JP2001002411A - Production of aqueous silica sol - Google Patents
Production of aqueous silica solInfo
- Publication number
- JP2001002411A JP2001002411A JP11167973A JP16797399A JP2001002411A JP 2001002411 A JP2001002411 A JP 2001002411A JP 11167973 A JP11167973 A JP 11167973A JP 16797399 A JP16797399 A JP 16797399A JP 2001002411 A JP2001002411 A JP 2001002411A
- Authority
- JP
- Japan
- Prior art keywords
- silica sol
- alkoxysilane
- aqueous solvent
- polymerization treatment
- aqueous silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体LSIの製
造、触媒の担体、ファインセラミックス等の用途に有用
な金属不純物の極めて少ない高純度水性シリカゾルの製
造方法に関するもので、特に凝集ゲルが少なく安定な高
純度水性シリカゾルの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity aqueous silica sol containing very few metal impurities, which is useful for the production of semiconductor LSIs, catalyst carriers, fine ceramics, and the like. The present invention relates to a method for producing a high purity aqueous silica sol.
【0002】[0002]
【従来の技術】一般的に水性シリカゾルは、珪酸ナトリ
ウムの陽イオン交換により得られる珪酸モノマーを水酸
化ナトリウム等のアルカリ性触媒下で加熱し、重合反応
を行って製造されている。しかし、生成したシリカゾル
を再度イオン交換処理などにより脱金属精製を施しても
不純分の除去に限界があり、アルカリ金属や多価金属な
どの金属不純分の混入を嫌う半導体LSIの製造、触媒
の担体、ファインセラミックス等の用途では、汚染によ
る製品機能への弊害のため水性シリカゾルは使用するこ
とはできなかった。このため、高純度微紛二酸化珪素を
利用し、水分散したシリカスラリーが検討されている
が、シリカ粒子は凝集体として存在するため沈降するな
ど長期の保存安定性に欠ける問題がある。一方、アルコ
キシシランを出発原料とする水性シリカゾルの製造法
は、特開昭63−74911、特開平6−316407
号公報等に開示されている。この製造方法は、出発材料
の加水分解と、これによって生成した珪酸モノマーの重
合を同一系で行い水性シリカゾルを得るというものであ
る。しかし、いずれの製造法も、安定したシリカゾル粒
子が得にくく、又、ゲル物の発生のため保存安定性にも
影響を及ぼすものであった。2. Description of the Related Art Generally, an aqueous silica sol is produced by heating a silicate monomer obtained by cation exchange of sodium silicate under an alkaline catalyst such as sodium hydroxide to carry out a polymerization reaction. However, even if the generated silica sol is subjected to demetallization and purification again by ion exchange treatment or the like, there is a limit to the removal of impurities, and the production of semiconductor LSIs that do not like inclusion of metal impurities such as alkali metals and polyvalent metals, catalyst In applications such as carriers and fine ceramics, aqueous silica sols could not be used due to adverse effects on product functions due to contamination. For this reason, silica slurry dispersed in water using high-purity finely divided silicon dioxide has been studied. However, there is a problem that long-term storage stability is lacking, for example, because silica particles exist as aggregates and settle. On the other hand, a method for producing an aqueous silica sol using an alkoxysilane as a starting material is disclosed in JP-A-63-74911 and JP-A-6-316407.
No. 6,009,036. In this production method, hydrolysis of a starting material and polymerization of a silicate monomer produced thereby are performed in the same system to obtain an aqueous silica sol. However, in any of the production methods, stable silica sol particles are hardly obtained, and storage stability is affected due to generation of a gel.
【0003】[0003]
【発明が解決しようとする課題】従って、本発明の目的
は、アルカリ金属や多価金属等の不純物が極めて少な
く、凝集ゲルが少なく安定な水性シリカゾルの製造方法
を提供することにある。SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for producing a stable aqueous silica sol containing extremely few impurities such as alkali metals and polyvalent metals and having a small amount of aggregated gel.
【0004】[0004]
【課題を解決するための手段】即ち、本発明は、酸性の
水性溶媒中にアルコキシシランを加え、加水分解処理を
行い、珪酸モノマーを得たのち、該珪酸モノマーを、塩
基性の水性溶媒中に加え、重合処理を行うことを特徴と
する水性シリカゾルの製造方法であり、また、加水分解
に伴い副生するアルコールを重合処理時に除去するもの
であり、また、重合処理を、系のpHを8.5〜11.
5の範囲として行うものであり、また、重合処理を、系
の容量が重合処理開始時の95%を下回らないように調
整しながら行うものである。That is, according to the present invention, an alkoxysilane is added to an acidic aqueous solvent, a hydrolysis treatment is carried out to obtain a silicate monomer, and the silicate monomer is added to a basic aqueous solvent. In addition to the above, a method for producing an aqueous silica sol characterized by performing a polymerization treatment, and removing alcohol produced as a by-product of hydrolysis during the polymerization treatment. 8.5-11.
The polymerization is performed while adjusting the volume of the system so that the volume of the system does not fall below 95% at the start of the polymerization.
【0005】本発明に使用するアルコキシシランは特に
限定されるものではなく、従来水性シリカゾル、有機溶
媒系シリカゾルなどの製造に使用可能なものが全て使用
できるが、好ましくは次式The alkoxysilane used in the present invention is not particularly limited, and any of those which can be conventionally used for producing aqueous silica sol, organic solvent-based silica sol and the like can be used.
【0006】[0006]
【化1】 Embedded image
【0007】(式中、R1〜R4は同一でも異なっていて
もよい分岐又は直鎖の炭素原子数1〜4のアルキル基で
ある)で表されるアルコキシシランが好ましく、特に、
テトラエトキシシラン(TEOS)、テトラメトキシシ
ラン(TMOS)、メトキシトリエトキシシラン、トリ
メトキシエトキシシラン等を好ましいものとして例示す
ることができる。(Wherein R 1 to R 4 are a branched or straight-chain alkyl group having 1 to 4 carbon atoms which may be the same or different).
Preferred examples include tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), methoxytriethoxysilane, and trimethoxyethoxysilane.
【0008】上記アルコキシシランを加える酸性の水性
溶媒(酸性水性溶媒)は、特に限定されるものではな
く、水に少量の酸を加えたものでよいが、好ましくは不
純物の極力少ない純水(イオン交換水)を用いるのがよ
く、酸としても、塩酸、硝酸、硫酸、燐酸等の無機酸の
ほか、蟻酸、酢酸、クエン酸等の水溶性有機酸など種々
の酸が使用できるが、活性の点で無機酸が好ましい。勿
論、酸としても不純物の極力少ないものが好ましい。[0008] The acidic aqueous solvent (acidic aqueous solvent) to which the alkoxysilane is added is not particularly limited, and a small amount of acid added to water may be used. It is preferable to use various kinds of acids such as inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, and water-soluble organic acids such as formic acid, acetic acid and citric acid. In view of this, inorganic acids are preferred. Of course, it is preferable that the acid has as little impurities as possible.
【0009】酸の量は特に制限されるものではないが、
概ね酸性水性溶媒のpHが2〜4であればよい。Although the amount of the acid is not particularly limited,
Generally, the pH of the acidic aqueous solvent may be 2 to 4.
【0010】アルコキシシランと酸性水性溶媒の割合は
特に限定されるものではなく、所望により任意に選択す
ることができるが、アルコキシシランが少なすぎると最
終製品によっては濃縮工程に時間を要するなどの工程の
煩雑化が生じ、多すぎると最終製品である水性シリカゾ
ルが凝集しやすくなることがあるので、例えば、酸性の
水性溶媒100重量部に対してアルコキシシランが5〜
80重量部、好ましくは35〜70重量部がよい。[0010] The ratio of the alkoxysilane to the acidic aqueous solvent is not particularly limited and can be arbitrarily selected as desired. However, if the amount of the alkoxysilane is too small, depending on the final product, the concentration step may take a long time. Since the aqueous silica sol as the final product may be easily aggregated if the amount is too large, for example, the amount of the alkoxysilane may be 5 to 100 parts by weight of the acidic aqueous solvent.
80 parts by weight, preferably 35 to 70 parts by weight.
【0011】本発明においては上記酸性水性溶媒に上記
アルコキシシランを加え加水分解反応を行う。加水分解
方法はとくに制限されるものではなく常法によればよい
が、例えば、室温で酸性水性溶媒にアルコキシシランを
加え、アルコキシシランは疎水性であるので、攪拌して
アルコキシシランを分散させた状態で数10分〜数時間
程度保持すれば行うことができ、具体的には、分散状態
であったものが加水分解の進行に伴い溶解するので溶液
になるまで行えばよい。この加水分解反応は発熱反応で
あるので反応過程において系内の温度が40〜50℃程
度に上昇することがあるが、何ら差し障りは無く、溶媒
の沸点未満であれば行うことができる。また、室温未満
でも行うことはできるが、反応時間が長くなるので推奨
できない。In the present invention, the above-mentioned alkoxysilane is added to the above-mentioned acidic aqueous solvent to carry out a hydrolysis reaction. The hydrolysis method is not particularly limited and may be in accordance with a conventional method.For example, alkoxysilane was added to an acidic aqueous solvent at room temperature, and the alkoxysilane was hydrophobic. This can be carried out by maintaining the state for about several tens of minutes to several hours. Specifically, what has been in a dispersed state dissolves with the progress of hydrolysis, and thus may be performed until a solution is obtained. Since this hydrolysis reaction is an exothermic reaction, the temperature in the system may rise to about 40 to 50 ° C. in the course of the reaction, but there is no hindrance and the reaction can be carried out as long as it is lower than the boiling point of the solvent. In addition, the reaction can be carried out at a temperature lower than room temperature, but it is not recommended because the reaction time becomes long.
【0012】本発明における加水分解反応工程において
は、アルコキシシランのアルコキシ基に対応するアルコ
ールが副生するが、加水分解反応工程中若しくは加水分
解反応工程と重合処理工程の間に該副生アルコールを系
内から除去すると、最終製品である水性シリカゾルが凝
集しやすくなることがあるので、該副生アルコールは本
工程においては系内から除去せず、後述の重合処理工程
に持ち越すことが、安定性の点で好ましい。In the hydrolysis reaction step of the present invention, an alcohol corresponding to the alkoxy group of the alkoxysilane is by-produced, and the by-product alcohol is produced during the hydrolysis reaction step or between the hydrolysis reaction step and the polymerization treatment step. When removed from the system, the aqueous silica sol as a final product may be easily aggregated, so that the by-product alcohol is not removed from the system in this step, and is carried over to the polymerization treatment step described below, which is not stable. Is preferred in view of
【0013】次いで本発明においては、上記で得られた
珪酸モノマーを塩基性の水性溶媒中に加え重合処理を行
う。上記珪酸モノマーを加える塩基性の水性溶媒(塩基
性水性溶媒)は、特に限定されるものではなく、水に少
量の塩基を加えたものでよいが、好ましくは不純物の極
力少ない純水(イオン交換水)を用いるのがよく、塩基
としても従来アルカリ触媒として公知のものが使用でき
るが、金属不純物を極力低減する観点から、好ましいの
は、例えばエチレンジアミン、ジエチレントリアミン、
トリエチレンテトラミン、アンモニア、テトラメチル水
酸化アンモニウム等の窒素系塩基がよい。Next, in the present invention, the silicic acid monomer obtained above is added to a basic aqueous solvent to carry out a polymerization treatment. The basic aqueous solvent (basic aqueous solvent) to which the above-mentioned silicate monomer is added is not particularly limited, and a small amount of a base may be added to water. Water) may be used, and as the base, those conventionally known as alkali catalysts may be used. However, from the viewpoint of reducing metal impurities as much as possible, preferred are, for example, ethylenediamine, diethylenetriamine,
Nitrogen bases such as triethylenetetramine, ammonia and tetramethylammonium hydroxide are preferred.
【0014】塩基の量としては特に制限されるものでは
なく、塩基性水性溶媒のpHが8.5〜11.5となる
ように使用すればよい。重合処理工程中においてpHが
変化するような場合は、適宜上記塩基を適量添加、或い
は純水若しくは上記水性溶媒などを適量添加するなどし
てpHを8.5〜11.5の範囲に維持するのがよい。
重合処理工程においてpHが上記範囲を外れると、ゲル
が発生するなどゾルの安定性に欠けて好ましくない。好
ましいpHは8.9〜11.1である。The amount of the base is not particularly limited, and may be used so that the pH of the basic aqueous solvent is 8.5 to 11.5. When the pH changes during the polymerization process, the pH is maintained in the range of 8.5 to 11.5 by adding an appropriate amount of the above base or adding an appropriate amount of pure water or the above aqueous solvent. Is good.
If the pH is out of the above range in the polymerization treatment step, it is not preferable because the sol is lacking in stability such as formation of a gel. The preferred pH is between 8.9 and 11.1.
【0015】塩基性水性溶媒と上記珪酸モノマーの割合
は特に限定されるものではない。即ち、上記で得られた
珪酸モノマーも水分を含んでおり、後述のように重合処
理過程でアルコールを除去するので、最終製品としての
水性シリカゾル濃度が所望となるような割合で用いれば
よい。しかし、あまりに少ないと最終製品によっては濃
縮工程を必要とするなどの工程の煩雑化が生じ、多すぎ
ると最終製品である水性シリカゾルが凝集しやすくなる
ことがあるので、最終製品としての水性シリカゾル濃度
として2〜15重量%、好ましくは3〜10重量%とな
る割合で用いるのが好ましい。The ratio between the basic aqueous solvent and the above-mentioned silicate monomer is not particularly limited. That is, the silicic acid monomer obtained above also contains water, and the alcohol is removed in the course of the polymerization treatment as described later. Therefore, it may be used in such a ratio that the aqueous silica sol concentration as a final product is desired. However, if the amount is too small, a complicated process such as a concentration step is required depending on the final product.If the amount is too large, the aqueous silica sol as the final product may be easily aggregated. 2 to 15% by weight, preferably 3 to 10% by weight.
【0016】珪酸モノマーの添加方法は、特に制限され
るものではないが、上記で得られた珪酸モノマーは酸性
であるので、塩基性水性溶媒中に珪酸モノマーを滴下し
て加えることが凝集化防止の点で好ましい。しかし、あ
まり滴下が速すぎても凝集化の傾向が出ることがあり、
遅すぎると工業化適性に劣るので、例えば5重量%のS
iO2含量の珪酸モノマー180重量部を120重量部
の塩基性水性溶媒に滴下する場合で2.5時間〜5時間
程度の割合で滴下するのがよい。The method of adding the silicate monomer is not particularly limited, but since the silicate monomer obtained above is acidic, it is necessary to add the silicate monomer dropwise to a basic aqueous solvent to prevent agglomeration. Is preferred in view of However, even if the dripping is too fast, the tendency of agglomeration may appear,
If it is too late, it is inferior in industrialization suitability.
When 180 parts by weight of the silicate monomer having the iO 2 content is dropped into 120 parts by weight of the basic aqueous solvent, the dropping is preferably performed at a rate of about 2.5 hours to 5 hours.
【0017】本発明における重合処理工程の条件は特に
限定されるものではなく、従来の水性シリカゾルを得る
工程における重合処理工程と同様でよく、常圧において
は例えば、温度50℃以上で溶媒の沸点以下、好ましく
は60℃〜97℃で、概ね1時間〜6時間程度保持すれ
ばよい。The conditions of the polymerization treatment step in the present invention are not particularly limited, and may be the same as those in the conventional polymerization treatment step in the step of obtaining an aqueous silica sol. Hereinafter, the temperature may be preferably maintained at 60 ° C to 97 ° C for about 1 to 6 hours.
【0018】この間、重合反応と同時に、前工程で副生
したアルコールを除去することが好ましい。尚、この
間、アルコールと同時に水分、塩基分等の一部も除去さ
れることがあるが、水分は水性シリカゾルとして所望す
る水分量を下回らなければ差し支えなく、また水性シリ
カゾルとして所望する水分量を下回るようであれば適宜
水分を補給することができる。また、塩基分が減少し、
上記pH範囲を外れるようであれば適宜塩基を補給する
ことができる。During this time, it is preferable to remove the alcohol by-produced in the preceding step simultaneously with the polymerization reaction. During this time, a part of the water and the base may be removed simultaneously with the alcohol.However, the water may be less than the amount of water desired as the aqueous silica sol, and may be less than the amount of water desired as the aqueous silica sol. If so, water can be appropriately replenished. Also, the base content decreases,
If it is out of the above pH range, a base can be appropriately replenished.
【0019】本発明における重合処理工程は、減圧にお
いても行うことができ、減圧下であるとアルコールの除
去は容易となるが、重合反応には上記温度が必要である
ので、減圧量が多いとアルコール、水、塩基などの除去
スピードが速くなり、pHや水分量の調節が難しくなる
ので、好ましくは400mmHg以上で行うことがよ
い。The polymerization treatment step in the present invention can be carried out even under reduced pressure. Under reduced pressure, the removal of alcohol is easy, but the above-mentioned temperature is required for the polymerization reaction. Since the removal speed of alcohol, water, base and the like is increased and it becomes difficult to adjust the pH and the amount of water, the removal is preferably performed at 400 mmHg or more.
【0020】本発明の重合処理工程においては、アルコ
ール分の留去、及びそれに伴う水分等の蒸発等によって
系の容量は減少する傾向にあるが、系の容量が減少する
と、ゲル化物が生成しやすい傾向にあるので、水分(好
ましくは温水:pHが上記範囲を外れるようであればさ
らに塩基)を適宜補給するなどして容量を一定に保つこ
とが好ましく、具体的には系の容量が重合処理開始時の
95%を下回らないように調整しながら行うのがよい。
この原因は定かではないが、液面と容器面との接点部に
おける蒸発速度が局部的に大きくなり、容器面にゲル化
物が発生・付着するためではないかと考えられる。従っ
て、容量が重合処理開始時の95%を下回らない範囲で
あっても、容量の増減を繰り返すことはゲル化物を増や
すことになると考えられるので、より好ましくは水分等
の補給は連続的に行うことがよい。In the polymerization treatment step of the present invention, the capacity of the system tends to decrease due to the evaporation of alcohol and the accompanying evaporation of water and the like, but when the capacity of the system decreases, a gelled product is formed. It is preferable to keep the volume constant by appropriately replenishing water (preferably hot water: further base if the pH is out of the above range). It is preferable to perform the adjustment while adjusting so as not to fall below 95% at the start of the processing.
Although the cause is not clear, it is considered that the evaporation rate at the contact point between the liquid surface and the container surface locally increases, and a gelled substance is generated and adheres to the container surface. Therefore, even if the capacity is within the range of not less than 95% at the start of the polymerization treatment, it is considered that repeating the increase and decrease of the capacity will increase the amount of gelled matter. Good.
【0021】本発明により得られた水性シリカゾルは、
限外濾過等によって任意に濃縮することができる。The aqueous silica sol obtained according to the present invention comprises:
It can be arbitrarily concentrated by ultrafiltration or the like.
【0022】[0022]
【実施例】以下に本発明の実施例、比較例を挙げ本発明
をさらに説明するが本発明はこれらに限定されるもので
はない。 実施例1 イオン交換水71重量部に0.1N塩酸4.5重量部を
溶解したpH3.4の酸性水性溶媒に、テトラエトキシ
シラン45重量部を加えて常温にて55分間攪拌してS
iO2濃度11重量%の珪酸モノマー溶液をえた。一
方、攪拌機、コンデンサー着きのステンレス製反応槽
に、イオン交換水130重量部にエチレンジアミン0.
5重量部を溶解してpH11.1の塩基性水性溶媒を用
意した。塩基性水性溶媒の温度を70℃とした後、窒素
気流下で上記の珪酸モノマー溶液100重量部を2.5
時間かけて滴下し、その後93℃で3時間反応させた。
この間留去してきたエタノールを除去してSiO2濃度
4.7重量%、pH9.0、粒子径19.0nm(BE
T法)、ナトリウム0.2ppm、カリウム0.1pp
m、カルシウム0.02ppm、マグネシウム0.02
ppm、アルミニウム0.02ppm、鉄0.02pp
m、銅0.001ppm、ニッケル0.0003ppm
の水性シリカゾルを得た。又、この水性シリカゾルを限
外濾過装置にて濃縮を行い、SiO2濃度20.2重量
%、pH8.6、粒子径19.2nm(BET法)の水
性シリカゾルを得た。このシリカゾルの金属成分は、ナ
トリウム0.8ppm、カリウム0.4ppm、カルシ
ウム0.08ppm、マグネシウム0.1ppm、アル
ミニウム1.0ppm、鉄0.1ppm、銅0.006
ppm、ニッケル0.001ppmであった。The present invention will be further described below with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples. Example 1 45 parts by weight of tetraethoxysilane was added to an acidic aqueous solvent of pH 3.4 in which 4.5 parts by weight of 0.1N hydrochloric acid was dissolved in 71 parts by weight of ion-exchanged water, and the mixture was stirred at room temperature for 55 minutes to obtain S.
A silicate monomer solution having an iO 2 concentration of 11% by weight was obtained. On the other hand, in a stainless steel reaction tank equipped with a stirrer and a condenser, 130 parts by weight of ion-exchanged water and 0.1% of ethylenediamine were added.
5 parts by weight were dissolved to prepare a basic aqueous solvent having a pH of 11.1. After adjusting the temperature of the basic aqueous solvent to 70 ° C., 100 parts by weight of the above silicate monomer solution was
The mixture was added dropwise over a period of time, and then reacted at 93 ° C. for 3 hours.
The ethanol distilled off during this time was removed, and the SiO 2 concentration was 4.7% by weight, the pH was 9.0, and the particle diameter was 19.0 nm (BE
T method), sodium 0.2ppm, potassium 0.1pp
m, calcium 0.02 ppm, magnesium 0.02
ppm, aluminum 0.02ppm, iron 0.02pp
m, copper 0.001ppm, nickel 0.0003ppm
Aqueous silica sol was obtained. The aqueous silica sol was concentrated by an ultrafiltration apparatus to obtain an aqueous silica sol having a SiO 2 concentration of 20.2% by weight, a pH of 8.6 and a particle diameter of 19.2 nm (BET method). The metal components of this silica sol include sodium 0.8 ppm, potassium 0.4 ppm, calcium 0.08 ppm, magnesium 0.1 ppm, aluminum 1.0 ppm, iron 0.1 ppm, and copper 0.006.
ppm and nickel were 0.001 ppm.
【0023】また、ゲル化安定性を以下のように試験し
た。先で得られたSiO2濃度4.7重量%の水性シリ
カゾルを、ADVANTEC社製メンブランフィルター
(内径47mm、孔径0.5μm)で圧力0.2Tor
rにて濾過した。濾過速度は12g/秒でありゲルの発
生は極微少なものであった。また、100mlのガラス
製容器に水性シリカゾルを採り、恒温槽内(50℃)に
2ヶ月間保存した。肉眼による観察を行ったがゲルの沈
降は見られなかった。Further, the gelation stability was tested as follows. The aqueous silica sol having a SiO 2 concentration of 4.7% by weight obtained above was applied to a membrane filter (47 mm in inside diameter, 0.5 μm in hole diameter) manufactured by ADVANTEC with a pressure of 0.2 Torr.
Filtered at r. The filtration rate was 12 g / sec, and the generation of gel was extremely small. The aqueous silica sol was placed in a 100 ml glass container and stored in a thermostat (50 ° C.) for 2 months. Observation with the naked eye showed no sedimentation of the gel.
【0024】実施例2 重合処理工程において系の容量を一定に保つべく温水を
連続的に補充した(容量変化は1%未満であった)他は
実施例1と同様にして水性シリカゾルを得た。限外濾過
濃縮前で、SiO2濃度4.7重量%、pH9.1、粒
子径19.9nm(BET法)、ナトリウム0.1pp
m、カリウム0.1ppm、カルシウム0.02pp
m、マグネシウム0.03ppm、アルミニウム0.2
ppm、鉄0.04ppm、銅0.01ppm、ニッケ
ル0.004ppm、限外濾過縮後でSiO2濃度2
0.1重量%、pH9.1、粒子径20.3nm(BE
T法)、ナトリウム0.6ppm、カリウム0.4pp
m、カルシウム0.08ppm、マグネシウム0.1p
pm、アルミニウム0.9ppm、鉄0.1ppm、銅
0.004ppm、ニッケル0.001ppmであっ
た。また、実施例1と同様にゲル化安定性試験を行った
ところ、濾過速度は15g/秒でゲルの発生は極微少な
ものであり、保存安定性も2ヶ月後においてゲルの沈降
は見られないものであった。Example 2 An aqueous silica sol was obtained in the same manner as in Example 1 except that hot water was continuously replenished in the polymerization step to keep the volume of the system constant (the change in volume was less than 1%). . Before ultrafiltration and concentration, the SiO 2 concentration was 4.7% by weight, the pH was 9.1, the particle diameter was 19.9 nm (BET method), and the sodium was 0.1 pp.
m, potassium 0.1ppm, calcium 0.02pp
m, magnesium 0.03 ppm, aluminum 0.2
ppm, iron 0.04 ppm, copper 0.01 ppm, nickel 0.004 ppm, SiO 2 concentration 2 after ultrafiltration
0.1% by weight, pH 9.1, particle size 20.3 nm (BE
T method), sodium 0.6ppm, potassium 0.4pp
m, calcium 0.08ppm, magnesium 0.1p
pm, aluminum 0.9 ppm, iron 0.1 ppm, copper 0.004 ppm, and nickel 0.001 ppm. When a gelation stability test was performed in the same manner as in Example 1, the filtration rate was 15 g / sec, the generation of gel was extremely small, and the storage stability was not observed after 2 months. Was something.
【0025】比較例1 イオン交換水190重量部にエチレンジアミン0.7重
量部を溶解したpH11.0の塩基性水性溶媒にテトラ
エトキシシラン38重量部を2.5時間かけて滴下し9
2℃で6時間保持し、テトラエトキシシランの加水分解
と、これによって生成した珪酸モノマーの重合を同一系
で行い水性シリカゾルを得た。尚、反応中副生するエタ
ノールは留去した。限外濾過濃縮後のシリカゾルの成分
は、SiO2濃度20.5重量%、pH9.3、粒子径
21.3nm(BET法)、ナトリウム0.8ppm、
カリウム0.5ppm、カルシウム0.07ppm、マ
グネシウム0.1ppm、アルミニウム1.1ppm、
鉄0.1ppm、銅0.005ppm、ニッケル0.0
02ppmであった。また濾過速度は5g/秒であり、
ゲル化により濾過速度が低下した。2ヶ月保存後はゲル
の沈降が見られた。COMPARATIVE EXAMPLE 1 38 parts by weight of tetraethoxysilane was added dropwise to a basic aqueous solvent having a pH of 11.0 in which 0.7 parts by weight of ethylenediamine was dissolved in 190 parts by weight of ion-exchanged water over 2.5 hours.
The mixture was kept at 2 ° C. for 6 hours, and the hydrolysis of tetraethoxysilane and the polymerization of the resulting silicate monomer were carried out in the same system to obtain an aqueous silica sol. In addition, ethanol by-produced during the reaction was distilled off. The components of the silica sol after the ultrafiltration concentration were as follows: SiO 2 concentration 20.5% by weight, pH 9.3, particle size 21.3 nm (BET method), sodium 0.8 ppm,
Potassium 0.5 ppm, calcium 0.07 ppm, magnesium 0.1 ppm, aluminum 1.1 ppm,
0.1 ppm iron, 0.005 ppm copper, 0.0 nickel
It was 02 ppm. The filtration rate is 5 g / sec,
Gelation reduced the filtration rate. After storage for 2 months, gel sedimentation was observed.
【0026】[0026]
【発明の効果】本発明の効果は、アルカリ金属や多価金
属等の不純物の極めて少なく、凝集ゲルが少なく安定な
水性シリカゾルの製造方法を提供したことにある。The effect of the present invention is to provide a method for producing a stable aqueous silica sol having a very small amount of impurities such as alkali metals and polyvalent metals and a small amount of aggregated gel.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 花ヶ崎 満 東京都荒川区東尾久7丁目2番35号 旭電 化工業株式会社内 Fターム(参考) 4G072 AA28 CC01 GG03 HH30 JJ11 JJ13 JJ14 KK03 KK15 LL06 MM01 MM21 PP11 PP17 RR05 RR12 RR15 UU01 UU17 UU30 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mitsuru Hanagasaki 7-35 Higashiogu, Arakawa-ku, Tokyo Asahi Denka Kogyo Co., Ltd. F-term (reference) 4G072 AA28 CC01 GG03 HH30 JJ11 JJ13 JJ14 KK03 KK15 LL06 MM01 MM21 PP11 PP17 RR05 RR12 RR15 UU01 UU17 UU30
Claims (4)
加え、加水分解処理を行い、珪酸モノマーを得たのち、
該珪酸モノマーを、塩基性の水性溶媒中に加え、重合処
理を行うことを特徴とする水性シリカゾルの製造方法。1. An alkoxysilane is added to an acidic aqueous solvent and subjected to a hydrolysis treatment to obtain a silicate monomer.
A method for producing an aqueous silica sol, comprising adding the silicate monomer to a basic aqueous solvent and performing a polymerization treatment.
合処理時に除去することを特徴とする請求項1に記載の
水性シリカゾルの製造方法。2. The method for producing an aqueous silica sol according to claim 1, wherein alcohol produced as a by-product of the hydrolysis is removed during the polymerization treatment.
5の範囲として行うことを特徴とする請求項1または2
に記載の水性シリカゾルの製造方法。3. The polymerization treatment is carried out by adjusting the pH of the system to 8.5-11.
5. The method according to claim 1, wherein the step is performed within a range of 5.
The method for producing an aqueous silica sol according to the above.
の95%を下回らないように調整しながら行うことを特
徴とする請求項1ないし3のいずれか1項に記載の水性
シリカゾルの製造方法。4. The aqueous silica sol according to claim 1, wherein the polymerization treatment is carried out while adjusting the volume of the system so as not to be less than 95% at the start of the polymerization treatment. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11167973A JP2001002411A (en) | 1999-06-15 | 1999-06-15 | Production of aqueous silica sol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11167973A JP2001002411A (en) | 1999-06-15 | 1999-06-15 | Production of aqueous silica sol |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001002411A true JP2001002411A (en) | 2001-01-09 |
Family
ID=15859463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11167973A Pending JP2001002411A (en) | 1999-06-15 | 1999-06-15 | Production of aqueous silica sol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001002411A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011252A1 (en) * | 2004-07-26 | 2006-02-02 | Fuso Chemical Co. Ltd. | Silica sol and process for producing the same |
WO2008123373A1 (en) * | 2007-03-27 | 2008-10-16 | Fuso Chemical Co., Ltd. | Colloidal silica, and method for production thereof |
JP2009184856A (en) * | 2008-02-04 | 2009-08-20 | Nippon Chem Ind Co Ltd | Colloidal silica composed of silica particles with fixed ethylenediamine |
JP2009263484A (en) * | 2008-04-24 | 2009-11-12 | Nippon Chem Ind Co Ltd | Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same |
WO2010035613A1 (en) * | 2008-09-26 | 2010-04-01 | 扶桑化学工業株式会社 | Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same |
JP2011201719A (en) * | 2010-03-25 | 2011-10-13 | Fuso Chemical Co Ltd | Method for adjusting secondary particle size of colloidal silica |
JP2016124715A (en) * | 2014-12-26 | 2016-07-11 | 三菱マテリアル株式会社 | Silica sol fluid dispersion and silica porous film-forming composition as well as silica porous film |
JP2019172558A (en) * | 2018-03-26 | 2019-10-10 | 三菱ケミカル株式会社 | Method for producing silica sol |
-
1999
- 1999-06-15 JP JP11167973A patent/JP2001002411A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011252A1 (en) * | 2004-07-26 | 2006-02-02 | Fuso Chemical Co. Ltd. | Silica sol and process for producing the same |
JP2012211080A (en) * | 2007-03-27 | 2012-11-01 | Fuso Chemical Co Ltd | Method for producing colloidal silica |
WO2008123373A1 (en) * | 2007-03-27 | 2008-10-16 | Fuso Chemical Co., Ltd. | Colloidal silica, and method for production thereof |
US9550683B2 (en) | 2007-03-27 | 2017-01-24 | Fuso Chemical Co., Ltd. | Colloidal silica, and method for production thereof |
JPWO2008123373A1 (en) * | 2007-03-27 | 2010-07-15 | 扶桑化学工業株式会社 | Colloidal silica and method for producing the same |
KR101484795B1 (en) * | 2007-03-27 | 2015-01-20 | 후소카가쿠코교 가부시키가이샤 | Colloidal silica, and method for production thereof |
JP2009184856A (en) * | 2008-02-04 | 2009-08-20 | Nippon Chem Ind Co Ltd | Colloidal silica composed of silica particles with fixed ethylenediamine |
JP2009263484A (en) * | 2008-04-24 | 2009-11-12 | Nippon Chem Ind Co Ltd | Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same |
US8529787B2 (en) | 2008-09-26 | 2013-09-10 | Fuso Chemical Co., Ltd. | Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same |
KR101626179B1 (en) | 2008-09-26 | 2016-05-31 | 후소카가쿠코교 가부시키가이샤 | Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same |
WO2010035613A1 (en) * | 2008-09-26 | 2010-04-01 | 扶桑化学工業株式会社 | Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same |
JP2011201719A (en) * | 2010-03-25 | 2011-10-13 | Fuso Chemical Co Ltd | Method for adjusting secondary particle size of colloidal silica |
JP2016124715A (en) * | 2014-12-26 | 2016-07-11 | 三菱マテリアル株式会社 | Silica sol fluid dispersion and silica porous film-forming composition as well as silica porous film |
JP2019172558A (en) * | 2018-03-26 | 2019-10-10 | 三菱ケミカル株式会社 | Method for producing silica sol |
JP7234536B2 (en) | 2018-03-26 | 2023-03-08 | 三菱ケミカル株式会社 | Method for producing silica sol |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI476150B (en) | Nodular silica sol and method of producing the same | |
TWI436947B (en) | Colloidal silica and process for producing the same | |
JPWO2015087965A1 (en) | Silica particles, production method thereof and silica sol | |
JPH05338B2 (en) | ||
Lazareva et al. | Synthesis of high-purity silica nanoparticles by sol-gel method | |
JP3584485B2 (en) | Method for producing silica sol | |
JP6011804B2 (en) | Method for producing silica sol | |
JPH06199515A (en) | Production of acidic silica sol | |
JP2001002411A (en) | Production of aqueous silica sol | |
JP2926915B2 (en) | Elongated silica sol and method for producing the same | |
JP2508713B2 (en) | Method for producing high purity large particle size silica sol | |
JP5431120B2 (en) | Method for producing colloidal silica | |
JP3758391B2 (en) | High-purity silica aqueous sol and method for producing the same | |
JP3225553B2 (en) | Method for producing high-purity aqueous silica sol | |
JP5405024B2 (en) | Colloidal silica composed of silica particles with ethylenediamine immobilized | |
JP5905767B2 (en) | Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability | |
JP3225549B2 (en) | Production method of high purity aqueous silica sol | |
JP4936720B2 (en) | Anisotropic shaped alumina hydrate sol and process for producing the same | |
JPH05139717A (en) | Production of spherical silica particles | |
JP2021134098A (en) | Silica fine particle fluid dispersion and method for producing the same | |
JP5405023B2 (en) | Colloidal silica composed of silica particles with imidazole immobilized | |
JP7470079B2 (en) | Method for producing a dispersion of spinous alumina-silica composite fine particles | |
JP5405025B2 (en) | Colloidal silica composed of silica particles with immobilized arginine | |
JP5086828B2 (en) | Colloidal silica consisting of silica particles with immobilized piperidine | |
JPH0455970B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060220 |