JP2001000828A - Decomposition method and device provided with adsorption electrode - Google Patents

Decomposition method and device provided with adsorption electrode

Info

Publication number
JP2001000828A
JP2001000828A JP17565299A JP17565299A JP2001000828A JP 2001000828 A JP2001000828 A JP 2001000828A JP 17565299 A JP17565299 A JP 17565299A JP 17565299 A JP17565299 A JP 17565299A JP 2001000828 A JP2001000828 A JP 2001000828A
Authority
JP
Japan
Prior art keywords
electrode
decomposition
light
decomposed
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17565299A
Other languages
Japanese (ja)
Inventor
Akira Kuriyama
朗 栗山
Kinya Kato
欽也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17565299A priority Critical patent/JP2001000828A/en
Publication of JP2001000828A publication Critical patent/JP2001000828A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To efficiently decompose while avoiding the secondary environmental pollution due to the compd. formed resulting from decomposition by adsorbing a subject material to be decomposed to an electrode and also decomposing the subject material to be decomposed under photoirradiation by using the functional water generated near the electrode by electrolysis. SOLUTION: An ion exchange membrane 13 is provided at the inside of a decomposition tank main body 11 consisting of a light-transmissive material such as glass. An adsorption electrode 12 consisting of an electrically conductive adsorptive material is disposed similarly and connected at the positive electrode side of a power source device 18 and used as an anode at the time of electrolysis. Moreover, a cathode 16 consisting of platinum or the like is disposed at the reverse side to the adsorption electrode 12 and connected at a negative electrode side of the power source device 18. Then the subject material to be decomposed is charge from a bubbler 15 disposed at the lower part of the adsorption electrode 12 immersed in an aq. soln. containing electrolyte and adsorbed to the electrically conductive adsorptive material in the adsorption electrode 12. Thereafter, light is applied from a light irradiation means 14 and simultaneously the electrolysis is executed by charging the power source of the power source device 18 to form the functional water and to decompose the material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はハロゲン化脂肪族炭
化水素化合物の分解方法およびそれに用いる装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing a halogenated aliphatic hydrocarbon compound and an apparatus used therefor.

【0002】[0002]

【従来の技術】近年までの産業技術の発展に伴い様々な
有機化合物、例えばハロゲン化脂肪族炭化水素が膨大に
使用され、その廃棄処理は深刻な問題となってきてい
る。また使用済みの各種のハロゲン化脂肪族炭化水素
が、自然環境を汚染するなどの環境問題を引き起こして
おり、その解決に多大な努力が払われている。
2. Description of the Related Art A variety of organic compounds, for example, halogenated aliphatic hydrocarbons, have been used enormously with the recent development of industrial technology, and their disposal has become a serious problem. In addition, various kinds of used halogenated aliphatic hydrocarbons cause environmental problems such as polluting the natural environment, and great efforts have been made to solve them.

【0003】例えば、トリクロロエチレン(TCE)やテ
トラクロロエチレン(PCE)などの塩素化脂肪族炭化水
素は、金属部品、半導体部品、衣料などの洗浄溶剤や反
応溶剤として種々の産業で広くかつ大量に使用されてき
た。
[0003] For example, chlorinated aliphatic hydrocarbons such as trichlorethylene (TCE) and tetrachloroethylene (PCE) have been widely and widely used in various industries as cleaning solvents and reaction solvents for metal parts, semiconductor parts, and clothing. Was.

【0004】しかしこれら化合物の変異原性や発ガン性
など生体への毒性が指摘されて以来、これら化合物の使
用撤廃とともにこれまで使ってきた溶剤を処理して無害
化することが求められている。また、既に自然環境に漏
洩したこれら化合物は河川や地下水や土壌の汚染を引き
起こしており、自然環境に拡散したこれら汚染物質を経
済的かつ効率的に浄化する技術が望まれている。そして
そのための種々の技術が提案されている。
However, since the toxicity of these compounds to living organisms such as mutagenicity and carcinogenicity has been pointed out, it has been required to eliminate the use of these compounds and to treat the solvents used so far to render them harmless. . In addition, these compounds that have already leaked into the natural environment cause pollution of rivers, groundwater, and soil, and a technique for economically and efficiently purifying these pollutants that have diffused into the natural environment is desired. Various techniques have been proposed for that purpose.

【0005】例えば塩素化脂肪族炭化水素化合物の分解
方法の例としては、燃焼処理する方法が挙げられる。こ
の方法は比較的簡便であるが、燃焼過程で塩素化脂肪族
炭化水素の分解生成物である塩化水素、塩素などが他の
有機物と反応し、ポリ塩化ビフェニルやダイオキシンな
どの、より有毒な物質を排出する可能性が懸念される。
またエネルギー的に考えても高温処理が欠点である。
[0005] For example, as an example of a method for decomposing chlorinated aliphatic hydrocarbon compounds, there is a method of burning. Although this method is relatively simple, the decomposition products of chlorinated aliphatic hydrocarbons, such as hydrogen chloride and chlorine, react with other organic substances during the combustion process, resulting in more toxic substances such as polychlorinated biphenyls and dioxins. There is a concern about the possibility of emissions.
High temperature treatment is a disadvantage even in terms of energy.

【0006】塩素化脂肪族炭化水素化合物の分解装置の
他の例として酸化剤や触媒を用いる方法が挙げられ、具
体的には例えばオゾンで分解する方法(特開平3-382
97号公報)、高温高圧下で湿式酸化分解する方法およ
び過酸化水素や鉄塩で酸化分解する方法(特開昭60-2
61590号公報)などが知られている。
As another example of the apparatus for decomposing chlorinated aliphatic hydrocarbon compounds, there is a method using an oxidizing agent or a catalyst. Specifically, for example, a method of decomposing with ozone (JP-A-3-382)
No. 97), a method of wet oxidative decomposition under high temperature and high pressure, and a method of oxidative decomposition with hydrogen peroxide or iron salt (Japanese Patent Application Laid-Open No. 60-2).
No. 61590).

【0007】また酸化剤として次亜塩素酸ナトリウムを
用いる方法も提案され(米国特許公報第5611642
号)、また、次亜塩素酸ナトリウムと紫外線照射と組み
合わせる手法が提案されている(米国特許公報第558
2741号)。
A method using sodium hypochlorite as an oxidizing agent has also been proposed (US Pat. No. 5,611,642).
No. 558), and a method of combining sodium hypochlorite with ultraviolet irradiation.
No. 2741).

【0008】酸化チタンなどの酸化物半導体微粒子から
なる光触媒と液状の塩素化脂肪族炭化水素をアルカリ条
件下で懸濁して光照射により分解する方法も知られてい
る(特開平7-144137号公報)。また、白金系、ア
ルミナ系、ジルコニア系などの酸化物を用いて酸化分解
を行なう触媒法も知られている(市村博司ら:同上:特開
平6-31135号公報)。
A method is also known in which a photocatalyst comprising fine particles of an oxide semiconductor such as titanium oxide and a liquid chlorinated aliphatic hydrocarbon are suspended under alkaline conditions and decomposed by light irradiation (Japanese Patent Application Laid-Open No. 7-141373). ). In addition, a catalyst method of performing oxidative decomposition using an oxide such as a platinum-based, alumina-based, or zirconia-based oxide is also known (Hiroshi Ichimura et al .: Ditto: JP-A-6-31135).

【0009】さらに塩素化脂肪族化合物の分解方法とし
て酸化剤を用いずに気相で紫外線を照射させる光分解法
が既に試みられている(関廣二ら:「地下水・土壌汚染の
現状と対策」日本水環境学会関西支部編、環境技術研究
協会、1955:特開平8-243351号公報)。
Further, as a method for decomposing chlorinated aliphatic compounds, a photodecomposition method of irradiating ultraviolet rays in a gas phase without using an oxidizing agent has already been attempted (Sekihiro et al .: "Present state and countermeasures of groundwater and soil pollution"). Japan Society on Water Environment Kansai Chapter, Environmental Technology Research Association, 1955: JP-A-8-243351).

【0010】TCEやPCEなどの塩素化脂肪族炭化水
素は微生物により好気的あるいは嫌気的に分解されるこ
とが知られており、このような工程を利用して分解ある
いは浄化を行なうことが試みられている。
[0010] It is known that chlorinated aliphatic hydrocarbons such as TCE and PCE are decomposed aerobically or anaerobically by microorganisms. Have been.

【0011】また活性炭やゼオライトなどの吸着材に低
沸点有機物を吸着させて除去する方法が特開平5-26
9346号公報や特開平5-068845号公報に開示
されている。これらの方法は、吸着した汚染物質の処理
には触れていないが、鉄系多孔体に有機塩素化合物を吸
着させて分解する方法が特開平5-000290、00
0291、000292各号公報に開示されている。こ
こでは、トリクロロエチレンなどの有機塩素化合物を含
む排水に過酸化水素水を添加し、鉄系多孔体を設置した
処理装置の中を循環させながら曝気することで吸着酸化
分解を行なっている。
A method for removing low boiling organic substances by adsorbing them on an adsorbent such as activated carbon or zeolite is disclosed in Japanese Patent Laid-Open No. 5-26.
No. 9346 and JP-A-5-068845. These methods do not mention the treatment of adsorbed contaminants, but JP-A-5-000290, 00 discloses a method in which an organic chlorine compound is adsorbed on an iron-based porous body to decompose the same.
Nos. 0291 and 000292. Here, hydrogen peroxide solution is added to wastewater containing an organic chlorine compound such as trichloroethylene, and the mixture is aerated while being circulated in a treatment apparatus provided with an iron-based porous body to perform adsorption oxidative decomposition.

【0012】さらに、触媒を多孔体にして排水を処理す
る方法が特開平5-317716号公報に開示されてい
る。ここでは、鉄の酸化物に、コバルト、ニッケル、セ
リウム、銀、金、白金、パラジウム、ロジウム、ルテニ
ウムおよびイリジウムの中に少なくとも1種の元素を含
有させるものを焼成して得られた多孔体を触媒に、これ
に吸着した窒素含有化合物、硫黄含有化合物、有機ハロ
ゲン化合物を湿式酸化している。
Further, a method of treating waste water by using a porous catalyst is disclosed in Japanese Patent Application Laid-Open No. 5-317716. Here, a porous body obtained by firing an oxide of iron containing at least one element in cobalt, nickel, cerium, silver, gold, platinum, palladium, rhodium, ruthenium and iridium is used. Nitrogen-containing compounds, sulfur-containing compounds, and organic halogen compounds adsorbed on the catalyst are subjected to wet oxidation.

【0013】[0013]

【発明が解決しようとしている課題】本発明者は上記し
た様な種々のハロゲン化脂肪族炭化水素化合物の分解方
法について検討した結果、分解の為の複雑な装置が必要
であったり、分解生成物の更なる無害化処理等が必要で
あるなど、いずれも問題点を包含しており、あるいは包
含していると予想されることから、より問題点が少な
く、環境に優しいハロゲン化脂肪族炭化水素化合物及び
芳香族化合物の分解のための技術が必要であるとの結論
に至った。
The inventors of the present invention have studied the methods for decomposing various halogenated aliphatic hydrocarbon compounds as described above. As a result, a complicated apparatus for decomposition is required, All of them contain or are expected to contain problems, such as the need for further detoxification treatment, so there are fewer problems and environmentally friendly halogenated aliphatic hydrocarbons It was concluded that techniques for the decomposition of compounds and aromatics were needed.

【0014】本発明は、本発明者らによる新たな知見に
基づきなされたものであり、その目的は、より環境に優
しく、分解によって生成する化合物が新たな環境汚染を
引き起こしてしまう可能性がより低く、ハロゲン化脂肪
族炭化水素化合物の効率的な分解が可能な方法およびそ
れに用いる装置を提供することにある。
[0014] The present invention has been made based on new findings by the present inventors, and its object is to be more environmentally friendly, and it is more likely that compounds generated by decomposition will cause new environmental pollution. An object of the present invention is to provide a method capable of efficiently decomposing halogenated aliphatic hydrocarbon compounds at a low cost and an apparatus used for the method.

【0015】上記のような課題の達成を目的として検討
を行なったところ、殺菌効果(特開平1-180293号
公報)や半導体ウエハー上の汚染物の洗浄効果(特開平7
-051675号公報)を有することが報告されている水
の電気分解によって得られる機能水、例えば酸性水が、
光の照射を行なうことでハロゲン化脂肪族炭化水素化合
物の分解能が著しく促進される事実を見出した。
Investigations were made to achieve the above-mentioned problems. As a result, a sterilizing effect (Japanese Patent Application Laid-Open No. 1-180293) and an effect of cleaning contaminants on a semiconductor wafer (Japanese Patent Application Laid-Open No.
Functional water obtained by electrolysis of water reported to have, for example, acidic water,
It has been found that irradiation of light significantly enhances the resolution of halogenated aliphatic hydrocarbon compounds.

【0016】さらに、この光を照射した機能水によるハ
ロゲン化脂肪族炭化水素化合物の分解の速度は非常に高
速ではあるが、分解反応が化学反応である以上分解対象
物質の濃度が低下するにしたがい分解効率が落ちること
に注目し、一度吸着濃縮してから分解することで高い効
率を維持できること、更には、分解対象物質が吸着して
いる吸着材自身を電極にして電気分解を行ない分解対象
物質を脱着させるとともに、電解機能水を発生させるこ
とで、脱着のために必要な手段を省略して効率的な分解
ができることを見出し、本発明に至った。
Further, the rate of decomposition of the halogenated aliphatic hydrocarbon compound by the functional water irradiated with the light is very high, but as the decomposition reaction is a chemical reaction, as the concentration of the substance to be decomposed decreases. Focusing on the fact that the decomposition efficiency decreases, high efficiency can be maintained by once adsorbing and concentrating and then decomposing.Furthermore, the decomposition target substance is decomposed by performing electrolysis using the adsorbent itself to which the decomposition target substance is adsorbed as an electrode. It has been found that by desorbing and decomposing water and generating electrolytically functional water, it is possible to omit means necessary for desorption and to perform efficient decomposition, and have reached the present invention.

【0017】[0017]

【課題を解決するための手段】すなわち、本発明は、吸
着性表面を有する電極と、分解対象物質としてのハロゲ
ン化脂肪族炭化水素化合物を接触させて、該分解対象物
質を該電極の吸着性表面に吸着させる吸着工程と、該分
解対象物質が吸着している電極を、分解槽中の電解質水
溶液中に対極とともに配置し、該電極を陽極とし、該対
極を陰極として、該電解質水溶液の電気分解を行ない、
該電極に吸着している分解対象物質を該電解質水溶液中
に脱着させるとともに、該電気分解により該電極付近に
生じる機能水によって光照射下に該分解対象物質を分解
する分解工程とを有することを特徴とする分解対象物質
の分解方法についてのものである。
That is, according to the present invention, an electrode having an adsorptive surface is brought into contact with a halogenated aliphatic hydrocarbon compound as a substance to be decomposed so that the substance to be decomposed is adsorbed on the electrode. An adsorption step of adsorbing the substance to be decomposed on the surface, an electrode on which the substance to be decomposed is adsorbed is disposed together with a counter electrode in an aqueous electrolyte solution in a decomposition tank, and the electrode is used as an anode; Perform disassembly,
Decomposing the substance to be decomposed adsorbed on the electrode into the aqueous electrolyte solution, and decomposing the substance to be decomposed under light irradiation by functional water generated near the electrode by the electrolysis. It is about the method of decomposing the characteristic decomposition target substance.

【0018】また、本発明は、分解槽と、分解対象物質
としてのハロゲン化脂肪族炭化水素化合物を該分解槽に
供給する手段と、該分解対象物質を吸着並びに脱着しう
る多孔質表面を有する吸着材からなる吸着手段、並びに
電解質水溶液の電気分解により該分解対象物質を光照射
下で分解する機能水を生成する手段を兼ねる、電極と、
光を照射し該機能水による分解反応を起こさせる手段
と、該電気分解を行なうための該電極の対極と、を有す
ることを特徴とする分解対象物質の分解装置についての
ものである。
The present invention also has a cracking tank, means for supplying a halogenated aliphatic hydrocarbon compound as a substance to be decomposed to the cracking tank, and a porous surface capable of adsorbing and desorbing the substance to be decomposed. An electrode, which also serves as a means for generating functional water that decomposes the substance to be decomposed under light irradiation by electrolysis of an aqueous solution of an electrolyte and an electrolytic solution of an adsorbent,
An apparatus for decomposing a substance to be decomposed, comprising: means for irradiating light to cause a decomposition reaction by the functional water; and a counter electrode of the electrode for performing the electrolysis.

【0019】[0019]

【発明の実施の形態】(導電性吸着材について)本発明で
用いうる分解対象物質の吸着用電極は、分解対象物質を
吸着する性質をもった固体で、導電性があり(好ましく
は体積抵抗率は10-3Ωm以下)、電気分解によって生
成する塩素イオンなどによって腐食されず、必要時にお
ける分解対象物の脱着が可能な導電性吸着材からなる表
面を有するものであれば良い。このような性質をもった
ものとしては、例えば、木材などのセルロース質物質や
キチン質物質を炭化処理して作られ、炭化水素化合物な
どの吸着に一般的に用いられる活性炭、活性炭素繊維、
多孔質金属などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION (Conductive adsorbent) The electrode for adsorbing a substance to be decomposed which can be used in the present invention is a solid having a property of adsorbing the substance to be decomposed, having conductivity (preferably volume resistance). The rate may be 10 −3 Ωm or less), as long as it has a surface made of a conductive adsorbent that is not corroded by chlorine ions generated by electrolysis and can detach and attach a decomposition target when necessary. As those having such properties, for example, activated carbon, activated carbon fiber, which is made by carbonizing a cellulosic substance or chitinous substance such as wood and is generally used for adsorption of hydrocarbon compounds, etc.
Porous metals and the like can be mentioned.

【0020】活性炭、活性炭素繊維を構成するグラファ
イトの体積抵抗率は10-5Ωm程度で金属には劣るもの
の電気分解用の電極としては問題ない。これらをリボン
状または柱状に加工するか何かに充填した状態で両端の
電気抵抗が100Ω以下であれば、吸着材であると同時
に、機能水生成用の電極として使用することができる。
Activated carbon and graphite constituting activated carbon fibers have a volume resistivity of about 10 −5 Ωm, which is inferior to metals, but does not pose any problem as an electrode for electrolysis. If these are processed into a ribbon shape or a column shape or filled into something and the electric resistance at both ends is 100Ω or less, they can be used as an adsorbent and at the same time as an electrode for generating functional water.

【0021】中でも一般的に用いられる活性炭は、比表
面積が 300〜3000m2/g、孔径が30〜300オングス
トローム程度で、気相中のTCEなら自重の10倍程度
吸着するといわれている。また、本発明者らが実験した
ところ、液中に溶けたTCEの場合、TCE量の400
倍程度の活性炭を入れればその吸着作用により液のTC
E濃度は環境基準である0.03mg/L以下になる。ま
た、この吸着量はTCEのみの水溶液の場合でも他に不
純物がある場合でも変わらなかった。
Among them, activated carbon generally used has a specific surface area of 300 to 3000 m 2 / g and a pore diameter of about 30 to 300 angstroms, and it is said that TCE in a gas phase adsorbs about 10 times its own weight. Further, when the present inventors conducted an experiment, it was found that in the case of TCE dissolved in
If the amount of activated carbon is about twice as high, TC
The E concentration falls below the environmental standard of 0.03 mg / L. Further, the amount of adsorption did not change in the case of the aqueous solution of TCE alone or in the case of other impurities.

【0022】このため、使用し始めたばかりの活性炭な
ら断面積約1.5cm2ほどのパイプに10gほどできるだ
け隙間のできないように充填し、数mg/Lの濃度のTC
E水溶液を10mL/minの速度で流しても数百時間の
間、流出側の濃度を環境基準値以下にし続けることがで
きる計算になる。またこのときの上端と下端の間の電気
抵抗は10Ωほどである。
For this reason, activated carbon which has just started to be used is filled into a pipe having a cross-sectional area of about 1.5 cm 2 so that about 10 g of the pipe is formed with as little gap as possible, and a TC of a concentration of several mg / L is used.
Even when the aqueous solution E is flowed at a rate of 10 mL / min, the concentration at the outflow side can be kept below the environmental standard value for several hundred hours. At this time, the electric resistance between the upper end and the lower end is about 10Ω.

【0023】現在では、様々な活性炭素繊維が開発され
ており、これらを布状や不織布状に加工した活性炭シー
トやさらにカートリッジ形状にしたものなどがあるが、
装置にこれらを組み込んでもよい。これらの吸着材に吸
着したハロゲン化脂肪族炭化水素化合物または芳香族化
合物は電気分解の際の発熱で脱着するが、脱着速度が遅
い場合は吸着材自身または機能水を加熱する、高温の媒
体を接触させる、マイクロ波を照射するといった方法が
ある。
At present, various activated carbon fibers have been developed, and there are activated carbon sheets obtained by processing them into a cloth shape or a nonwoven fabric shape, and those obtained in a cartridge shape.
These may be incorporated into the device. Halogenated aliphatic hydrocarbon compounds or aromatic compounds adsorbed on these adsorbents are desorbed by heat generated during electrolysis, but if the desorption rate is slow, a high-temperature medium that heats the adsorbent itself or functional water is used. There are methods such as contact and microwave irradiation.

【0024】多孔質金属は、鉄やアルミナなどの微粉末
を焼成したものが使えるが、金属が直接塩素ガス及び塩
素イオンにさらされるため、ステンレス微粉末や鉄にコ
バルト、ニッケル、セリウム、銀、金、白金、パラジウ
ムなどの元素を含有したもののような耐腐食性金属の微
粉末を焼成したものならなお良い。
As the porous metal, fired fine powder such as iron or alumina can be used. However, since the metal is directly exposed to chlorine gas and chlorine ions, cobalt, nickel, cerium, silver, It is more preferable to sinter a fine powder of a corrosion-resistant metal such as one containing elements such as gold, platinum and palladium.

【0025】これらの体積抵抗率は10-7Ωm以下であ
り電極としては問題ない。また発明者らが多孔質ステン
レスで実験したところ、気相中のTCEなら自重と同程
度吸着し、温度を100℃に上昇させると脱着すること
がわかった。
These have a volume resistivity of 10 −7 Ωm or less, which is not a problem as an electrode. In addition, when the inventors conducted experiments on porous stainless steel, it was found that TCE in the gas phase adsorbed to the same degree as its own weight, and desorbed when the temperature was increased to 100 ° C.

【0026】(電解機能水)水の電気分解によって生成す
る機能水とは、例えば電解質(例えば、塩化ナトリウム
や塩化カリウムなど)を原水に溶解し、この電解質溶液
に対して一対の電極を有する水槽内で電気分解を行なう
ことによってその陽極近傍で得ることができ、水素イオ
ン濃度(pH値)が1以上4以下、作用電極をプラチナ電
極とし参照電極を銀-塩化銀としたときの酸化還元電位
が 800mV以上 1500mV以下、かつ塩素濃度が5mg
/L以上150mg/L以下の性状をもつ水を指す。
(Electrolytic functional water) Functional water generated by electrolysis of water is, for example, a water tank having an electrolyte (eg, sodium chloride, potassium chloride, etc.) dissolved in raw water and having a pair of electrodes for the electrolyte solution. It can be obtained in the vicinity of the anode by performing electrolysis in the reactor. The oxidation-reduction potential when the hydrogen ion concentration (pH value) is 1 or more and 4 or less, the working electrode is platinum, and the reference electrode is silver-silver chloride. Is 800mV or more and 1500mV or less, and chlorine concentration is 5mg
It refers to water having a property of not less than / L and not more than 150 mg / L.

【0027】上記したような特性の機能水を製造する場
合、電解前の原水中の電解質の濃度は例えば塩化ナトリ
ウムでは 20mg/L〜2000mg/Lが望ましく、そのときの
電解電流値は2A〜20Aとするのが望ましい。
When producing functional water having the above-mentioned characteristics, the concentration of the electrolyte in the raw water before electrolysis is desirably 20 mg / L to 2000 mg / L for sodium chloride, for example, and the electrolytic current value at that time is 2 A to 20 A. It is desirable that

【0028】またこのとき一対の電極間に隔膜を配置し
た場合、陽極近傍に生成される酸性水と陰極近傍に生成
するアルカリ性の水との混合を防ぐことができ、ハロゲ
ン化脂肪族炭化水素化合物または芳香族化合物の分解を
より効率的に行なうことができる酸性水を得ることがで
きる。該隔膜としては例えばイオン交換膜などが好適に
用いられる。
When a diaphragm is disposed between the pair of electrodes at this time, it is possible to prevent mixing of the acidic water generated near the anode and the alkaline water generated near the cathode, and the halogenated aliphatic hydrocarbon compound Alternatively, it is possible to obtain acidic water that can more efficiently decompose the aromatic compound. As the diaphragm, for example, an ion exchange membrane is preferably used.

【0029】(機能水-混合電解水)さらに上記酸性電解
水以外にも、酸性水1に対して、酸性電解水を作成する
電気分解の際に陰極付近で得られるアルカリ性水を1以
下の割合で混合して得られる、水素イオン濃度(pH値)
が4以上10以下、作用電極をプラチナ電極とし参照電
極を銀-塩化銀としたときの酸化還元電位が 300mV以
上 1100mV以下、かつ塩素濃度が2mg/L以上100
mg/L以下の性状をもつ混合電解水も酸性電解水に準じ
た分解能を奏する。
(Functional Water-Mixed Electrolyzed Water) In addition to the above-mentioned acidic electrolyzed water, the ratio of alkaline water obtained in the vicinity of the cathode at the time of electrolysis for producing acidic electrolyzed water to 1 or less per 1 acidic water is 1 or less. Hydrogen ion concentration (pH value) obtained by mixing
The oxidation-reduction potential when the working electrode is a platinum electrode and the reference electrode is silver-silver chloride is 300 mV or more and 1100 mV or less, and the chlorine concentration is 2 mg / L or more and 100 or less.
Mixed electrolyzed water having a property of not more than mg / L also exhibits resolution equivalent to acidic electrolyzed water.

【0030】(分解対象ハロゲン化脂肪族炭化水素化合
物)本発明における分解対象物質はハロゲン化脂肪族炭
化水素化合物である。
(Decomposition target halogenated aliphatic hydrocarbon compound) The decomposition target substance in the present invention is a halogenated aliphatic hydrocarbon compound.

【0031】そしてハロゲン化脂肪族炭化水素化合物の
例としては、塩素原子で置換された脂肪族炭化水素化合
物が挙げられる。
Examples of the halogenated aliphatic hydrocarbon compound include an aliphatic hydrocarbon compound substituted with a chlorine atom.

【0032】具体的には、トリクロロメタン、ジクロロ
メタン、1,1-ジクロロエチレン、cis-1,2-ジクロロ
エチレン、trans-1,2-ジクロロエチレン、トリクロロ
エチレン、テトラクロロエチレン、1,1,1-トリクロ
ロエタン等が挙げられる。
Specifically, trichloromethane, dichloromethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 1,1,1-trichloroethane and the like can be mentioned. .

【0033】そして上記した種々の化合物の分解後の機
能水中には現状において環境に悪影響を与えるとされて
いるような有機化合物の新たな生成は例えばマススペク
トル等によっても全く観察されない。
In the functional water after the decomposition of the above-mentioned various compounds, no new generation of organic compounds which is considered to have a bad influence on the environment at present is not observed at all even by mass spectrometry.

【0034】(光源について)機能水による分解対象物質
の分解の際に照射する光としては、例えば、波長300
〜500nm、特には350〜450nmの光がハロゲン
化脂肪族炭化水素化合物の分解には特に好ましい。
(Regarding Light Source) As the light to be irradiated when the decomposition target substance is decomposed by the functional water, for example, a light having a wavelength of 300
Light of up to 500 nm, especially 350 to 450 nm, is particularly preferred for the decomposition of halogenated aliphatic hydrocarbon compounds.

【0035】また機能水もしくは次亜塩素酸水溶液と分
解対象ハロゲン化脂肪族炭化水素化合物との混合物に対
する光照射強度は分解効率という観点から、10μW/c
2〜10mW/cm2、特には50μW/cm2〜5mW/c
2が好ましい。具体的には、例えば波長365nmにピ
ークをもつ光源では数百μW/cm2(300nm〜400n
m間を測定)の強度で実用上十分の分解が進む。
The light irradiation intensity on a mixture of functional water or an aqueous solution of hypochlorous acid and a halogenated aliphatic hydrocarbon compound to be decomposed is 10 μW / c from the viewpoint of decomposition efficiency.
m 2 to 10 mW / cm 2 , especially 50 μW / cm 2 to 5 mW / c
m 2 is preferred. Specifically, for example, a light source having a peak at a wavelength of 365 nm has a wavelength of several hundred μW / cm 2 (300 nm to 400 nm).
(measured between m).

【0036】そしてこのような光の光源としては自然光
(例えば、太陽光など)または人工光(水銀ランプ、ブラ
ックライト、カラー蛍光ランプなど)を用いることがで
きる。
The light source of such light is natural light.
(Eg, sunlight) or artificial light (mercury lamp, black light, color fluorescent lamp, etc.) can be used.

【0037】電解機能水とハロゲン化脂肪族炭化水素化
合物との混合物に対する光の照射は、機能水に対して直
接行なってもよく、あるいはガラスやプラスティックな
どでできている透明な容器を介して行なってもよい。ま
た機能水を生成する過程で光照射を行なってもよいし、
生成後に照射してもよい。
The irradiation of the mixture of the electrolysis functional water and the halogenated aliphatic hydrocarbon compound with light may be performed directly on the functional water, or may be performed through a transparent container made of glass or plastic. You may. Light irradiation may be performed in the process of generating functional water,
Irradiation may be performed after generation.

【0038】いずれにしろ、分解を著しく促進するに
は、機能水とハロゲン化脂肪族炭化水素化合物の接触時
に光照射を行なうのが望ましい。また機能水を用いる本
実施態様においては、光として人体に影響の大きい25
0nmの紫外光を用いる必要がない。
In any case, in order to remarkably accelerate the decomposition, it is desirable to perform light irradiation at the time of contact between the functional water and the halogenated aliphatic hydrocarbon compound. In this embodiment using functional water, light having a large effect on the human body as light is used.
There is no need to use 0 nm ultraviolet light.

【0039】上記の各種機能水はすべて光照射によって
分解が進む。このとき、例えば塩化ナトリウムなどの電
解質を含む水の電気分解によって生成する機能水は、次
亜塩素酸、もしくは次亜塩素酸イオンを含み、この次亜
塩素酸あるいは次亜塩素酸イオンが光の作用によって塩
素ラジカルや水酸基ラジカルやスーパーオキサイド等の
分解活性成分を誘起し、ハロゲン化脂肪族炭化水素化合
物の分解反応を促進するものと考えられる。
The above-mentioned various functional waters are all decomposed by light irradiation. At this time, for example, functional water generated by electrolysis of water containing an electrolyte such as sodium chloride contains hypochlorous acid or hypochlorite ion, and this hypochlorous acid or hypochlorite ion is used as a light source. It is considered that the action induces a decomposition active component such as a chlorine radical, a hydroxyl radical, or superoxide, and promotes a decomposition reaction of the halogenated aliphatic hydrocarbon compound.

【0040】電気分解によって陽極近傍に生成する機能
水によるハロゲン化脂肪族炭化水素化合物の分解に寄与
していると考えられる機能水中の次亜塩素酸の量は、p
Hと塩素濃度から求めることができる。さらにまた電解
によって生成する機能水を例えば純水などによって希釈
したものを、ハロゲン化脂肪族炭化水素化合物の分解に
供することもできる。
The amount of hypochlorous acid in the functional water, which is considered to contribute to the decomposition of the halogenated aliphatic hydrocarbon compound by the functional water generated near the anode by the electrolysis, is p
It can be determined from H and chlorine concentration. Further, the functional water generated by electrolysis, for example, diluted with pure water or the like, can be used for decomposition of the halogenated aliphatic hydrocarbon compound.

【0041】例えば、10ppm程度のTCE汚染水なら
ばpH2.1、酸化還元電位1150mV、残留塩素濃度54
mg/Lの機能水を水で5倍以上希釈した機能水であって
も4時間で0.03ppm以下まで分解が進む。また、希
釈した機能水と同じ性状の機能水を直接生成してもよ
い。
For example, for TCE-contaminated water of about 10 ppm, the pH is 2.1, the oxidation-reduction potential is 1150 mV, and the residual chlorine concentration is 54.
Even with functional water obtained by diluting functional water of mg / L 5 times or more with water, the decomposition proceeds to 0.03 ppm or less in 4 hours. Alternatively, functional water having the same properties as the diluted functional water may be directly generated.

【0042】(方法及び装置の具体例)以下に機能水を用
いた分解対象物質の分解方法およびそれに用いる分解装
置の一例について説明する。本実施態様において光照射
下での機能水と分解対象物質との接触は、常温常圧下で
行なえばよく、特殊な設備や環境は不要である。
(Specific Examples of Method and Apparatus) Hereinafter, an example of a method for decomposing a substance to be decomposed using functional water and an example of a decomposition apparatus used for the method will be described. In this embodiment, the contact between the functional water and the substance to be decomposed under light irradiation may be performed at normal temperature and normal pressure, and no special equipment or environment is required.

【0043】分解装置の構成としては例えば下記の1)
や2)が挙げられる。
The structure of the decomposing device is, for example, 1)
And 2).

【0044】1)分解装置を電解質を含んだ水で満たし
この中に吸着電極を沈め、分解されるべき分解対象物質
を含むガスを吸着電極に接触吸着させたのち、光照射下
で電気分解を行なって機能水を発生させ、電気分解によ
る発熱で脱着した分解対象物質を光機構水分解するよう
にした構成:図1および図2は本発明に係る分解対象物
質の分解装置の一実施態様の概略図である。図1におい
て11がガラスやプラスチックなど光を通すもので作ら
れた分解槽本体である。また、図2は分解槽本体の上面
図である。
1) The decomposition device is filled with water containing an electrolyte, the adsorption electrode is submerged in this, and the gas containing the substance to be decomposed is contacted and adsorbed on the adsorption electrode. 1 to 2 to generate functional water and decompose the substance to be desorbed by the heat generated by the electrolysis. It is a schematic diagram. In FIG. 1, reference numeral 11 denotes a decomposition tank main body made of a light-transmitting material such as glass or plastic. FIG. 2 is a top view of the decomposition tank main body.

【0045】この本体内部に弦の面にはイオン交換膜1
3が張ってあり内部に導電性吸着材として粒状活性炭や
活性炭素シートなどの吸着材が充填された本体よりやや
内径の小さい半円柱状の吸着電極が設置してあり、これ
は電源装置18のプラス側につながっていて電気分解の
際に陽極になる。
Inside the main body, the ion exchange membrane 1
3, a semi-cylindrical adsorption electrode having a slightly smaller inner diameter than the main body filled with an adsorbent such as a granular activated carbon or an activated carbon sheet as a conductive adsorbent is installed therein. It is connected to the positive side and becomes an anode during electrolysis.

【0046】また、分解槽11の吸着電極と反対側には
白金などで作られた陰極16が設置してあり、電源装置
18のマイナス側につながっている。分解対象物質は電
解質を含む水溶液に浸された吸着電極の下部に設けられ
たバブラ15から投入され吸着電極内の導電性吸着材に
吸着される。
A cathode 16 made of platinum or the like is installed on the opposite side of the decomposition tank 11 from the adsorption electrode, and is connected to the minus side of the power supply 18. The substance to be decomposed is introduced from a bubbler 15 provided below the adsorption electrode immersed in an aqueous solution containing an electrolyte, and is adsorbed by a conductive adsorbent in the adsorption electrode.

【0047】装置排気ガスから分解対象物質が検出され
る前に流入ガスを止め吸着を終了する。この後、分解槽
11の吸着電極側に設置した光照射手段14により光を
照射すると同時に電源装置18の電源を入れ電気分解を
行ない機能水を生成して、分解を行なう。
Before the substance to be decomposed is detected from the exhaust gas of the apparatus, the inflowing gas is stopped and the adsorption is terminated. Thereafter, light is irradiated by the light irradiation means 14 provided on the adsorption electrode side of the decomposition tank 11, and at the same time, the power of the power supply device 18 is turned on to perform electrolysis to generate functional water and decompose.

【0048】なお、分解槽11は、分解対象物質や機能
水の分解作用成分が外界に漏れ出ないように密閉された
構造になっている。
The decomposition tank 11 has a sealed structure so that the substance to be decomposed and the decomposing component of the functional water do not leak to the outside.

【0049】分解槽11内の分解対象物質濃度を測定し
て検出限界以下になると自動的に電源装置と光照射手段
の電源が切れる構成にしてもよい。
The power of the power supply device and the light irradiation means may be automatically turned off when the concentration of the substance to be decomposed in the decomposition tank 11 is measured and becomes lower than the detection limit.

【0050】2)分解対象物質を含むガスまたは液に吸
着電極をさらして分解対象物質を吸着させ、これを電解
質を含んだ水で満たされた分解装置に沈め、光照射下で
電気分解を行なって機能水を発生させ電気分解による発
熱で脱着した分解対象物質を光機構水分解するようにし
た構成:本発明に係る分解対象物質の分解装置の一実施
態様の概略図は、図1、2とほぼ同じである。
2) Exposure of the adsorption electrode to a gas or liquid containing the substance to be decomposed causes the substance to be decomposed to be adsorbed, and the substance is submerged in a decomposition apparatus filled with water containing an electrolyte, and electrolysis is performed under light irradiation. A configuration in which the decomposition target substance desorbed by the heat generated by electrolysis by generating functional water is subjected to water splitting by an optical mechanism: a schematic diagram of an embodiment of the decomposition apparatus of the decomposition target substance according to the present invention is shown in FIGS. Is almost the same as

【0051】吸着電極を分解槽11から取り出し、分解
対象物質を含むガスが通るパイプの途中に取り付ける
か、分解対象物質を含むガスまたは液が存在する容器内
に入れるかして一定時間放置する。
The adsorption electrode is taken out of the decomposition tank 11 and is attached to the middle of a pipe through which the gas containing the substance to be decomposed passes, or is placed in a container containing the gas or liquid containing the substance to be decomposed, and left for a predetermined time.

【0052】十分、分解対象物質を吸着させた後、吸着
電極を図1、2のように分解槽11に設置し、分解槽1
1の吸着電極側に設置した光照射手段14により光を照
射すると同時に電源装置18の電源を入れ電気分解を行
ない機能水を生成して、分解を行なう。
After the substance to be decomposed is sufficiently adsorbed, the adsorption electrode is set in the decomposition tank 11 as shown in FIGS.
At the same time, light is irradiated by the light irradiating means 14 installed on the side of the adsorption electrode 1 and the power of the power supply 18 is turned on to perform electrolysis to generate functional water and decompose.

【0053】吸着電極を複数用意して、一定時間毎に交
換して連続的に吸着を行ない、吸着後に分解槽11に挿
入して脱着分解して再生する構成にしてもよい。
A configuration may be adopted in which a plurality of adsorption electrodes are prepared, exchanged at fixed time intervals to perform adsorption continuously, inserted into the decomposition tank 11 after adsorption, desorbed and decomposed, and regenerated.

【0054】分解槽11内の分解対象物質濃度を測定し
て検出限界以下になると自動的に電源装置と光照射手段
の電源が切れる構成にしてもよい。
A configuration may be adopted in which the power of the power supply device and the light irradiation means is automatically turned off when the concentration of the substance to be decomposed in the decomposition tank 11 is measured below the detection limit.

【0055】[0055]

【実施例】本発明の詳細を図示した実施例に基づき説明
する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.

【0056】[実施例1]吸着と脱着分解を同じ装置で行
なうTCE汚染ガスの連続分解 図1に示す分解装置を用いてTCE汚染ガスを分解し
た。まず始めに、外径2.5cm、内径2.0cm、高さ5
0cmの半円柱の弦の部分の面にイオン交換膜を、下部
の半円部分にはステンレスメッシュを張り付けその中に
約100gの粒状活性炭(関東化学製)を詰め、さらに上
部にも下部と同様の半円形ステンレスメッシュを張り付
け吸着電極とした。
Example 1 Continuous Decomposition of TCE Contaminated Gas in which Adsorption and Desorption Decomposition are Performed by the Same Apparatus The TCE contaminated gas was decomposed using the decomposition apparatus shown in FIG. First, outer diameter 2.5cm, inner diameter 2.0cm, height 5
Ion exchange membrane is attached to the surface of the chord part of the 0 cm semi-cylindrical column, stainless steel mesh is attached to the lower semi-circular portion, and about 100 g of granular activated carbon (manufactured by Kanto Kagaku) is packed in it. A semicircular stainless steel mesh was attached to the adsorption electrode.

【0057】これと幅1cm、長さ50cmのリボン状の
白金を図1、2のように内径3cm、高さ100cmのガ
ラス製の分解槽11に挿入した。次に、分解槽11に8
0cmの水位になるまで 1000mg/Lの濃度の塩化ナトリ
ウム水溶液を入れ、吸着電極および白金電極を完全に水
没させた。
This and a ribbon-shaped platinum having a width of 1 cm and a length of 50 cm were inserted into a glass decomposition tank 11 having an inner diameter of 3 cm and a height of 100 cm as shown in FIGS. Next, 8
An aqueous sodium chloride solution having a concentration of 1000 mg / L was introduced until the water level reached 0 cm, and the adsorption electrode and the platinum electrode were completely submerged.

【0058】事前にこの吸着電極を陽極側、白金電極を
陰極側にして50Vの電圧をかけて分解装置が生成する
電解機能水のpHおよび酸化還元電位を、pHメーター
((株)東興化学研究所、TCX-90iおよびKP900-
2N)および導電率メーター((株)東興化学研究所、TC
X-90iおよびKM900-2N)で、また塩素濃度を塩
素試験紙(アドバンテック)により測定したところ、pH
2.6、酸化還元電位900mV、残留塩素濃度35mg
/Lであった。
The pH and oxidation-reduction potential of the electrolyzed functional water generated by the decomposer are measured in advance by applying a voltage of 50 V with the adsorption electrode on the anode side and the platinum electrode on the cathode side.
(Toko Chemical Laboratory, TCX-90i and KP900-
2N) and conductivity meter (Toko Chemical Laboratory Co., Ltd., TC
X-90i and KM900-2N), and the chlorine concentration was measured with chlorine test paper (Advantech).
2.6, redox potential 900mV, residual chlorine concentration 35mg
/ L.

【0059】分解槽11底部の管をパーミエータ((株)
ガステック、PB-1B)に接続し、分解槽11下部のバ
ルブを開いて、パーミエータで生成した10.4ppm(vo
l.)のTCE含有空気をバブラ15を通して吸着電極1
2下部から50mL/minの流速で送気した。
A pipe at the bottom of the decomposition tank 11 is connected to a permeator (manufactured by
Gas Tech, PB-1B), open the valve at the bottom of the decomposition tank 11 and generate 10.4 ppm (vo
l.) through the bubbler 15 to the adsorption electrode 1
2. Air was supplied from the lower part at a flow rate of 50 mL / min.

【0060】この間、定期的に分解槽11から排出され
たガスをガスタイトシリンジでサンプリングし、排出ガ
ス中のTCE濃度をガスクロマトグラフィ(島津製作所
(株)製、FID検出器付きGC-14B、カラムはJ&W
製DB-624)で測定したが、常に検出限界以下でTC
Eが吸着電極に吸着されていることが確認された。
During this period, the gas discharged from the decomposition tank 11 is periodically sampled with a gas tight syringe, and the TCE concentration in the discharged gas is measured by gas chromatography (Shimadzu Corporation).
GC-14B with FID detector, column is J & W
DB-624).
It was confirmed that E was adsorbed on the adsorption electrode.

【0061】6時間TCE含有ガスを送気しおよそ1m
gを吸着電極に吸着させたところで、パーミエータから
TCE含有ガスを供給したまま、電源装置18の電源を
入れ、分解槽11の5cm横に上下2本設置した光照射
手段14であるブラックライト蛍光ランプ(商品名:FL
10BLB:株式会社東芝製、10W)で光を照射した。
このとき、電極間電流は6A、照射光量は0.1〜0.4
mW/m2であった。
Approximately 1 m of TCE-containing gas was supplied for 6 hours.
When g was adsorbed on the adsorption electrode, while the TCE-containing gas was being supplied from the permeator, the power supply of the power supply device 18 was turned on, and two black light fluorescent lamps 14 as light irradiation means 14 were installed 5 cm above and below the decomposition tank 11. (Product name: FL
10BLB: Toshiba Corporation, 10W).
At this time, the current between the electrodes was 6 A, and the irradiation light amount was 0.1 to 0.4.
mW / m 2 .

【0062】電気分解を行ない光照射をしている間、排
出ガス中のTCE濃度をガスクロマトグラフィで測定し
たが、電気分解開始5分後に0.05ppm(vol.)検出さ
れた他は常に検出限界以下であった。
During the electrolysis and the light irradiation, the TCE concentration in the exhaust gas was measured by gas chromatography. The detection limit was always set to 0.05 ppm (vol.) 5 minutes after the start of the electrolysis. It was below.

【0063】約2時間後、電源装置および蛍光ランプの
電源を切った。このとき、分解槽内水温は75℃であっ
た。この後しばらくの間、パーミエータを切り離し、T
CEを含まない空気を送気し、排出ガスのTCE濃度を
ガスクロマトグラフィで測定したが、常に検出限界以下
で脱着したTCEは見られなかった。
After about 2 hours, the power supply and the fluorescent lamp were turned off. At this time, the water temperature in the decomposition tank was 75 ° C. After a while, the permeator is disconnected and T
Air containing no CE was supplied, and the TCE concentration of the exhaust gas was measured by gas chromatography. As a result, no TCE desorbed below the detection limit was always observed.

【0064】この実験により、8時間生成し供給された
TCE含有ガス中のTCEは吸着電極にすべて吸着さ
れ、2時間の分解装置を動かすことで分解できることが
わかった。
From this experiment, it was found that all TCE in the TCE-containing gas generated and supplied for 8 hours was adsorbed on the adsorption electrode and decomposed by operating the decomposition apparatus for 2 hours.

【0065】[比較例1]ブラックライト蛍光ランプを点
灯しなかった以外は実施例1と同様の実験を行なった。
このとき、吸着操作を行なった6時間は排出ガスからT
CEは検出されなかったが、6時間目に電気分解を開始
してからは、水温の上昇と共に排出ガス中のTCE濃度
が上昇し、水温が73℃になった8時間目には28.3p
pm(vol.)に達した。
Comparative Example 1 The same experiment as in Example 1 was performed except that the black light fluorescent lamp was not turned on.
At this time, the exhaust gas exhausted for 6 hours during which the adsorption operation was performed.
Although CE was not detected, after the electrolysis was started at 6 hours, the TCE concentration in the exhaust gas increased as the water temperature increased, and 28.3p at 8 hours when the water temperature reached 73 ° C.
pm (vol.).

【0066】ブラックライト蛍光ランプを点灯せず、光
機能水分解ができない状態にすると、電気分解によって
水温および吸着電極の温度上昇により吸着電極に吸着し
ていたTCEが脱着して排出ガス中に混入することがわ
かった。
When the black light fluorescent lamp is not turned on and the photofunctional water decomposition cannot be performed, the TCE adsorbed on the adsorption electrode is desorbed by the electrolysis due to a rise in the water temperature and the temperature of the adsorption electrode, and is mixed into the exhaust gas. I found out.

【0067】[実施例2]活性炭素繊維を用いた装置で行
なうTCE汚染ガスの連続分解 活性炭の代わりに活性炭素繊維(商品名:カーボロンペー
パー、日本カーボン(株)製)を充填して吸着電極を作成
した以外は実施例1と同様の実験を行なった。このと
き、吸着操作を行なっていた間、電気分解を行なってい
た間、電気分解終了後にTCEを含まない空気を送気し
た間ともに、実施例1と同様にTCEは検出されなかっ
た。
Example 2 Continuous Decomposition of TCE Contaminated Gas Performed by Apparatus Using Activated Carbon Fiber Filled and adsorbed with activated carbon fiber (trade name: Carbon Paper, manufactured by Nippon Carbon Co., Ltd.) instead of activated carbon The same experiment as in Example 1 was performed except that the electrodes were formed. At this time, no TCE was detected in the same manner as in Example 1 during the adsorption operation, during the electrolysis, and when the air containing no TCE was supplied after the electrolysis was completed.

【0068】この実験により、吸着電極用の導電性の吸
着材として活性炭の代わりに活性炭素繊維を使うことが
可能だとわかった。
From this experiment, it was found that activated carbon fibers could be used instead of activated carbon as the conductive adsorbent for the adsorption electrode.

【0069】[実施例3]吸着と脱着分解を別の場所で行
なうTCE汚染ガスの連続分解 実施例1で用いたのと同様の吸着電極を2本用意し、ま
ずそのうち1本(吸着電極A)を内径3cm長さ60cmの
半円柱のガラス管内に挿入し、ガラス管の一方の端をパ
ーミエータに接続し、10.4ppm(vol.)の濃度のTC
E含有ガスを50mL/minの流量で8時間流した。この
時、ガラス管のもう一方の端から流出するガスのTCE
濃度をガスクロマトグラフィで測定したが常に検出限界
以下で、ガス中のTCEがすべて吸着電極に吸着されて
いることが確認された。
Example 3 Continuous Decomposition of TCE Contaminated Gas in Which Adsorption and Desorption Decomposition are Performed in Different Locations Two adsorption electrodes similar to those used in Example 1 were prepared, and one of them was first used (adsorption electrode A). ) Is inserted into a semi-cylindrical glass tube having an inner diameter of 3 cm and a length of 60 cm, one end of the glass tube is connected to a permeator, and a TC having a concentration of 10.4 ppm (vol.) Is used.
The E-containing gas was flowed at a flow rate of 50 mL / min for 8 hours. At this time, the TCE of the gas flowing out from the other end of the glass tube
The concentration was measured by gas chromatography, but it was always below the detection limit, and it was confirmed that all TCE in the gas was adsorbed on the adsorption electrode.

【0070】8時間後この吸着電極Aを取り外し、吸着
電極Bに交換した。吸着電極Aは実施例1と同様に図1
のように分解槽11に挿入し、分解槽11下部のバルブ
を閉めた状態で 1000mg/Lの濃度の塩化ナトリウム水
溶液を入れ、吸着電極および白金電極を完全に水没さ
せ、実施例1と同様に電極に電圧をかけブラックライト
蛍光ランプを点灯した。
After 8 hours, the suction electrode A was removed and replaced with the suction electrode B. The adsorption electrode A is the same as in the first embodiment shown in FIG.
Then, a sodium chloride aqueous solution having a concentration of 1000 mg / L was put in a state where the valve at the lower part of the decomposition tank 11 was closed, and the adsorption electrode and the platinum electrode were completely submerged in the same manner as in Example 1. A voltage was applied to the electrodes to turn on the black light fluorescent lamp.

【0071】約2時間後、電源装置および蛍光ランプの
電源を切った。このとき、分解槽内水温は75℃であっ
た。この後、吸着電極Aを分解槽11から取り出し軽く
水洗いして塩化なトリウムを除去した後、水を切った。
After about 2 hours, the power supply and the fluorescent lamp were turned off. At this time, the water temperature in the decomposition tank was 75 ° C. Thereafter, the adsorption electrode A was taken out of the decomposition tank 11 and lightly washed with water to remove thorium chloride, and then drained.

【0072】吸着電極Bで8時間吸着操作をした後、先
に水切りをした吸着電極Aと再度交換し、吸着電極Bを
分解槽11に挿入し2時間脱着分解を行なった。
After performing the adsorption operation with the adsorption electrode B for 8 hours, the adsorption electrode A was replaced again with the previously drained adsorption electrode A, the adsorption electrode B was inserted into the decomposition tank 11, and desorption decomposition was performed for 2 hours.

【0073】両吸着電極による吸着と脱着分解操作を2
回づつ、計32時間行なった。この間、定期的に吸着工
程中の吸着電極の流出ガス、分解工程中の分解槽11の
上部気相部のTCE濃度をガスクロマトグラフィで測定
したが、常に検出限界以下であった。
The adsorption and desorption decomposition operations by both adsorption electrodes are performed in two steps.
Each time was performed for a total of 32 hours. During this period, the outflow gas from the adsorption electrode during the adsorption step and the TCE concentration in the upper gas phase of the decomposition tank 11 during the decomposition step were periodically measured by gas chromatography, but were always below the detection limit.

【0074】この実験により、2本の吸着電極があれ
ば、一方をTCE含有ガスが排出される管に接続してT
CEを吸着し、その間に他方を脱着分解して再生できる
ことがわかった。
According to this experiment, if there were two adsorption electrodes, one of them was connected to a pipe from which the TCE-containing gas was discharged, and
It was found that CE can be adsorbed and the other can be desorbed and decomposed to regenerate in the meantime.

【0075】[実施例4]吸着と脱着分解を別の場所で行
なうTCE汚染水のバッチ分解 実施例1で用いたのと同様の吸着電極を用意し、0.5
mg/Lの濃度のTCE水溶液が2Lが入ったガラス管に完
全に水没させ、TCEが揮発しないようにテフロンパッ
キンの付いた蓋をした。
Example 4 Batch Decomposition of TCE-Contaminated Water in Which Adsorption and Desorption Decomposition are Performed in Different Locations An adsorption electrode similar to that used in Example 1 was prepared, and 0.5 was prepared.
A TCE aqueous solution having a concentration of mg / L was completely submerged in a glass tube containing 2 L, and a lid with Teflon packing was attached so that TCE did not volatilize.

【0076】8時間後この吸着電極を取り外し、ガラス
管内の液を10mLサンプリングして容積27mLのバイ
アル瓶に入れテフロンコートしたブチルゴムで栓をして
23.5℃で30分放置後気相をガスクロマトグラフィ
(島津製作所(株)製、FID検出器付きGC-14B、カ
ラムはJ&W製DB-624)で測定したが、TCE濃度
は検出限界以下で、水溶液中のTCEは吸着電極に吸着
されたことがわかった。
After 8 hours, the adsorption electrode was removed, 10 mL of the liquid in the glass tube was sampled, placed in a 27 mL vial bottle, stoppered with Teflon-coated butyl rubber, left at 23.5 ° C. for 30 minutes, and then gas phase was released. Chromatography
(GC-14B with FID detector, column is J-W DB-624, manufactured by Shimadzu Corporation). TCE concentration was below the detection limit, and TCE in aqueous solution was adsorbed to the adsorption electrode. all right.

【0077】次に、この吸着電極を実施例1と同様に図
1のように分解槽11に挿入し、分解槽11下部のバル
ブを閉めた状態で 1000mg/Lの濃度の塩化ナトリウム
水溶液を入れ、吸着電極および白金電極を完全に水没さ
せ、実施例1と同様に電極に電圧をかけブラックライト
蛍光ランプを点灯した。
Next, the adsorption electrode was inserted into the decomposition tank 11 as shown in FIG. 1 in the same manner as in Example 1, and an aqueous solution of sodium chloride having a concentration of 1000 mg / L was charged with the valve at the bottom of the decomposition tank 11 closed. Then, the adsorption electrode and the platinum electrode were completely submerged, and a voltage was applied to the electrodes in the same manner as in Example 1 to turn on the black light fluorescent lamp.

【0078】約2時間後、電源装置および蛍光ランプの
電源を切った。このとき、分解槽内水温は75℃であっ
た。この後しばらくの間、分解槽11の下部バルブを開
き、TCEを含まない空気を送気し、排出ガスのTCE
濃度をガスクロマトグラフィで測定したが、常に検出限
界以下でTCEは見られなかった。
After about 2 hours, the power supply and the fluorescent lamp were turned off. At this time, the water temperature in the decomposition tank was 75 ° C. After that, for a while, the lower valve of the decomposition tank 11 is opened, and air containing no TCE is supplied, and TCE of exhaust gas is supplied.
The concentration was measured by gas chromatography, and TCE was not always observed below the detection limit.

【0079】再度、この吸着電極をTCE水溶液の入っ
たガラス管に水没させ、8時間後に分解工程にかけた
が、結果は同じであった。
The adsorption electrode was submerged again in a glass tube containing a TCE aqueous solution, and was subjected to a decomposition step 8 hours later. The result was the same.

【0080】この実験により、TCE水溶液中に吸着電
極を水没させることでTCEは吸着電極にすべて吸着さ
れ、2時間分解装置を動かすことで吸着したTCEを分
解し電極を再生できることがわかった。
From this experiment, it was found that all the TCE was adsorbed on the adsorption electrode by submerging the adsorption electrode in the TCE aqueous solution, and the adsorbed TCE could be decomposed and the electrode regenerated by operating the decomposition device for 2 hours.

【0081】[実施例5]吸着と脱着分解を別の場所で行
なうTCE汚染水の連続分解 実施例1で用いたのと同様の吸着電極を2本用意し、ま
ずそのうち1本(吸着電極A)を内径3cm長さ60cmの
半円柱のガラス管内に挿入し、ガラス管の一方の端を
0.5mg/Lの濃度のTCE水溶液が10mL/minの流量
で流れる管に接続し、TCE水溶液を4時間流した。こ
の時、ガラス管のもう一方の端から流出する水溶液をバ
イアル瓶に取り、気相のTCE濃度をガスクロマトグラ
フィで測定したが常に検出限界以下で、水溶液中のTC
Eがすべて吸着電極に吸着されていることを確かめた。
Example 5 Continuous Decomposition of TCE-Contaminated Water in Which Adsorption and Desorption Decomposition are Performed at Different Locations Two adsorption electrodes similar to those used in Example 1 were prepared, and one of them was first used (adsorption electrode A). ) Is inserted into a semi-cylindrical glass tube having an inner diameter of 3 cm and a length of 60 cm, and one end of the glass tube is connected to a tube through which a TCE aqueous solution having a concentration of 0.5 mg / L flows at a flow rate of 10 mL / min. Run for 4 hours. At this time, the aqueous solution flowing out from the other end of the glass tube was taken into a vial, and the TCE concentration in the gas phase was measured by gas chromatography.
It was confirmed that all E was adsorbed on the adsorption electrode.

【0082】4時間後にこの吸着電極Aを取り外し、吸
着電極Bに交換した。吸着電極Aは実施例1と同様に図
1のように分解槽11に挿入し、分解槽11下部のバル
ブを閉めた状態で 1000mg/Lの濃度の塩化ナトリウム
水溶液を入れ、吸着電極および白金電極を完全に水没さ
せ、実施例1と同様に電極に電圧をかけブラックライト
蛍光ランプを点灯した。
After 4 hours, the suction electrode A was removed and replaced with the suction electrode B. The adsorption electrode A was inserted into the decomposition tank 11 as shown in FIG. 1 in the same manner as in Example 1, and a 1000 mg / L aqueous sodium chloride solution was charged with the valve at the bottom of the decomposition tank 11 closed, and the adsorption electrode and the platinum electrode Was completely submerged, a voltage was applied to the electrodes in the same manner as in Example 1, and the black light fluorescent lamp was turned on.

【0083】約2時間後、電源装置および蛍光ランプの
電源を切った。このとき、分解槽内水温は75℃であっ
た。この後、吸着電極Aを分解槽11から取り出し軽く
水洗いして塩化ナトリウムを除去した後、水を切った。
After about 2 hours, the power supply and the fluorescent lamp were turned off. At this time, the water temperature in the decomposition tank was 75 ° C. Thereafter, the adsorption electrode A was taken out of the decomposition tank 11 and lightly washed with water to remove sodium chloride, and then drained.

【0084】吸着電極Bで4時間吸着操作をした後、先
に水切りをした吸着電極Aと再度交換し、吸着電極Bを
分解槽11に挿入し2時間脱着分解を行なった。
After performing the adsorption operation with the adsorption electrode B for 4 hours, the adsorption electrode A was replaced again with the previously drained adsorption electrode A, and the adsorption electrode B was inserted into the decomposition tank 11 and desorbed and decomposed for 2 hours.

【0085】両吸着電極による吸着と脱着分解操作を2
回づつ、計32時間行なった。この間、定期的に吸着工
程中の吸着電極の流出水、分解工程中の分解槽11の液
上部のTCE濃度をガスクロマトグラフィで測定した
が、常に検出限界以下であった。
The adsorption and desorption decomposition operations by both adsorption electrodes are
Each time was performed for a total of 32 hours. During this period, the effluent from the adsorption electrode during the adsorption step and the TCE concentration in the upper part of the decomposition tank 11 during the decomposition step were periodically measured by gas chromatography, but were always below the detection limit.

【0086】この実験により、2本の吸着電極があれ
ば、一方をTCE水溶液が排出される管に接続してTC
Eを吸着し、そのあいだに他方を脱着分解して再生でき
ることがわかった。
According to this experiment, if there were two adsorption electrodes, one of them was connected to a tube from which the TCE aqueous solution was discharged, and the TC
It was found that E could be adsorbed and the other could be desorbed and decomposed during that time to regenerate.

【0087】[0087]

【発明の効果】本発明により、分解対象物質の分解処理
において、処理装置排気または排水中の低濃度の分解対
象物質をさらに環境基準値以下に下げる際にコストのか
かる効率の悪い運転(処理装置の分解槽を大きくしたり
滞留時間を延長したり、同様の処理装置を多段に繋いだ
り)を行なうことなく、汚染ガスまたは汚染水中の分解
対象物質を一度導電性の吸着材からなる吸着電極に吸着
濃縮し、これを陽極にして塩化ナトリウム水溶液中で電
気分解し光を照射することで容易に環境基準値以下の排
水または排気可能な濃度に下げることができるようにな
った。
According to the present invention, in the process of decomposing a substance to be decomposed, a costly and inefficient operation is required to further reduce the low-concentration substance to be decomposed in the exhaust gas or wastewater to below the environmental standard value. Without contaminating the polluting gas or polluted water into the adsorption electrode consisting of a conductive adsorbent without increasing the size of the decomposition tank, extending the residence time, or connecting similar processing equipment in multiple stages. By concentrating by adsorption, using this as an anode, electrolysis in an aqueous solution of sodium chloride, and irradiation with light, the concentration can be easily reduced to a level lower than the environmental standard value for drainage or exhaustion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る分解対象物質の分解装置の一実施
態様の概略図である。
FIG. 1 is a schematic view of one embodiment of an apparatus for decomposing a substance to be decomposed according to the present invention.

【図2】図1の分解槽本体の上面図である。FIG. 2 is a top view of the decomposition tank main body of FIG.

【符号の説明】[Explanation of symbols]

11 分解槽 12 (陽極側)吸着電極 13 イオン交換膜 14 光照射手段 15 (分解対象物質含有気体曝気用)バブラ 16 陰極(白金電極) 17 電線 18 (電気分解用)電源装置 DESCRIPTION OF SYMBOLS 11 Decomposition tank 12 (Anode side) Adsorption electrode 13 Ion exchange membrane 14 Light irradiation means 15 (For aeration of gas containing decomposition target substances) Bubbler 16 Cathode (platinum electrode) 17 Electric wire 18 (Electrolysis) Power supply device

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/463 C02F 1/46 102 1/465 C07B 37/06 Fターム(参考) 4D002 AA21 BA02 BA08 BA09 DA02 DA03 DA17 DA41 DA44 EA02 4D012 CA11 CB01 CB03 CG01 CG02 CG03 CG04 CH04 CH10 4D061 DA08 DB19 DC09 EA03 EA08 EB02 EB12 EB13 EB22 EB23 EB24 EB26 EB29 EB30 EB33 EB35 EB37 EB39 ED12 ED13 ED17 FA06 GA21 GA22 GA23 GC18 4H006 AA02 AC13 BA95 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (reference) C02F 1/463 C02F 1/46 102 1/465 C07B 37/06 F term (reference) 4D002 AA21 BA02 BA08 BA09 DA02 DA03 DA17 DA41 DA44 EA02 4D012 CA11 CB01 CB03 CG01 CG02 CG03 CG04 CH04 CH10 4D061 DA08 DB19 DC09 EA03 EA08 EB02 EB12 EB13 EB22 EB23 EB24 EB26 EB29 EB30 EB33 EB35 EB37 EB39 ED12 GA13 A23 GA13 A18 GA23

Claims (28)

【特許請求の範囲】[Claims] 【請求項1】 吸着性表面を有する電極と、分解対象物
質としてのハロゲン化脂肪族炭化水素化合物とを接触さ
せて、該分解対象物質を該電極の吸着性表面に吸着させ
る吸着工程と、 該分解対象物質が吸着している電極を、分解槽中の電解
質水溶液中に対極とともに配置し、 該電極を陽極とし、該対極を陰極として、該電解質水溶
液の電気分解を行ない、該電極に吸着している分解対象
物質を該電解質水溶液中に脱着させるとともに、該電気
分解により該電極付近に生じる機能水によって光照射下
に該分解対象物質を分解する分解工程とを有することを
特徴とする分解対象物質の分解方法。
An adsorbing step of contacting an electrode having an adsorptive surface with a halogenated aliphatic hydrocarbon compound as a substance to be decomposed to adsorb the substance to be decomposed on the adsorptive surface of the electrode; The electrode on which the substance to be decomposed is adsorbed is disposed together with the counter electrode in the aqueous electrolyte solution in the decomposition tank, the electrode is used as an anode, and the counter electrode is used as a cathode to perform electrolysis of the aqueous electrolyte solution and adsorb to the electrode. Decomposing the substance to be decomposed into the aqueous electrolyte solution, and decomposing the substance to be decomposed under light irradiation by functional water generated near the electrode by the electrolysis. Decomposition method of the substance.
【請求項2】 前記吸着工程と前記分解工程が同一分解
槽内で行なわれる請求項1に記載の分解方法。
2. The decomposition method according to claim 1, wherein the adsorption step and the decomposition step are performed in the same decomposition tank.
【請求項3】 前記分解対象物質が気体または液体に含
まれた状態として前記電極の吸着性表面との接触に供給
される請求項1または2に記載の分解方法。
3. The decomposition method according to claim 1, wherein the substance to be decomposed is supplied in contact with the adsorptive surface of the electrode in a state of being contained in a gas or a liquid.
【請求項4】 該導電性の吸着材の素材の体積抵抗率が
10-3Ωm以下である請求項1〜3のいずれかに記載の
分解方法。
4. The decomposition method according to claim 1, wherein the material of the conductive adsorbent has a volume resistivity of 10 −3 Ωm or less.
【請求項5】 該導電性の吸着材の表面が多孔質である
請求項1〜4のいずれかに記載の分解方法。
5. The decomposition method according to claim 1, wherein the surface of the conductive adsorbent is porous.
【請求項6】 該導電性の吸着材が活性炭、活性炭素繊
維、多孔質金属の中から選ばれる少なくとも一つである
請求項4または5に記載の分解方法。
6. The decomposition method according to claim 4, wherein the conductive adsorbent is at least one selected from activated carbon, activated carbon fiber, and porous metal.
【請求項7】 該電解質が塩化ナトリウムおよび塩化カ
リウムの少なくとも一方である請求項1〜6のいずれか
に記載の分解方法。
7. The decomposition method according to claim 1, wherein the electrolyte is at least one of sodium chloride and potassium chloride.
【請求項8】 該電解機能水が水素イオン濃度(pH値)
1〜4、酸化還元電位(作用電極:プラチナ電極、参照電
極:銀-塩化銀電極)800〜1500mVおよび塩素濃
度が5〜150mg/Lである請求項1〜7のいずれかに
記載の分解方法。
8. The electrolyzed functional water has a hydrogen ion concentration (pH value).
The decomposition method according to any one of claims 1 to 7, wherein the oxidation-reduction potential (working electrode: platinum electrode, reference electrode: silver-silver chloride electrode) is 800 to 1500 mV, and the chlorine concentration is 5 to 150 mg / L. .
【請求項9】 該機能水が水素イオン濃度(pH値)4〜
10、酸素還元電位(作用電極:プラチナ電極、参照電
極:銀-塩化銀電極)300〜1100mV、および塩素
濃度2〜100mg/Lである請求項1〜7のいずれかに
記載の分解方法。
9. The functional water has a hydrogen ion concentration (pH value) of 4 to 9.
10. The decomposition method according to any one of claims 1 to 7, wherein the oxygen reduction potential (working electrode: platinum electrode, reference electrode: silver-silver chloride electrode) is 300 to 1100 mV, and the chlorine concentration is 2 to 100 mg / L.
【請求項10】 該光が、波長300〜500nmの波
長域の光を含む光である請求項1〜9のいずれかに記載
の分解方法。
10. The decomposition method according to claim 1, wherein the light is light containing light in a wavelength range of 300 to 500 nm.
【請求項11】 該光が、波長350〜450nmの波
長域の光である請求項10に記載の分解方法。
11. The decomposition method according to claim 10, wherein the light is light in a wavelength range of 350 to 450 nm.
【請求項12】 該光の照射量が10μW/cm2〜10
mW/cm2である請求項1〜11のいずれかに記載の分
解方法。
12. The light irradiation amount is 10 μW / cm 2 -10
The decomposition method according to any one of claims 1 to 11, wherein the decomposition method is mW / cm 2 .
【請求項13】 該光の照射量が50μW/cm2〜5m
W/cm2である請求項12に記載の分解方法。
13. The irradiation amount of the light is 50 μW / cm 2 to 5 m.
Decomposition method according to claim 12, which is a W / cm 2.
【請求項14】 該ハロゲン化脂肪族炭化水素が塩素原
子で置換されている脂肪族炭化水素化合物である請求項
1〜13のいずれかに記載の分解方法。
14. The decomposition method according to claim 1, wherein the halogenated aliphatic hydrocarbon is an aliphatic hydrocarbon compound substituted with a chlorine atom.
【請求項15】 該ハロゲン脂肪族炭化水素がトリクロ
ロエチレン、1,1,1-トリクロロエタン、テトラクロ
ロエチレン、1,1-ジクロロエチレン、cis-1,2-ジク
ロロエチレン、trans-1,2-ジクロロエチレン、トリク
ロロメタン(クロロホルム)、及びジクロロメタンの中の
少なくとも一つである請求項14に記載の分解方法。
15. The halogen aliphatic hydrocarbon may be trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, trichloromethane (chloroform ) And at least one of dichloromethane.
【請求項16】 分解槽と、分解対象物質としてのハロ
ゲン化脂肪族炭化水素化合物を該分解槽に供給する手段
と、 該分解対象物質を吸着並びに脱着しうる吸着性表面を有
する吸着手段、並びに電解質水溶液の電気分解により該
分解対象物質を光照射下で分解する機能水を生成する手
段を兼ねる、電極と、 光を照射し該機能水による分解反応を起こさせる手段
と、 該電気分解を行なうための該電極の対極と、 を有することを特徴とする分解対象物質の分解装置。
16. A decomposition tank, means for supplying a halogenated aliphatic hydrocarbon compound as a substance to be decomposed to the decomposition tank, adsorption means having an adsorptive surface capable of adsorbing and desorbing the substance to be decomposed, and An electrode, which also serves as means for generating functional water that decomposes the substance to be decomposed under light irradiation by electrolysis of an aqueous electrolyte solution, means for irradiating light to cause a decomposition reaction by the functional water, and performing the electrolysis And a counter electrode of the electrode for the decomposition.
【請求項17】 前記電極を用いた吸着と脱着並びに前
記分解反応が同一分解槽内で行なわれる請求項16に記
載の分解装置。
17. The decomposition apparatus according to claim 16, wherein the adsorption and desorption using the electrode and the decomposition reaction are performed in the same decomposition tank.
【請求項18】 前記分解対象物質の前記電極の吸着性
表面との接触部分への供給が、気体または液体に含まれ
た状態としてされる請求項16または17に記載の分解
装置。
18. The decomposition apparatus according to claim 16, wherein the supply of the substance to be decomposed to a portion in contact with the adsorptive surface of the electrode is performed in a state of being contained in a gas or a liquid.
【請求項19】 該導電性の吸着材の素材の体積抵抗率
が10-3Ωm以下である請求項16〜18のいずれかに
記載の分解装置。
19. The decomposition apparatus according to claim 16, wherein the material of the conductive adsorbent has a volume resistivity of 10 −3 Ωm or less.
【請求項20】 該導電性の吸着材の表面が多孔質であ
る請求項16〜19のいずれかに記載の分解装置。
20. The decomposition apparatus according to claim 16, wherein the surface of the conductive adsorbent is porous.
【請求項21】 該導電性の吸着材が活性炭、活性炭素
繊維、多孔質金属の中から選ばれる少なくとも一つであ
る請求項19または20記載の分解装置。
21. The decomposition apparatus according to claim 19, wherein the conductive adsorbent is at least one selected from activated carbon, activated carbon fiber, and porous metal.
【請求項22】 該電解質が塩化ナトリウムおよび塩化
カリウムの少なくとも一方である請求項16〜21のい
ずれかに記載の分解装置。
22. The decomposition apparatus according to claim 16, wherein the electrolyte is at least one of sodium chloride and potassium chloride.
【請求項23】 該電解機能水が水素イオン濃度(pH
値)1〜4、酸化還元電位(作用電極:プラチナ電極、参
照電極:銀-塩化銀電極)800〜1500mV、および
塩素濃度が5〜150mg/Lである請求項16〜22の
いずれかに記載の分解装置。
23. The electrolyzed functional water has a hydrogen ion concentration (pH
23) The oxidation-reduction potential (working electrode: platinum electrode, reference electrode: silver-silver chloride electrode) of 800 to 1500 mV, and the chlorine concentration of 5 to 150 mg / L. Decomposition equipment.
【請求項24】 該機能水が水素イオン濃度(pH値)4
〜10、酸化還元電位(作用電極:プラチナ電極、参照電
極:銀-塩化銀電極)300〜1100mV、および塩素
濃度2〜100mg/Lである請求項16〜22のいずれ
かに記載の分解装置。
24. The functional water has a hydrogen ion concentration (pH value) of 4.
23. The decomposition apparatus according to claim 16, wherein the oxidation-reduction potential (working electrode: platinum electrode, reference electrode: silver-silver chloride electrode) is 300 to 1100 mV, and the chlorine concentration is 2 to 100 mg / L.
【請求項25】 該光が、波長300〜500nmの波
長域の光を含む光である請求項16〜24のいずれかに
記載の分解装置。
25. The decomposition apparatus according to claim 16, wherein the light is light including light in a wavelength range of 300 to 500 nm.
【請求項26】 該光が、波長350〜450nmの波
長域の光である請求項25に記載の分解装置。
26. The decomposition apparatus according to claim 25, wherein the light is light in a wavelength range of 350 to 450 nm.
【請求項27】 該光の照射量が10μW/cm2〜10
mW/cm2である請求項16〜26のいずれかに記載の
分解装置。
27. An irradiation amount of said light of 10 μW / cm 2 to 10
The decomposition apparatus according to any one of claims 16 to 26, wherein the decomposition power is mW / cm 2 .
【請求項28】 該光の照射量が50μW/cm2〜5m
W/cm2である請求項27に記載の分解装置。
28. An irradiation amount of the light is 50 μW / cm 2 to 5 m.
Decomposing apparatus according to claim 27 which is a W / cm 2.
JP17565299A 1999-06-22 1999-06-22 Decomposition method and device provided with adsorption electrode Pending JP2001000828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17565299A JP2001000828A (en) 1999-06-22 1999-06-22 Decomposition method and device provided with adsorption electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17565299A JP2001000828A (en) 1999-06-22 1999-06-22 Decomposition method and device provided with adsorption electrode

Publications (1)

Publication Number Publication Date
JP2001000828A true JP2001000828A (en) 2001-01-09

Family

ID=15999851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17565299A Pending JP2001000828A (en) 1999-06-22 1999-06-22 Decomposition method and device provided with adsorption electrode

Country Status (1)

Country Link
JP (1) JP2001000828A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326403A (en) * 2005-05-23 2006-12-07 National Institute Of Advanced Industrial & Technology Method and apparatus for treating water by using porous carbon electrode
WO2006132160A1 (en) * 2005-06-08 2006-12-14 Tanah Process Ltd. METHOD FOR ADJUSTING Ph OF LIQUID AND pH ADJUSTOR
JP2011120967A (en) * 2009-12-08 2011-06-23 Japan Organo Co Ltd Apparatus and method for decomposing organic substance in pure water
US8529737B2 (en) 2008-03-25 2013-09-10 Tanah Process Ltd. Portable device for regulating hardness of drinking water
CN114314737A (en) * 2021-12-28 2022-04-12 北京林业大学 Sewage treatment method and device for synchronous desalination and degradation of organic matters through photoelectric synergistic enhancement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326403A (en) * 2005-05-23 2006-12-07 National Institute Of Advanced Industrial & Technology Method and apparatus for treating water by using porous carbon electrode
JP4553199B2 (en) * 2005-05-23 2010-09-29 独立行政法人産業技術総合研究所 Water treatment method and apparatus using porous carbon electrode
WO2006132160A1 (en) * 2005-06-08 2006-12-14 Tanah Process Ltd. METHOD FOR ADJUSTING Ph OF LIQUID AND pH ADJUSTOR
US8529737B2 (en) 2008-03-25 2013-09-10 Tanah Process Ltd. Portable device for regulating hardness of drinking water
JP2011120967A (en) * 2009-12-08 2011-06-23 Japan Organo Co Ltd Apparatus and method for decomposing organic substance in pure water
CN114314737A (en) * 2021-12-28 2022-04-12 北京林业大学 Sewage treatment method and device for synchronous desalination and degradation of organic matters through photoelectric synergistic enhancement
CN114314737B (en) * 2021-12-28 2022-10-14 北京林业大学 Sewage treatment method and device for synchronous desalination and degradation of organic matters through photoelectric synergistic enhancement

Similar Documents

Publication Publication Date Title
KR100415216B1 (en) Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means
JP3825959B2 (en) Pollutant decomposition method and apparatus
US6616815B2 (en) Method of decomposing halogenated aliphatic hydrocarbon compounds or aromatic compounds and apparatus to be used for the same as well as method of clarifying exhaust gas and apparatus to be used for the same
JP3825958B2 (en) Chlorine-containing gas generator and contaminated gas decomposition apparatus using the chlorine-containing gas generator
JP2004028550A (en) Separation method for separating each substance from mixed gas containing plural substance, and device therefor
US7163615B2 (en) Method of treating substance to be degraded and its apparatus
JP2001000828A (en) Decomposition method and device provided with adsorption electrode
KR20070118668A (en) Method for processing hydrogen sulfide, method for producing hydrogen and photocatalyst reactor
JP2006346258A (en) Washing machine
JP2008272594A (en) Electrolytic reduction dehalogenation method for activated carbon adsorbed organic halide
JP3645061B2 (en) Apparatus for decomposing organic components in aqueous solution and method for decomposing the same
JP2001240560A (en) Decomposition method with absorption process and decomposition apparatus with absorption means
JP2001240559A (en) Decomposition method of organic chlorine compounds and decomposition apparatus therefor
JP2001170204A (en) Contaminant decomposition device and contaminant decomposition method
JP3501719B2 (en) Pollutant decomposition apparatus and method
JP2002136867A (en) Adsorbent regeneration treatment process and equipment for the same
JP2001062469A (en) Decomposition method of pollutant, decomposition device for pollutant, purifying device of groundwater and purifying method of groundwater
JP3466965B2 (en) Method for decomposing halogenated aliphatic hydrocarbon compound or aromatic halogenated hydrocarbon compound, apparatus used therefor, method for purifying exhaust gas, and apparatus used therefor
JP2002001335A (en) Contaminant decomposing equipment and its method
JP3825992B2 (en) Contaminated water and groundwater purification apparatus and method
JP3461312B2 (en) Decomposition method and decomposition apparatus for gaseous halogenated aliphatic hydrocarbon compound or gaseous halogenated aromatic hydrocarbon compound
JP2001062288A (en) Method and device for decomposing pollutant
JP2000354854A (en) Apparatus for purifying polluted environment and recovering method
JPH11179194A (en) Organic compound decomposition method, apparatus to be employed therefor, waste gas purification method, and apparatus to be employed therefor
JP2005103520A (en) Pollutant decomposing method and apparatus used therein