JP2000511922A - Chiral organoborane - Google Patents

Chiral organoborane

Info

Publication number
JP2000511922A
JP2000511922A JP10501309A JP50130998A JP2000511922A JP 2000511922 A JP2000511922 A JP 2000511922A JP 10501309 A JP10501309 A JP 10501309A JP 50130998 A JP50130998 A JP 50130998A JP 2000511922 A JP2000511922 A JP 2000511922A
Authority
JP
Japan
Prior art keywords
compound represented
formula
compound
general formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10501309A
Other languages
Japanese (ja)
Inventor
ボナト,マルク
カゾー,ジヤン―ベルナール
フオレ,ミシエル
カマンカ,ジヤン―マルク
Original Assignee
ソシエテ デエクスパンシヨン シヤンテイフイック エクスパンシア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソシエテ デエクスパンシヨン シヤンテイフイック エクスパンシア filed Critical ソシエテ デエクスパンシヨン シヤンテイフイック エクスパンシア
Publication of JP2000511922A publication Critical patent/JP2000511922A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Steroid Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

(57)【要約】 本発明は、次の一般式(I)及び(II) (式中、R1及びR2は独立して水素原子又はアルキル基もしくはシクロアルキル基を表すか、あるいはR1及びR2は一緒になって二価の飽和炭化水素基を表し;X1はハロゲン原子を表し;且つX2は水素原子又はハロゲン原子を表す)で示されるキラルオルガノボランに関する。本発明はまたかかる化合物の製造方法及びその使用、特に不斉還元剤としての使用に関する。 (57) [Summary] The present invention relates to the following general formulas (I) and (II): (Wherein R 1 and R 2 independently represent a hydrogen atom or an alkyl group or a cycloalkyl group, or R 1 and R 2 together represent a divalent saturated hydrocarbon group; X 1 represents A halogen atom; and X 2 represents a hydrogen atom or a halogen atom). The invention also relates to a process for the preparation of such compounds and their use, especially as asymmetric reducing agents.

Description

【発明の詳細な説明】 キラルオルガノボラン 本発明はキラルオルガノボラン(chiral organoboranes)、その製造方法及びそ の使用特に不斉還元剤としての使用に関する。 すなわち、本発明は次の一般式I及びII (式中、R1及びR2は独立して水素原子又はアルキル基もしくはシクロアルキル 基を表すか、あるいはR1及びR2は一緒になって二価の飽和炭化水素基を表し; X1はハロゲン原子を表し;且つX2は水素原子又はハロゲン原子を表す)で示さ れる化合物を主題とする。 前記の定義において、ハロゲン原子という用語は、弗素原子、塩素原子、臭素 原子又は沃素原子を表し、好ましくは弗素原子、塩素原子及び臭素原子を表す。 アルキル基という用語は、炭素原子を1〜6個有する直鎖又は分岐鎖のアルキル 基を表し、特に炭素原子を1〜4個有するアルキル基、例えばメチル基、エチル 基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基及び tert-ブチル基を表す。 前記の飽和シクロアルキル基は、炭素原子を3〜7個有する基、例えばシクロ プロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘ プチル基又はシクロオクチル基から選択し得、これらの基は低級アルキル基で置 換されていてもよい。 前記の二価の飽和炭化水素基という用語は、炭素原子を6〜8個有し、二環式 の基すなわちビシクロ[5,1,1]、[4,1,2]、[3,1,3]、[4,1,1]、[3,1,2]、[3,1,1 ]、又は[2,1,2]型の基、好ましくはビシクロ[3,1,3]型 の基を表し得る。 また、本発明は、前記の一般式Iで示される化合物の製造方法であって、次の 一般式III で示される化合物を適当な不飽和水素化化合物と反応させて次の式IV (式中、R1及びR2は前記の意義を有する)で示される化合物を製造し、式で示 される化合物を式R'Li(式中、R’は有機基を表す)で示される有機リチウム 化合物と反応させて前記の式Iで示される化合物を製造することを特徴とする前 記の一般式Iで示される化合物の製造方法を主題とする。 前記の適当な不飽和水素化化台物という用語は、二重結合を1個又は2個有す る炭化水素化合物を表す。 前記の有機基という用語は、アルキル基又はアリール基、好ましくはtert-ブ チル基のようなアルキル基を表す。 従って、炭素原子を6〜8個有するシクロアルキルジエンと式IIIで示される 化合物との反応は、前記の式Iで示される化合物であって式中のR1及びR2が一 緒になって炭素原子を6〜8個有する二価の飽和炭化水素基を表す化合物の製造 を可能にする。同様に前記の式Iで示される化合物のホウ素原子上のアルキル基 及び/又はシクロアルキル基は、対 応するアルケン及び/又はシクロアルケンそれぞれを前記の式IIIで示される化 合物と反応させることによって得られる。このことは、式Iで示される化合物で あって式中のR1がアルキル基を表し且つR2がシクロアルキル基を表す化合物が 、前記の式IIIで示される化合物を、所望のシクロアルキル基と同じ個数の炭素 原子を有するアルケンと反応させることによって得られること意味する。もちろ ん、R1とR2は同じ基を表し得る。 さらにまた、本発明は前記の一般式IIで示される化合物の製造方法を主題とす る。前記の一般式IIで示される化合物であって式中のX1が前記の意義を有し且 つX2が水素原子を表す場合の化合物の製造方法は、前記の一般式IIIで示される 化合物を式HX1(式中、X1は前記の意義を有ずする)で示されるハロゲン化水 素1モルと反応させることを特徴とする。前記の一般式IIで示される化合物であ って、式中のX1が前記の意義を有し且つX2がハロゲン原子を表す場合の化合物 の製造方法は、前記の一般式IIIで示される化合物を式HX1で示されるハロゲン 化水素1モル及び式HX2で表されるハロゲン化水素1モルと反応させることを 特徴とする。勿論、X1とX2は同じハロゲン原子を表し得る。 出発化合物IIIは公知であり、ジボランによるか又はジボランとルイス酸との 錯体による2-ミルテニル-1,3-ジチアン(2-myrtenyl 1,3-dithiane)の水素化ホウ 素化(hydroboration)により製造し得る(欧州特許第61408号明細書)。 前記の式I及びIIで示される化合物はこのようにして光学活性形の化合物物II Iから出発して光学活性形で製造し得る。 本発明の化合物は不斉還元剤として有用である。さらにまた、本発明は不斉還 元における前記の式I及びIIで示される化合物の使用を主題とする。本発明の化 合物はケトン又はイミン官能基の立体特異的還元に使用される。ケトン又はイミ ンの立体特異的還元は、該ケトン又はイミンを一般式I又はIIで示される化合物 の鏡像異性体と反応させることからなる。 以下の実施例は本発明を例証することを目的として示すものであり、本発明の 範囲を限定するものではない。実施例1 (-)-化合物II(式中、X1=X2=Cl)の製造 (-)-化合物III3g(11ミリモル)を窒素雰囲気下に100mlフラスコ中の無水エー テル60mlに縣濁した。次いで、得られた縣濁液を冷却浴中で−610℃に冷却し、4 .5N塩化水素エーテル5.6ml(25ミリモル)を迅速に加えた。冷却浴を取り除き、 次いで温度を−10℃で2時間30分保持した。標記化合物が白色粉末の形で沈殿し た。溶媒を減圧除去した。全収率は2-ミルテニル-1,3-ジチアンボランを基準と して計算して83.7%であった。得られた白色固体は無水テトラヒドロフラン20ml に溶解し、そのまま還元に使用した。実施例2 (-)-化合物III 37gを無水テトラヒドロフラン140mlに注加した。温度を0℃に し、シクロオクタジエン20mlをテトラヒドロフラン20mlに溶解した溶液を30分間 にわたって加えた。次いで、反応混合物を還流下で一夜加熱した。反応混合物を −70±5℃に冷却した後に、ペンタンに溶解したt-ブチルリチウムの1.7M溶液8 1mlを45分間にわたって加えた。反応混合物を−70±5℃でさらに2時間保持し 、次いで種々の溶媒と過剰量のシクロオクタジエンとを減圧下に周囲温度で除去 した。得られた残留物をMTBE 100mlに溶解した。この溶液を周囲温度で2時間攪 拌した後に−20℃でデカント(decanting)し、液層を分離した。得られた白色固 体状残留物を周囲温度でヘプタン100mlで洗浄し、次いで直ちに濾過して除去し た。最後にさらに周囲温度でMTBE100mlで洗浄した後に、減圧下で乾燥し、白色 結晶45.9gを得た(収率86.4%)。これらの結晶をアルゴン雰囲気下に4℃で保持 し、遮光した。実施例3 実施例1で得られた化合物IIの下記に示す還元反応における使用 無水テトラヒドロフラン10mlに溶解した化合物 1g(3.15ミリモル)を、 実施例1で得られた(-)-化合物113.7g(11ミリモル)を無水テトラビドロフラン20 mlに溶解した溶液に、窒素雰囲気下に0℃で加えた。得られた溶液を25℃で48時 間攪拌した。次いで、溶媒を減圧下で除去した。得られた残留物をエチルエーテ ル60mlに溶解し、ジエタノールアミン2.6g(25ミリモル)を加えた。不溶物を濾過 して除去し、得られた濾液を濃縮乾固した。 得られた残留物は化合物 0.6gであり、これは(+)-体75%、(-)-体25%の 鏡像異性体組成を有していた。実施例4 実施例2で得られた化合物Iの前記の化合物→化合物の還元反応における 使用 前記で得られた化合物I 10gを不活性雰囲気下で無水テトラヒドロフラン45ml に溶解した。次いで得られた反応混合物をサーモスタット制御を使用して約−78 ℃の温度に保持し、次いでテトラヒドロフラン10mlに希釈した化合物 0.5当量 を30分間にわたって加えた。反応を約−78℃で2時問続けた。過剰量の水素化ホ ウ素すなわち化合物Iをアルコールで中和した。得られた反応混合物を減圧乾燥 した。得られた残留物をエチルエーテル25mlに再溶解し、有機層を中性のpHにな るまで水洗した。得られた有機層を硫酸ナトリウムを用いて脱水した後に、濾過 し、減圧乾燥して混合物8.9gを得、これをシリカカラムを用いてクロマ トグラフィーにより分離した。得られた化合物2の鏡像異性体比は(+)-体96%、 (-)-体4%であった。実施例5 れる化合物の化合物→化合物の還元反応における使用 a) (+)- 化合物2の製造 THF(1280ml)に溶解した(-)-ミルテニルジチアン214.2gを9-ボラビシクロ[3,3, 1]ノナン(9-bora bicyclo[3,3,1]nonane)に加えた。溶解した後に、得られた反 応混合物を還流下で一夜加熱して反応を完結させ、次いで−80℃に冷却した。次 いで、tert-ブチルリチウムを−60〜−80℃の温度を維持しながら1時間以内に 加えた。次いで、化合物(100g)を15分未満内に徐々に加えた。得られた混合物 を−60℃で2時間保持した。この時点で化合物は完全に転化した。 前記の実施例のようにして処理した後に、(+)-化合物をヘキサン(530ml)か ら再結晶して(-)-体98.2%/(+)-体1.8%の組成をもつ化合物 52.1gを得た。 b) (-)- 化合物2の製造 (+)-化合物III39.5gをTHF(240ml)に溶解した。得られた溶液を0℃に冷却し、 1,5-シクロオクタジエン(15.9g)をTHF(45・ml)に溶解した溶液に加えた。 得られた溶液を還流下で一夜加熱して、次いでt-BuLiを用いて前記のようにし て処理して化合物(21g)を還元し、常用の処理をした後に(-)-化合物2(10g-ee 100%)を得た。DETAILED DESCRIPTION OF THE INVENTION Chiral organoborane invention chiral organoborane (chiral organoboranes), their use as their preparation and their use particularly asymmetric reduction agent. That is, the present invention relates to the following general formulas I and II (Wherein R 1 and R 2 independently represent a hydrogen atom or an alkyl group or a cycloalkyl group, or R 1 and R 2 together represent a divalent saturated hydrocarbon group; X 1 represents A halogen atom; and X 2 represents a hydrogen atom or a halogen atom). In the above definition, the term halogen atom represents a fluorine, chlorine, bromine or iodine atom, preferably a fluorine, chlorine and bromine atom. The term alkyl group denotes a straight-chain or branched alkyl group having 1 to 6 carbon atoms, particularly an alkyl group having 1 to 4 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, Represents a butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. Said saturated cycloalkyl group may be selected from groups having 3 to 7 carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, these groups being lower alkyl. May be substituted with a group. The term divalent saturated hydrocarbon group refers to a bicyclic group having from 6 to 8 carbon atoms, ie, bicyclo [5,1,1], [4,1,2], [3,1 , 3], [4,1,1], [3,1,2], [3,1,1], or [2,1,2] type groups, preferably bicyclo [3,1,3] May represent a type group. The present invention also provides a method for producing a compound represented by the above general formula I, which comprises the following general formula III Is reacted with a suitable unsaturated hydrogenated compound to give the following formula IV Wherein R 1 and R 2 have the same meaning as described above, and the compound represented by the formula is converted to an organic compound represented by the formula R′Li (where R ′ represents an organic group). The subject of the present invention is a method for producing a compound represented by the above general formula I, which comprises reacting a compound represented by the above formula I with a lithium compound. The term suitable unsaturated hydrogenation platform described above refers to a hydrocarbon compound having one or two double bonds. The term organic group refers to an alkyl or aryl group, preferably an alkyl group such as a tert-butyl group. Accordingly, the reaction of a cycloalkyldiene having 6 to 8 carbon atoms with a compound represented by the formula III is a compound represented by the above formula I, wherein R 1 and R 2 are combined to form a carbon atom. It enables the production of compounds representing divalent saturated hydrocarbon groups having 6 to 8 atoms. Similarly, the alkyl group and / or cycloalkyl group on the boron atom of the compound of the formula I is obtained by reacting each of the corresponding alkene and / or cycloalkene with the compound of the formula III. . This means that the compound of the formula I wherein R 1 represents an alkyl group and R 2 represents a cycloalkyl group can be obtained by converting the compound of the formula III into a desired cycloalkyl group. Is obtained by reacting with an alkene having the same number of carbon atoms. Of course, R 1 and R 2 can represent the same group. Furthermore, the present invention is directed to a process for preparing a compound of the above general formula II. A method for producing a compound represented by the above general formula II, wherein X 1 has the above-mentioned meaning and X 2 represents a hydrogen atom, comprises a compound represented by the above general formula III. It is characterized by reacting with 1 mol of hydrogen halide represented by the formula HX 1 (wherein X 1 has the above-mentioned meaning). A method for producing a compound represented by the above general formula II, wherein X 1 has the above-mentioned meaning and X 2 represents a halogen atom, is a compound represented by the above general formula III the is characterized in that is reacted with hydrogen halide to 1 mole of the represented by hydrogen halide to 1 mole and formula HX 2 of the formula HX 1. Of course, X 1 and X 2 may represent the same halogen atom. The starting compound III is known and is prepared by hydroboration of 2-myrtenyl-1,3-dithiane with diborane or with a complex of diborane and a Lewis acid. (EP 61408). The compounds of the above formulas I and II can thus be prepared in optically active form starting from the optically active compound III. The compounds of the present invention are useful as asymmetric reducing agents. Furthermore, the invention is directed to the use of the compounds of formulas I and II above in asymmetric reduction. The compounds of the present invention are used for stereospecific reduction of a ketone or imine function. Stereospecific reduction of a ketone or imine comprises reacting the ketone or imine with an enantiomer of a compound of general formula I or II. The following examples are provided for the purpose of illustrating the invention and are not intended to limit the scope of the invention. Example 1 Preparation of (-)-Compound II (where X 1 = X 2 = Cl) 3 g (11 mmol) of (-)-Compound III was suspended in 60 ml of anhydrous ether in a 100 ml flask under a nitrogen atmosphere. The resulting suspension was then cooled to -610 ° C in a cooling bath and 5.6 ml (25 mmol) of 4.5N hydrogen chloride ether was added quickly. The cooling bath was removed, then the temperature was kept at -10 ° C for 2 hours 30 minutes. The title compound precipitates in the form of a white powder. The solvent was removed under reduced pressure. The overall yield was 83.7%, calculated based on 2-miltenyl-1,3-dithiamborane. The obtained white solid was dissolved in anhydrous tetrahydrofuran (20 ml) and used as it was for reduction. Example 2 37 g of (-)-Compound III was poured into 140 ml of anhydrous tetrahydrofuran. The temperature was brought to 0 ° C. and a solution of 20 ml of cyclooctadiene in 20 ml of tetrahydrofuran was added over 30 minutes. The reaction mixture was then heated under reflux overnight. After cooling the reaction mixture to -70 ± 5 ° C., 81 ml of a 1.7 M solution of t-butyllithium in pentane was added over 45 minutes. The reaction mixture was kept at -70 ± 5 ° C. for a further 2 hours, then the various solvents and excess cyclooctadiene were removed under reduced pressure at ambient temperature. The obtained residue was dissolved in 100 ml of MTBE. The solution was stirred at ambient temperature for 2 hours, then decanted at -20 ° C, and the liquid layer was separated. The white solid residue obtained was washed with 100 ml of heptane at ambient temperature and then immediately filtered off. Finally, after further washing with 100 ml of MTBE at ambient temperature, it was dried under reduced pressure to obtain 45.9 g of white crystals (86.4% yield). These crystals were kept at 4 ° C. under an argon atmosphere to protect them from light. Example 3 Use of the compound II obtained in Example 1 in the following reduction reaction Under a nitrogen atmosphere, 1 g (3.15 mmol) of compound 11 dissolved in 10 ml of anhydrous tetrahydrofuran was added to a solution of 113.7 g (11 mmol) of the (-)-compound obtained in Example 1 in 20 ml of anhydrous tetrahydrofuran. Added at 0 ° C. The resulting solution was stirred at 25 C for 48 hours. Then the solvent was removed under reduced pressure. The obtained residue was dissolved in 60 ml of ethyl ether, and 2.6 g (25 mmol) of diethanolamine was added. The insoluble matter was removed by filtration, and the obtained filtrate was concentrated to dryness. The obtained residue was Compound 2 ( 0.6 g), which had an enantiomeric composition of (+)-isomer 75% and (-)-isomer 25%. Example 4 Use of Compound I Obtained in Example 2 in Reduction Reaction of Compound 1 → Compound 2 10 g of Compound I obtained above was dissolved in 45 ml of anhydrous tetrahydrofuran under an inert atmosphere. The resulting reaction mixture was then held at a temperature of about -78 ° C. using thermostatically controlled, followed by addition of Compound 1 0.5 equivalent diluted in tetrahydrofuran 10ml for 30 minutes. The reaction was continued at about -78 ° C for 2 hours. Excess borohydride, compound I, was neutralized with alcohol. The obtained reaction mixture was dried under reduced pressure. The obtained residue was redissolved in 25 ml of ethyl ether, and the organic layer was washed with water until a neutral pH was reached. After the obtained organic layer was dehydrated using sodium sulfate, it was filtered and dried under reduced pressure to obtain 8.9 g of a mixture, which was separated by chromatography using a silica column. The enantiomer ratio of the obtained compound 2 was 96% for the (+)-isomer and 4% for the (-)-isomer. Example 5 Is a use in the reduction of the compound 1 → Compound 2 compounds) (+) - was dissolved in the preparation THF Compound 2 (1280 mls) (-) - a myrtle sulfonyl dithiane 214.2 g 9-borabicyclo [3,3, 1 ] Nonane (9-bora bicyclo [3,3,1] nonane). After dissolution, the resulting reaction mixture was heated under reflux overnight to complete the reaction, and then cooled to -80 ° C. Then tert-butyllithium was added within one hour while maintaining the temperature between -60 and -80C. Compound 1 (100 g) was then added slowly within less than 15 minutes. The resulting mixture was kept at -60 ° C for 2 hours. At this point, compound 1 was completely converted. After treatment as in the previous example, (+)-compound 2 was recrystallized from hexane (530 ml) to give compound 2 having a composition of (-)-form 98.2% / (+)-form 1.8%. g was obtained. b) Preparation of (-)- Compound 2 39.5 g of (+)-Compound III were dissolved in THF (240 ml). The resulting solution was cooled to 0 ° C. and added to a solution of 1,5-cyclooctadiene (15.9 g) dissolved in THF (45 · ml). The resulting solution was heated under reflux overnight and then treated as above with t-BuLi to reduce compound 1 (21 g) and after conventional treatment, (-)-compound 2 ( 10g-ee 100%).

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(GH,KE,LS,MW,S D,SZ,UG,ZW),EA(AM,AZ,BY,KG ,KZ,MD,RU,TJ,TM),AL,AM,AT ,AU,AZ,BA,BB,BG,BR,BY,CA, CH,CN,CU,CZ,DE,DK,EE,ES,F I,GB,GE,GH,HU,IL,IS,JP,KE ,KG,KP,KR,KZ,LC,LK,LR,LS, LT,LU,LV,MD,MG,MK,MN,MW,M X,NO,NZ,PL,PT,RO,RU,SD,SE ,SG,SI,SK,TJ,TM,TR,TT,UA, UG,US,UZ,VN,YU (72)発明者 フオレ,ミシエル フランス国 エフ―84000 アヴィヨン, リュ ヌーヴ サン シヤルレ,3 (72)発明者 カマンカ,ジヤン―マルク フランス国 エフ―34090 モンペリエ, アヴニュ デュ シヤトー ドー,19────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, L U, MC, NL, PT, SE), OA (BF, BJ, CF) , CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (GH, KE, LS, MW, S D, SZ, UG, ZW), EA (AM, AZ, BY, KG) , KZ, MD, RU, TJ, TM), AL, AM, AT , AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, F I, GB, GE, GH, HU, IL, IS, JP, KE , KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, M X, NO, NZ, PL, PT, RO, RU, SD, SE , SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU (72) Inventor Huore, Michel             France-84000 Avillon,             Ryu Neuve Saint-Cierre, 3 (72) Inventors Kamanka, Jean-Marc             FR-34090 Montpellier, France,             Avenue du Chateau d'Or, 19

Claims (1)

【特許請求の範囲】 1. 次の一般式I及びII (式中、R1及びR2は独立して水素原子又はアルキル基もしくはシクロアルキル 基を表すか、あるいはR1及びR2は一緒になって二価の飽和炭化水素基を表し; X1はハロゲン原子を表し;且つX2は水素原子又はハロゲン原子を表す)で示さ れる化合物。 2. R1及びR2が独立して水素原子又はメチル基、エチル基、プロピル基 、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert,-ブチル基、 あるいは低級アルキル基で置換されていてもよいシクロプロピル基、シクロブチ ル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基又はシクロオク チル基である請求項1記載の一般式Iで示される化合物。 3. R1及びR2が一緒になって炭素原子を8個有する二価の飽和炭化 の一般式Iで示される化合物。 4. X1及びX2がハロゲン原子、好ましくは塩素原子を表す請求項1〜4の いずれか1項に記載の一般式IIで示される化合物。 5. 一般式Iで示される化合物の製造方法であって、次の一般式III で示される化合物を適当な不飽和水素化化合物と反応させて次の式IV (式中、R1及びR2は前記の意義を有する)で示される化合物を製造し、式IVで 示される化合物を式R’Li(式中、R’は有機基を表す)で示される有機リチウ ム化合物と反応させて前記の式Iで示される化合物を製造することを特徴とする 請求項1〜2のいずれか1項に記載の一般式Iで示される化合物の製造方法。 6. X1が請求項1に示した意義を有し且つX2が水素原子を表す場合の請求 項1記載の一般式IIで示される化合物の製造方法であって、請求項4に記載の一 般式IIIで示される化合物を式HX1(式中、X1は前記の意義を有する)で示さ れるハロゲン化水素1モルと反応させることを特徴とする請求項1記載の一般式 IIで示される化合物の製造方法。 7. X1が前記の意義を有し且つX2がハロゲン原子を表す場合の請求項1記 載の一般式IIで示される化合物の製造方法であって、請求項4に記載の一般式II Iで示される化合物を式HX1(式中、X1は前記の意義を有する)で示されるハ ロゲン化水素1モル及び式HX2(式中、X2は前記の意義を有する)で示される ハロゲン化水素1モルと反応させることを特徴とする請求項1記載の一般式IIで 示される化合物の製造方法。 8. 不斉還元剤、特にケトン又はイミンの不斉還元用の不斉還元剤としての 請求項1〜4のいずれか1項に記載の一般式I又はIIで示され る化合物の使用。 9. 前記ケトンが次の式1 で示される化合物である請求項8記載の使用。[Claims] 1. The following general formulas I and II (Wherein R 1 and R 2 independently represent a hydrogen atom or an alkyl group or a cycloalkyl group, or R 1 and R 2 together represent a divalent saturated hydrocarbon group; X 1 represents A halogen atom; and X 2 represents a hydrogen atom or a halogen atom). 2. R 1 and R 2 are each independently substituted with a hydrogen atom or a methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert, -butyl or lower alkyl group; The compound represented by the general formula I according to claim 1, which is a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group or a cyclooctyl group. 3. R 1 and R 2 together represent a divalent saturated carbon having 8 carbon atoms A compound represented by the general formula I: 4. X 1 and X 2 are halogen atoms, preferably a compound represented by the general formula II according to claim 1 which represents a chlorine atom. 5. A process for producing a compound represented by the general formula I, which comprises the following general formula III Is reacted with a suitable unsaturated hydrogenated compound to give the following formula IV (Wherein R 1 and R 2 have the above-mentioned significance), and the compound represented by the formula IV is represented by the formula R′Li (where R ′ represents an organic group) The method for producing a compound represented by the general formula I according to any one of claims 1 to 2, wherein the compound represented by the formula I is produced by reacting the compound with an organolithium compound. 6. A method for producing a compound represented by the general formula II according to claim 1, wherein X 1 has the meaning shown in claim 1 and X 2 represents a hydrogen atom, 2. A compound represented by the general formula II according to claim 1 , wherein the compound represented by the formula III is reacted with 1 mol of a hydrogen halide represented by the formula HX 1 wherein X 1 has the above-mentioned meaning. Manufacturing method. 7. The method for producing a compound represented by the general formula II according to claim 1 , wherein X 1 has the above-mentioned meaning and X 2 represents a halogen atom, and the compound represented by the general formula II I according to claim 4. 1 mol of a hydrogen halide represented by the formula HX 1 (where X 1 has the above-mentioned significance) and a hydrogen halide represented by the formula HX 2 (where X 2 has the above-mentioned significance) The method for producing a compound represented by the general formula II according to claim 1, wherein the compound is reacted with 1 mol. 8. Use of a compound of the general formula I or II according to any one of claims 1 to 4 as an asymmetric reducing agent, in particular for the asymmetric reduction of ketones or imines. 9. The ketone has the following formula 1 The use according to claim 8, which is a compound represented by the formula:
JP10501309A 1996-06-13 1997-06-12 Chiral organoborane Pending JP2000511922A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR96/07331 1996-06-13
FR9607331A FR2749847B1 (en) 1996-06-13 1996-06-13 CHIRAL ORGANOBORANES
PCT/FR1997/001050 WO1997047628A1 (en) 1996-06-13 1997-06-12 Chiral organoboranes

Publications (1)

Publication Number Publication Date
JP2000511922A true JP2000511922A (en) 2000-09-12

Family

ID=9493012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10501309A Pending JP2000511922A (en) 1996-06-13 1997-06-12 Chiral organoborane

Country Status (8)

Country Link
EP (1) EP0918779A1 (en)
JP (1) JP2000511922A (en)
AU (1) AU714166B2 (en)
CA (1) CA2257678A1 (en)
FR (1) FR2749847B1 (en)
NO (1) NO985832L (en)
NZ (1) NZ333451A (en)
WO (1) WO1997047628A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1144419B1 (en) * 1999-01-19 2004-09-08 Basf Ag Synthesis of alkali metal substituted borohydride reagents

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA821644B (en) * 1981-03-25 1983-01-26 Expansia Sa Borane complexes

Also Published As

Publication number Publication date
EP0918779A1 (en) 1999-06-02
NZ333451A (en) 1999-08-30
FR2749847B1 (en) 1998-11-06
CA2257678A1 (en) 1997-12-18
WO1997047628A1 (en) 1997-12-18
NO985832D0 (en) 1998-12-11
AU714166B2 (en) 1999-12-23
FR2749847A1 (en) 1997-12-19
NO985832L (en) 1998-12-14
AU3266997A (en) 1998-01-07

Similar Documents

Publication Publication Date Title
EP2408557B1 (en) Process for making Ru (II) catalysts
JP2696933B2 (en) Substituted cyclic ketones and substituted cyclic enones and methods for their preparation
JPH03255090A (en) 2,2'-bis(di-(3,5-dialkylphenyl)phosphino)-1,1'-binaphthyl and transition metal complex containing the compound as ligand
JP2000511922A (en) Chiral organoborane
JPH0240077B2 (en)
Bildstein et al. Redox-responsive surfactants: synthesis of 1, 1-diferrocenyl-n-alkanes (C1, C5, C7, C19) via reaction of (diferrocenyl) methyl carbocation with carbanions
JPH10504307A (en) Process for producing a novel diisopinocampheyl chloroborane
EP1151987B1 (en) Optically active fluorinated binaphthol derivative
CA1116614A (en) Isomerization of 2-cyano-3-azabicyclo(3.1.0)hexane compounds
JP3171403B2 (en) Astaxanthin intermediate
JP2917552B2 (en) Method for producing α-methylenecyclopentanone derivative
JP2004510766A (en) Methods for preparing integrin receptor antagonist intermediates
Atovmyan et al. Novel Chiral ansa-Metallocene Complexes of Titanium and Zirconium with a Semirigid Bridge
US6489526B2 (en) Method for synthesis of hydrocarbyl bridged indenes
US5210196A (en) Chiral sultams
US5300705A (en) Process for the preparation of 1α,25,26-trihydroxy-22-ene-cholecalciferol
JP2536026B2 (en) Process for producing α, β-substituted cyclopentanone derivative
JP3017338B2 (en) New intermediate compounds for the production of indole alkaloid derivatives
JP4077103B2 (en) Method for producing tris (perfluoroalkylsulfonyl) methide salt
JP2737304B2 (en) Chiral ferrocene derivatives
JPS63146892A (en) Novel intermediate compound for producing 16-phenoxy- and 16-substituted phenoxy- 9-keto-prostatriene derivative
JP2804654B2 (en) Method for producing (S)-(-)-dehydro-α-damaschol
JPH03109389A (en) Production of bis(3,4-dimethylphenyl)dimethylsilane
JP2896584B2 (en) Optically active keto alcohol having silyl group at γ-position and method for producing the same
JP2687955B2 (en) Method for producing 1,4,5,8-tetrahydroxyanthraquinone