JP2001002605A - Production of diols - Google Patents

Production of diols

Info

Publication number
JP2001002605A
JP2001002605A JP11170737A JP17073799A JP2001002605A JP 2001002605 A JP2001002605 A JP 2001002605A JP 11170737 A JP11170737 A JP 11170737A JP 17073799 A JP17073799 A JP 17073799A JP 2001002605 A JP2001002605 A JP 2001002605A
Authority
JP
Japan
Prior art keywords
acid
mixture
catalyst
succinic acid
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11170737A
Other languages
Japanese (ja)
Other versions
JP4282832B2 (en
Inventor
Mitsuo Konishi
満月男 小西
Eizaburo Ueno
英三郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17073799A priority Critical patent/JP4282832B2/en
Publication of JP2001002605A publication Critical patent/JP2001002605A/en
Application granted granted Critical
Publication of JP4282832B2 publication Critical patent/JP4282832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a mixture of butanediol and a specific diol in high yield by allowing a mixture of succinic acid and a specific dicarboxylic acid to react with hydrogen in the presence of a specific catalyst and water. SOLUTION: A mixture of (A) succinic acid and (B) a dicarboxylic acid of the formula: HOOC-R-COOH (R is a 3-20C saturated divalent hydrocarbon) and (C) hydrogen are allowed to react with each other in the presence of (D) a catalyst prepared by carrying one or more metals selected from ruthenium and tin, rhenium, molybdenum, palladium, silver and nickel supported by carbon carrier that is preliminarily treated with hydrogen peroxide and/or ozone aqueous solution and (E) water under a pressure of 1-25 Mpa, at 100-300 deg.C to obtain a mixture of 1,4-butandiol and a diol of the formula: HO-CH2-R-CH2OH. As a mixture of the component A and the component B, are cited preferably a mixtures of dicarboxylic acids including the component A, glutaric acid and adipic acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術的分野】本発明はコハク酸、グルタ
ル酸、アジピン酸を含むジカルボン酸混合物を原料とし
てエステル化工程を経ることなく直接水素化して1,4
−ブタンジオール、1,5−ペンタンジオール、1,6
−ヘキサンジオールを含むジオール混合物を製造する方
法に関するものである。ジオール類はポリエステル樹
脂、ウレタンフォームやウレタン塗料、接着剤の原料と
して有用な物質である。
TECHNICAL FIELD The present invention relates to a method for directly hydrogenating a dicarboxylic acid mixture containing succinic acid, glutaric acid, and adipic acid without using an esterification step to obtain 1,4.
-Butanediol, 1,5-pentanediol, 1,6
A process for producing a diol mixture containing hexanediol. Diols are useful substances as raw materials for polyester resins, urethane foams, urethane paints, and adhesives.

【0002】[0002]

【従来の技術】従来、コハク酸あるいはマレイン酸を水
素化し、1,4−ブタンジオールを製造する方法は数多
く報告されている。例えば、最も良く知られている方法
として銅系の触媒を用いる方法がある。しかしながら、
この方法では、コハク酸を直接還元することができず、
カルボン酸を一旦エステルに転換後還元しなければなら
ず、製造工程が長くなる。
2. Description of the Related Art There have been reported many methods for producing 1,4-butanediol by hydrogenating succinic acid or maleic acid. For example, the best known method is to use a copper-based catalyst. However,
In this method, succinic acid cannot be directly reduced,
The carboxylic acid must be once converted to an ester and then reduced, which lengthens the production process.

【0003】一方、コハク酸あるいはマレイン酸を直接
還元して1,4−ブタンジオールを製造する方法もいく
つか提案されている。その触媒系のみを列記するとルテ
ニウム−鉄酸化物からなる触媒(米国特許4,827,
001号)、ルテニウム−錫をBET表面積2000m
2/g以上の多孔質炭素に担持した触媒(特開平5−2
46915号)、ルテニウム及び錫をチタン及び/又は
アルミナで修飾したシリカに担持した触媒(特開平6−
116182号)、ルテニウム及び錫、並びにアルカリ
金属化合物またはアルカリ土類金属を担体に担持した触
媒(特開平6−239778号)、ルテニウムと白金及
びロジウムから選ばれた少なくとも1種と錫とを担体に
担持した触媒(特開平7−165644号)、ルテニウ
ムと錫を担体に担持してなる触媒を用い、過剰の水素を
反応系に流通させ、同伴してくる生成物を系外に除去し
ながら反応を行う方法(特開平9−12492号)、ル
テニウム−錫−白金を担体に担持した触媒(特開平9−
59190号)、炭素数5以下のカルボニル化合物が共
存した担持成分を含有する溶液を活性炭に含浸して調整
したルテニウム−錫−白金を活性炭に担持した触媒(特
開平10−15388号)、あらかじめ硝酸と接触した
活性炭を使用することにより金属の担持状態を規定した
ルテニウム−錫−白金を活性炭に担持した触媒(特開平
10−71332号)が提案されているが、いずれの触
媒を用いる方法においても、1.4−ブタンジオール、
テトラヒドロフラン、γ−ブチロラクトンの選択率が十
分でなく、1,4−ブタンジオールの収率は不満足なも
のであった。また特開平7−82190号にはパラジウ
ムとレニウム化合物からなる触媒を用い、三級アルコー
ルを溶媒として水素化を行う方法が提案されているが、
反応速度が未だ不十分であった。
On the other hand, there have been proposed some methods for producing 1,4-butanediol by directly reducing succinic acid or maleic acid. A catalyst consisting of ruthenium-iron oxide (US Pat. No. 4,827,
001), ruthenium-tin with a BET surface area of 2000 m
2 / g or more of catalyst supported on porous carbon
No. 46915), a catalyst in which ruthenium and tin are supported on silica modified with titanium and / or alumina (Japanese Unexamined Patent Publication No.
116182), ruthenium and tin, and a catalyst in which an alkali metal compound or an alkaline earth metal is supported on a carrier (Japanese Patent Laid-Open No. 6-239778), and tin and at least one selected from ruthenium, platinum and rhodium are used as a carrier. Using a supported catalyst (JP-A-7-165644), a catalyst in which ruthenium and tin are supported on a carrier, excess hydrogen is passed through the reaction system, and the reaction is carried out while removing entrained products to the outside of the system. (Japanese Unexamined Patent Publication No. 9-12492), a catalyst comprising ruthenium-tin-platinum supported on a carrier (Japanese Unexamined Patent Publication No.
No. 59190), a catalyst prepared by impregnating activated carbon with a solution containing a supporting component coexisting with a carbonyl compound having 5 or less carbon atoms and having ruthenium-tin-platinum supported on activated carbon (JP-A-10-15388), (Japanese Patent Application Laid-Open No. 10-71332) proposes a catalyst in which ruthenium-tin-platinum having a prescribed metal loading state is supported on activated carbon by using activated carbon in contact with the catalyst. 1,4-butanediol,
The selectivity of tetrahydrofuran and γ-butyrolactone was not sufficient, and the yield of 1,4-butanediol was unsatisfactory. Japanese Patent Application Laid-Open No. 7-82190 proposes a method of performing hydrogenation using a catalyst composed of palladium and a rhenium compound and using a tertiary alcohol as a solvent.
The reaction rate was still insufficient.

【0004】一方、含酸素C4炭化水素原料としては、
ブタンの空気酸化で得られる無水マレイン酸あるいはマ
レイン酸が工業的に製造されていることから好適ではあ
るが、シクロヘキサノン及び/又はシクロヘキサノール
を酸化してアジピン酸を製造する際に副生するジカルボ
ン酸類に含まれるコハク酸もまた好適な原料である。す
なわちこのジカルボン酸を原料として工業的に有用な化
合物を得ることができれば、アジピン酸製造に際して発
生する廃棄物を減らすことができること、またこの副生
物には一般的にコハク酸以外にグルタル酸、アジピン酸
が含まれていることから1,4−ブタンジオールのみな
らず、1,5−ペンタンジオール、1,6−ヘキサンジ
オールという工業的に有用なジオール類を併産できるこ
とが期待されることからも直接水素化の原料として好適
である。
On the other hand, oxygen-containing C4 hydrocarbon raw materials include:
Maleic anhydride or maleic acid obtained by air oxidation of butane is preferred because it is industrially produced, but dicarboxylic acids by-produced when adipic acid is produced by oxidizing cyclohexanone and / or cyclohexanol. Is also a suitable raw material. That is, if an industrially useful compound can be obtained using this dicarboxylic acid as a raw material, the waste generated in the production of adipic acid can be reduced. In addition to succinic acid, glutaric acid and adipine are generally used in addition to succinic acid. It is expected that not only 1,4-butanediol, but also industrially useful diols such as 1,5-pentanediol and 1,6-hexanediol can be produced together with the acid because it contains an acid. It is suitable as a raw material for direct hydrogenation.

【0005】米国特許5,698,749にはパラジウ
ム−銀−レニウムをあらかじめ硝酸酸化処理した活性炭
上に担持した触媒を用いてマレイン酸から1,4−ブタ
ンジオールが比較的高収率で得られることが述べられて
いるが、グルタル酸あるいはアジピン酸の水素化還元反
応の成績については何も記載されていない。また、特開
平11−60523号にはあらかじめ酸処理した活性炭
にルテニウム−錫−白金を担持した触媒を用いてアジピ
ン酸から1,6−ヘキサンジオールが高収率で得られる
ことが述べられているが、先に述べたように特開平10
−71332号に述べられている同じ触媒を用いたコハ
ク酸の水素化の結果から、上記ジカルボン酸の混合物に
含まれるコハク酸から1,4−ブタンジオールを高収率
で得ることは困難である。
In US Pat. No. 5,698,749, 1,4-butanediol can be obtained in relatively high yield from maleic acid by using a catalyst in which palladium-silver-rhenium is supported on activated carbon which has been previously subjected to nitric acid oxidation treatment. However, there is no description about the results of the hydrogenation-reduction reaction of glutaric acid or adipic acid. Also, JP-A-11-60523 describes that 1,6-hexanediol can be obtained in high yield from adipic acid using a catalyst in which activated carbon previously treated with acid carries ruthenium-tin-platinum. However, as described above,
From the results of hydrogenation of succinic acid using the same catalyst as described in US Pat. No. 71332, it is difficult to obtain 1,4-butanediol in high yield from succinic acid contained in the above mixture of dicarboxylic acids. .

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、シク
ロヘキサノン及び/又はシクロヘキサノールを酸化して
アジピン酸を製造する際に副生するコハク酸、グルタル
酸、アジピン酸を含有するジカルボン酸の混合物から直
接水素化還元反応により1,4−ブタンジオール、1,
5−ペンタンジオール、1,6−ヘキサンジオールを含
有するジオール類の混合物を高収率で得る製造方法を提
供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a mixture of succinic acid, glutaric acid, and a dicarboxylic acid containing adipic acid which are by-produced when oxidizing cyclohexanone and / or cyclohexanol to produce adipic acid. 1,4-butanediol, 1,1
An object of the present invention is to provide a method for producing a mixture of diols containing 5-pentanediol and 1,6-hexanediol in high yield.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すべく本
発明者らが鋭意検討した結果、驚くべきことにあらかじ
め過酸化水素水及び/又はオゾン水溶液で処理した炭素
質担体にルテニウムと錫及びレニウム、モリブデン、パ
ラジウム、銀、ニッケルから選ばれる少なくとも一つの
金属を担持した触媒を用いることにより、コハク酸及び
グルタル酸とアジピン酸を含有するジカルボン酸の混合
物から1,4−ブタンジオール、1,5−ペンタンジオ
ール、1,6−ヘキサンジオールを収率よく製造し得る
ことを見出し、本発明を完成したものである。
Means for Solving the Problems As a result of intensive studies by the present inventors to solve the above problems, surprisingly, ruthenium and tin and ruthenium and tin were added to a carbonaceous carrier previously treated with an aqueous solution of hydrogen peroxide and / or ozone. Rhenium, molybdenum, palladium, silver, by using a catalyst supporting at least one metal selected from nickel, 1,4-butanediol, 1,4-butanediol from a mixture of succinic acid and a dicarboxylic acid containing glutaric acid and adipic acid The inventors have found that 5-pentanediol and 1,6-hexanediol can be produced with good yield, and have completed the present invention.

【0008】すなわち本発明は、以下の[1]〜[7]
のジオール類の製造方法である。 [1] コハク酸及び下記式(1)に示すジカルボン酸
からなる混合物を触媒と水の存在下、水素と反応させて
1,4−ブタンジオール及び下記式(2)のジオールか
らなる混合物を製造する方法において触媒としてあらか
じめ過酸化水素水及び/又はオゾン水溶液で処理した炭
素質担体にルテニウムと錫及びレニウム、モリブデン、
パラジウム、銀、ニッケルから選ばれる少なくとも一つ
の金属を担持して調整した触媒を用いることを特徴とす
るジオール類の製造法。 HOOC−R−COOH (1) (式中、Rは炭素数が3〜20である飽和の二価の炭化
水素基を表す) HO−CH2−R−CH2OH (2) (式中、Rは、式(1)のRと同じである) [2] コハク酸及び式(1)のジカルボン酸からなる
混合物がコハク酸、グルタル酸、アジピン酸を含むジカ
ルボン酸の混合物であることを特徴とする[1]に記載
のジオール類の製造法。
That is, the present invention provides the following [1] to [7]
This is a method for producing diols. [1] A mixture comprising succinic acid and a dicarboxylic acid represented by the following formula (1) is reacted with hydrogen in the presence of a catalyst and water to produce a mixture composed of 1,4-butanediol and a diol represented by the following formula (2). Ruthenium and tin and rhenium, molybdenum, on a carbonaceous support previously treated with a hydrogen peroxide solution and / or an aqueous ozone solution as a catalyst.
A process for producing diols, comprising using a catalyst prepared by supporting at least one metal selected from palladium, silver and nickel. HOOC-R-COOH (1) ( wherein, R represents a divalent hydrocarbon group having a saturated carbon number of 3~20) HO-CH 2 -R- CH 2 OH (2) ( in the formula, R is the same as R in formula (1). [2] The mixture of succinic acid and the dicarboxylic acid of formula (1) is a mixture of dicarboxylic acids including succinic acid, glutaric acid, and adipic acid. The method for producing diols according to [1].

【0009】[3] 炭素質担体が活性炭であることを
特徴とする[1]または[2]に記載のジオール類の製
造法。 [4] 該前処理が過酸化水素水による処理であること
を特徴とする[1]〜[3]に記載のジオール類の製造
法。 [5] 炭素質担体に担持した金属がルテニウム−錫−
レニウムであることを特徴とする[1]〜[4]に記載
のジオール類の製造法。 [6] コハク酸及び式(1)のジカルボン酸からなる
混合物がシクロヘキサノン及び/又はシクロヘキサノー
ルの酸化反応液から回収されたコハク酸、グルタル酸、
アジピン酸を含むジカルボン酸の混合物であることを特
徴とする[1]〜[5]に記載のジオール類の製造法。 [7] 温度100℃〜300℃、圧力1MPa〜25
MPaの条件下でジカルボン酸の混合物を水素と反応さ
せることを特徴とする[1]〜[6]に記載のジオール
類の製造法。
[3] The method for producing diols according to [1] or [2], wherein the carbonaceous carrier is activated carbon. [4] The method for producing diols according to [1] to [3], wherein the pretreatment is a treatment with a hydrogen peroxide solution. [5] The metal supported on the carbonaceous carrier is ruthenium-tin-
The method for producing diols according to [1] to [4], which is rhenium. [6] succinic acid, glutaric acid, wherein a mixture comprising succinic acid and a dicarboxylic acid of the formula (1) is recovered from an oxidation reaction solution of cyclohexanone and / or cyclohexanol;
The process for producing diols according to [1] to [5], which is a mixture of dicarboxylic acids containing adipic acid. [7] Temperature: 100 ° C. to 300 ° C., pressure: 1 MPa to 25
The method for producing diols according to [1] to [6], wherein the mixture of dicarboxylic acids is reacted with hydrogen under the conditions of MPa.

【0010】以下、本発明を詳細に説明する。本発明に
おいて1,4−ブタンジオールを含むジオール類の製造
に用いられる原料は、コハク酸及び式(1)のジカルボ
ン酸からなる混合物であり、特にコハク酸、グルタル
酸、アジピン酸を含有するジカルボン酸の混合物であ
る。このような原料の1例は、シクロヘキサンノン及び
/又はシクロヘキサノールを硝酸酸化してアジピン酸を
製造する際に副生するジカルボン酸の混合物であり、例
えばアジピン酸を晶析分離した母液中に含まれるジカル
ボン酸の混合物である。本発明ではその母液をそのまま
用いても良いし、何らかの夾雑物により触媒の水素還元
活性が減じる時には脱触媒、脱水、脱硝酸などの工程を
経たものを用いることもできる。
Hereinafter, the present invention will be described in detail. The raw material used in the production of diols containing 1,4-butanediol in the present invention is a mixture of succinic acid and a dicarboxylic acid of the formula (1), particularly a dicarboxylic acid containing succinic acid, glutaric acid and adipic acid. It is a mixture of acids. One example of such a raw material is a mixture of dicarboxylic acids by-produced when nitric acid is produced from cyclohexanenone and / or cyclohexanol to produce adipic acid. For example, a mixture of adipic acid contained in a mother liquor separated by crystallization. A mixture of dicarboxylic acids. In the present invention, the mother liquor may be used as it is, or when the hydrogen reduction activity of the catalyst is reduced due to some contaminants, a solution that has undergone steps such as decatalysis, dehydration, and denitrification may be used.

【0011】本発明で用いる水素還元触媒は、炭素質担
体にルテニウムと錫及びレニウム、モリブデン、パラジ
ウム、銀、ニッケルから選ばれる少なくとも一つの金属
を担持させて調整したものである。炭素質担体としては
活性炭が好ましいが、カーボンブラック、グラファイト
などを用いることもできる。炭素質担体の表面積に特に
制限はないが、過酸化水素水及び/又はオゾン水溶液で
処理する前の窒素吸着−BET表面積が600〜2,0
00m2/gの表面積を持つものが好ましく用いられ
る。本発明では炭素質担体はあらかじめ過酸化水素水及
び/又はオゾン水溶液で処理する前処理を経てから触媒
の調整に用いる。
The hydrogen reduction catalyst used in the present invention is prepared by supporting ruthenium, tin and at least one metal selected from rhenium, molybdenum, palladium, silver and nickel on a carbonaceous carrier. Activated carbon is preferred as the carbonaceous carrier, but carbon black, graphite and the like can also be used. Although the surface area of the carbonaceous carrier is not particularly limited, the nitrogen adsorption-BET surface area before treatment with an aqueous solution of hydrogen peroxide and / or ozone is 600 to 2.0.
Those having a surface area of 00 m 2 / g are preferably used. In the present invention, the carbonaceous carrier is used for adjusting the catalyst after pre-treatment with a hydrogen peroxide solution and / or an ozone aqueous solution in advance.

【0012】過酸化水素水処理は炭素質担体を過酸化水
素水に投入して常温ないし加温下に数分間から数十時間
程度保持すればよい。過酸化水素水の濃度は特に制限は
ないが1〜70重量%、特に5〜60重量%が好まし
い。処理温度は、30〜100℃の温度が好ましく、さ
らに好ましくは80〜95℃である。処理時間は、過酸
化水素水の濃度と処理温度にもよるが少なくとも数分か
ら数十時間であり、さらに好ましくは1時間〜20時間
である。過酸化水素処理した炭素質担体は十分に水洗し
て付着している過酸化水素を除去し、触媒調整に用い
る。
In the treatment with hydrogen peroxide solution, the carbonaceous carrier may be charged into the hydrogen peroxide solution and maintained at room temperature or under heating for several minutes to several tens of hours. The concentration of the hydrogen peroxide solution is not particularly limited, but is preferably 1 to 70% by weight, particularly preferably 5 to 60% by weight. The processing temperature is preferably from 30 to 100 ° C, more preferably from 80 to 95 ° C. The treatment time depends on the concentration of the hydrogen peroxide solution and the treatment temperature, but is at least several minutes to several tens of hours, more preferably 1 hour to 20 hours. The carbonaceous carrier treated with hydrogen peroxide is sufficiently washed with water to remove adhering hydrogen peroxide, and is used for catalyst preparation.

【0013】オゾン水溶液処理は例えば炭素質担体を水
中に投入して常温ないし加温下に保ち、オゾン発生器か
ら得たオゾンガスを吹き込む。オゾンガスは空気から発
生させても良いし、純酸素から発生させたものを用いて
も良い。また窒素などの不活性ガスで希釈してもよい。
オゾンの濃度は0.01〜30g/Nm3の範囲が好ま
しい。処理温度は30〜100℃が好ましく、さらに好
ましくは50〜95℃である。処理時間はオゾンの濃
度、処理温度にもよるが数分から数十時間である。オゾ
ン処理した炭素質担体は水洗後、触媒調整に用いる。ま
た過酸化水素水処理を行った炭素質担体をさらにオゾン
水溶液処理しても良い。
[0013] In the ozone aqueous solution treatment, for example, a carbonaceous carrier is put into water and kept at normal temperature or under heating, and ozone gas obtained from an ozone generator is blown. The ozone gas may be generated from air or may be generated from pure oxygen. Further, it may be diluted with an inert gas such as nitrogen.
The concentration of ozone is preferably in the range of 0.01 to 30 g / Nm3. The processing temperature is preferably from 30 to 100 ° C, more preferably from 50 to 95 ° C. The processing time is several minutes to several tens of hours, depending on the ozone concentration and the processing temperature. The ozone-treated carbonaceous carrier is used for catalyst preparation after washing with water. Further, the carbonaceous carrier which has been treated with the hydrogen peroxide solution may be further treated with an ozone aqueous solution.

【0014】過酸化水素水処理及び/またはオゾン処理
した炭素質担体にルテニウムと錫及びレニウム、モリブ
デン、パラジウム、銀、ニッケルから選ばれる少なくと
も一つの金属を担持する方法としては浸せき法、イオン
交換法、含浸法など担持触媒の調整に一般的に用いられ
ている任意の方法を用いることができる。浸せき法によ
るときは、担持する金属成分の原料化合物を水などの溶
媒に溶解して金属化合物の溶液を調整し、この溶液に上
記方法で過酸化水素水及び/又はオゾン水溶液で前処理
した炭素質担体を浸せきして担体に担持させる。担体に
各金属成分を担持させる順序については特に制限はな
く、全ての金属を同時に担持しても、各成分を個別に担
持してもよい。
As a method for supporting ruthenium and tin and at least one metal selected from the group consisting of rhenium, molybdenum, palladium, silver and nickel on a carbonaceous carrier treated with aqueous hydrogen peroxide and / or ozone, an immersion method or an ion exchange method Any method generally used for adjusting a supported catalyst such as an impregnation method can be used. When the immersion method is used, a raw material compound of a metal component to be supported is dissolved in a solvent such as water to prepare a solution of the metal compound, and the solution is pretreated with a hydrogen peroxide solution and / or an ozone aqueous solution by the above method. The porous carrier is immersed in the carrier. The order in which the metal components are supported on the carrier is not particularly limited, and all metals may be supported simultaneously or each component may be supported individually.

【0015】触媒調整に用いる金属成分の原料として
は、触媒の調整法にもよるが通常は硝酸塩、硫酸塩、塩
酸塩などの鉱酸塩、酢酸塩などの有機酸塩、水酸化物、
酸化物、有機金属化合物などを用いることができる。金
属成分を担持した炭素質担体は乾燥し、次いで所望によ
り焼成、還元して触媒とする。乾燥は通常200℃以下
の温度で減圧下に保持するか、又は窒素、空気などの乾
燥気体を流通させて行う。また焼成は通常100〜60
0℃の温度で窒素、空気などを流通させながら行う。還
元は液相還元又は気相還元のいずれで行ってもよい。通
常は水素を還元ガスとして、200〜500℃の温度で
気相還元する。ルテニウムと錫の担持量は、担体に対し
てそれぞれ金属として0.5〜50重量%、好ましくは
1〜10重量%である。ルテニウム、錫の比率は金属と
して元素比でルテニウム:錫比が1:0.1〜1:2が
好ましく、さらに好ましくは1:0.2〜1:1であ
る。
As the raw material of the metal component used for the preparation of the catalyst, although it depends on the preparation method of the catalyst, usually, mineral salts such as nitrates, sulfates, hydrochlorides, organic acid salts such as acetates, hydroxides, and the like.
An oxide, an organometallic compound, or the like can be used. The carbonaceous carrier supporting the metal component is dried, and then, if desired, calcined and reduced to obtain a catalyst. Drying is usually carried out at a temperature of 200 ° C. or lower under reduced pressure or by flowing a dry gas such as nitrogen or air. In addition, firing is usually 100 to 60.
This is carried out at a temperature of 0 ° C. while flowing nitrogen, air and the like. The reduction may be performed by either liquid phase reduction or gas phase reduction. Usually, gas phase reduction is performed at a temperature of 200 to 500 ° C. using hydrogen as a reducing gas. The supported amount of ruthenium and tin is 0.5 to 50% by weight, preferably 1 to 10% by weight, as a metal, based on the carrier. The ratio of ruthenium to tin is preferably an elemental ratio of ruthenium: tin of 1: 0.1 to 1: 2, more preferably 1: 0.2 to 1: 1.

【0016】本発明ではルテニウムと錫に加えてレニウ
ム、モリブデン、パラジウム、銀、ニッケルから選ばれ
る少なくとも一つの金属を担持するが、この中でも特に
レニウムが好ましい。レニウム、モリブデン、パラジウ
ム、銀、ニッケルの担持量は、金属として元素比でルテ
ニウムに対して0.1〜5が好ましく、さらに好ましく
は0.2〜2の範囲である。
In the present invention, in addition to ruthenium and tin, at least one metal selected from rhenium, molybdenum, palladium, silver, and nickel is supported. Of these, rhenium is particularly preferred. The supported amount of rhenium, molybdenum, palladium, silver, and nickel is preferably 0.1 to 5, more preferably 0.2 to 2, based on ruthenium as an elemental ratio.

【0017】本発明では上記のルテニウムと錫及びレニ
ウム、モリブデン、パラジウム、銀、ニッケルから選ば
れる少なくとも一つの金属を炭素質担体に担持した触媒
と水の存在下にコハク酸、グルタル酸、アジピン酸から
なるジカルボン酸混合物の水素化還元を行う。反応にお
ける水の量は、ジカルボン酸混合物に対して0.5〜1
00重量倍である。さらに好ましくは1〜20倍であ
る。水素化還元温度においてジカルボン酸の全量が溶解
する水量が好ましい。水素化還元の温度は、50〜40
0℃が好ましく、さらに好ましくは100〜300℃で
ある。圧力は0.5〜40MPa、さらに好ましくは1
MPa〜25MPaである。
In the present invention, succinic acid, glutaric acid, adipic acid and a catalyst in which ruthenium and tin and at least one metal selected from rhenium, molybdenum, palladium, silver and nickel are supported on a carbonaceous carrier and water are present. Of the dicarboxylic acid mixture consisting of The amount of water in the reaction is 0.5 to 1 with respect to the dicarboxylic acid mixture.
It is 00 weight times. More preferably, it is 1 to 20 times. The amount of water in which the total amount of the dicarboxylic acid is dissolved at the hydrogenation reduction temperature is preferable. The temperature of the hydrogenation reduction is 50-40.
The temperature is preferably 0 ° C, more preferably 100 to 300 ° C. The pressure is 0.5 to 40 MPa, more preferably 1
MPa to 25 MPa.

【0018】還元反応は連続、回分のいずれで行っても
よい、また反応型式としては液相懸濁反応、固定床流通
反応のいずれも用いることができる。本発明においてジ
オールとして1,4−ブタンジオール、1,5−ペンタ
ンジオール、1,6−ヘキサンジオールの混合物が得ら
れるが、これらのジオール類必要に応じて通常の精製方
法、例えば蒸留分離によって精製することができる。
The reduction reaction may be carried out either continuously or batchwise. The reaction type may be any of a liquid phase suspension reaction and a fixed bed flow reaction. In the present invention, a mixture of 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol is obtained as the diol. If necessary, these diols may be purified by a usual purification method, for example, distillation separation. can do.

【0019】[0019]

【発明の実施の形態】以下、本発明を実施例などを用い
て更に詳細に説明する。なお、反応成績のうち、原料の
転化率は液体クロマトグラフィーの分析値から算出し、
ジオール類の収率はガスクロマトグラフィーの分析値か
ら算出した。また、コハク酸、グルタル酸、アジピン酸
の混合物はアジピン酸を晶析分離した母液から脱水、脱
硝酸処理して得た。組成は液体クロマトグラフィーの分
析によりコハク酸23重量%、グルタル酸60重量%、
アジピン酸17重量%であった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments. Among the reaction results, the conversion of the raw material was calculated from the analytical value of liquid chromatography,
The yield of the diols was calculated from the analytical value of gas chromatography. Further, a mixture of succinic acid, glutaric acid and adipic acid was obtained by subjecting a mother liquor obtained by crystallizing and separating adipic acid to dehydration and denitrification. The composition was determined by liquid chromatography to be 23% by weight of succinic acid, 60% by weight of glutaric acid,
Adipic acid was 17% by weight.

【0020】[0020]

【実施例1】<活性炭の過酸化水素水処理>粒状活性炭
(粒径10〜20メッシュ、窒素吸着−BET表面積1
400m2/g)10gを10%過酸化水素水150g
に加え、95℃で攪拌下5時間加熱処理した。冷却後、
活性炭を濾過し、100mlの水で5回洗浄した。得ら
れた活性炭を120℃で5時間熱風乾燥した。 <Ru−Sn−Re触媒の調整>100mlのナスフラ
スコにイオン交換水2.00g、塩化ルテニウム・3水
和物0.39gを入れ溶解した。その溶液に塩化錫(I
I価)・2水和物0.20gを加え溶解した。更に七酸
化二レニウム0.22gを加え溶解した。この溶液に上
記の過酸化水素水処理した活性炭3.00gを加え、室
温で15時間振とうした。エバポレーターを用いて70
℃、20torrで水を留去した後、窒素ガス雰囲気下
150℃、2時間焼成処理し、ついで水素雰囲気下45
0℃で2時間還元処理した。再び窒素ガス雰囲気にし、
室温まで冷却した後に0.1%酸素/窒素雰囲気で2時
間静置した。上記方法により5.0重量%ルテニウム−
3.5重量%錫−5.6重量%レニウムを活性炭に担持
した触媒を調整した。
Example 1 <Treatment of activated carbon with aqueous hydrogen peroxide> Granular activated carbon (particle size: 10 to 20 mesh, nitrogen adsorption-BET surface area: 1)
400 m 2 / g) 10 g of 10% hydrogen peroxide water 150 g
And heated at 95 ° C. for 5 hours with stirring. After cooling,
The activated carbon was filtered and washed with 100 ml of water five times. The obtained activated carbon was dried with hot air at 120 ° C. for 5 hours. <Preparation of Ru-Sn-Re catalyst> 2.00 g of ion-exchanged water and 0.39 g of ruthenium chloride trihydrate were placed in a 100 ml eggplant-shaped flask and dissolved. Add tin chloride (I
0.20 g of (I value) .dihydrate was added and dissolved. Further, 0.22 g of rhenium heptoxide was added and dissolved. To this solution, 3.00 g of the activated carbon treated with the above-described hydrogen peroxide solution was added, and the mixture was shaken at room temperature for 15 hours. 70 using an evaporator
After distilling off water at 20 ° C. and 20 torr, baking was performed at 150 ° C. for 2 hours in a nitrogen gas atmosphere, and then 45 ° C. in a hydrogen atmosphere.
Reduction treatment was performed at 0 ° C. for 2 hours. Switch back to a nitrogen gas atmosphere,
After cooling to room temperature, it was allowed to stand in a 0.1% oxygen / nitrogen atmosphere for 2 hours. 5.0 wt% ruthenium according to the above method.
A catalyst in which 3.5% by weight tin-5.6% by weight rhenium was supported on activated carbon was prepared.

【0021】<コハク酸、グルタル酸、アジピン酸混合
物の水素還元反応>容量100mlのオートクレーブ
に、水10g、上記コハク酸、グルタル酸、アジピン酸
の混合物1gと上記方法で調製した触媒0.3gを仕込
み、室温下窒素でオートクレーブ内の雰囲気を置換した
後、水素を20kg/cm2圧入し、180℃まで昇温
した。180℃に達した時点で水素を圧入し150kg
/cm 2とした。この圧力で6時間水素化還元反応を行
った。反応終了後、デカンテーションにより触媒を分離
し、触媒は精製水で洗浄した。デカンテーションにより
分離した反応液と触媒洗浄液を合わせて各ジカルボン酸
の転化率とジオールの収率を液体クロマトグラフィーと
ガスクロマトグラフィーによる分析で求めた。その結
果、コハク酸、グルタル酸、アジピン酸の転化率はそれ
ぞれ91%、94%、82%であり、1,4−ブタンジ
オール、1,5−ペンタンジオール、1,6−ヘキサン
ジオールの収率は、それぞれ84%、92%、76%で
あった。
<Succinic acid, glutaric acid, adipic acid mixture
Reduction reaction of waste> Autoclave of 100ml capacity
10 g of water, succinic acid, glutaric acid, adipic acid
1 g of the mixture of above and 0.3 g of the catalyst prepared by the above method were charged.
The atmosphere in the autoclave was replaced with nitrogen at room temperature.
After that, 20kg / cm of hydrogenTwoPress in and heat up to 180 ° C
did. When the temperature reaches 180 ° C, 150 kg of hydrogen is injected.
/ Cm TwoAnd A hydrogenation-reduction reaction is performed at this pressure for 6 hours.
Was. After the reaction, the catalyst is separated by decantation
Then, the catalyst was washed with purified water. By decantation
Combine the separated reaction solution and catalyst washing solution to
Conversion and diol yield were determined by liquid chromatography.
It was determined by analysis by gas chromatography. The result
Succinic, glutaric, and adipic acid conversion rates
91%, 94% and 82%, respectively, and 1,4-butane
All, 1,5-pentanediol, 1,6-hexane
The diol yields were 84%, 92%, and 76%, respectively.
there were.

【0022】[0022]

【実施例2】<Ru−Sn−Mo触媒の調整>実施例1
の七酸化二レニウム0.22gに代えて(NH4)6M
o7O24・4水和物0.08gを用いた以外は実施例
1同様にして触媒を調整した。これにより5.0重量%
ルテニウム−3.5重量%錫−1.5重量%モリブデン
を活性炭に担持した触媒を調整した。 <コハク酸、グルタル酸、アジピン酸混合物の水素還元
反応>触媒として上記で調整したルテニウム−錫−モリ
ブデン/活性炭触媒を用いた以外は実施例1と同様にし
て水素化反応を行った。その結果、コハク酸、グルタル
酸、アジピン酸の転化率はそれぞれ87%、91%、8
0%であり、1,4−ブタンジオール、1,5−ペンタ
ンジオール、1,6−ヘキサンジオールの収率は、それ
ぞれ81%、89%、73%であった。
Example 2 <Adjustment of Ru-Sn-Mo catalyst> Example 1
(NH4) 6M in place of 0.22 g of rhenium heptaoxide
A catalyst was prepared in the same manner as in Example 1 except that 0.08 g of o7O24 tetrahydrate was used. By this, 5.0% by weight
A catalyst having ruthenium-3.5% by weight tin-1.5% by weight molybdenum supported on activated carbon was prepared. <Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture> A hydrogenation reaction was performed in the same manner as in Example 1 except that the ruthenium-tin-molybdenum / activated carbon catalyst prepared above was used as a catalyst. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 87%, 91% and 8%, respectively.
0%, and the yields of 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were 81%, 89%, and 73%, respectively.

【0023】[0023]

【実施例3】<活性炭のオゾン水溶液処理>実施例1で
用いたのと同じ粒状活性炭10gを水150gに加え、
90℃で攪拌下、オゾン発生器から空気を用いて発生さ
せたオゾン(オゾン濃度10g/Nm3)を先端にガラ
スボールフィルターのついたガス導入管から100ミリ
リットル/分の速度で液中に吹き込み、5時間加熱処理
した。冷却後、活性炭を濾過し、100mlの水で5回
洗浄した。得られた活性炭を120℃で5時間熱風乾燥
し、オゾン水溶液処理した活性炭を得た。
Example 3 <Ozone aqueous solution treatment of activated carbon> 10 g of the same granular activated carbon used in Example 1 was added to 150 g of water.
Under stirring at 90 ° C., ozone (ozone concentration: 10 g / Nm 3 ) generated by using air from an ozone generator was blown into the liquid at a rate of 100 ml / min from a gas inlet tube equipped with a glass ball filter at the tip. Heat treatment for 5 hours. After cooling, the activated carbon was filtered and washed five times with 100 ml of water. The obtained activated carbon was dried with hot air at 120 ° C. for 5 hours to obtain an activated carbon treated with an ozone aqueous solution.

【0024】<触媒の調整>実施例1の触媒調整の過酸
化水素水処理した活性炭にかえて上記のオゾン処理した
活性炭を用いた以外は実施例1と同様の操作を行った。 <コハク酸、グルタル酸、アジピン酸混合物の水素還元
反応>実施例1の触媒に代えて、上記のオゾン水溶液処
理した活性炭に担持したルテニウム−錫−レニウム触媒
を用いて水素化還元反応を行った。その結果、コハク
酸、グルタル酸、アジピン酸の転化率はそれぞれ82
%、79%、71%であり、1,4−ブタンジオール、
1,5−ペンタンジオール、1,6−ヘキサンジオール
の収率は、それぞれ76%、76%、68%であった。
<Adjustment of Catalyst> The same operation as in Example 1 was carried out except that the activated carbon treated with ozone was used in place of the activated carbon treated with hydrogen peroxide in the catalyst preparation of Example 1. <Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture> A hydrogenation reduction reaction was carried out using a ruthenium-tin-rhenium catalyst supported on activated carbon treated with the above ozone aqueous solution instead of the catalyst of Example 1. . As a result, the conversion of succinic acid, glutaric acid and adipic acid was 82% each.
%, 79%, 71%, 1,4-butanediol,
The yields of 1,5-pentanediol and 1,6-hexanediol were 76%, 76%, and 68%, respectively.

【0025】[0025]

【比較例1】過酸化水素処理を行っていない活性炭を用
いて実施例1の触媒調整と同様にしてルテニウム−錫−
レニウム/活性炭触媒を調整した。この触媒を用い、実
施例1と同様の手順で上記ジカルボン酸混合物の水素化
還元反応を行った。その結果コハク酸、グルタル酸、ア
ジピン酸の転化率はそれぞれ78%、75%、67%で
あり、1,4−ブタンジオール、1,5−ペンタンジオ
ール、1,6−ヘキサンジオールの収率はそれぞれ23
%、24%、21%であった。
COMPARATIVE EXAMPLE 1 Ruthenium-tin-tin was prepared in the same manner as in the preparation of the catalyst in Example 1 using activated carbon not subjected to the hydrogen peroxide treatment.
The rhenium / activated carbon catalyst was adjusted. Using this catalyst, a hydrogenation reduction reaction of the dicarboxylic acid mixture was performed in the same procedure as in Example 1. As a result, the conversion rates of succinic acid, glutaric acid, and adipic acid were 78%, 75%, and 67%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were as follows. 23 each
%, 24% and 21%.

【0026】[0026]

【発明の効果】以上述べたように、本発明のルテニウム
と錫及び、レニウム、モリブデン、パラジウム、銀、ニ
ッケルから選ばれる少なくとも一つの金属をあらかじめ
過酸化水素水及び/またはオゾン水溶液で処理した炭素
質担体を担体に担持した触媒を用いることによりコハク
酸、グルタル酸、アジピン酸を含むジカルボン酸の混合
物から1,4−ブタンジオール、1.5−ペンタンジオ
ール、1,6−ヘキサンジオールを含むジオール混合物
を高収率で製造することができるものである。
As described above, the ruthenium and tin of the present invention and at least one metal selected from rhenium, molybdenum, palladium, silver and nickel are treated in advance with a hydrogen peroxide solution and / or an ozone aqueous solution. Diol containing 1,4-butanediol, 1.5-pentanediol and 1,6-hexanediol from a mixture of dicarboxylic acids including succinic acid, glutaric acid and adipic acid by using a catalyst having a porous carrier supported on the carrier. The mixture can be produced in high yield.

フロントページの続き Fターム(参考) 4H006 AA02 AC41 AC46 BA05 BA11 BA14 BA16 BA21 BA23 BA25 BA28 BA29 BA55 BA81 BB31 BD70 BE20 BE31 BE32 BE60 FE11 FG28 FG29 4H039 CA60 CB40 Continued on the front page F term (reference) 4H006 AA02 AC41 AC46 BA05 BA11 BA14 BA16 BA21 BA23 BA25 BA28 BA29 BA55 BA81 BB31 BD70 BE20 BE31 BE32 BE60 FE11 FG28 FG29 4H039 CA60 CB40

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 コハク酸及び下記式(1)に示すジカル
ボン酸からなる混合物を触媒と水の存在下、水素と反応
させて1,4−ブタンジオール及び下記式(2)のジオ
ールからなる混合物を製造する方法において触媒として
あらかじめ過酸化水素水及び/又はオゾン水溶液で処理
した炭素質担体にルテニウムと錫及びレニウム、モリブ
デン、パラジウム、銀、ニッケルから選ばれる少なくと
も一つの金属を担持して調整した触媒を用いることを特
徴とするジオール類の製造法。 HOOC−R−COOH (1) (式中、Rは炭素数が3〜20である飽和の二価の炭化
水素基を表す) HO−CH2−R−CH2OH (2) (式中、Rは、式(1)のRと同じである)
1. A mixture comprising 1,4-butanediol and a diol represented by the following formula (2) by reacting a mixture comprising succinic acid and a dicarboxylic acid represented by the following formula (1) with hydrogen in the presence of a catalyst and water: In the method for producing the above, ruthenium and tin and rhenium, at least one metal selected from molybdenum, palladium, silver and nickel were supported on a carbonaceous carrier which had been previously treated with a hydrogen peroxide solution and / or an aqueous ozone solution as a catalyst. A method for producing diols, comprising using a catalyst. HOOC-R-COOH (1) ( wherein, R represents a divalent hydrocarbon group having a saturated carbon number of 3~20) HO-CH 2 -R- CH 2 OH (2) ( in the formula, R is the same as R in the formula (1))
【請求項2】 コハク酸及び式(1)のジカルボン酸か
らなる混合物がコハク酸、グルタル酸、アジピン酸を含
むジカルボン酸の混合物であることを特徴とする請求項
1に記載のジオール類の製造法。
2. The production of diols according to claim 1, wherein the mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acids containing succinic acid, glutaric acid and adipic acid. Law.
【請求項3】 炭素質担体が活性炭であることを特徴と
する請求項1または2に記載のジオール類の製造法。
3. The method according to claim 1, wherein the carbonaceous carrier is activated carbon.
【請求項4】 該前処理が過酸化水素水による処理であ
ることを特徴とする請求項1〜3に記載のジオール類の
製造法。
4. The method for producing a diol according to claim 1, wherein the pretreatment is a treatment with a hydrogen peroxide solution.
【請求項5】 炭素質担体に担持した金属がルテニウム
−錫−レニウムであることを特徴とする請求項1〜4に
記載のジオール類の製造法。
5. The method for producing a diol according to claim 1, wherein the metal supported on the carbonaceous carrier is ruthenium-tin-rhenium.
【請求項6】 コハク酸及び式(1)のジカルボン酸か
らなる混合物がシクロヘキサノン及び/又はシクロヘキ
サノールの酸化反応液から回収されたコハク酸、グルタ
ル酸、アジピン酸を含むジカルボン酸の混合物であるこ
とを特徴とする請求項1〜5に記載のジオール類の製造
法。
6. The mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acids containing succinic acid, glutaric acid, and adipic acid recovered from an oxidation reaction solution of cyclohexanone and / or cyclohexanol. The method for producing a diol according to any one of claims 1 to 5, characterized in that:
【請求項7】 温度100℃〜300℃、圧力1MPa
〜25MPaの条件下でジカルボン酸の混合物を水素と
反応させることを特徴とする請求項1〜6に記載のジオ
ール類の製造法。
7. A temperature of 100 ° C. to 300 ° C. and a pressure of 1 MPa.
The method for producing diols according to any one of claims 1 to 6, wherein the mixture of dicarboxylic acids is reacted with hydrogen under the condition of -25 MPa.
JP17073799A 1999-06-17 1999-06-17 Process for producing diols Expired - Fee Related JP4282832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17073799A JP4282832B2 (en) 1999-06-17 1999-06-17 Process for producing diols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17073799A JP4282832B2 (en) 1999-06-17 1999-06-17 Process for producing diols

Publications (2)

Publication Number Publication Date
JP2001002605A true JP2001002605A (en) 2001-01-09
JP4282832B2 JP4282832B2 (en) 2009-06-24

Family

ID=15910460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17073799A Expired - Fee Related JP4282832B2 (en) 1999-06-17 1999-06-17 Process for producing diols

Country Status (1)

Country Link
JP (1) JP4282832B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034543A1 (en) * 1999-11-05 2001-05-17 Asahi Kasei Kabushiki Kaisha Process for the preparation of diol mixtures
JP2003024791A (en) * 2001-07-12 2003-01-28 Asahi Kasei Corp Catalyst for carboxylic acid direct hydrogen addition
US6765118B2 (en) * 2000-03-24 2004-07-20 Basf Aktiengesellschaft Method for the production of alcohols on rhenium-containing activated charcoal supported catalysts
US7126034B2 (en) 2002-11-01 2006-10-24 Cargill, Incorporated Process for preparation of 1,3-propanediol
JP2013523735A (en) * 2010-04-01 2013-06-17 バイオアンバー インターナショナル ソシエテ ア レスポンサビリテ リミテ Method for producing hydrogenated products
CN108786804A (en) * 2018-05-31 2018-11-13 王鹏飞 Hydrogenation catalyst, preparation method and application
CN111097417A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Preparation method of 1, 5-pentanediol based on modified nickel-based supported catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034543A1 (en) * 1999-11-05 2001-05-17 Asahi Kasei Kabushiki Kaisha Process for the preparation of diol mixtures
US6765118B2 (en) * 2000-03-24 2004-07-20 Basf Aktiengesellschaft Method for the production of alcohols on rhenium-containing activated charcoal supported catalysts
JP2003024791A (en) * 2001-07-12 2003-01-28 Asahi Kasei Corp Catalyst for carboxylic acid direct hydrogen addition
JP4640748B2 (en) * 2001-07-12 2011-03-02 旭化成ケミカルズ株式会社 Catalyst for direct hydrogenation of carboxylic acid
US7126034B2 (en) 2002-11-01 2006-10-24 Cargill, Incorporated Process for preparation of 1,3-propanediol
JP2013523735A (en) * 2010-04-01 2013-06-17 バイオアンバー インターナショナル ソシエテ ア レスポンサビリテ リミテ Method for producing hydrogenated products
CN108786804A (en) * 2018-05-31 2018-11-13 王鹏飞 Hydrogenation catalyst, preparation method and application
CN108786804B (en) * 2018-05-31 2021-01-26 王鹏飞 Hydrogenation catalyst, preparation method and application thereof
CN111097417A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Preparation method of 1, 5-pentanediol based on modified nickel-based supported catalyst
CN111097417B (en) * 2018-10-25 2024-01-26 中国石油化工股份有限公司 Preparation method of 1, 5-pentanediol based on modified nickel-based supported catalyst

Also Published As

Publication number Publication date
JP4282832B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
US4550185A (en) Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst
KR20180015720A (en) Method for preparing purified acid composition
WO2001021306A1 (en) Catalysts for hydrogenation of carboxylic acid
US4609636A (en) Pd/Re hydrogenation catalyst for making tetrahydrofuran and 1,4-butanediol
JPH10306047A (en) Production of 1,6-hexanediol
US3922300A (en) Process for preparing an unsaturated ester
KR100546986B1 (en) Process for the preparation of diol mixtures
JPH01146837A (en) Method for dehydrating cyclohexenone
JP2001002605A (en) Production of diols
KR960012699B1 (en) Method for reactivating a group ñà noble meatal catalyst for use in the purification of crude terephthalic acid
JP2000007596A (en) Production of 1,4-cyclohexanedimethanol
JP4282831B2 (en) Production method of diols
JP4282830B2 (en) Method for producing diols
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP4282153B2 (en) Method for producing diol mixture
JP2004538134A (en) Selective preparation of tetrahydrofuran by hydrogenation of maleic anhydride.
JP4282154B2 (en) Method for producing diol mixture
JP2003024791A (en) Catalyst for carboxylic acid direct hydrogen addition
JP2001097904A (en) Method for producing 1,6-hexanediol
JP3873389B2 (en) Method for producing 1,6-hexanediol
JPH02233627A (en) Production of 1,4-butanediol and tetrahydrofuran
JP3921788B2 (en) Method for producing 1,6-hexanediol
JPH1160524A (en) Production of 1,6-hexanediol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees