JPH05307973A - Chemical conversion charging method of nickel-cadmium battery - Google Patents

Chemical conversion charging method of nickel-cadmium battery

Info

Publication number
JPH05307973A
JPH05307973A JP4136133A JP13613392A JPH05307973A JP H05307973 A JPH05307973 A JP H05307973A JP 4136133 A JP4136133 A JP 4136133A JP 13613392 A JP13613392 A JP 13613392A JP H05307973 A JPH05307973 A JP H05307973A
Authority
JP
Japan
Prior art keywords
battery
charging
cadmium
amount
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4136133A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawamura
浩 河村
Hideo Yasuda
安田  秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4136133A priority Critical patent/JPH05307973A/en
Publication of JPH05307973A publication Critical patent/JPH05307973A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To easily manufacture a battery without causing liquid leakage wherein voltage alteration of the battery can be detected based on the alteration of voltage potential sufficient to generate hydrogen in a nagative pole and charging of the battery is carried out under control. CONSTITUTION:A battery which retains an electrolytic liquid in an amount equivalent to the total of the void volume of a positive pole plate and a negative pole plate in charged condition and 20-80% volume of pores of a separator and is provided with a safety valve working at 0.05-4kg/cm<2> is charged at electricity in quantity equivalent to reduce cadmium oxide or cadmium hydroxide contained at least in the negative pole plate to metal cadmium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル・カドミウム電
池の化成充電方法、さらに詳しく言えば負極の水素発生
に至る電位変化に基づく電池電圧の変化を検出して充電
を制御するニッケル・カドミウム電池の化成充電方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for chemical conversion charging of a nickel-cadmium battery, and more specifically, to a nickel-cadmium battery for controlling charging by detecting a change in battery voltage due to a potential change leading to hydrogen generation at the negative electrode. The present invention relates to a chemical charging method.

【0002】[0002]

【従来の技術】近年、新しい機能を有するニッケル・カ
ドミウム電池として負極の水素発生に至る電位変化に基
づく電池電圧の変化を検出して充電を制御する電池が提
案されている(例えば、特開平3−171564号)。
この電池は、負極の水素発生が正極の充電が完了する直
前あるいはそれ以前におこるよう設計されている。この
ような電池を製作する最も簡単な方法として、電池を組
み立てたのちの化成充電時に開放状態すなわち安全弁を
取り付けていない状態で、正極および負極からそれぞれ
酸素ガスおよび水素ガスが発生するまで電池を過充電す
る方法および安全弁を取り付けた電池を過充電する方法
がある。
2. Description of the Related Art In recent years, as a nickel-cadmium battery having a new function, a battery has been proposed which controls a charge by detecting a change in a battery voltage due to a potential change leading to hydrogen generation of a negative electrode (for example, Japanese Patent Laid-Open Publication No. Hei 3). No. 171564).
This battery is designed so that hydrogen generation in the negative electrode occurs immediately before or before the charging of the positive electrode is completed. The simplest way to make such a battery is to open the battery during chemical charging after assembling the battery, i.e., without a safety valve, until the oxygen gas and hydrogen gas are generated from the positive and negative electrodes, respectively. There is a method of charging and a method of overcharging a battery equipped with a safety valve.

【0003】[0003]

【発明が解決しようとする課題】電池組立後に過充電を
おこなった場合には、充電末期に正極から発生する酸素
ガスおよび負極から発生する水素ガスにより、極板中お
よびセパレータ中に含まれている電解液がエレメント外
部へ押し出される。この時過剰な電解液が存在した場合
には、液口より電解液が電池系外へ流出する。鉛蓄電池
や大容量の角形ニッケル・カドミウム電池においてはこ
のように化成時に過充電をおこない、過剰な電解液を流
出させた後に洗浄をおこなって、安全弁を取り付ける方
法が取られている。しかしながら、この方法は工程が煩
雑になるうえに、化成充放電用の機器を損傷しやすいな
どの問題がある。加えて、ニッケル・カドミウム電池に
使用される電解液は強アルカリであるため、いったん流
出した場合は完全に洗い流すことが難しく、炭酸カリウ
ム結晶が析出して電池表面が白く汚れたり、組電池の絶
縁不良がおこり易いなどの問題を生じやすかった。
When the battery is overcharged after assembly, it is contained in the electrode plate and the separator due to oxygen gas generated from the positive electrode and hydrogen gas generated from the negative electrode at the end of charging. The electrolyte is pushed out of the element. At this time, if an excessive amount of electrolytic solution is present, the electrolytic solution flows out of the battery system through the liquid port. In a lead-acid battery or a large-capacity prismatic nickel-cadmium battery, a method of overcharging at the time of formation, flushing out excess electrolyte and then mounting a safety valve is adopted. However, this method has problems that the process is complicated and that the equipment for chemical conversion charging / discharging is easily damaged. In addition, since the electrolyte used in nickel-cadmium batteries is a strong alkali, it is difficult to wash it off completely once it has flowed out, and potassium carbonate crystals are deposited on the surface of the battery to stain it white or to insulate the battery pack. Problems such as defects are likely to occur.

【0004】[0004]

【課題を解決するための手段】本発明は、かかる問題点
を充電方法を含めて系統的にしかも詳細に検討した結
果、負極の電位変化に基づく電池電圧の変化を検出して
充電を制御するニッケル・カドミウム電池の最適液量お
よび最適化成充電条件を見いだしたことに基づくもので
ある。具体的には、電解液量が充電状態における正極板
および負極板の空孔体積と、セパレータの空孔体積の2
0〜80%との合計に相当する量で、0.05〜4kg/
cm2 で作動する安全弁を備えた電池を、少なくとも負極
板に含まれる酸化カドミウムあるいは水酸化カドミウム
が金属カドミウムに還元される電気量充電することを特
徴とするものである。この場合の電気量とは、酸化カド
ミウムあるいは水酸化カドミウムが全て金属カドミウム
に還元されるのに必要とされる量ではなく、少なくとも
充電時に水素発生にいたる電位変化が生ずるところまで
充電することを意味するもので、その量は電流・温度に
よって異なる。とくに、電解液に水酸化カリウム水溶液
および水酸化ナトリウム水溶液の混合溶液を使用した場
合に充電が容易となる。また充電電流が0.05〜5C
Aの範囲である場合に効果が大きい。さらに充電方法と
して、最大電流規制定電圧法あるいは準定電圧法を適用
すると、とくに効果が大きい。
According to the present invention, as a result of systematically and in detail examining such problems including a charging method, a change in battery voltage due to a change in potential of a negative electrode is detected to control charging. This is based on the finding of the optimum liquid amount and optimum chemical charge conditions for nickel-cadmium batteries. Specifically, when the amount of the electrolyte is the charged volume, the void volume of the positive electrode plate and the negative electrode plate and the void volume of the separator are 2
Amount equivalent to 0 to 80%, 0.05 to 4 kg /
A battery equipped with a safety valve that operates at cm 2 is characterized in that it is charged with an amount of electricity such that at least cadmium oxide or cadmium hydroxide contained in the negative electrode plate is reduced to metallic cadmium. The amount of electricity in this case is not the amount required to reduce all cadmium oxide or cadmium hydroxide to metallic cadmium, but means that at least the potential changes that lead to hydrogen generation during charging occur. It depends on the current and temperature. In particular, charging becomes easier when a mixed solution of an aqueous solution of potassium hydroxide and an aqueous solution of sodium hydroxide is used as the electrolytic solution. The charging current is 0.05-5C
When the range is A, the effect is great. Further, when the maximum current regulation constant voltage method or the quasi constant voltage method is applied as the charging method, the effect is particularly large.

【0005】[0005]

【作用】組立時に注入する電解液量を、充電状態におけ
る正極板および負極板の空孔体積と、セパレータの空孔
体積の80%との合計に相当する量以下とすると、過充
電時に正極から発生する酸素ガスおよび負極から発生す
る水素ガスにより極板の空孔中から押し出される電解液
の大部分はセパレータ中に保持されるために電池系外へ
流出することはない。この場合、電解液量が充電状態に
おける正極板および負極板の空孔体積と、セパレータの
空孔体積の20%との合計に相当する量以下になると電
池性能が低下するため、この値以上とすることが望まし
い。
When the amount of electrolyte injected at the time of assembly is equal to or less than the total amount of the pore volume of the positive electrode plate and the negative electrode plate in the charged state and 80% of the pore volume of the separator, the positive electrode is charged from the positive electrode during overcharge. Most of the electrolytic solution extruded from the pores of the electrode plate by the oxygen gas generated and the hydrogen gas generated from the negative electrode is retained in the separator and therefore does not flow out of the battery system. In this case, when the amount of the electrolytic solution is equal to or less than the total amount of the pore volume of the positive electrode plate and the negative electrode plate in the charged state and 20% of the pore volume of the separator, the battery performance is deteriorated. It is desirable to do.

【0006】また、電池に取り付ける安全弁の作動圧が
4kg/cm2 を越えると、ガス吸収反応により密閉系が保
たれるために、正・負極板の充電レベルをそろえること
ができない。この場合、作動圧を0.05kg/cm2 以下
とするとシール性に問題があるため、この値以上とする
ことが実用上必要である。
When the operating pressure of the safety valve attached to the battery exceeds 4 kg / cm 2 , the positive and negative electrode plates cannot be charged at the same charge level because the closed system is maintained by the gas absorption reaction. In this case, if the working pressure is set to 0.05 kg / cm 2 or less, there is a problem in the sealing property. Therefore, it is practically necessary to set this value or more.

【0007】さらに、電解液として水酸化カリウム水溶
液および水酸化ナトリウム水溶液の混合溶液を使用する
と、負極活物質である酸化カドミウムあるいは水酸化カ
ドミウムの充電が容易となり、負極からの水素発生量を
最小限とすることができ、化成時の液の流出を抑制する
ことができる。
Further, when a mixed solution of an aqueous solution of potassium hydroxide and an aqueous solution of sodium hydroxide is used as the electrolytic solution, the negative electrode active material, cadmium oxide or cadmium hydroxide, can be easily charged, and the amount of hydrogen generated from the negative electrode can be minimized. It is possible to suppress the outflow of the liquid during chemical conversion.

【0008】また、充電電流が5CA以上になると負極
の充電効率の低下が大きくなるために負極からの水素発
生量が多くなり、液もれを生じやすい。この場合、充電
電流を0.05CA以下とすると化成充放電工程に長時
間を要するために実用上好ましくない。
Further, when the charging current is 5 CA or more, the charging efficiency of the negative electrode is greatly reduced, so that the amount of hydrogen generated from the negative electrode is increased and liquid leakage easily occurs. In this case, if the charging current is set to 0.05 CA or less, it takes a long time for the chemical conversion charging / discharging process, which is not preferable in practice.

【0009】さらに、充電方法として最大電流規制定電
圧法あるいは準定電圧法を適用すると、過充電領域にお
いて電流が減少するために正極からの酸素ガス発生量お
よび負極からの水素ガス発生量を減少させることがで
き、とくに効果が大きい。
Further, when the maximum current regulation constant voltage method or the quasi-constant voltage method is applied as the charging method, the amount of oxygen gas generated from the positive electrode and the amount of hydrogen gas generated from the negative electrode are decreased because the current decreases in the overcharge region. Can be done, and the effect is particularly large.

【0010】[0010]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。
EXAMPLES The present invention will be described below with reference to preferred examples.

【0011】はじめに、最適な電解液量の範囲について
詳細に検討をおこなうために、電解液量を変化させた電
池を製作し、種々の充電電流により化成充放電をおこな
った。
First, in order to study in detail the optimum range of the amount of electrolytic solution, batteries having different amounts of electrolytic solution were manufactured and subjected to chemical charge / discharge with various charging currents.

【0012】[実施例1]多孔度が約80%の焼結ニッ
ケル基板に硝酸コバルト8mol %および硝酸カドミウム
4mol %を含む4.5Mの硝酸ニッケル水溶液を70℃
で含浸し、70℃で5Mの水酸化ナトリウム水溶液に浸
漬したのち湯洗し、さらに80℃で1時間乾燥する操作
を7回繰り返して焼結式水酸化ニッケル正極板(21.5×
49.5×0.76mm)7枚を製作した。つぎに、酸化カドミウ
ム100重量部および金属カドミウム40重量部を活物
質とするペースト式カドミウム負極板(22.5×50.5×0.
57mm)8枚を製作した。さらにポリサルフォン製の不織
布で上記の正極板を包み込んで超音波溶着をおこなった
のち、負極板と交互に組み合わせて極板群とした。この
極板群に、作動圧が1.0kg/cm2 である安全弁を完備
した正極端子を有する封口板を取り付けて電池ケースに
挿入し、電解液量が充電状態における正極板および負極
板の空孔体積と、セパレータの空孔体積の5〜90%と
の合計に相当する量になるように比重1.250(20℃) の水
酸化カリウム水溶液を加えたのち封口して、公称容量が
2.4Ahの電池を製作した。これらの電池を封口後3
日間放置したのち、0.1,0.5あるいは1CAの電
流で、公称容量の150%充電し、0.5CAで1.0
Vまで放電するという化成充放電をおこなった。
Example 1 A 4.5 M nickel nitrate aqueous solution containing 8 mol% cobalt nitrate and 4 mol% cadmium nitrate was applied to a sintered nickel substrate having a porosity of about 80% at 70 ° C.
It is impregnated with water, immersed in a 5M aqueous solution of sodium hydroxide at 70 ° C, washed with hot water, and then dried at 80 ° C for 1 hour. This operation is repeated 7 times.
7 pieces were produced. Next, a paste-type cadmium negative electrode plate (22.5 × 50.5 × 0.50% by weight) containing 100 parts by weight of cadmium oxide and 40 parts by weight of metal cadmium as active materials.
57mm) 8 pieces were produced. Further, the above positive electrode plate was wrapped with a non-woven fabric made of polysulfone, ultrasonically welded, and then alternately combined with a negative electrode plate to form an electrode plate group. A sealing plate having a positive electrode terminal equipped with a safety valve with an operating pressure of 1.0 kg / cm 2 is attached to this electrode plate group and inserted into the battery case, and the empty space of the positive electrode plate and the negative electrode plate when the amount of electrolyte is charged. An aqueous solution of potassium hydroxide having a specific gravity of 1.250 (20 ° C) was added to make the amount equivalent to the total of the pore volume and the pore volume of the separator 5 to 90%, followed by sealing, and the nominal capacity was 2.4 Ah. I made a battery. 3 after sealing these batteries
After leaving it for a day, it is charged to 150% of its nominal capacity with a current of 0.1, 0.5 or 1 CA, and it is 1.0 at 0.5 CA.
A chemical charge and discharge of discharging to V was performed.

【0013】図1に、電解液量と化成充放電後の重量減
少量との関係を示す。また図2に、電解液量と放電容量
との関係を示す。なお図中の電解液量は、充電状態にお
いて正極板および負極板の空孔がすべて電解液で満たさ
れたとした場合の、残りの電解液量をセパレータの空孔
体積に対する割合で示している。図1より、重量減少量
は、電解液量が正極板および負極板の空孔体積と、セパ
レータの空孔体積の80%との合計に相当する量以下で
はほぼ一定であるのに対して、この値を越えたところか
ら急激に増加し、この時点で電解液の流出がみられた。
さらに、残留多孔度の異なる正極板および負極板そして
厚さの異なるセパレータを使用した場合にも、ほぼ同様
の結果が得られた。したがって、組立時に電解液量を正
極板および負極板の空孔体積と、セパレータの空孔体積
の80%との合計に相当する量以下とすると、過充電時
に正極から発生する酸素ガスおよび負極から発生する水
素ガスにより極板中から押し出された電解液の大部分
は、セパレータ中に保持されるために電池系外へ流出し
ないと考えられる。また図2より、電解液量が正極板お
よび負極板の空孔体積と、セパレータの空孔体積の20
%との合計に相当する量未満になると放電容量が大きく
低下するため、この値以上とすることが望ましい。した
がって、最適な電解液量は、正極板および負極板の空孔
体積と、セパレータの空孔体積の20〜80%との合計
に相当する量となるといえる。
FIG. 1 shows the relationship between the amount of electrolyte and the amount of weight loss after chemical conversion charging / discharging. Further, FIG. 2 shows the relationship between the electrolytic solution amount and the discharge capacity. The amount of electrolytic solution in the figure is the ratio of the remaining amount of electrolytic solution to the pore volume of the separator when all the holes of the positive electrode plate and the negative electrode plate are filled with the electrolytic solution in the charged state. From FIG. 1, the amount of weight reduction is almost constant when the amount of the electrolytic solution is equal to or less than the total amount of the pore volume of the positive electrode plate and the negative electrode plate and 80% of the pore volume of the separator. From the point where this value was exceeded, the value increased sharply, and at this time point, the outflow of the electrolytic solution was observed.
Furthermore, substantially the same results were obtained when positive electrode plates and negative electrode plates having different residual porosities and separators having different thicknesses were used. Therefore, when the amount of the electrolytic solution during assembly is set to be equal to or less than the total amount of the pore volume of the positive electrode plate and the negative electrode plate and 80% of the pore volume of the separator, the oxygen gas generated from the positive electrode during overcharge and the negative electrode It is considered that most of the electrolytic solution extruded from the electrode plate by the generated hydrogen gas does not flow out of the battery system because it is held in the separator. Also, from FIG. 2, the amount of electrolyte is 20% of the pore volume of the positive electrode plate and the negative electrode plate and the pore volume of the separator.
When the amount is less than the amount corresponding to the total of%, the discharge capacity is significantly reduced. Therefore, it can be said that the optimum amount of the electrolytic solution is an amount corresponding to the total of the void volume of the positive electrode plate and the negative electrode plate and 20 to 80% of the void volume of the separator.

【0014】つぎに、電池に取り付ける安全弁の最適な
作動圧の範囲について詳細に検討をおこなうために、作
動圧の異なる安全弁を取り付けた電池を製作し、化成充
放電をおこなった。
Next, in order to examine in detail the range of the optimum operating pressure of the safety valve attached to the battery, batteries having safety valves with different operating pressures were manufactured and subjected to chemical charge / discharge.

【0015】[実施例2]実施例1と同様にして製作し
た極板群に、作動圧が0.01〜8kg/cm2 である安全
弁を完備した正極端子を有する封口板を取り付けて電池
ケースに挿入し、電解液量が充電状態における正極板お
よび負極板の空孔体積と、セパレータの空孔体積の75
%との合計に相当する量になるように比重1.250(20℃)
の水酸化カリウム水溶液を加えたのち封口して、公称容
量が2.4Ahの電池を製作した。封口後3日間放置し
たのち、1CAの電流で負極板に含まれる酸化カドミウ
ムが全て金属カドミウムに還元されるのに必要な電気量
だけ充電をおこない、つぎに0.5CAで1.0Vまで
放電するという化成充放電をおこなった。
[Embodiment 2] A battery case is prepared by attaching a sealing plate having a positive electrode terminal equipped with a safety valve having an operating pressure of 0.01 to 8 kg / cm 2 to an electrode plate group manufactured in the same manner as in Embodiment 1. And the amount of electrolyte is 75% of the void volume of the positive electrode plate and the negative electrode plate in the charged state and the void volume of the separator.
Specific gravity 1.250 (20 ° C) so that the amount corresponds to the total of
After adding the potassium hydroxide aqueous solution of (1) and sealing, a battery having a nominal capacity of 2.4 Ah was manufactured. After leaving it for 3 days after sealing, it is charged with the amount of electricity required to reduce all the cadmium oxide contained in the negative electrode plate to metallic cadmium at a current of 1 CA, and then discharged to 1.0 V at 0.5 CA. The chemical charge and discharge was performed.

【0016】図3に、安全弁作動圧と化成充放電後の重
量減少量との関係を示す。図より、4kg/cm2 を越える
と重量減少がなくなっており、酸素ガスおよび水素ガス
のいずれも電池系外へ出ていないことがわかる。このこ
とは、正極板と負極板の充電レベルが化成充放電後にお
いても変化していないことを意味している。したがっ
て、電池に取り付ける安全弁の作動圧が4kg/cm2 以上
になると、負極の水素発生にいたる電位変化に基づく電
池電圧の変化を検出して充電を制御する電池を製作する
ことができない。この場合、作動圧を0.05kg/cm2
未満とするとシール性に問題が生じて、長期使用中に液
のリークが大きくなることがわかった。したがって作動
圧はこの値以上とする必要がある。
FIG. 3 shows the relationship between the safety valve operating pressure and the weight reduction amount after chemical conversion charging / discharging. From the figure, it can be seen that when the weight exceeds 4 kg / cm 2 , the weight loss has disappeared, and neither oxygen gas nor hydrogen gas has come out of the battery system. This means that the charge levels of the positive electrode plate and the negative electrode plate have not changed even after the formation and charge / discharge. Therefore, when the operating pressure of the safety valve attached to the battery is 4 kg / cm 2 or more, it is impossible to manufacture a battery that controls the charging by detecting the change in the battery voltage due to the potential change resulting in the hydrogen generation of the negative electrode. In this case, the working pressure is 0.05kg / cm 2
It has been found that if the amount is less than the range, a problem occurs in the sealing property, and the leak of the liquid increases during long-term use. Therefore, the operating pressure must be above this value.

【0017】さらに、電解液組成について検討をおこな
った。
Further, the composition of the electrolytic solution was examined.

【0018】[実施例3]実施例1と同様にして作製し
た極板群に、作動圧が1.0kg/cm2 である安全弁を完
備した正極端子を有する封口板を取り付け、比重1.250
(20℃) の水酸化カリウム水溶液と比重1.250(20℃)の
水酸化ナトリウム水溶液との混合溶液(体積比3:1)
5.4mlとともに電池ケースに挿入したのち封口し、
公称容量が2.4Ahの電池Aを製作した。なお、電解
液量5.4mlは、充電状態における正極板および負極
板の空孔体積と、セパレータの空孔体積の75%との合
計に相当する量である。
[Embodiment 3] A sealing plate having a positive electrode terminal equipped with a safety valve having an operating pressure of 1.0 kg / cm 2 was attached to an electrode plate group prepared in the same manner as in Example 1 to have a specific gravity of 1.250.
Mixed solution of potassium hydroxide aqueous solution (20 ℃) and sodium hydroxide aqueous solution with specific gravity 1.250 (20 ℃) (volume ratio 3: 1)
Insert it into the battery case together with 5.4 ml and then seal it.
A battery A having a nominal capacity of 2.4 Ah was manufactured. The electrolyte solution amount of 5.4 ml corresponds to the total of the pore volume of the positive electrode plate and the negative electrode plate in the charged state and 75% of the pore volume of the separator.

【0019】[比較例1]上記の電池Aにおいて、電解
液を比重1.250(20℃) の水酸化カリウム水溶液5.4m
lを使用した以外はすべて電池Aと同様にして比較例の
電池Bを製作した。
[Comparative Example 1] In the above battery A, the electrolytic solution was 5.4 m in an aqueous potassium hydroxide solution having a specific gravity of 1.250 (20 ° C).
A comparative battery B was manufactured in the same manner as battery A except that 1 was used.

【0020】電池Aおよび電池Bを、3Cの電流で負極
板に含まれる酸化カドミウムが全て金属カドミウムに還
元されるのに必要な電気量だけ充電をおこなった。充電
特性を図4に示す。水素発生による電池電圧の急激な立
ち上がりがみられるまでの充電電気量は、電池Aの方が
多くなっている。したがって、充電電気量を一定とした
場合には、電池Aの方が水素発生量が少なくなることが
わかる。さらに第1表には、電池AおよびBを上述の条
件によりそれぞれ100セルずつ化成充放電をおこなっ
た場合に発生した液もれ不良数を示す。
Battery A and battery B were charged with an amount of electricity required for reducing all the cadmium oxide contained in the negative electrode plate to metallic cadmium at a current of 3C. The charging characteristics are shown in FIG. Battery A has a larger amount of electricity charged until a rapid rise in battery voltage due to hydrogen generation is observed. Therefore, it is understood that the amount of hydrogen generated in the battery A is smaller when the amount of electricity charged is constant. Further, Table 1 shows the number of defective liquid leaks that occurred when 100 cells of each of the batteries A and B were charged and discharged under the above conditions.

【0021】[0021]

【表1】 表1より、電解液として水酸化カリウム水溶液と水酸化
ナトリウム水溶液の混合溶液を使用した場合には、液も
れ不良がほとんど発生していない。これは、電解液に水
酸化ナトリウムが含まれると負極板中の酸化カドミウム
の充電が容易となるために、電解液が水酸化カリウム水
溶液であるものと比べて水素発生量が減少し、負極板の
空孔中から押し出される電解液量を最小限に抑えること
ができたためである。
[Table 1] From Table 1, when a mixed solution of an aqueous solution of potassium hydroxide and an aqueous solution of sodium hydroxide is used as the electrolytic solution, almost no liquid leakage failure occurs. This is because when the electrolytic solution contains sodium hydroxide, it becomes easier to charge cadmium oxide in the negative electrode plate, so that the amount of hydrogen generated is reduced as compared with the case where the electrolytic solution is a potassium hydroxide aqueous solution, and the negative electrode plate This is because it was possible to minimize the amount of the electrolyte solution extruded from the pores.

【0022】最後に、充電条件についても詳細に検討を
おこなった。
Finally, the charging conditions were also examined in detail.

【0023】[実施例4]比較例1の電池Bにおいて、
電解液量を正極板および負極板の空孔体積と、セパレー
タの空孔体積の80%との合計に相当する量とした以外
は全て電池Bと同様にして電池Cを製作した。この電池
C100セルを、20℃で最大電流規制定電圧法(最大
電流0.5CA、1.7V/セル)により、3時間充電
をおこなった。
Example 4 In Battery B of Comparative Example 1,
A battery C was manufactured in the same manner as the battery B, except that the amount of the electrolytic solution was the amount corresponding to the total of the void volume of the positive electrode plate and the negative electrode plate and 80% of the void volume of the separator. This battery C100 cell was charged at 20 ° C. for 3 hours by the maximum current regulation constant voltage method (maximum current 0.5 CA, 1.7 V / cell).

【0024】[実施例5]電池C100セルを、20℃
で準定電圧法(初期電流0.5CA、1.7V/セル)
により、3時間充電をおこなった。
Example 5 A battery C100 cell was placed at 20 ° C.
Quasi-constant voltage method (initial current 0.5 CA, 1.7 V / cell)
The battery was charged for 3 hours.

【0025】[比較例2]電池C100セルを、20℃
で定電流法(0.5CA)により、3時間充電をおこな
った。
[Comparative Example 2] A battery C100 cell was placed at 20 ° C.
Was charged for 3 hours by the constant current method (0.5 CA).

【0026】表2に、実施例4、5よび比較例2のそれ
ぞれの場合に発生した液もれ不良セル数を示す。
Table 2 shows the number of defective liquid leakage cells generated in each of Examples 4 and 5 and Comparative Example 2.

【0027】[0027]

【表2】 表2より、液もれ不良セル数は、定電流充電をおこなっ
た場合に比べて、最大電流規制定電圧充電あるいは準定
電圧充電をおこなった場合に減少していることがわか
る。これは、これらの方式を適用した場合には、過充電
領域において電流が減少するために、正極からの酸素ガ
ス発生および負極からの水素ガス発生が抑制され、エレ
メント外部へ押し出される電解液量が減少したためであ
る。
[Table 2] From Table 2, it can be seen that the number of defective liquid leakage cells is reduced when the maximum current regulated constant voltage charging or the quasi-constant voltage charging is performed, as compared with the case where the constant current charging is performed. This is because when these methods are applied, the current decreases in the overcharge region, so that oxygen gas generation from the positive electrode and hydrogen gas generation from the negative electrode are suppressed, and the amount of the electrolyte solution extruded to the outside of the element is reduced. This is because it has decreased.

【0028】[0028]

【発明の効果】以上述べたように、本発明によれば、負
極の水素発生にいたる電位変化に基づく電池電圧の変化
を検出して充電を制御することが可能な電池を、液もれ
を生じることなく容易に製作することができる。
As described above, according to the present invention, a battery capable of controlling the charging by detecting the change in the battery voltage due to the potential change resulting in the hydrogen generation of the negative electrode can be used to prevent liquid leakage. It can be easily manufactured without occurring.

【図面の簡単な説明】[Brief description of drawings]

【図1】電解液量と化成充放電後の重量減少量との関係
を示した図。
FIG. 1 is a diagram showing the relationship between the amount of electrolytic solution and the amount of weight loss after chemical conversion charging / discharging.

【図2】電解液量と化成充放電時の放電容量との関係を
示した図。
FIG. 2 is a diagram showing the relationship between the amount of electrolytic solution and the discharge capacity during chemical charge / discharge.

【図3】安全弁作動圧と化成充放電後の重量減少量との
関係を示した図。
FIG. 3 is a diagram showing a relationship between a safety valve operating pressure and a weight reduction amount after chemical charge / discharge.

【図4】電解液が水酸化カリウム水溶液の場合と水酸化
カリウムと水酸化ナトリウム溶液の混合溶液である場合
との3C充電特性を比較した図。
FIG. 4 is a diagram comparing the 3C charge characteristics when the electrolytic solution is an aqueous solution of potassium hydroxide and when the electrolytic solution is a mixed solution of potassium hydroxide and a sodium hydroxide solution.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 充電状態における正極板および負極板の
空孔体積と、セパレータの空孔体積の20〜80%との
合計に相当する量の電解液を保持し、かつ0.05〜4
kg/cm2 で作動する安全弁を備えた電池を、少なくとも
負極板に含まれる酸化カドミウムあるいは水酸化カドミ
ウムが金属カドミウムに還元される電気量充電すること
を特徴とするニッケル・カドミウム電池の化成充電方
法。
1. An electrolytic solution is retained in an amount corresponding to the total of the void volume of the positive electrode plate and the negative electrode plate in a charged state and 20 to 80% of the void volume of the separator, and 0.05 to 4 is held.
A method of forming and charging a nickel-cadmium battery, characterized in that a battery equipped with a safety valve that operates at kg / cm 2 is charged with an amount of electricity that reduces cadmium oxide or cadmium hydroxide contained in at least a negative electrode plate to cadmium metal. ..
【請求項2】 電解液が水酸化カリウム水溶液および水
酸化ナトリウム水溶液の混合溶液であることを特徴とす
る請求項1記載のニッケル・カドミウム電池の化成充電
方法。
2. The method of chemical conversion charging of a nickel-cadmium battery according to claim 1, wherein the electrolytic solution is a mixed solution of an aqueous solution of potassium hydroxide and an aqueous solution of sodium hydroxide.
【請求項3】 充電電流が正極活物質の理論容量を基準
として0.05〜5CAであることを特徴とする請求項
1記載のニッケル・カドミウム電池の化成充電方法。
3. The method for chemical conversion charging of a nickel-cadmium battery according to claim 1, wherein the charging current is 0.05 to 5 CA based on the theoretical capacity of the positive electrode active material.
【請求項4】 充電を最大電流規制定電圧法あるいは準
定電圧法でおこなうことを特徴とする請求項1記載のニ
ッケル・カドミウム電池の化成充電方法。
4. The method for chemical conversion charging of a nickel-cadmium battery according to claim 1, wherein the charging is performed by a maximum current regulation constant voltage method or a quasi-constant voltage method.
JP4136133A 1992-04-28 1992-04-28 Chemical conversion charging method of nickel-cadmium battery Pending JPH05307973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4136133A JPH05307973A (en) 1992-04-28 1992-04-28 Chemical conversion charging method of nickel-cadmium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4136133A JPH05307973A (en) 1992-04-28 1992-04-28 Chemical conversion charging method of nickel-cadmium battery

Publications (1)

Publication Number Publication Date
JPH05307973A true JPH05307973A (en) 1993-11-19

Family

ID=15168083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4136133A Pending JPH05307973A (en) 1992-04-28 1992-04-28 Chemical conversion charging method of nickel-cadmium battery

Country Status (1)

Country Link
JP (1) JPH05307973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540738B2 (en) 2011-11-10 2017-01-10 GM Global Technology Operations LLC Electrochemical process and device for hydrogen generation and storage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540738B2 (en) 2011-11-10 2017-01-10 GM Global Technology Operations LLC Electrochemical process and device for hydrogen generation and storage
DE102012220165B4 (en) 2011-11-10 2024-05-23 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Electrochemical process for releasing hydrogen and device for hydrogen production and storage

Similar Documents

Publication Publication Date Title
KR102039205B1 (en) Management of gas pressure and electrode state of charge in alkaline batteries
US20090087741A1 (en) Alkaline storage battery system
EP0170519B1 (en) A method of producing a sealed metal oxide-hydrogen storage cell
JP3012951B2 (en) Metal oxide-hydrogen storage battery and charging method thereof
JP2020198187A (en) Secondary battery manufacturing method, and nickel hydrogen secondary battery
JP2021002464A (en) Manufacturing method of nickel hydrogen secondary battery
JP3383210B2 (en) Open industrial storage battery with maintenance-free alkaline electrolyte
JPH05307973A (en) Chemical conversion charging method of nickel-cadmium battery
JPH0447676A (en) Manufacture of sealed storage battery
JP2555511B2 (en) Alkaline secondary battery
JP4639641B2 (en) Sealed alkaline storage battery
JP3429684B2 (en) Hydrogen storage electrode
JP3558082B2 (en) Nickel-cadmium secondary battery
US6444349B1 (en) Sealed nickel-metal hydride storage cell
JP3070081B2 (en) Sealed alkaline storage battery
JPH028419B2 (en)
JPS635866B2 (en)
JPH038269A (en) Alkaline secondary battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP2703267B2 (en) Metal-hydrogen alkaline storage battery
JPS62287578A (en) Enclosed alkaline storage battery
JPS61124069A (en) Closed nickel cadmium battery
JPH10255833A (en) Manufacture of sealed hydride secondary battery
JPH0443571A (en) Sealed nickel-cadmium battery and manufacture thereof
JPH0822844A (en) Charging method for sealed lead acid battery