JP2000357538A - Maintenance method of control valve type lead-acid battery - Google Patents

Maintenance method of control valve type lead-acid battery

Info

Publication number
JP2000357538A
JP2000357538A JP11168825A JP16882599A JP2000357538A JP 2000357538 A JP2000357538 A JP 2000357538A JP 11168825 A JP11168825 A JP 11168825A JP 16882599 A JP16882599 A JP 16882599A JP 2000357538 A JP2000357538 A JP 2000357538A
Authority
JP
Japan
Prior art keywords
battery
charge
inert gas
gas
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11168825A
Other languages
Japanese (ja)
Inventor
Tomohiro Imamura
智宏 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP11168825A priority Critical patent/JP2000357538A/en
Publication of JP2000357538A publication Critical patent/JP2000357538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent capacity drop in a battery, electrolyte leakage, and breakdown of a battery jar by filling inert gas in a battery after start of float charge and/or after recovery charge. SOLUTION: Filling of inert gas only after initial charge, or after initial charge and after start of float charge is insufficient, and by filling inert gas after recovery charge, pressure reduction within a battery can be prevented. In a word, since part of the inert gas is evacuated, by recovery charge inert gas is filled after recovery charge. As the inert gas, N2, He, Ar, and a mixture of them can be used. In a battery in which the time from initial charge to start of float charge is short, filling of inert gas after initial charge can be omitted. In the battery in which the time from after start of float charge to discharge is short, filling of inert gas after start of charge can be omitted. In the battery in which distance between discharge and the next discharge is short, filling of inert gas every recovery charge can be omitted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フロート充電方式
で制御弁式鉛電池を使用する場合に、電槽が凹むのを防
止する制御弁式鉛電池の保守方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a maintenance method for a control valve type lead battery which prevents a battery case from being dented when a control valve type lead battery is used in a float charging system.

【0002】[0002]

【従来の技術】従来の制御弁式鉛蓄電池は、電槽または
蓋に排気弁が設けられており、充電時、極板からガスが
発生した際、セル室内部のガス圧が規定の値以上に達す
ると、ガスを外部に放出し、また、負極の酸素ガス吸収
等によりセル室内部のガス圧が減圧状態になった際は、
ガスを内部に侵入させない構造になっている。これらセ
ル室内部のガス圧の変動により、電槽が外側へ膨らんだ
り( 以下、この場合のガス圧を正圧という) 、内側へ凹
んだりする( 以下、この場合のガス圧を負圧という) 。
2. Description of the Related Art A conventional control valve type lead-acid battery is provided with an exhaust valve in a battery case or a lid. When gas is generated from an electrode plate during charging, the gas pressure inside the cell chamber exceeds a specified value. When the gas pressure inside the cell chamber is reduced due to the oxygen gas absorption of the negative electrode, etc.
The structure prevents gas from entering the interior. Due to the fluctuations in the gas pressure inside these cell chambers, the battery case bulges outward (hereinafter, the gas pressure in this case is referred to as positive pressure) or is depressed inward (hereinafter, the gas pressure in this case is referred to as negative pressure). .

【0003】電槽に正圧がかかり、電槽壁が外に膨れた
場合、正極板または負極板とセパレータとに隙間が生
じ、各々の接触面積が低下し、充放電性能が低下する。
その防止策として、電槽側壁の肉厚を厚く設計したり、
あるいは補強材を設置する等して、電槽壁の強度を上げ
ていた。また、電池の蓋に安全弁を取り付け、セル室内
の内圧が規定値を超えると、開弁し、ガスを外部に逃が
して電槽が膨張しないようにしていた。
When a positive pressure is applied to the battery case and the battery case wall swells outward, a gap is formed between the positive electrode plate or the negative electrode plate and the separator, the contact area of each of them decreases, and the charge / discharge performance decreases.
As a measure to prevent this, the wall thickness of the battery case can be designed to be thick,
Alternatively, the strength of the battery case wall was increased by installing a reinforcing material or the like. Also, a safety valve is attached to the lid of the battery, and when the internal pressure in the cell chamber exceeds a specified value, the valve is opened to release gas to the outside so that the battery case does not expand.

【0004】一方、電槽に負圧がかかり、空気がセル室
内に進入すると、空気中の酸素が負極板に吸収され、容
量低下を引き起こすため、制御弁式鉛電池は、空気を内
部に侵入させない構造になっている。従って、負圧にな
ると電槽が凹み、酷い場合は電槽が破損することがあっ
たが、これに対する有効な対策がなかった。
On the other hand, when negative pressure is applied to the battery case and air enters the cell chamber, oxygen in the air is absorbed by the negative electrode plate, causing a reduction in capacity. It has a structure that does not allow it. Therefore, the battery case may be dented when the pressure becomes negative, and the battery case may be damaged in severe cases. However, there is no effective countermeasure against this.

【0005】電池の使用方法がサイクル使用の場合は、
充電時における極板からのガス発生により、セル室内が
正圧となるので、あまり問題とならなかった。
When the battery is used in a cycle,
Since gas was generated from the electrode plate during charging, a positive pressure was generated in the cell chamber, so that there was not much problem.

【0006】しかし、非常停電時のバックアップ電源用
途(UPS)用電池の場合は、一定電圧で充電を続け
る、いわゆるフロート充電方式が一般的に使われてい
る。この充電方式は、電流値が小さいので、ガスの発生
量が少なく、電池セル室内の内圧が負圧になることがあ
った。
[0006] However, in the case of a battery for a backup power supply (UPS) at the time of an emergency power failure, a so-called float charging method in which charging is continued at a constant voltage is generally used. In this charging method, since the current value is small, the amount of generated gas is small, and the internal pressure in the battery cell chamber may become negative.

【0007】[0007]

【発明が解決しようとする課題】負圧により電槽凹みが
生じると、上記したように、電槽が破壊される場合があ
るが、電槽が破壊されなくても電池内部では、極群から
電解液が絞り出され、電槽下部に溜まり、容量低下を起
こす。さらに、凹みが長期間続くと、電槽がクリープ破
壊を起こし、漏液するという問題が生じた。
As described above, when a battery case dent occurs due to a negative pressure, the battery case may be destroyed as described above. The electrolyte is squeezed out and accumulates at the bottom of the battery case, causing a reduction in capacity. Further, if the dent continues for a long period of time, there is a problem that the battery case causes creep destruction and leaks.

【0008】この負圧発生には三つのパターンが考えら
れる。一つは、電池製造(初充電)直後から使用先で充
電されるまでの放置中に、電槽内の酸素が負極に吸収さ
れると共に、水素が電槽外部に透過し、負圧になる場合
である。二つは、フロート充電使用初期の電圧が負極側
に分極し、負極からの水素発生量が多いときは、正圧で
あるが、水分解による減液や、極板の劣化、特に負極の
劣化原因であるサルフェーションの進行とともに、分極
が正極側にシフトして、水素の発生量が減少し負圧が発
生する場合である。三つは、放電(使用)後に回復充電
してから次の放電時までのフロート充電中に、電槽内の
酸素が負極に吸収されると共に、水素が電槽外部に透過
し、負圧になる場合である。
There are three possible patterns for generating the negative pressure. One is that while the battery is left immediately after its production (first charge) until it is charged at the place of use, oxygen in the battery case is absorbed by the negative electrode, and hydrogen permeates outside the battery case, creating a negative pressure. Is the case. The second is that when the voltage in the early stage of float charging is polarized to the negative electrode side and the amount of hydrogen generated from the negative electrode is large, the pressure is positive, but liquid reduction due to water decomposition and deterioration of the electrode plate, especially deterioration of the negative electrode In this case, the polarization shifts to the positive electrode side with the progress of the sulfation, which is the cause, and the amount of generated hydrogen decreases and a negative pressure is generated. Third, during float charging from the recovery charge after discharge (use) to the next discharge, oxygen in the battery case is absorbed by the negative electrode, and hydrogen permeates outside the battery case, creating a negative pressure. This is the case.

【0009】従来の技術、例えば特開昭63−1285
68号公報では、電池完成後に不活性ガスを送り込んで
電池内を不活性ガスで置換する方法が提案されている。
Conventional technology, for example, Japanese Patent Application Laid-Open No. 63-1285
No. 68 proposes a method in which an inert gas is supplied after the battery is completed to replace the inside of the battery with the inert gas.

【0010】しかしながら、この方法は前記一つ目のパ
ターンを解決できるが、二つ目や三つ目のパターンには
あまり効果がなかった。これは、製造直後に不活性ガス
を充填しても、フロート充電初期あるいは回復充電時の
水素発生が多く、電槽内が正圧となり、安全弁から水素
とともに不活性ガスが排出されてしまうためである。本
発明は、上記問題点に鑑みてなされたものであって、そ
の目的とするところは、フロート充電方式で使用する制
御弁式鉛電池の電槽が放置中またはフロート充電中に凹
まないようにして、鉛電池の容量低下、漏液、および電
槽の破損を防止することにある。
However, this method can solve the first pattern, but has little effect on the second and third patterns. This is because even if an inert gas is filled immediately after production, a large amount of hydrogen is generated at the beginning of float charging or at the time of recovery charging, the inside of the battery case becomes positive pressure, and the inert gas is discharged together with hydrogen from the safety valve. is there. The present invention has been made in view of the above problems, and an object of the present invention is to prevent a battery case of a control valve type lead battery used in a float charging system from being dented during standing or during float charging. Accordingly, it is an object of the present invention to prevent a decrease in the capacity of a lead battery, leakage of liquid, and damage to a battery case.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の保守方法は、フロート充電開始後または/
および回復充電後に該電池内に不活性ガスを充填するこ
とを特徴とする。
In order to achieve the above object, the maintenance method of the present invention is provided after the start of float charging or /
And charging the battery with an inert gas after the recovery charge.

【0012】そして、前記制御弁式鉛電池は、電池を組
み立て初充電した後に不活性ガスを充填したものである
ことが好ましい。
[0012] It is preferable that the control valve type lead battery is charged with an inert gas after the battery is assembled and charged for the first time.

【0013】なお、前記不活性ガスとして、窒素、ヘリ
ウム、アルゴンの単一または複合ガスが望ましい。これ
らのガスは、水素に比較して電槽外部への透過性が低
く、また、極板と反応することもないので、電池セル室
内の空間内に残存し、電池セル室の負圧を解消すること
ができる。
The inert gas is preferably a single or composite gas of nitrogen, helium and argon. These gases have a lower permeability to the outside of the battery case than hydrogen and do not react with the electrode plates, so they remain in the space inside the battery cell room and eliminate the negative pressure in the battery cell room. can do.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施例について図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】公知の方法で作製した未化成の正極及び負
極と、電解液として比重1.26(25℃)の硫酸水溶
液を用いて電池を構成し、正極の理論容量の250%ま
で定電流で50時間かけて初充電した。なお、この電池
の定格容量(C)は、300Ah/5HRであった。
A battery is formed by using a non-chemically formed positive electrode and negative electrode prepared by a known method and a sulfuric acid aqueous solution having a specific gravity of 1.26 (25 ° C.) as an electrolytic solution, with a constant current up to 250% of the theoretical capacity of the positive electrode. It was charged for 50 hours. The rated capacity (C) of this battery was 300 Ah / 5 HR.

【0016】初充電後、そのままゴム弁を付け替え完成
品とした電池を電池Aとした。初充電直後、ゴム栓付け
替え時において、排気筒にかん合し、セル内と外部の空
気の相通を防止するキャップを備えたガス注入機で、キ
ャップに内蔵されたシリンジ針を通して、窒素ガスを充
填し、電槽セル室内が大気圧(101kPa )以上にな
った後に、すばやくゴム栓を装着し完成した電池を電池
Bとした。電池Bをさらに16時間放置した後、2.2
75V/セル(25℃)でフロート充電し、1日経過後
電池Bと同じ方法で電池内に窒素ガスを注入した。この
電池を電池Cとした。
After the initial charge, the battery was replaced with a rubber valve as it was to obtain a completed battery. Immediately after the first charge, when replacing the rubber stopper, nitrogen gas is filled through a syringe needle built into the cap with a gas injector equipped with a cap that fits into the exhaust pipe and prevents air from flowing inside and outside of the cell Then, after the inside of the battery cell chamber reached atmospheric pressure (101 kPa) or more, a rubber stopper was quickly attached, and the completed battery was designated as battery B. After leaving battery B for another 16 hours, 2.2
Float charging was performed at 75 V / cell (25 ° C.), and after one day, nitrogen gas was injected into the battery in the same manner as Battery B. This battery was designated as battery C.

【0017】これら電池A〜Cを6年間フロート充電し
続け、この間に1年毎に電池内圧を測定した。その結果
を図1に示す。 図1から、電池Aは、放置によるセル
室内の減圧が大きく、約40kPa まで内圧が低下し
た。これは、セル室内の酸素が負極に吸収され、かつ水
素が電槽外部に透過したためと考えられる。電池Bは、
電池Aより減圧が少ないが、電池Aと略同じ内圧まで低
下した。これは、初充電後の窒素ガス充填で、セル室内
の酸素および水素ガスが置換され、電池Aで起こった減
圧要因が減少したためと考えられる。しかし、電池Aと
略同じ内圧まで低下したのは、フロート充電により電池
の内圧が正圧になり排気弁から窒素ガスの一部が外部へ
放出され、窒素ガスの効果が殆どなくなったためと思わ
れる。電池Cは、殆ど内圧が低下しなかった。これは、
初充電後およびフロート充電後に窒素ガスを注入し、そ
れぞれの減圧要因をなくしたためである。
Each of the batteries A to C was float-charged for 6 years, during which time the internal pressure of the batteries was measured every year. The result is shown in FIG. From FIG. 1, it was found that the internal pressure of the battery A was reduced to about 40 kPa due to the large pressure reduction in the cell chamber due to the standing. This is presumably because oxygen in the cell chamber was absorbed by the negative electrode and hydrogen permeated outside the battery case. Battery B is
Although the pressure reduction was smaller than that of the battery A, the internal pressure decreased to substantially the same as that of the battery A. This is considered to be because oxygen and hydrogen gas in the cell chamber were replaced by nitrogen gas filling after the first charge, and the pressure reduction factor that occurred in the battery A was reduced. However, the reason why the internal pressure of the battery A was reduced to substantially the same as that of the battery A is considered that the internal pressure of the battery became positive due to the float charging, a part of the nitrogen gas was discharged to the outside from the exhaust valve, and the effect of the nitrogen gas was almost eliminated. . In the battery C, the internal pressure hardly decreased. this is,
This is because nitrogen gas was injected after the first charge and after the float charge to eliminate the respective pressure reduction factors.

【0018】また、電池BおよびCを1年毎に、3C
(Cは定格容量の値を示す数値)で10分間放電し、そ
の後に最大電流0.25Cで定電圧の回復充電を行う試
験を3年間にわって行った。そして、電池Cの一部を放
電後の前記回復充電後に電池Bと同じ方法で電池内に窒
素ガスと充填した。この電池を電池Dとした。これら電
池B,C,Dの電池内圧を測定した結果を図2に示す。
図2より従来の電池Bでは回復充電後の1年間に内圧が
70kPa以下に低下し、電槽の凹みが見られた。電池
Cでは、年数が経過するに従い内圧が低下し、3年後に
は、内圧が略80kPaまで低下した。それに対し、電
池Dでは、3年経過しても内圧が殆ど低下せず、電槽の
凹みが見られなかった。
Also, batteries B and C are charged every year for 3C.
(C is a numerical value indicating the value of the rated capacity) for 10 minutes, and thereafter, a test of performing a constant voltage recovery charge at a maximum current of 0.25C was performed for three years. Then, a part of the battery C was filled with nitrogen gas in the same manner as the battery B after the recovery charge after discharging. This battery was designated as Battery D. FIG. 2 shows the measurement results of the internal pressures of the batteries B, C, and D.
From FIG. 2, in the conventional battery B, the internal pressure was reduced to 70 kPa or less in one year after the recovery charge, and the battery case was dent. In battery C, the internal pressure decreased as the number of years passed, and after three years, the internal pressure decreased to approximately 80 kPa. On the other hand, in battery D, even after three years, the internal pressure hardly decreased, and no dent of the battery case was observed.

【0019】これは、使用中に放電した時は、初充電後
にのみ、あるいは初充電後とフロート充電開始後に窒素
ガスを注入しただけでは不十分で、回復充電した後に窒
素ガスを注入すると、減圧を殆ど防げることを示す。つ
まり、回復充電すると、充電中に排気弁から窒素ガスの
一部が排出され、その効果が減ずると考えられるので、
回復充電後に窒素ガスを注入することが好ましい。
This is because when discharging during use, it is not sufficient to inject nitrogen gas only after initial charging or after initial charging and after the start of float charging. Is almost prevented. In other words, when the recovery charge is performed, part of the nitrogen gas is discharged from the exhaust valve during the charge, and the effect is considered to be reduced.
It is preferable to inject nitrogen gas after recovery charging.

【0020】本実施例は、不活性ガスに窒素を使用した
が、窒素、ヘリウム、アルゴンガスの単一または複合ガ
スを使用しても同様の効果が得られる。また、不活性ガ
スの充填方法についても、本実施例に限定されるもので
なく、例えば、セル室を減圧し、既存ガスを排出した後
に、不活性ガスを充填したり、セル室が正圧状態になる
まで不活性ガスを充填しても、同様に効果が得られる。
In this embodiment, nitrogen is used as the inert gas. However, the same effect can be obtained by using a single gas or a composite gas of nitrogen, helium, and argon. Also, the method for filling the inert gas is not limited to the present embodiment.For example, after the cell chamber is depressurized and the existing gas is discharged, the inert gas is filled or the cell chamber is charged at a positive pressure. The same effect can be obtained even if an inert gas is filled until the state is reached.

【0021】また、本実施例では、初充電後とフロート
充電開始後に不活性ガスを充填した電池C、およびさら
に回復充電後に不活性ガスを充填した電池Dの2例の効
果のみ示したが、初充電からフロート充電開始までの期
間の短い電池では初充電後の不活性ガスの充填を省略す
ることができ、フロート充電開始後から放電までの期間
の短いものはフロート充電開始後の不活性ガスの充填を
省略し回復充電後に不活性ガスを充填すれば従来のもの
に比べ効果がある。また、放電間隔の短いものは回復充
電毎に不活性ガスを充填しなくてもよい。
In this embodiment, only the effects of the battery C filled with the inert gas after the initial charge and after the start of the float charge and the battery D filled with the inert gas after the recovery charge are shown. For a battery with a short period from the initial charge to the start of the float charge, the filling of the inert gas after the initial charge can be omitted, and for a battery with a short period from the start of the float charge to the discharge, the inert gas after the start of the float charge is used. If the filling of the inert gas after the recovery charge is omitted and the filling of the inert gas is performed, there is an effect compared with the conventional one. In addition, those having a short discharge interval do not have to be filled with an inert gas every recovery charge.

【0022】[0022]

【発明の効果】本発明は、以上説明した通り、電池のフ
ロート充電開始後、または/および放電後の回復充電終
了後に、それぞれ不活性ガスを電池に充填することによ
り、電槽の凹みを防止し、電池の容量低下や、電槽のク
リープ破壊、漏液を解決しえたものであって、信頼性の
高い鉛蓄電池を提供することができる。
As described above, according to the present invention, the dent of the battery case is prevented by filling the battery with an inert gas after the float charge of the battery is started and / or after the end of the recovery charge after the discharge. In addition, it is possible to provide a highly reliable lead storage battery which can solve the problem of battery capacity reduction, battery case creep destruction, and liquid leakage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】不活性ガスを充填しない電池A、初充電後に不
活性ガスを充填した電池Bおよび初充電後とフロート充
電開始後に不活性ガスを充填した電池Cのフロート充電
期間中の電池内圧の変化を示すグラフである。
FIG. 1 shows the internal pressures of a battery A not filled with an inert gas, a battery B filled with an inert gas after initial charging, and a battery C filled with an inert gas after initial charging and after the start of float charging. It is a graph which shows a change.

【図2】図1の電池BとCを1年毎に放電させ、回復充
電させたものと、電池Cを1年毎に放電した後回復充電
させ、その後に不活性ガスを充填した電池Dの電池内圧
を示すグラフである。
FIG. 2 shows batteries B and C of FIG. 1 discharged and recovered and charged every year, and battery D discharged and discharged every year of battery C and then charged with an inert gas. 5 is a graph showing the internal pressure of the battery.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フロート充電方式で使用する制御弁式鉛
電池の保守方法において、フロート充電開始後または/
および回復充電後に該電池内に不活性ガスを充填するこ
とを特徴とする制御弁式鉛電池の保守方法。
In a method for maintaining a control valve type lead battery used in a float charging system, the method comprises the steps of:
And a method of maintaining a control valve type lead battery, wherein the battery is filled with an inert gas after recovery charging.
【請求項2】 前記制御弁式鉛電池は、初充電後に電池
内に不活性ガスが充填されたものであることを特徴とす
る請求項1記載の制御弁式鉛電池の保守方法。
2. The maintenance method for a control valve type lead battery according to claim 1, wherein the control valve type lead battery has an inert gas filled in the battery after initial charging.
【請求項3】 前記不活性ガスが、窒素、ヘリウム、ア
ルゴンの単一または複合ガスであることを特徴とする請
求項1または2記載の制御弁式鉛電池の保守方法。
3. The method according to claim 1, wherein the inert gas is a single gas or a composite gas of nitrogen, helium, and argon.
JP11168825A 1999-06-15 1999-06-15 Maintenance method of control valve type lead-acid battery Pending JP2000357538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11168825A JP2000357538A (en) 1999-06-15 1999-06-15 Maintenance method of control valve type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11168825A JP2000357538A (en) 1999-06-15 1999-06-15 Maintenance method of control valve type lead-acid battery

Publications (1)

Publication Number Publication Date
JP2000357538A true JP2000357538A (en) 2000-12-26

Family

ID=15875227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11168825A Pending JP2000357538A (en) 1999-06-15 1999-06-15 Maintenance method of control valve type lead-acid battery

Country Status (1)

Country Link
JP (1) JP2000357538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428732A (en) * 2014-09-03 2016-03-23 南宁国瑞电子科技有限公司 Apparatus and method for online maintenance of valve regulated sealed lead acid storage battery
JP2022179284A (en) * 2021-05-20 2022-12-02 烟台創為新能源科技股▲ふん▼有限公司 Charging system of battery pack and charging method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428732A (en) * 2014-09-03 2016-03-23 南宁国瑞电子科技有限公司 Apparatus and method for online maintenance of valve regulated sealed lead acid storage battery
JP2022179284A (en) * 2021-05-20 2022-12-02 烟台創為新能源科技股▲ふん▼有限公司 Charging system of battery pack and charging method thereof
JP7260927B2 (en) 2021-05-20 2023-04-19 烟台創為新能源科技股▲ふん▼有限公司 Battery pack charging system and charging method

Similar Documents

Publication Publication Date Title
KR101106359B1 (en) Method for manufacturing lithium ion secondary battery
JP5925755B2 (en) Battery module adjustment method and battery module adjustment apparatus
KR100284662B1 (en) Sealed Lead Acid Battery and Manufacturing Method Thereof
JP2000357538A (en) Maintenance method of control valve type lead-acid battery
US7514179B2 (en) Control valve type lead battery
KR100555034B1 (en) Method of post-treating for rechargeable lithium battery
US20200220195A1 (en) Method of producing battery
US2862986A (en) Storage battery
JP4639641B2 (en) Sealed alkaline storage battery
JP2000294201A (en) Enclosed square thin battery
CN112421191B (en) Method for judging whether spent acid is completely extracted
CN219553821U (en) Novel lithium battery
JP2006156022A (en) Charging method of control valve type lead acid storage battery
CN108037458A (en) A kind of method of quick detection lead-acid accumulator health status
JP2003142151A (en) Quick service type lead acid storage battery and its using method
CN117352862A (en) Valve-control flat-pressure type single battery, valve-control flat-pressure type lead-acid storage battery and equipment
JP2018006199A (en) Regeneration method of nickel-metal hydride storage battery and regenerator of nickel-metal hydride storage battery
JP3191644B2 (en) Simple gas-absorption type lead-acid battery and method of manufacturing the same
JPH0246662A (en) Sealed lead-acid battery
JPH05307973A (en) Chemical conversion charging method of nickel-cadmium battery
JPH0544784B2 (en)
JPH07142081A (en) Retainer type sealed lead-acid battery
JP2809634B2 (en) Manufacturing method of sealed lead-acid battery
JPH1197073A (en) Method for charging sealed lead-acid battery
JPS601755A (en) Method of stirring electrolyte of lead storage battery