JP2000507736A - Light-recirculating back-coupled lighting system - Google Patents

Light-recirculating back-coupled lighting system

Info

Publication number
JP2000507736A
JP2000507736A JP9534508A JP53450897A JP2000507736A JP 2000507736 A JP2000507736 A JP 2000507736A JP 9534508 A JP9534508 A JP 9534508A JP 53450897 A JP53450897 A JP 53450897A JP 2000507736 A JP2000507736 A JP 2000507736A
Authority
JP
Japan
Prior art keywords
light
lighting device
light source
microprism
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9534508A
Other languages
Japanese (ja)
Inventor
フー,ジャンプ
アンガー,ウォルトラウド・ロザリー
クパー,ジェリー・ウェイン
Original Assignee
アライドシグナル・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アライドシグナル・インコーポレーテッド filed Critical アライドシグナル・インコーポレーテッド
Publication of JP2000507736A publication Critical patent/JP2000507736A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V11/00Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00
    • F21V11/06Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00 using crossed laminae or strips, e.g. grid-shaped louvers; using lattices or honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/005Refractors for light sources using microoptical elements for redirecting or diffusing light using microprisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V11/00Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00
    • F21V11/08Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00 using diaphragms containing one or more apertures
    • F21V11/14Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00 using diaphragms containing one or more apertures with many small apertures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/101Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening permanently, e.g. welding, gluing or riveting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/37U-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Planar Illumination Modules (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)
  • Vehicle Body Suspensions (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

The light output of a back-coupled illumination system is improved by recycling reflected and misdirected light rays. A reflector at the light source and an array of microprisms having reflective elements therebetween efficiently redirect errant light rays to increase the total available light output and improve efficiency. Both specular and diffuse reflective materials may be used in combination to enhance light output.

Description

【発明の詳細な説明】 光再循環する背面結合型照明装置発明の背景 現在利用可能な、直接照明及び他の応用のための照明装置は、望まない方向へ の光の吸収や放散のために光の損失を蒙っている。仮に望まない方向への吸収、 放散によって損失した光線が捕捉されて利用された場合には、光源の利用可能な 出力は増加する。これを達成する照明装置は熱望されるであろう。本発明は、こ れと、他の方法では損失するであろう光を再指向及び再循環する他の目的を達成 する。 図面の簡単な説明 以下の発明の詳細な説明及び添付図面を参照することにより、本発明と更なる 効果がより完全に理解される。 図1は照明装置の概念的な略解ブロック図; 図2は照明装置の一実施例の略解断面図; 図3乃至図5は光源のための反射鏡の代替例の略解断面図; 図6は図2中の光指向マイクロプリズムの略解断面図; 図7乃至図12は代替マイクロプリズムの斜視図; 図13は直線配列のマイクロプリズムの斜視図; 図14はレンズ無しの背面結合照明装置の一実施例の略解断面図; 図15はマイクロプリズムの幾何学上の中心に対して偏心した、マイクロプリ ズムとレンズの配列の略解断面図; 図16乃至図23は種々の代替反射要素を備えた光指向組立体の略解断面図; 図24は図18の照明装置で使用されるマスクの上面図; 図25乃至図28は代替照明装置の斜視図; 図29乃至図32は追加的な代替照明装置の略解断面図; 図33は照明装置の略解断面図;及び 図34と図35はここに説明された照明装置に組み込まれる商用のかまぼこ形 反射笠と天井埋め込み型スポットライトの例である。発明の詳細な説明 本発明は(a)光源と、(b)この光源に極めて接近した光指向組立体とを備 え、また(i)少なくとも1つのマイクロプリズムとを備え、このマイクロプリ ズムは、光源から光が放射するのを許す入力面と、この入力面から離れ且つ平行 な出力面、及び入力面と出力面との間で且つ隣接して配置され、入力面に対して 鈍角をなし、さらに入力面によって受け入れた光線を全反射するのに有効となる ように配置された、少なくとも1つの側壁と、(ii)この側壁を通る光路を遮断 する、少なくとも1つの遮断手段とを備える。 本発明の概念的な描写は、図1の略解ブロック図中の照明装置10である。こ の照明装置10は、照明組立体12と光指向組立体14の、2つのサブ・アッセ ンブリ(副組立体)に分割される。矢印20は照明源12から光指向組立体14 を通って指向対象物(図示せず)に向かう光波の指向方向を示す。この図面は、 単なる構造の略解表示であり、装置の要素又はその物理的配置の実際の又は相対 的な寸法を示唆する意図ではないものと認識すべきである。 照明装置の特定の実施例100は、図2に示されている。この装置100は、 照明組立体110と、ベース壁124の一側上に随意に支持された少なくとも1 つのマイクロプリズム122の光指向組立体120とを有する。この光指向組立 体120が、照明装置100の光出力の角分配を制御するために、ベース壁12 4の他の側にレンズあるいはレンズアレイを備えることは随意である。照明装置組立体 照明装置組立体110は、光源112を有しており、その光源112は、白熱 灯、光放射ダイオード(LED)、金属若しくはハロゲン高輝度放電ランプ、蛍 光灯、又は使用に適した他の光源であっても良い。 好ましい実施形態では、照明装置組立体110は光源112の背後又はその周 辺に、即ち、光指向組立体120から離隔して配置された反射器150を有して いる。反射器150は、光指向組立体120から離れる方向に伝播する光線を反 射してマイクロプリズム122に戻す。別の適用例では高反射性の材料が好まし いけれども、反射器150は、磨かれたアルミニウム若しくは白色塗料のような 、発散性の又は高反射性の金属から製造することができる。反射器として選択さ れる金属は、約75%ないし90%の範囲の反射率を有し、90%以上であるこ と が望ましい。反射率は、Macbeth #7100分光光度計、New Wi ndsor,N,Y,若しくはPerkin Elmer #330分光光度計 、Danbury,CTのような幾つかの市場で入手できる計測器で計測するこ とができる。 光源及び光指向組立体に対する反射器の取り付け位置、及びそれらの間の距離 は、光指向組立体に向けられる光を最大にするように選択されるべきである。当 業者には容易に想到されるように、上記取り付け位置及びそれらの間の距離は光 源及び反射器の相対的な大きさ、及び反射器の設計により決定することができる 。光源の物理的寸法により、光源と反射器の間の距離は典型的には光源の直径の 1ないし2倍である。光源と光指向組立体の間の距離は、典型的には光源の直径 の1ないし2倍である。例えば、T−5蛍光灯が約15.88mm(5/8イン チ)の直径を有する光源として使用される場合は、蛍光灯と反射器の間の距離、 同様に蛍光灯と光指向組立体の間の距離は典型的には約15.88mmないし3 4.93mm(0.625インチないし1.375インチ)の範囲である。 図2の反射器159は、放物線の形状であるが、当業者には明白であるように 他の形状であってもよい。例えば、図3に示されているように、反射器230は 、矩形の形状をしておりかつ2つの側壁232とベース234とを有する。光源 112の幾何的及び分光パターンを適応させるため、ベース234に対する側壁 232の角度は、直角、鋭角又は鈍角を形成するように調整することができる。 図4及び図5にそれぞれ図示されているように、尖頭形の反射器、切子面のある 反射器、又は扇形の反射器のような、別の形状の反射器も使用できる。加えて、 反射器150を連続した材料片で形成する代わりに、2つ又はそれ以上の部分に 分けても良い。 上述の種類の人工的な光源の代わりに、直射日光のような自然光又は周囲光を 利用しても良い。その場合には、照明装置組立体110は、反射器が不要となる 。光指向組立体 第2図に示されるマイクロプリズム122は、四つの傾斜した側面を有する多 面体である。これらの特定のマイクロプリズムの構造は、「マイクロプリズムの 配列を使用したバックライティング装置」に対して、1995年3月7日にビー ソン、その他(Beeson et al)に発行された米国特許第5,396 ,350号に詳細に述べられている。この米国特許は参考としてこの明細書に組 み込まれている。第6図及び第7図に示されるように、各マイクロプリズム12 2は入力表面132、出力表面134及び対向する側壁136を有していて、そ の側壁の各々は入力表面132及び出力表面134と隣接する。側壁136と入 力表面132との接合部は鈍角の傾斜角αを限定しする。第13図は、ベース壁 220に支持された直線マイクロプリズム210の配列220を示している。 第6図のマイクロプリズムの幾何学形状に代わって、他の形状を使用できる。 第8図ないし第12図は別のマイクロプリズム、すなわち、円錐形(第8図)、 多面形(第9図)、多面曲線(polyhedronal curviline ar)(第10図及び第11図)、及び曲線マイクロプリズム(図12)である 。上記の例示は説明のためだけであり、当業者には容易に思い浮かぶように、他 の幾何学的な形状が使用され得る。更に、マイクロプリズム122の横断面は非 対称(例えば、長方形)でもよい。 マイクロプリズム122の寸法は光指向組立体120の光出力分布に影響する 。特に、入力表面132の面積、側壁表面136の高さ、及び側壁136の傾斜 角αは互いに調整されてマイクロプリズム122を通る光の通路を変える。狭い 出力角度分布が、入力表面132の表面積を減少し、一方側壁136の高さを増 加しかつ鈍角の傾斜角αを最小にすることによって達成される。代わりに、出力 角度分布は、側壁136の高さを減少しかつ鈍角の傾斜角αの大きさを増加する と共に入力表面132の表面積を増加することによって、増加され得る。 ベース壁124が使用されているところでは、照明装置100の出力の角度分 散の追加の制御は、壁124の厚さを変えることによって達成され得る。レンズ 142の与えられた正の曲率半径に対して、ベース壁124の厚さの増加は、マ イクロプリズム122とレンズ配列140との間の隔たりを増加し、照明装置1 00の出力の角度分布を増加することになる。 第2図に示されたレンズ142は凸形であるが、それらは、球状凹形、非球面 形、筒状凸形、筒状凹形、或いは特定の出願によって述べられ或いは当業者によ って容易に思い浮かぶその他の適当な形状でもよい。また、レンズ142はベー ス壁124がない場合には、出力正面134に直接配置されてもよい。更に、レ ンズは、回折性要素であっても、屈折性要素であっても、或いは回折性要素と屈 折性要素との組み合わせであってもよい。 背面結合(back−coupled)照明装置100の照明組立体110及 び光指向組立体は、第14図の構造で示されるように、レンズなしで利用され得 る。更に、第2図のレンズ142の軸線はここのマイクロプリズム122の幾何 学中心126と整合されている。もし望むなら、レンズ142は、第15図に示 されるように、マイクロプリズム122の幾何学中心126に関して片寄ってい ても或いは被い隠され(eclipsed)ていてもよい。最後に、レンズの横 断面寸法はマイクロプリズム122の横断面に関して変化できる。 個々のマイクロプリズム122の幾何学中心126とレンズ142の幾何学中 心との間の距離は、ゼロからマイクロプリズム122の出力表面134の幅の1 /2まで変化され得る。レンズ142は、マイクロプリズム122の出力表面1 34に隣接して配置されても、或いはマイクロプリズム122の入力表面132 と出力表面134との間の距離の1/2までの距離で配置されてもよい。 マイクロプリズム122及び関連する構造(光学レンズ配列を含む)は、前述 の米国特許第5、396、350号、「マイクロプリズムの配列を使用する照明 装置」に対して、1995年6月27日にチンマーマン、その他(Zimmer man et al)に発行された米国特許第5,248,468号及び「傾斜 した導波管の配列を有する直視ディスプレー」と対して、1996年1月2日に チンマーマン、その他(Zimmerman et al)に発行された米国特 許第5,481,385に示された方法にしたがって並びにそれらの特許に示さ れた材料を使用してつくられ得る。これらの特許はこの明細書に参考として組み 込まれている。参照した特許に示されるように、マイクロプリズム及びレンズの 配列は、ポリカーボネート、アクリル樹脂、ポリスチレン、ガラス、透明セラミ ック及び「傾斜した光重合された導波管」に対してビーソン、その他(Bees on et al)に1995年10月31日に発行された米国特許第5,46 2,700号に記載されたようなモノマー混合物を含む種々の材料から作られ得 る。光源から発生される熱はこれらの構造体に対する構成材料を選ぶときに考慮 されるべきである。もり望むなら、レンズ組立体は光指向組立体のベース壁に積 層された別のシートとして設けられても、或いは射出成型又は当業者が容易に思 いつく他の技術を使用して光指向組立体と共に一体構造として作られてもよい。側壁に隣接した領域 光指向組立体120のマイクロプリズム122の側壁136は、側壁136に 隣接する領域128を画成する。複数のマイクロプリズム122を有する光指向 組立体120内において、これらの領域は、「隙間」領域と呼ばれる。これらの 領域128には反射要素が設けられている。該反射要素は、図2に示すような形 状をした、反射性の高い中実の詰め物160である。中実の詰め物160は、鏡 のようなものでもよいし、また、光を散乱ないし乱反射させるようなものでもよ い。また、中実の詰め物160は、その微細構造により可視光線に対する反射性 が良好なBaSO4 、TiO2またはMgOのような材料を含むものとしてもよ い。これらの材料は、ドライパウダー、塗料、パテのような担体とともに利用し ても良い。あるいはまた、照明装置が取り付けられるところの環境条件に対して 安定した材料、例えばSpectralon(Labsphere,Inc.の 商標)やTeflon(du Pontの登録商標)のような材料をこの領域に 取り付け、可視光線に対する高度の反射性を与えるようにしてもよい。中実の詰 め物160は、高い反射性を有すること、すなわち、90パーセント以上の反射 率を有することが望ましいが、それよりも反射率の高くない材料が適用可能な場 合もあり、また、吸収性材料が望ましい場合もある。 他の反射性材料も反射要素として利用可能である。図16において、マイクロ プリズム122の側壁136は、反射性材料の被覆260を有している。被覆2 60は、銀、アルミニウム、金、ホワイトエナメル、その他の当業者が容易に考 えられる材料とすることができる。これらの材料は、化学蒸着法、電子ビーム蒸 着法、スパッタリングあるいはこれらに類する方法で付着される。図17におい て、反射要素は反射性ライニング270である。該反射性ライニング270は、 側壁136と一体にモールド成形されるか、あるいは、接着剤または他の公知の 手段によって側壁136に取り付けられている。図18において、マスク280 が反射要素として利用されており、該マスク280は、マイクロプリズム122 間の領域128を覆っている。図24に示すように、マスク280の平面図は、 マイクロプリズム122の入力面132が入ることができるような開口282を 有する格子の構成となっている。マスクは、前述したような、鏡のような又は散 乱性(乱反射性)の中実な材料で作ることができる。 図16ないし図18における反射性の要素(被覆、ライニングおよびマスク) は、鏡のようなものでも、散乱性(乱反射性)のものでもよく、約75ないし9 0パーセントの範囲の反射率を有しており、望ましくは90パーセント以上の反 射率を有するものとする。鏡のような材料の一例は、3Mの製造になるSilv erlux(商標)であるが、当業者が容易に考えつく他の材料も利用可能であ る。反射率は、前述したようにして測定することができる。 異なるタイプの反射性材料も組み合わせて利用することができる。図19に示 すように、側壁136は、二つの反射要素、すなわち、被覆260とマスク28 0とを有している。反射性ライニング270および中実の詰め物160は、図2 0に示すように、組立体の領域128に設けられている。この形態において、ラ イニング270には鏡のような材料を選択し、詰め物160には散乱性(乱反射 性)の材料を選択しても良い。また、他の組み合わせを利用しても良い。 図21において、側壁136は、被覆260および中実な詰め物160を有し ている。反射性のライニング270およびマスク280は、図22に示すように 、組立体の領域128に設けられている。最後に、中実の詰め物160およびマ スク280が、図23に示すように、領域128に設けられる。 ここまでに検討してきた構成は、線形または平面的なものであった。照明シス テムは、図25および図26にそれぞれ示すように、曲線状の配列または球面配 列に形成されてもよい。または、当業者が容易に考えつくような他の配列に形成 してもよい。図25において、光源300は、マイクロプリズムの曲線状配列3 10に面している。図26においては、光源320は、マイクロプリズムの部分 球面状配列330内に収容されている。光指向組立体をこのように形状づけるた めには、入力面に対するマイクロプリズムの側壁の傾斜角度を調節し、球状の射 光体に適当な角度分布を与えるようにする必要がある。さらに、マイクロプリズ ム間の間隔は、光を適正に制御することができるようにするために、変化させる 必要があるかも知れない。マイクロプリズムの入力面および出力面は、平坦でも 、曲面でも、球面でもよい。また、図25および図26の光指向組立体には、所 望であれば、マイクロプリズムの出力面に隣接した底壁を設けても良いし、該底 壁には、所望により、図2に示すような態様で、レンズを設けても良い。さらに 、複数の平坦な、および/または、曲面の光指向組立体340と、一つまたはそ れ以上の光源350とを組み合わせて、図27および図28に示すような多面体 の照明装置を形成し、複数方向への照射が行えるようにしても良い。一つの平坦 な組立体の個々のマイクロプリズムは、図27aに示されている。 光指向組立体120に入る光の強度は、図29に示すように、光源112と光 指向組立体120との間に光学要素400を挿入することによって、制御するこ とができる。光源112からマイクロプリズム122内への、光の直接伝達を減 ずることにより、光指向組立体120の出力は、より均一になり、ぎらつきは最 小となる。光学要素400は、材料(例えばプラスチック、ガラスまたは他の材 料)の矩形片から作ることができるが、該矩形片は、光源112からマイクロプ リズム122までの光路における、その位置での断面積とほぼ同じ平坦な面積を 有する。材料は、散乱性(乱反射性)のものでも、部分的に鏡のような材料でも よい。 照明組立体110は、空気中に浮遊された光源112を単に除く代わりに1以 上の屈折率(n1)を有する光学的透過材料410により光源112をカプセル 化することにより、図30に示すように更に改良され得る。この光学的透過材料 410は、光源112を包囲する部分を満たしており且つマイクロプリズム12 2のインプット面132に隣接しているであろう。このことはマイクロプリズム 122のインプット面132におけるフレスネル反射(Fresnel ref lections)を防止し且つ光源112よりもかなり多くこの光源112が より一層簡単にインプ,ット面132の列を満たすようになる。光学的透過材料 410は、粘着層412によってインプット面へ接合されている。光の最適な移 動のためには、光が光源112から外方に進むときに屈折率が増加するようにこ れらの屈折率は選択される。こうして光学的透過材料410の屈折率(n1)、 粘着層412の屈折率(n2)及び光指向組立体120の屈折率(n3)値は、 n1 ≦ n2 ≦ n3 となるように選択される。図29における光要素400に対する関数に類似する 光要素414は、粘着層412上へ配置される。この要素414の屈折率はほぼ n2に等しくする。 光源112からインプット面132までの光の移動はまた、光源112の放射 パターンを補足しているマイクロプリズムの曲面へ導入することにより強化され る。図31に示すように、マイクロプリズム420のインプット面422は、入 射角が光源112から最も遠いマイクロプリズム420の減衰角度よりも小さい 角度になるような弧を画定する。この減衰角度は下記の方程式により画定され Rs = sin2(Φi−Φ’)/sin2(Φi+Φ’) Rp = tan2(Φi−Φ’)/tan2(Φi+Φ’) ここで、 n1sinΦi = n3sinΦ’ Rsは、入射面に対して垂直に偏光された光の反射率であり、 Rpは、入射面に対して平行に偏光された光の反射率であり、 Φiは、インプット面422上への入射光線の角度であり、 Φ’は、マイクロプリズム420を介して移動した入射光線の角度であり 、 Φi及びΦ’は、インプット面422の面に対する垂線から画定される。 図32において、中間光要素430は光指向組立体120へ入る光の角度分布 を制限するために導入されている。図面においては照明組立体110と光指向組 立体120との間に位置されているように示されているが、この要素430は光 源112へ最も接近した照明組立体内に位置付けられうるのである。更に、図2 9の光要素400に類似した第2光要素440が光源112と中間光要素430 との間に設けられることが出来、これにより照明組立体110の光出力を減少す る。光要素430及び440はプラスチック、ガラス又はその他の材料により形 成されうる。 中間光要素430の屈折率(n3)は、光源112からのより大きい入射角光 線を選択的に減衰しかつ光指向組立体120への角度分布を減じるように選択さ れることが出来る。例えば、Rs及びRpを算出するため上述の式を使用するに 際し、屈折率n3が増大すると入射角度Φiにおける反射率が増大する。n1が1 に等しいとすると、屈折率n3の値は1.52,1.7及び4.0となり、入射 角45°での反射率はそれぞれ17.5%,24%及び65%となるであろう。照明装置の作用 前記装置の作用を図33を参照して説明する。特別の構造体がないと、光源1 12は、光を、光指向組立体120や同様に他の方向に向けて放射する。これら の光線は、マイクロプリズム122の入力面132に直接的に移動し、Rs及び Rpを計算する前記等式によって要求されたように反射する。光の残りは、マイ クロプリズム122を通って伝達され、光線Aによって示されるように、協働す るレンズ142を最後に通過する。 光源112を離れる光が、光指向組立体120から離れる方向に最初に移動す る場合、反射器150に出くわすことになるであろう。そこで、光は、光指向組 立体120に向かって反射され、光線Bによって示されたように、マイクロプリ ズム122及びレンズ142を通過する。 いくつかの光線は、光源112から、光指向組立体120に向かって移動する 。しかし、いくつかの光線は、側壁136に隣接した領域128に入り込む。そ のような光線が前記経路上を継続して通過した場合、側壁136を通ってマイク ロプリズム122に入り込むであろう。しかしながら、そのような光線は、光指 向組立体120から外に適切に出ることはないであろう。そのような光線は、実 際、前記光出力分布をゆがめるであろう。したがって、反射要素が、領域128 に設けられており、これによって、そのような向きの不規則な光線を遮断し且つ 向け直すことができるようになっている。図示されているように、光源112を 離れる光線は、個体充填材160に到達する。個体充填材で、前記光線は、反射 器150に向けて反射する。そこで、前記光線は、光線Cによって示されている ように、光指向組立体120に向けて反射され、そして、光指向組立体120を 通過する。反射材料の代わりに、非反射充填材が領域128で用いられた場合、 前記光線は、前記充填材によって簡単に吸収されるであろう。あるいは、前記光 は、光源に向けて反射される。しかし、これは、そのような光のほとんどが光源 112によって吸収されるので、望ましくない。そのため、この反射モードは、 例え ば、より小さな光源を用いることによって、最小限度にすべきである。 なお、本願発明は、業務用、オフィス用、住宅向き用、野外用、自動車用、及 び家庭器具用の用途での照明を含む、直接照明装置のような幅広い種類の装置に 適用可能である。本願発明は、また、コンピューター用、自動車用、軍隊用、航 空宇宙用、消費者用、業務用、及び産業用の用途のためのディスプレーと、照明 源を必要とする他の任意の装置にも適用可能である。2つの例は、図34に図示 された業務用のトロファー500と、図35に図示されたダウンライト600で ある。トロファー500は、T−5又はT−8蛍光灯のような2つの光源510 と、反射器520と、マイクロプリズムからなる光指向組立体530とを備えて いる。ダウンライト600は、同様に、光源610(例えば、CFLランプ)、 反射器620、及び光指向組立体630とを備えている。 本願発明の好適な実施例であると考えられるものが説明されたが、当業者は、 本願発明の精神から離れることなしに前記実施例に他の変更や別の変更を加える ことができることを認めるであろう。本願発明の範囲に含まれるそのような全て の実施例を請求するように意図されている。例えば、引用した特許に開示された 構造を用いることによって、他の変更や組合せが可能であることを理解すべきで ある。DETAILED DESCRIPTION OF THE INVENTION Background of the Invention Light Recirculating Back-Coupled Lighting Devices Background of the Invention Currently available lighting devices for direct lighting and other applications are designed to absorb or dissipate light in unwanted directions. Suffering light loss. The available power of the light source increases if the rays lost due to absorption and dissipation in unwanted directions are captured and used. A lighting device that accomplishes this would be eager. The present invention accomplishes this and other objects of redirecting and recycling light that would otherwise be lost. BRIEF DESCRIPTION OF THE DRAWINGS The invention and further advantages will be more fully understood with reference to the following detailed description of the invention and the accompanying drawings. FIG. 1 is a schematic block diagram of a lighting device; FIG. 2 is a schematic cross-sectional view of an embodiment of the lighting device; FIGS. 3 to 5 are schematic cross-sectional views of an alternative example of a reflector for a light source; 7 to 12 are perspective views of an alternative microprism; FIG. 13 is a perspective view of a linear array of microprisms; 15 is a schematic cross-sectional view of an embodiment; FIG. 15 is a schematic cross-sectional view of an arrangement of a microprism and a lens, which is eccentric with respect to the geometric center of the microprism; FIGS. FIG. 24 is a top view of a mask used in the illumination device of FIG. 18; FIGS. 25 to 28 are perspective views of an alternative illumination device; FIGS. 29 to 32 are additional alternative illumination devices. FIG. 33 is a schematic sectional view of FIG. Ryakkai sectional view of the device; and FIG. 34 and FIG. 35 are examples of commercial semicylindrical reflector and ceiling-embedded spotlights incorporated in the lighting devices described herein. DETAILED DESCRIPTION OF THE INVENTION The present invention comprises (a) a light source, (b) a light directing assembly in close proximity to the light source, and (i) at least one microprism, wherein the microprism is a light source. An input surface permitting light to radiate from the input surface, an output surface remote from and parallel to the input surface, and disposed between and adjacent to the input surface and the output surface, forming an obtuse angle with the input surface; And (ii) at least one blocking means for blocking an optical path through the side wall, the at least one side wall being arranged to be effective for total internal reflection of light rays received by the input surface. A conceptual depiction of the present invention is the lighting device 10 in the simplified block diagram of FIG. The lighting device 10 is divided into two sub-assemblies, a lighting assembly 12 and a light directing assembly 14. Arrow 20 indicates the direction of the light wave from illumination source 12 through light directing assembly 14 to a pointing object (not shown). It should be appreciated that this drawing is merely a schematic representation of the structure and is not intended to imply actual or relative dimensions of the elements of the device or its physical arrangement. A specific embodiment 100 of the lighting device is shown in FIG. The device 100 has a lighting assembly 110 and a light directing assembly 120 of at least one microprism 122 optionally supported on one side of a base wall 124. The light directing assembly 120 optionally includes a lens or lens array on the other side of the base wall 124 to control the angular distribution of light output of the lighting device 100. Lighting Device Assembly The lighting device assembly 110 has a light source 112, which is suitable for use, such as an incandescent lamp, a light emitting diode (LED), a metal or halogen high intensity discharge lamp, a fluorescent lamp, or the like. Other light sources may be used. In a preferred embodiment, the illuminator assembly 110 has a reflector 150 located behind or around the light source 112, ie, spaced from the light directing assembly 120. The reflector 150 reflects light propagating away from the light directing assembly 120 back to the microprism 122. Reflector 150 can be made from a diverging or highly reflective metal, such as polished aluminum or white paint, although in other applications a highly reflective material is preferred. The metal selected for the reflector has a reflectivity in the range of about 75% to 90%, preferably greater than 90%. Reflectance can be measured with several commercially available instruments, such as a Macbeth # 7100 spectrophotometer, New Windsor, N, Y, or Perkin Elmer # 330 spectrophotometer, Danbury, CT. The mounting location of the reflector with respect to the light source and the light directing assembly, and the distance between them, should be selected to maximize the light directed to the light directing assembly. As will be readily appreciated by those skilled in the art, the mounting locations and the distance between them can be determined by the relative size of the light source and reflector, and the design of the reflector. Depending on the physical dimensions of the light source, the distance between the light source and the reflector is typically one to two times the diameter of the light source. The distance between the light source and the light directing assembly is typically one to two times the diameter of the light source. For example, if a T-5 fluorescent lamp is used as a light source having a diameter of about 1/8 inch, the distance between the fluorescent lamp and the reflector, as well as the fluorescent lamp and the light directing assembly, The distance between them is typically in the range of about 0.688 inches to 1.375 inches. The reflector 159 of FIG. 2 is parabolic in shape, but may be of other shapes as will be apparent to those skilled in the art. For example, as shown in FIG. 3, the reflector 230 is rectangular in shape and has two side walls 232 and a base 234. To accommodate the geometry and spectral pattern of the light source 112, the angle of the side wall 232 with respect to the base 234 can be adjusted to form a right, acute, or obtuse angle. Other shapes of reflectors, such as pointed, faceted, or fan shaped reflectors, as shown in FIGS. 4 and 5, respectively, can also be used. In addition, instead of forming reflector 150 from a continuous piece of material, it may be divided into two or more parts. Instead of artificial light sources of the type described above, natural or ambient light, such as direct sunlight, may be used. In that case, the lighting device assembly 110 does not require a reflector. Light directing assembly The microprism 122 shown in FIG. 2 is a polyhedron having four inclined sides. These particular microprism structures are described in U.S. Pat. No. 5, issued to Beeson et al. On Mar. 7, 1995 to "Backlighting Device Using an Array of Microprisms". No. 396,350. This US patent is incorporated herein by reference. As shown in FIGS. 6 and 7, each microprism 122 has an input surface 132, an output surface 134, and opposing side walls 136, each of which has an input surface 132 and an output surface 134, respectively. Adjacent. The junction between the side wall 136 and the input surface 132 defines an obtuse tilt angle α. FIG. 13 shows an array 220 of linear microprisms 210 supported on a base wall 220. Other shapes can be used instead of the microprism geometry of FIG. FIGS. 8 to 12 show other microprisms: conical (FIG. 8), polyhedral (FIG. 9), polyhedronal curvilinear (FIGS. 10 and 11), and curves. This is a microprism (FIG. 12). The above examples are for illustration only, and other geometric shapes may be used, as will be readily apparent to those skilled in the art. Furthermore, the cross section of the microprism 122 may be asymmetric (eg, rectangular). The size of the microprism 122 affects the light output distribution of the light directing assembly 120. In particular, the area of the input surface 132, the height of the side wall surface 136, and the angle of inclination α of the side wall 136 are adjusted together to change the path of light through the microprism 122. A narrow output angle distribution is achieved by reducing the surface area of the input surface 132, while increasing the height of the sidewalls 136 and minimizing the obtuse tilt angle α. Alternatively, the output angle distribution can be increased by decreasing the height of the sidewalls 136 and increasing the surface area of the input surface 132 while increasing the magnitude of the obtuse angle of inclination α. Where the base wall 124 is used, additional control of the angular dispersion of the output of the lighting device 100 can be achieved by varying the thickness of the wall 124. For a given positive radius of curvature of the lens 142, increasing the thickness of the base wall 124 increases the separation between the microprism 122 and the lens array 140 and reduces the angular distribution of the output of the illumination device 100. Will increase. Although the lenses 142 shown in FIG. 2 are convex, they may be spherical concave, aspheric, cylindrical convex, cylindrical concave, or described by a particular application or readily by those skilled in the art. Other suitable shapes that come to mind can be used. Further, the lens 142 may be directly disposed on the output front 134 when the base wall 124 is not provided. Further, the lens may be a diffractive element, a refractive element, or a combination of a diffractive and a refractive element. The lighting assembly 110 and the light directing assembly of the back-coupled lighting device 100 can be utilized without a lens, as shown in the structure of FIG. Further, the axis of the lens 142 in FIG. 2 is aligned with the geometric center 126 of the microprism 122 here. If desired, lens 142 may be offset or eclipsed with respect to geometric center 126 of microprism 122, as shown in FIG. Finally, the cross-sectional dimensions of the lens can vary with respect to the cross-section of the microprism 122. The distance between the geometric center 126 of each microprism 122 and the geometric center of the lens 142 can be varied from zero to one-half the width of the output surface 134 of the microprism 122. The lens 142 may be positioned adjacent to the output surface 134 of the microprism 122 or may be positioned at a distance of up to half the distance between the input surface 132 and the output surface 134 of the microprism 122. Good. The microprisms 122 and associated structures (including an optical lens array) are described in U.S. Pat. No. 5,396,350, entitled "Illumination Device Using an Array of Microprisms," on Jun. 27, 1995. No. 5,248,468 issued to Zimmerman et al. And "Direct View Display with Array of Inclined Waveguides", issued Jan. 2, 1996 to Zimmerman et al. (Zimmerman et al) and can be made according to the methods set forth in US Pat. No. 5,481,385 and using the materials set forth in those patents. These patents are incorporated herein by reference. As shown in the referenced patents, the arrangement of microprisms and lenses is based on polycarbonate, acrylic, polystyrene, glass, transparent ceramic and "tilted photopolymerized waveguides" by Beeson et al. al) can be made from a variety of materials, including monomer mixtures, as described in US Pat. No. 5,462,700 issued Oct. 31, 1995. The heat generated from the light source should be considered when choosing the materials of construction for these structures. If desired, the lens assembly may be provided as a separate sheet laminated to the base wall of the light directing assembly, or with the light directing assembly using injection molding or other techniques readily apparent to those skilled in the art. It may be made as an integral structure. The side wall 136 of the microprism 122 of the light directing assembly 120 defines a region 128 adjacent to the side wall 136. Within light directing assembly 120 having a plurality of microprisms 122, these areas are referred to as "gap" areas. These areas 128 are provided with reflective elements. The reflective element is a highly reflective solid padding 160 shaped as shown in FIG. The solid filling 160 may be a mirror-like material or a material that scatters or diffuses light. Further, the solid filling 160 may include a material such as BaSO 4 , TiO 2, or MgO, which has good reflectivity to visible light due to its fine structure. These materials may be used with carriers such as dry powders, paints and putties. Alternatively, a material such as Spectralon (a trademark of Labsphere, Inc.) or Teflon (a registered trademark of du Pont) may be attached to this region with a material that is stable to the environmental conditions where the lighting device will be attached. May be provided with a high degree of reflectivity. The solid filling 160 desirably has a high reflectivity, that is, a reflectivity of 90% or more, but a material having a lower reflectivity may be applicable in some cases. Materials may be desirable. Other reflective materials can also be used as reflective elements. In FIG. 16, the side wall 136 of the microprism 122 has a coating 260 of a reflective material. The coating 260 can be silver, aluminum, gold, white enamel, or any other material readily apparent to one skilled in the art. These materials are deposited by chemical vapor deposition, electron beam evaporation, sputtering, or the like. In FIG. 17, the reflective element is a reflective lining 270. The reflective lining 270 is molded integrally with the side wall 136 or attached to the side wall 136 by an adhesive or other known means. In FIG. 18, a mask 280 is used as a reflective element, and the mask 280 covers the area 128 between the microprisms 122. As shown in FIG. 24, the plan view of the mask 280 has a grating configuration having an opening 282 through which the input surface 132 of the microprism 122 can enter. The mask may be made of a mirror-like or scattering (diffuse) solid material, as described above. The reflective elements (coatings, linings and masks) in FIGS. 16-18 can be mirror-like or scattering (diffuse) and have a reflectance in the range of about 75 to 90 percent. And preferably has a reflectance of 90% or more. One example of a mirror-like material is Silver erlux ™, which will be manufactured by 3M, although other materials readily available to one of skill in the art are also available. The reflectance can be measured as described above. Different types of reflective materials can also be used in combination. As shown in FIG. 19, the side wall 136 has two reflective elements, a coating 260 and a mask 280. Reflective lining 270 and solid padding 160 are provided in area 128 of the assembly, as shown in FIG. In this embodiment, a material such as a mirror may be selected for the lining 270 and a scattering (diffuse reflection) material may be selected for the filling 160. Further, other combinations may be used. In FIG. 21, the side wall 136 has a coating 260 and a solid filling 160. A reflective lining 270 and a mask 280 are provided in region 128 of the assembly, as shown in FIG. Finally, a solid padding 160 and a mask 280 are provided in region 128, as shown in FIG. The configurations discussed so far have been linear or planar. The illumination system may be formed in a curved or spherical arrangement, as shown in FIGS. 25 and 26, respectively. Alternatively, they may be formed in other arrangements that can be easily conceived by those skilled in the art. In FIG. 25, light source 300 faces a curved array 310 of microprisms. In FIG. 26, the light source 320 is housed in a partially spherical array 330 of microprisms. In order to shape the light directing assembly in this way, it is necessary to adjust the angle of inclination of the side wall of the microprism with respect to the input surface so as to give the spherical emitter a suitable angular distribution. In addition, the spacing between the microprisms may need to be varied to be able to control the light properly. The input and output surfaces of the microprism may be flat, curved, or spherical. The light directing assembly of FIGS. 25 and 26 may be provided with a bottom wall adjacent to the output surface of the microprism, if desired. A lens may be provided in such a manner. Further, combining a plurality of flat and / or curved light directing assemblies 340 with one or more light sources 350 to form a polyhedral lighting device as shown in FIGS. 27 and 28, Irradiation in a plurality of directions may be performed. The individual microprisms of one flat assembly are shown in FIG. 27a. The intensity of light entering the light directing assembly 120 can be controlled by inserting an optical element 400 between the light source 112 and the light directing assembly 120, as shown in FIG. By reducing the direct transmission of light from the light source 112 into the microprism 122, the output of the light directing assembly 120 is made more uniform and glare is minimized. The optical element 400 can be made from a rectangular piece of material (eg, plastic, glass or other material) that has approximately the same cross-sectional area at that location in the optical path from the light source 112 to the microprism 122. It has the same flat area. The material may be scattering (diffusely reflective) or partially mirror-like. Illumination assembly 110 encapsulates light source 112 with an optically transmissive material 410 having one or more indices of refraction (n1) instead of simply removing light source 112 suspended in air, as shown in FIG. Further improvements can be made. This optically transmissive material 410 will fill the area surrounding the light source 112 and will be adjacent to the input surface 132 of the microprism 122. This prevents Fresnel reflections at the input surface 132 of the microprism 122 and allows the light source 112 to fill the row of input and input surfaces 132 much more easily than the light source 112. Optically transmissive material 410 is bonded to the input surface by an adhesive layer 412. For optimal movement of the light, these indices are selected such that the refractive index increases as the light travels outward from the light source 112. Thus, the refractive index (n1) of the optically transmissive material 410, the refractive index (n2) of the adhesive layer 412, and the refractive index (n3) value of the light directing assembly 120 are selected such that n1 ≦ n2 ≦ n3. A light element 414 similar to the function for light element 400 in FIG. 29 is disposed on adhesive layer 412. The refractive index of this element 414 should be approximately equal to n2. The transfer of light from the light source 112 to the input surface 132 is also enhanced by introducing the radiation pattern of the light source 112 to the curved surface of the microprism that is supplementing. As shown in FIG. 31, input surface 422 of microprism 420 defines an arc such that the angle of incidence is less than the attenuation angle of microprism 420 farthest from light source 112. This attenuation angle is defined by the following equation: Rs = sin 2 (Φi−Φ ′) / sin 2 (Φi + Φ ′) Rp = tan 2 (Φi−Φ ′) / tan 2 (Φi + Φ ′) where n 1 sinΦi = N 3 sinΦ 'Rs is the reflectivity of light polarized perpendicular to the plane of incidence, Rp is the reflectivity of light polarized parallel to the plane of incidence, and Φi is the input plane Φ ′ is the angle of the incident light beam traveling through the microprism 420, and Φi and Φ ′ are defined from the normal to the plane of the input surface 422. In FIG. 32, an intermediate light element 430 has been introduced to limit the angular distribution of light entering the light directing assembly 120. Although shown in the drawings as being located between the lighting assembly 110 and the light directing assembly 120, this element 430 can be located in the lighting assembly closest to the light source 112. Further, a second light element 440 similar to light element 400 of FIG. 29 can be provided between light source 112 and intermediate light element 430, thereby reducing the light output of lighting assembly 110. Optical elements 430 and 440 may be formed of plastic, glass or other materials. The index of refraction (n3) of the intermediate light element 430 can be selected to selectively attenuate the larger incident angle rays from the light source 112 and reduce the angular distribution to the light directing assembly 120. For example, when using the above equations to calculate Rs and Rp, increasing the refractive index n 3 will increase the reflectivity at the incident angle Φi. Assuming that n 1 is equal to 1, the values of the refractive index n3 are 1.52, 1.7 and 4.0, and the reflectivities at an incident angle of 45 ° are 17.5%, 24% and 65%, respectively. Will. Operation of the lighting device The operation of the device will be described with reference to FIG. In the absence of special structures, the light source 112 emits light in the light directing assembly 120 and similarly in other directions. These rays travel directly to the input surface 132 of the microprism 122 and reflect as required by the above equations for calculating Rs and Rp. The rest of the light is transmitted through the microprism 122 and finally passes through a cooperating lens 142 as indicated by ray A. If light leaving the light source 112 first moves away from the light directing assembly 120, it will encounter the reflector 150. There, the light is reflected toward the light directing assembly 120 and passes through the microprism 122 and the lens 142 as indicated by ray B. Some light rays travel from the light source 112 toward the light directing assembly 120. However, some light rays enter the area 128 adjacent the sidewall 136. If such a ray continues to pass on the path, it will enter the microprism 122 through the side wall 136. However, such rays will not properly exit the light directing assembly 120. Such light rays will in fact distort the light output distribution. Thus, a reflective element is provided in the region 128 so that such irregularly directed light rays can be blocked and redirected. As shown, the light rays leaving the light source 112 reach the solid filler 160. At the solid filler, the light rays are reflected toward reflector 150. There, the light rays are reflected towards the light directing assembly 120 and pass through the light directing assembly 120 as indicated by light rays C. If instead of a reflective material a non-reflective filler is used in the area 128, the light rays will be easily absorbed by the filler. Alternatively, the light is reflected towards a light source. However, this is undesirable because most of such light is absorbed by light source 112. Thus, this reflection mode should be minimized, for example, by using a smaller light source. It should be noted that the present invention is applicable to a wide variety of devices, such as direct lighting devices, including lighting for business, office, residential, outdoor, automotive, and home appliance applications. The present invention also relates to displays for computer, automotive, military, aerospace, consumer, commercial, and industrial applications, and any other device requiring a light source. Applicable. Two examples are the commercial trophy 500 illustrated in FIG. 34 and the downlight 600 illustrated in FIG. The trofer 500 includes two light sources 510, such as T-5 or T-8 fluorescent lamps, a reflector 520, and a light directing assembly 530 comprising a microprism. The downlight 600 also includes a light source 610 (eg, a CFL lamp), a reflector 620, and a light directing assembly 630. Having described what is considered to be the preferred embodiment of the present invention, those skilled in the art will recognize that other and other changes can be made to the embodiment without departing from the spirit of the present invention. Will. It is intended to claim all such embodiments that fall within the scope of the invention. It should be understood that other modifications and combinations are possible, for example, by using the structures disclosed in the cited patents.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 クパー,ジェリー・ウェイン アメリカ合衆国ニュージャージー州08836, マーティンスヴィル,チュロ・ロード 1336────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kupar, Jerry Wayne             United States New Jersey 08836,             Martinsville, Chulo Road             1336

Claims (1)

【特許請求の範囲】 1.照明装置であって、 (a)光源と、 (b)光源に極めて近接して配置され且つ少なくとも1つのマイクロプリズム を含む光指向組立体であって、同マイクロプリズムは、光源から射出された光を 受け入れる入射面と、同入射面から遠位にあり且つ同入射面と平行な射出面と、 同入射面と射出面との間に配設され且つ同入射面及び射出面に隣接し、同入射面 に対して鈍角の傾斜角度を形成しており、更に、同入射面によって受け入れられ た光線を全反射させるように配置された、少なくとも1つの側壁と、を含む、光 指向組立体と、 (c)前記側壁を光が通過するのを遮断するための少なくとも1つの遮光手段 と、 を含む照明装置。 2.請求項1に記載の照明装置であって、 少なくとも1つのレンズを含むレンズ組立体であって、前記マイクロプリズム の射出面に極めて近接しているレンズ組立体を更に含む、照明装置。 3.照明装置であって、 (a)光源と、 (b)前記光源に極めて近接して配置された反射装置と、 (c)光源に極めて近接して配置され且つ複数のマイクロプリズムを含む光指 向組立体であって、同複数のマイクロプリズムの各々は、光源から射出された光 を受け入れる入射面と、同入射面から遠位にあり且つ同入射面と平行な射出面と 、同入射面と射出面との間に配設され且つ同入射面及び射出面に隣接し、同入射 面に対して鈍角の傾斜角度を形成しており、更に、同入射面によって受け入れら れた光線を全反射させるように配置され、前記マイクロプリズムの相互間の隙間 領域を形成している、少なくとも1つの側壁と、を含む、光指向組立体と、 (d)前記側壁を光が通過するのを遮断するように配置された少なくとも1つ の遮光手段と、 を含む照明装置。 4.請求項4に記載の照明装置であって、 前記光指向組立体が2つの面を有する底壁を更に含み、前記マイクロプリズム の射出面が前記底壁の1つの面に隣接している、照明装置。 5.請求項4に記載の照明装置であって、 少なくとも1つのレンズを含むレンズ組立体であって、前記マイクロプリズム の射出面に極めて近接しているレンズ組立体を更に含む、照明装置。 6.請求項4に記載の照明装置であって、 前記反射装置が、反射された光を、前記マイクロプリズムの入射面に向けて光 指向するような向きに配置されている、照明装置。 7.請求項4に記載の照明装置であって、 前記遮光手段が、前記マイクロプリズムの側壁上に設けられた反射コーティン グ、同マイクロプリズムの側壁上に設けられた反射ライニング、前記隙間領域に 設けられた固体充填材、前記マイクロプリズムの入射面に隣接して設けられた反 射マスク、及びこれらの組み合わせ、からなる群から選択されたものである、照 明装置。 8.請求項4に記載の照明装置であって、 前記照明組立体が、前記光源から前記光指向組立体への光の伝播を減じるため の、前記光源と前記光指向組立体との間に配設された光学手段を更に含む、照明 装置。 9.請求項4に記載の照明装置であって、 前記照明組立体が、前記光指向組立体へと伝播された光の角度分布を制限する ための、前記光源と前記光指向組立体との間に配設された中間光学手段を更に含 む、照明装置。 10.請求項4に記載の照明装置であって、 前記マイクロプリズムの入射面が、前記光源からの光の放射の角度分布に対し て相補形の弧状をなしている、照明装置。[Claims]   1. A lighting device,   (A) a light source;   (B) at least one microprism located very close to the light source Wherein the microprism directs light emitted from a light source. An entrance surface for receiving, an exit surface distal to and parallel to the entrance surface; The incident surface is disposed between the incident surface and the exit surface and is adjacent to the incident surface and the exit surface. Form an obtuse angle with respect to At least one side wall arranged to totally reflect the reflected light beam. A directional assembly,   (C) at least one light blocking means for blocking light from passing through the side wall; When,   Lighting device including.   2. The lighting device according to claim 1,   A lens assembly comprising at least one lens, said micro prism The lighting device further comprising a lens assembly in close proximity to the exit surface of the illumination device.   3. A lighting device,   (A) a light source;   (B) a reflector arranged very close to the light source;   (C) an optical finger disposed in close proximity to the light source and including a plurality of microprisms; A plurality of microprisms, each of the plurality of microprisms being configured to emit light emitted from a light source. And an exit surface that is distal from and parallel to the entrance surface. Disposed between the incident surface and the exit surface and adjacent to the incident surface and the exit surface, Form an obtuse angle with respect to the surface, and Are arranged so as to totally reflect the reflected light, and the gap between the microprisms A light directing assembly including at least one sidewall forming an area;   (D) at least one arranged to block the passage of light through the side wall; Light shielding means,   Lighting device including.   4. The lighting device according to claim 4,   The light directing assembly further includes a bottom wall having two faces, wherein the microprism is The lighting device of claim 1, wherein the exit surface is adjacent to one surface of the bottom wall.   5. The lighting device according to claim 4,   A lens assembly comprising at least one lens, said micro prism The lighting device further comprising a lens assembly in close proximity to the exit surface of the illumination device.   6. The lighting device according to claim 4,   The reflecting device directs the reflected light toward the entrance surface of the microprism. A lighting device that is arranged in such a way that it points.   7. The lighting device according to claim 4,   The light shielding means is a reflection coating provided on a side wall of the micro prism. Reflection lining provided on the side wall of the microprism, The solid filler provided, and the counterpart provided adjacent to the entrance surface of the microprism A mask selected from the group consisting of a radiation mask and a combination thereof. Lighting device.   8. The lighting device according to claim 4,   The lighting assembly reduces light propagation from the light source to the light directing assembly Illumination, further comprising optical means disposed between said light source and said light directing assembly. apparatus.   9. The lighting device according to claim 4,   The lighting assembly limits the angular distribution of light propagated to the light directing assembly Further comprising intermediate optical means disposed between the light source and the light directing assembly. A lighting device.   10. The lighting device according to claim 4,   The incidence surface of the microprism has an angle distribution of light emission from the light source. A lighting device that has a complementary arc shape.
JP9534508A 1996-03-26 1997-03-21 Light-recirculating back-coupled lighting system Pending JP2000507736A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/622,131 US5839823A (en) 1996-03-26 1996-03-26 Back-coupled illumination system with light recycling
US08/622,131 1996-03-26
PCT/US1997/004621 WO1997036131A1 (en) 1996-03-26 1997-03-21 Illumination system comprising microprisms with blocking means

Publications (1)

Publication Number Publication Date
JP2000507736A true JP2000507736A (en) 2000-06-20

Family

ID=24493060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9534508A Pending JP2000507736A (en) 1996-03-26 1997-03-21 Light-recirculating back-coupled lighting system

Country Status (12)

Country Link
US (1) US5839823A (en)
EP (1) EP0890060B1 (en)
JP (1) JP2000507736A (en)
CN (1) CN1083079C (en)
AT (1) ATE209768T1 (en)
CA (1) CA2250312C (en)
DE (1) DE69708615T2 (en)
DK (1) DK0890060T3 (en)
ES (1) ES2169374T3 (en)
PT (1) PT890060E (en)
TW (1) TW419572B (en)
WO (1) WO1997036131A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050307A (en) * 2001-08-06 2003-02-21 Dainippon Printing Co Ltd Light diffusion sheet and projection screen
JP2007503019A (en) * 2003-08-18 2007-02-15 イーストマン コダック カンパニー Increasing brightness
JP2008510183A (en) * 2004-08-10 2008-04-03 トリヴィアム テクノロジーズ,インク. Optical collimator
JP2008513946A (en) * 2004-09-20 2008-05-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED collimator element with asymmetric collimator
JP2010217349A (en) * 2009-03-13 2010-09-30 Hitachi Displays Ltd Liquid crystal display

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104455A (en) * 1997-08-27 2000-08-15 Dai Nippon Printing Co., Ltd. Back light device and liquid crystal display apparatus
DE19923225B4 (en) * 1999-05-20 2009-10-22 Zumtobel Staff Gmbh Optical element for deflecting light rays and manufacturing processes
DE19923226A1 (en) * 1999-05-20 2000-11-23 Zumtobel Staff Gmbh Optical element for deflection of light beams entering into this and exiting again from it so that exit angle of light beams is limited has micro-prism surfaces designed as convex or concave
JP2003500813A (en) * 1999-05-20 2003-01-07 ツムトーベル シュタッフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Lighting equipment
US6912513B1 (en) * 1999-10-29 2005-06-28 Sony Corporation Copy-protecting management using a user scrambling key
EP1266247A4 (en) * 2000-02-02 2009-09-30 Brilliant Film Llc Multiflecting light directing film
US6697042B1 (en) * 2000-11-27 2004-02-24 Rainbow Displays, Inc. Backlight assembly for collimated illumination
DE10124370B4 (en) * 2001-05-18 2010-11-18 Zumtobel Lighting Gmbh Optical element with total reflection
DE10125553A1 (en) * 2001-05-23 2002-11-28 Philips Corp Intellectual Pty Liquid crystal image screen has collimator containing three-dimensional micro-prisms, each with at least one constriction between light entry and output surfaces
US7595934B2 (en) * 2002-03-26 2009-09-29 Brilliant Film Llc Integrated sub-assembly having a light collimating or transflecting device
US7128443B2 (en) 2002-06-28 2006-10-31 Koninklijke Philips Electronics, N.V. Light-collimating system
EP1520189A1 (en) 2002-06-28 2005-04-06 Koninklijke Philips Electronics N.V. Light-collimating system
CN1682072A (en) * 2002-09-12 2005-10-12 皇家飞利浦电子股份有限公司 An illumination system
WO2004025169A1 (en) * 2002-09-12 2004-03-25 Koninklijke Philips Electronics N.V. Lighting device
JP2004233957A (en) * 2002-12-05 2004-08-19 Toyota Industries Corp Optical element, planar lighting device, and liquid crystal display device
US7245435B2 (en) * 2002-12-16 2007-07-17 3M Innovative Properties Company Lens array sheet and molding method
JP2004198536A (en) * 2002-12-16 2004-07-15 Three M Innovative Properties Co Lens array sheet and its forming method
US7400805B2 (en) * 2003-06-10 2008-07-15 Abu-Ageel Nayef M Compact light collection system and method
US20050002204A1 (en) * 2003-07-04 2005-01-06 Kun-Lung Lin Module for uniforming light
US7070301B2 (en) * 2003-11-04 2006-07-04 3M Innovative Properties Company Side reflector for illumination using light emitting diode
US7090357B2 (en) * 2003-12-23 2006-08-15 3M Innovative Properties Company Combined light source for projection display
US7427146B2 (en) 2004-02-11 2008-09-23 3M Innovative Properties Company Light-collecting illumination system
US7246923B2 (en) 2004-02-11 2007-07-24 3M Innovative Properties Company Reshaping light source modules and illumination systems using the same
US7300177B2 (en) 2004-02-11 2007-11-27 3M Innovative Properties Illumination system having a plurality of light source modules disposed in an array with a non-radially symmetrical aperture
US20050185416A1 (en) * 2004-02-24 2005-08-25 Eastman Kodak Company Brightness enhancement film using light concentrator array
US7121690B1 (en) 2004-02-26 2006-10-17 Advanced Optical Technologies, Llc Constructive occlusion with a transmissive component
US7101050B2 (en) * 2004-05-14 2006-09-05 3M Innovative Properties Company Illumination system with non-radially symmetrical aperture
US7160017B2 (en) 2004-06-03 2007-01-09 Eastman Kodak Company Brightness enhancement film using a linear arrangement of light concentrators
US7390097B2 (en) * 2004-08-23 2008-06-24 3M Innovative Properties Company Multiple channel illumination system
US7775700B2 (en) * 2004-10-01 2010-08-17 Rohm And Haas Electronics Materials Llc Turning film using array of roof prism structures
JP2006113166A (en) * 2004-10-13 2006-04-27 Nec Saitama Ltd Illumination structure and electronic equipment
JP2006171701A (en) * 2004-11-18 2006-06-29 Dainippon Printing Co Ltd Angle-of-field control sheet and liquid crystal display using it
JP2006171700A (en) * 2004-11-18 2006-06-29 Dainippon Printing Co Ltd Angle-of-field control sheet and liquid crystal display device using it
ITMI20050625A1 (en) * 2005-04-13 2006-10-14 Reggiani Illuminazione LIGHTING EQUIPMENT WITH PERFECTED SCREEN
US20070058391A1 (en) * 2005-09-14 2007-03-15 Wilson Randall H Light extraction layer
US7663712B2 (en) * 2005-10-10 2010-02-16 Skc Haas Display Films Co., Ltd. Backlight unit with linearly reduced divergence having the width of an output aperture vary over the length of a light divergence reduction structure
US7674028B2 (en) 2006-01-13 2010-03-09 Avery Dennison Corporation Light enhancing structures with multiple arrays of elongate features of varying characteristics
US7866871B2 (en) 2006-01-13 2011-01-11 Avery Dennison Corporation Light enhancing structures with a plurality of arrays of elongate features
US7545569B2 (en) 2006-01-13 2009-06-09 Avery Dennison Corporation Optical apparatus with flipped compound prism structures
US7366393B2 (en) * 2006-01-13 2008-04-29 Optical Research Associates Light enhancing structures with three or more arrays of elongate features
JP2007248484A (en) * 2006-03-13 2007-09-27 Sony Corp Display device
KR101263502B1 (en) * 2006-03-27 2013-05-13 엘지디스플레이 주식회사 Light Emitting Diode Back Light Unit and Liquid Crystal Display Device having thereof
US7720347B2 (en) * 2006-03-28 2010-05-18 Samsung Electronics Co., Ltd. Backlight having all-in-one type light guide plate and method of manufacturing all-in-one type light guide plate
DE102006019194A1 (en) * 2006-04-21 2007-10-25 Semperlux Ag - Lichttechnische Werke - Multi-sided lighting arrangement with glare control
JP5309993B2 (en) * 2006-05-31 2013-10-09 コニカミノルタ株式会社 Surface light emitter and display device
EP1887634A3 (en) 2006-08-11 2011-09-07 OSRAM Opto Semiconductors GmbH Semiconductor light emitting device
TWM315340U (en) * 2006-12-11 2007-07-11 Lumos Technology Co Ltd Cone microlenses and lens structure using the same
CN101295041B (en) * 2007-04-27 2011-12-21 鸿富锦精密工业(深圳)有限公司 Back light module and optical plate
CN101299112B (en) * 2007-04-30 2011-06-08 鸿富锦精密工业(深圳)有限公司 Back light module unit and optical panel thereof
CN101730820B (en) * 2007-05-02 2012-12-05 照明器控股有限公司 Lighting method and system
BRPI0812402B1 (en) 2007-06-13 2019-02-26 Thomson Licensing IMAGE DISPLAY DEVICE UNDERSTANDING TWO MODULATION STAGES
CN101349772B (en) * 2007-07-20 2011-06-29 鸿富锦精密工业(深圳)有限公司 Backlight module unit and optical plate thereof
CN101354449B (en) * 2007-07-23 2011-09-28 鸿富锦精密工业(深圳)有限公司 Backlight module unit and optical plate thereof
KR101830969B1 (en) * 2007-10-16 2018-02-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Higher transmission light control film
CN101440934A (en) * 2007-11-20 2009-05-27 鸿富锦精密工业(深圳)有限公司 Illumination system
WO2009085581A1 (en) * 2007-12-21 2009-07-09 3M Innovative Properties Company Light control film
US8177408B1 (en) 2008-02-15 2012-05-15 Fusion Optix, Inc. Light filtering directional control element and light fixture incorporating the same
TW200946775A (en) 2008-02-27 2009-11-16 Brilliant Film Llc Concentrators for solar power generating systems
US8408775B1 (en) 2008-03-12 2013-04-02 Fusion Optix, Inc. Light recycling directional control element and light emitting device using the same
WO2009142440A2 (en) * 2008-05-20 2009-11-26 Jung Jin Ho Optical component for maskless exposure apparatus
DK2344939T3 (en) 2008-09-24 2018-06-25 Luminator Holding Lp Methods and systems for maintaining the illumination intensity of light emitting diodes
US20100165634A1 (en) * 2008-12-29 2010-07-01 Hei-Tai Hong Ultra-thin light guidance device
DE102008063369B4 (en) * 2008-12-30 2016-12-15 Erco Gmbh Lamp and module system for luminaires
CN102460229B (en) * 2009-06-17 2014-06-04 Lg化学株式会社 Light extraction member and organic light emitting diode including the same
JP2012530938A (en) 2009-06-18 2012-12-06 スリーエム イノベイティブ プロパティズ カンパニー Light control film
JP2011060594A (en) * 2009-09-10 2011-03-24 Fujitsu Ltd Illumination unit, device, and method of manufacturing the same
EP2458285B1 (en) * 2010-11-26 2015-09-16 Electrolux Home Products Corporation N.V. cooking hob with a glass ceramic panel and an illumination device
EP2707765A1 (en) 2011-05-13 2014-03-19 3M Innovative Properties Company Back-lit transmissive display having variable index light extraction layer
DE102011051034A1 (en) 2011-06-14 2012-12-20 Selux Aktiengesellschaft LED lighting arrangement e.g. suspended lamp, for use at ceiling of building, has carrier comprising support profile having geometry on side of carrier as support profile on another side of carrier, where carrier is mounted at housing
US9279564B1 (en) 2011-08-11 2016-03-08 Universal Lighting Technologies, Inc. Indirect area lighting apparatus and methods
US9651728B2 (en) 2012-06-04 2017-05-16 3M Innovative Properties Company Variable index light extraction layer with microreplicated posts and methods of making the same
WO2014031726A1 (en) 2012-08-24 2014-02-27 3M Innovative Properties Company Variable index light extraction layer and method of making the same
TW201422987A (en) * 2012-12-04 2014-06-16 Hon Hai Prec Ind Co Ltd Light reflecting cover and light curable apparatus
US8797611B2 (en) * 2012-12-12 2014-08-05 Hewlett-Packard Development Company, L.P. Illumination assembly
US9575244B2 (en) * 2013-01-04 2017-02-21 Bal Makund Dhar Light guide apparatus and fabrication method thereof
US9366396B2 (en) 2013-01-30 2016-06-14 Cree, Inc. Optical waveguide and lamp including same
US9291320B2 (en) 2013-01-30 2016-03-22 Cree, Inc. Consolidated troffer
US9625638B2 (en) 2013-03-15 2017-04-18 Cree, Inc. Optical waveguide body
US10422944B2 (en) 2013-01-30 2019-09-24 Ideal Industries Lighting Llc Multi-stage optical waveguide for a luminaire
US9869432B2 (en) 2013-01-30 2018-01-16 Cree, Inc. Luminaires using waveguide bodies and optical elements
US10436969B2 (en) 2013-01-30 2019-10-08 Ideal Industries Lighting Llc Optical waveguide and luminaire incorporating same
US9690029B2 (en) 2013-01-30 2017-06-27 Cree, Inc. Optical waveguides and luminaires incorporating same
US9442243B2 (en) 2013-01-30 2016-09-13 Cree, Inc. Waveguide bodies including redirection features and methods of producing same
US10436970B2 (en) 2013-03-15 2019-10-08 Ideal Industries Lighting Llc Shaped optical waveguide bodies
US9366799B2 (en) 2013-03-15 2016-06-14 Cree, Inc. Optical waveguide bodies and luminaires utilizing same
US10400984B2 (en) 2013-03-15 2019-09-03 Cree, Inc. LED light fixture and unitary optic member therefor
US10379278B2 (en) * 2013-03-15 2019-08-13 Ideal Industries Lighting Llc Outdoor and/or enclosed structure LED luminaire outdoor and/or enclosed structure LED luminaire having outward illumination
US9568662B2 (en) 2013-03-15 2017-02-14 Cree, Inc. Optical waveguide body
US10502899B2 (en) * 2013-03-15 2019-12-10 Ideal Industries Lighting Llc Outdoor and/or enclosed structure LED luminaire
US9952372B2 (en) 2013-03-15 2018-04-24 Cree, Inc. Luminaire utilizing waveguide
US9798072B2 (en) 2013-03-15 2017-10-24 Cree, Inc. Optical element and method of forming an optical element
US9709725B2 (en) 2013-03-15 2017-07-18 Cree, Inc. Luminaire utilizing waveguide
US9920901B2 (en) 2013-03-15 2018-03-20 Cree, Inc. LED lensing arrangement
US10209429B2 (en) 2013-03-15 2019-02-19 Cree, Inc. Luminaire with selectable luminous intensity pattern
US9651740B2 (en) 2014-01-09 2017-05-16 Cree, Inc. Extraction film for optical waveguide and method of producing same
US10317608B2 (en) 2014-03-15 2019-06-11 Cree, Inc. Luminaires utilizing optical waveguide
US11408572B2 (en) 2014-03-15 2022-08-09 Ideal Industries Lighting Llc Luminaires utilizing optical waveguide
US9835317B2 (en) 2014-03-15 2017-12-05 Cree, Inc. Luminaire utilizing waveguide
DE102014103849B4 (en) 2014-03-20 2020-08-06 Bcs Automotive Interface Solutions Gmbh Lens plate
US10935211B2 (en) 2014-05-30 2021-03-02 Ideal Industries Lighting Llc LED luminaire with a smooth outer dome and a cavity with a ridged inner surface
KR102244427B1 (en) 2014-06-02 2021-04-27 엘지이노텍 주식회사 Lighting device
WO2016178592A1 (en) * 2015-05-05 2016-11-10 Алексей Николаевич МИРОНОВ Lamp and optical element for same
KR20170039814A (en) * 2015-10-01 2017-04-12 삼성디스플레이 주식회사 Optical component and display device having the same
US10317609B2 (en) * 2015-11-12 2019-06-11 Samsung Display Co., Ltd. Display device
US10416377B2 (en) 2016-05-06 2019-09-17 Cree, Inc. Luminaire with controllable light emission
US11719882B2 (en) 2016-05-06 2023-08-08 Ideal Industries Lighting Llc Waveguide-based light sources with dynamic beam shaping
US11036321B2 (en) * 2018-07-27 2021-06-15 Lg Display Co., Ltd. Light control film and display apparatus including the same
DE102018119412B4 (en) * 2018-08-09 2023-03-30 Bcs Automotive Interface Solutions Gmbh Optical assembly and method for manufacturing an optical assembly
US20220283353A1 (en) * 2019-08-16 2022-09-08 Egis Technology Inc. Fingerprint sensing apparatus
CN114503022A (en) 2019-10-11 2022-05-13 3M创新有限公司 Optical layer, optical film and optical system
KR102298951B1 (en) 2020-02-05 2021-09-08 주식회사 엠비젼 Light Equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1442463A (en) * 1920-04-17 1923-01-16 Finis W Henderson Light-modifying means for headlights
US2398624A (en) * 1943-12-17 1946-04-16 Pennsylvania Railroad Co Light transmitting element
US3351753A (en) * 1965-08-27 1967-11-07 Holophane Co Inc Luminaire refractor
DE2039800A1 (en) * 1969-10-01 1971-04-22 Ford Werke Ag Light band for use as the rear end of motor vehicles
DE3325581A1 (en) * 1983-07-15 1985-01-24 Fa. Carl Zeiss, 7920 Heidenheim VACUUM-TIGHT RADIATION WINDOW
US4816968A (en) * 1987-03-28 1989-03-28 Koito Manufacturing Co., Ltd. Illuminating device for automotive front grille
US5220462A (en) * 1991-11-15 1993-06-15 Feldman Jr Karl T Diode glazing with radiant energy trapping
DE4230907C2 (en) * 1992-09-16 1996-02-29 Parol Leuchtenkomponenten Gmbh Luminaire louvre for louvre luminaires
US5383102A (en) * 1992-11-25 1995-01-17 Tenebraex Corporation Illumination apparatus and reflection control techniques
US5481385A (en) * 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
US5428468A (en) * 1993-11-05 1995-06-27 Alliedsignal Inc. Illumination system employing an array of microprisms
US5396350A (en) * 1993-11-05 1995-03-07 Alliedsignal Inc. Backlighting apparatus employing an array of microprisms
US5598281A (en) * 1993-11-19 1997-01-28 Alliedsignal Inc. Backlight assembly for improved illumination employing tapered optical elements
DE10014189A1 (en) * 2000-03-23 2001-09-27 Alstom Power Nv Blade fastening for rotating machinery has blades fitted in slots without play or with pretensioning so that torsional moments acting on inner platform or blade roots oppose torsional moments acting upon outer platform or support wing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050307A (en) * 2001-08-06 2003-02-21 Dainippon Printing Co Ltd Light diffusion sheet and projection screen
JP2007503019A (en) * 2003-08-18 2007-02-15 イーストマン コダック カンパニー Increasing brightness
JP2008510183A (en) * 2004-08-10 2008-04-03 トリヴィアム テクノロジーズ,インク. Optical collimator
JP2008513946A (en) * 2004-09-20 2008-05-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED collimator element with asymmetric collimator
JP4933434B2 (en) * 2004-09-20 2012-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED collimator element with asymmetric collimator
JP2010217349A (en) * 2009-03-13 2010-09-30 Hitachi Displays Ltd Liquid crystal display

Also Published As

Publication number Publication date
US5839823A (en) 1998-11-24
ES2169374T3 (en) 2002-07-01
EP0890060B1 (en) 2001-11-28
WO1997036131A1 (en) 1997-10-02
DE69708615D1 (en) 2002-01-10
CN1083079C (en) 2002-04-17
DK0890060T3 (en) 2002-02-18
CA2250312C (en) 2004-10-12
CA2250312A1 (en) 1997-10-02
DE69708615T2 (en) 2002-08-01
PT890060E (en) 2002-04-29
ATE209768T1 (en) 2001-12-15
TW419572B (en) 2001-01-21
EP0890060A1 (en) 1999-01-13
CN1220002A (en) 1999-06-16

Similar Documents

Publication Publication Date Title
JP2000507736A (en) Light-recirculating back-coupled lighting system
JP3529387B2 (en) Light directing optical structure
JP2723251B2 (en) Optical equipment that outputs normalized light
US4118763A (en) Variable transmission prismatic refractors
US7178946B2 (en) Luminaire device that restricts light within an angular envelope
US6185357B1 (en) Illumination system using edge-illuminated hollow waveguide and lenticular optical structures
US9372298B2 (en) Luminaire
US5997156A (en) Lighting device for generating a rectangular pattern at the work area, E. G. for illuminating pedestrian crossings
KR20080031874A (en) Illumination device
JPH03173005A (en) Reflector and illuminator including the same
JP2012160666A (en) Light source module and lighting device
JPH0219562B2 (en)
JPH02208631A (en) Surface light emission body device for lighting liquid crystal display element
JP2016500902A (en) Lighting device for indirect lighting
JP4047437B2 (en) Linear light projection device and flat illumination device
KR100463934B1 (en) Back-coupled lighting system to regenerate light
CN220397376U (en) Lamp set
CN217584144U (en) Light control device and lamp
CN112133219B (en) Lamp box device with divergent lens
MXPA98007993A (en) Lighting system that comprises microprisms with block medium
JP2024512884A (en) collimator and portable lights
JP2021072197A (en) Light guide plate and illumination device
CN113495385A (en) Light flux controlling member, light emitting device, surface light source device, and display device
JPH0721821A (en) Luminaire
JPH0252314A (en) Back lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515