sintered body
JP2002241821A (en) * 2001-02-14 2002-08-28 Kawasaki Steel Corp Method for manufacturing sponge iron and method for manufacturing reduced iron powder
JP2004162170A (en) * 2002-09-25 2004-06-10 Jfe Steel Kk Atomized iron powder for powder metallurgy and its producing method
JP2008150648A (en) * 2006-12-15 2008-07-03 Jfe Steel Kk Iron powder for powder metallurgy
JP2013079438A (en) * 2011-09-22 2013-05-02 Ntn Corp Sintered bearing and method for manufacturing the same

Also Published As

Publication number Publication date
WO2015004880A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP5059022B2 (en) Iron-copper composite powder for powder metallurgy and method for producing the same
KR100841162B1 (en) Sintered metal parts and method for the manufacturing thereof
KR101066789B1 (en) Sinter bearing and maufacturing method thereof
JP5308123B2 (en) High-strength composition iron powder and sintered parts using it
JP2006089829A (en) Iron-base powdery mixture for powder metallurgy
JP6549586B2 (en) Method of manufacturing sintered member and sintered member
JP2010133016A (en) Iron-based sintered alloy, manufacturing method therefor, and iron-based sintered alloy member
JP2009007650A (en) Mixed powder for sintered aluminum-containing copper alloy, and method for producing the same
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP6197953B2 (en) Method for producing reduced iron powder and method for producing bearing
WO2015004880A1 (en) Iron powder for bearing and method for producing iron powder for bearing
JP4640162B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
CN107520451A (en) A kind of shock absorber piston and its preparation technology
CN110508820B (en) High-permeability copper infiltrated powder and manufacturing method thereof
CN107447155A (en) A kind of iron-based powder metallurgy friction material
JP2016130342A (en) Iron powder for bearing, method for manufacturing the same, and bearing
JP2005325373A (en) Method for casting iron powder for magnetic material
JPH07310101A (en) Reduced iron powder for sintered oilless bearing and its production
JP4752749B2 (en) Method for producing iron powder for powder metallurgy
JP2004162170A (en) Atomized iron powder for powder metallurgy and its producing method
JP6996268B2 (en) Charcoal interior ore and its manufacturing method
JP6939667B2 (en) Charcoal lumber interior ore and its manufacturing method
JP2017128764A (en) Iron-based sintered slide material and manufacturing method therefor
JP2002241821A (en) Method for manufacturing sponge iron and method for manufacturing reduced iron powder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151117